[ARM] Correct register for narrowing and widening MVE loads and stores.
[llvm-core.git] / lib / Analysis / LoopCacheAnalysis.cpp
blob10d2fe07884a0f22b6a785610631cdc115a1d20f
1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //
9 //===----------------------------------------------------------------------===//
10 ///
11 /// \file
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
14 ///
15 /// Compiler Optimizations for Improving Data Locality
16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18 ///
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 /// 1. Partition memory references that exhibit temporal or spacial reuse
22 /// into reference groups.
23 /// 2. For each loop L in the a loop nest LN:
24 /// a. Compute the cost of the reference group
25 /// b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Support/Debug.h"
34 using namespace llvm;
36 #define DEBUG_TYPE "loop-cache-cost"
38 static cl::opt<unsigned> DefaultTripCount(
39 "default-trip-count", cl::init(100), cl::Hidden,
40 cl::desc("Use this to specify the default trip count of a loop"));
42 // In this analysis two array references are considered to exhibit temporal
43 // reuse if they access either the same memory location, or a memory location
44 // with distance smaller than a configurable threshold.
45 static cl::opt<unsigned> TemporalReuseThreshold(
46 "temporal-reuse-threshold", cl::init(2), cl::Hidden,
47 cl::desc("Use this to specify the max. distance between array elements "
48 "accessed in a loop so that the elements are classified to have "
49 "temporal reuse"));
51 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
52 /// nullptr if any loops in the loop vector supplied has more than one sibling.
53 /// The loop vector is expected to contain loops collected in breadth-first
54 /// order.
55 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
56 assert(!Loops.empty() && "Expecting a non-empy loop vector");
58 Loop *LastLoop = Loops.back();
59 Loop *ParentLoop = LastLoop->getParentLoop();
61 if (ParentLoop == nullptr) {
62 assert(Loops.size() == 1 && "Expecting a single loop");
63 return LastLoop;
66 return (std::is_sorted(Loops.begin(), Loops.end(),
67 [](const Loop *L1, const Loop *L2) {
68 return L1->getLoopDepth() < L2->getLoopDepth();
69 }))
70 ? LastLoop
71 : nullptr;
74 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
75 const Loop &L, ScalarEvolution &SE) {
76 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
77 if (!AR || !AR->isAffine())
78 return false;
80 assert(AR->getLoop() && "AR should have a loop");
82 // Check that start and increment are not add recurrences.
83 const SCEV *Start = AR->getStart();
84 const SCEV *Step = AR->getStepRecurrence(SE);
85 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
86 return false;
88 // Check that start and increment are both invariant in the loop.
89 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
90 return false;
92 return AR->getStepRecurrence(SE) == &ElemSize;
95 /// Compute the trip count for the given loop \p L. Return the SCEV expression
96 /// for the trip count or nullptr if it cannot be computed.
97 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
98 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
99 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
100 !isa<SCEVConstant>(BackedgeTakenCount))
101 return nullptr;
103 return SE.getAddExpr(BackedgeTakenCount,
104 SE.getOne(BackedgeTakenCount->getType()));
107 //===----------------------------------------------------------------------===//
108 // IndexedReference implementation
110 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
111 if (!R.IsValid) {
112 OS << