1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PHITransAddr class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/PHITransAddr.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
25 static bool CanPHITrans(Instruction
*Inst
) {
26 if (isa
<PHINode
>(Inst
) ||
27 isa
<GetElementPtrInst
>(Inst
))
30 if (isa
<CastInst
>(Inst
) &&
31 isSafeToSpeculativelyExecute(Inst
))
34 if (Inst
->getOpcode() == Instruction::Add
&&
35 isa
<ConstantInt
>(Inst
->getOperand(1)))
38 // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
39 // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
40 // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
45 LLVM_DUMP_METHOD
void PHITransAddr::dump() const {
47 dbgs() << "PHITransAddr: null\n";
50 dbgs() << "PHITransAddr: " << *Addr
<< "\n";
51 for (unsigned i
= 0, e
= InstInputs
.size(); i
!= e
; ++i
)
52 dbgs() << " Input #" << i
<< " is " << *InstInputs
[i
] << "\n";
57 static bool VerifySubExpr(Value
*Expr
,
58 SmallVectorImpl
<Instruction
*> &InstInputs
) {
59 // If this is a non-instruction value, there is nothing to do.
60 Instruction
*I
= dyn_cast
<Instruction
>(Expr
);
63 // If it's an instruction, it is either in Tmp or its operands recursively
65 SmallVectorImpl
<Instruction
*>::iterator Entry
= find(InstInputs
, I
);
66 if (Entry
!= InstInputs
.end()) {
67 InstInputs
.erase(Entry
);
71 // If it isn't in the InstInputs list it is a subexpr incorporated into the
72 // address. Sanity check that it is phi translatable.
73 if (!CanPHITrans(I
)) {
74 errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
76 llvm_unreachable("Either something is missing from InstInputs or "
77 "CanPHITrans is wrong.");
80 // Validate the operands of the instruction.
81 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
82 if (!VerifySubExpr(I
->getOperand(i
), InstInputs
))
88 /// Verify - Check internal consistency of this data structure. If the
89 /// structure is valid, it returns true. If invalid, it prints errors and
91 bool PHITransAddr::Verify() const {
92 if (!Addr
) return true;
94 SmallVector
<Instruction
*, 8> Tmp(InstInputs
.begin(), InstInputs
.end());
96 if (!VerifySubExpr(Addr
, Tmp
))
100 errs() << "PHITransAddr contains extra instructions:\n";
101 for (unsigned i
= 0, e
= InstInputs
.size(); i
!= e
; ++i
)
102 errs() << " InstInput #" << i
<< " is " << *InstInputs
[i
] << "\n";
103 llvm_unreachable("This is unexpected.");
111 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
112 /// if we have some hope of doing it. This should be used as a filter to
113 /// avoid calling PHITranslateValue in hopeless situations.
114 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
115 // If the input value is not an instruction, or if it is not defined in CurBB,
116 // then we don't need to phi translate it.
117 Instruction
*Inst
= dyn_cast
<Instruction
>(Addr
);
118 return !Inst
|| CanPHITrans(Inst
);
122 static void RemoveInstInputs(Value
*V
,
123 SmallVectorImpl
<Instruction
*> &InstInputs
) {
124 Instruction
*I
= dyn_cast
<Instruction
>(V
);
127 // If the instruction is in the InstInputs list, remove it.
128 SmallVectorImpl
<Instruction
*>::iterator Entry
= find(InstInputs
, I
);
129 if (Entry
!= InstInputs
.end()) {
130 InstInputs
.erase(Entry
);
134 assert(!isa
<PHINode
>(I
) && "Error, removing something that isn't an input");
136 // Otherwise, it must have instruction inputs itself. Zap them recursively.
137 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
138 if (Instruction
*Op
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
139 RemoveInstInputs(Op
, InstInputs
);
143 Value
*PHITransAddr::PHITranslateSubExpr(Value
*V
, BasicBlock
*CurBB
,
145 const DominatorTree
*DT
) {
146 // If this is a non-instruction value, it can't require PHI translation.
147 Instruction
*Inst
= dyn_cast
<Instruction
>(V
);
150 // Determine whether 'Inst' is an input to our PHI translatable expression.
151 bool isInput
= is_contained(InstInputs
, Inst
);
153 // Handle inputs instructions if needed.
155 if (Inst
->getParent() != CurBB
) {
156 // If it is an input defined in a different block, then it remains an
161 // If 'Inst' is defined in this block and is an input that needs to be phi
162 // translated, we need to incorporate the value into the expression or fail.
164 // In either case, the instruction itself isn't an input any longer.
165 InstInputs
.erase(find(InstInputs
, Inst
));
167 // If this is a PHI, go ahead and translate it.
168 if (PHINode
*PN
= dyn_cast
<PHINode
>(Inst
))
169 return AddAsInput(PN
->getIncomingValueForBlock(PredBB
));
171 // If this is a non-phi value, and it is analyzable, we can incorporate it
172 // into the expression by making all instruction operands be inputs.
173 if (!CanPHITrans(Inst
))
176 // All instruction operands are now inputs (and of course, they may also be
177 // defined in this block, so they may need to be phi translated themselves.
178 for (unsigned i
= 0, e
= Inst
->getNumOperands(); i
!= e
; ++i
)
179 if (Instruction
*Op
= dyn_cast
<Instruction
>(Inst
->getOperand(i
)))
180 InstInputs
.push_back(Op
);
183 // Ok, it must be an intermediate result (either because it started that way
184 // or because we just incorporated it into the expression). See if its
185 // operands need to be phi translated, and if so, reconstruct it.
187 if (CastInst
*Cast
= dyn_cast
<CastInst
>(Inst
)) {
188 if (!isSafeToSpeculativelyExecute(Cast
)) return nullptr;
189 Value
*PHIIn
= PHITranslateSubExpr(Cast
->getOperand(0), CurBB
, PredBB
, DT
);
190 if (!PHIIn
) return nullptr;
191 if (PHIIn
== Cast
->getOperand(0))
194 // Find an available version of this cast.
196 // Constants are trivial to find.
197 if (Constant
*C
= dyn_cast
<Constant
>(PHIIn
))
198 return AddAsInput(ConstantExpr::getCast(Cast
->getOpcode(),
199 C
, Cast
->getType()));
201 // Otherwise we have to see if a casted version of the incoming pointer
202 // is available. If so, we can use it, otherwise we have to fail.
203 for (User
*U
: PHIIn
->users()) {
204 if (CastInst
*CastI
= dyn_cast
<CastInst
>(U
))
205 if (CastI
->getOpcode() == Cast
->getOpcode() &&
206 CastI
->getType() == Cast
->getType() &&
207 (!DT
|| DT
->dominates(CastI
->getParent(), PredBB
)))
213 // Handle getelementptr with at least one PHI translatable operand.
214 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Inst
)) {
215 SmallVector
<Value
*, 8> GEPOps
;
216 bool AnyChanged
= false;
217 for (unsigned i
= 0, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
218 Value
*GEPOp
= PHITranslateSubExpr(GEP
->getOperand(i
), CurBB
, PredBB
, DT
);
219 if (!GEPOp
) return nullptr;
221 AnyChanged
|= GEPOp
!= GEP
->getOperand(i
);
222 GEPOps
.push_back(GEPOp
);
228 // Simplify the GEP to handle 'gep x, 0' -> x etc.
229 if (Value
*V
= SimplifyGEPInst(GEP
->getSourceElementType(),
230 GEPOps
, DL
, TLI
, DT
, AC
)) {
231 for (unsigned i
= 0, e
= GEPOps
.size(); i
!= e
; ++i
)
232 RemoveInstInputs(GEPOps
[i
], InstInputs
);
234 return AddAsInput(V
);
237 // Scan to see if we have this GEP available.
238 Value
*APHIOp
= GEPOps
[0];
239 for (User
*U
: APHIOp
->users()) {
240 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
))
241 if (GEPI
->getType() == GEP
->getType() &&
242 GEPI
->getNumOperands() == GEPOps
.size() &&
243 GEPI
->getParent()->getParent() == CurBB
->getParent() &&
244 (!DT
|| DT
->dominates(GEPI
->getParent(), PredBB
))) {
245 if (std::equal(GEPOps
.begin(), GEPOps
.end(), GEPI
->op_begin()))
252 // Handle add with a constant RHS.
253 if (Inst
->getOpcode() == Instruction::Add
&&
254 isa
<ConstantInt
>(Inst
->getOperand(1))) {
255 // PHI translate the LHS.
256 Constant
*RHS
= cast
<ConstantInt
>(Inst
->getOperand(1));
257 bool isNSW
= cast
<BinaryOperator
>(Inst
)->hasNoSignedWrap();
258 bool isNUW
= cast
<BinaryOperator
>(Inst
)->hasNoUnsignedWrap();
260 Value
*LHS
= PHITranslateSubExpr(Inst
->getOperand(0), CurBB
, PredBB
, DT
);
261 if (!LHS
) return nullptr;
263 // If the PHI translated LHS is an add of a constant, fold the immediates.
264 if (BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(LHS
))
265 if (BOp
->getOpcode() == Instruction::Add
)
266 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BOp
->getOperand(1))) {
267 LHS
= BOp
->getOperand(0);
268 RHS
= ConstantExpr::getAdd(RHS
, CI
);
269 isNSW
= isNUW
= false;
271 // If the old 'LHS' was an input, add the new 'LHS' as an input.
272 if (is_contained(InstInputs
, BOp
)) {
273 RemoveInstInputs(BOp
, InstInputs
);
278 // See if the add simplifies away.
279 if (Value
*Res
= SimplifyAddInst(LHS
, RHS
, isNSW
, isNUW
, DL
, TLI
, DT
, AC
)) {
280 // If we simplified the operands, the LHS is no longer an input, but Res
282 RemoveInstInputs(LHS
, InstInputs
);
283 return AddAsInput(Res
);
286 // If we didn't modify the add, just return it.
287 if (LHS
== Inst
->getOperand(0) && RHS
== Inst
->getOperand(1))
290 // Otherwise, see if we have this add available somewhere.
291 for (User
*U
: LHS
->users()) {
292 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
))
293 if (BO
->getOpcode() == Instruction::Add
&&
294 BO
->getOperand(0) == LHS
&& BO
->getOperand(1) == RHS
&&
295 BO
->getParent()->getParent() == CurBB
->getParent() &&
296 (!DT
|| DT
->dominates(BO
->getParent(), PredBB
)))
303 // Otherwise, we failed.
308 /// PHITranslateValue - PHI translate the current address up the CFG from
309 /// CurBB to Pred, updating our state to reflect any needed changes. If
310 /// 'MustDominate' is true, the translated value must dominate
311 /// PredBB. This returns true on failure and sets Addr to null.
312 bool PHITransAddr::PHITranslateValue(BasicBlock
*CurBB
, BasicBlock
*PredBB
,
313 const DominatorTree
*DT
,
315 assert(DT
|| !MustDominate
);
316 assert(Verify() && "Invalid PHITransAddr!");
317 if (DT
&& DT
->isReachableFromEntry(PredBB
))
319 PHITranslateSubExpr(Addr
, CurBB
, PredBB
, MustDominate
? DT
: nullptr);
322 assert(Verify() && "Invalid PHITransAddr!");
325 // Make sure the value is live in the predecessor.
326 if (Instruction
*Inst
= dyn_cast_or_null
<Instruction
>(Addr
))
327 if (!DT
->dominates(Inst
->getParent(), PredBB
))
330 return Addr
== nullptr;
333 /// PHITranslateWithInsertion - PHI translate this value into the specified
334 /// predecessor block, inserting a computation of the value if it is
337 /// All newly created instructions are added to the NewInsts list. This
338 /// returns null on failure.
340 Value
*PHITransAddr::
341 PHITranslateWithInsertion(BasicBlock
*CurBB
, BasicBlock
*PredBB
,
342 const DominatorTree
&DT
,
343 SmallVectorImpl
<Instruction
*> &NewInsts
) {
344 unsigned NISize
= NewInsts
.size();
346 // Attempt to PHI translate with insertion.
347 Addr
= InsertPHITranslatedSubExpr(Addr
, CurBB
, PredBB
, DT
, NewInsts
);
349 // If successful, return the new value.
350 if (Addr
) return Addr
;
352 // If not, destroy any intermediate instructions inserted.
353 while (NewInsts
.size() != NISize
)
354 NewInsts
.pop_back_val()->eraseFromParent();
359 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
360 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
361 /// block. All newly created instructions are added to the NewInsts list.
362 /// This returns null on failure.
364 Value
*PHITransAddr::
365 InsertPHITranslatedSubExpr(Value
*InVal
, BasicBlock
*CurBB
,
366 BasicBlock
*PredBB
, const DominatorTree
&DT
,
367 SmallVectorImpl
<Instruction
*> &NewInsts
) {
368 // See if we have a version of this value already available and dominating
369 // PredBB. If so, there is no need to insert a new instance of it.
370 PHITransAddr
Tmp(InVal
, DL
, AC
);
371 if (!Tmp
.PHITranslateValue(CurBB
, PredBB
, &DT
, /*MustDominate=*/true))
372 return Tmp
.getAddr();
374 // We don't need to PHI translate values which aren't instructions.
375 auto *Inst
= dyn_cast
<Instruction
>(InVal
);
379 // Handle cast of PHI translatable value.
380 if (CastInst
*Cast
= dyn_cast
<CastInst
>(Inst
)) {
381 if (!isSafeToSpeculativelyExecute(Cast
)) return nullptr;
382 Value
*OpVal
= InsertPHITranslatedSubExpr(Cast
->getOperand(0),
383 CurBB
, PredBB
, DT
, NewInsts
);
384 if (!OpVal
) return nullptr;
386 // Otherwise insert a cast at the end of PredBB.
387 CastInst
*New
= CastInst::Create(Cast
->getOpcode(), OpVal
, InVal
->getType(),
388 InVal
->getName() + ".phi.trans.insert",
389 PredBB
->getTerminator());
390 New
->setDebugLoc(Inst
->getDebugLoc());
391 NewInsts
.push_back(New
);
395 // Handle getelementptr with at least one PHI operand.
396 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Inst
)) {
397 SmallVector
<Value
*, 8> GEPOps
;
398 BasicBlock
*CurBB
= GEP
->getParent();
399 for (unsigned i
= 0, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
400 Value
*OpVal
= InsertPHITranslatedSubExpr(GEP
->getOperand(i
),
401 CurBB
, PredBB
, DT
, NewInsts
);
402 if (!OpVal
) return nullptr;
403 GEPOps
.push_back(OpVal
);
406 GetElementPtrInst
*Result
= GetElementPtrInst::Create(
407 GEP
->getSourceElementType(), GEPOps
[0], makeArrayRef(GEPOps
).slice(1),
408 InVal
->getName() + ".phi.trans.insert", PredBB
->getTerminator());
409 Result
->setDebugLoc(Inst
->getDebugLoc());
410 Result
->setIsInBounds(GEP
->isInBounds());
411 NewInsts
.push_back(Result
);
416 // FIXME: This code works, but it is unclear that we actually want to insert
417 // a big chain of computation in order to make a value available in a block.
418 // This needs to be evaluated carefully to consider its cost trade offs.
420 // Handle add with a constant RHS.
421 if (Inst
->getOpcode() == Instruction::Add
&&
422 isa
<ConstantInt
>(Inst
->getOperand(1))) {
423 // PHI translate the LHS.
424 Value
*OpVal
= InsertPHITranslatedSubExpr(Inst
->getOperand(0),
425 CurBB
, PredBB
, DT
, NewInsts
);
426 if (OpVal
== 0) return 0;
428 BinaryOperator
*Res
= BinaryOperator::CreateAdd(OpVal
, Inst
->getOperand(1),
429 InVal
->getName()+".phi.trans.insert",
430 PredBB
->getTerminator());
431 Res
->setHasNoSignedWrap(cast
<BinaryOperator
>(Inst
)->hasNoSignedWrap());
432 Res
->setHasNoUnsignedWrap(cast
<BinaryOperator
>(Inst
)->hasNoUnsignedWrap());
433 NewInsts
.push_back(Res
);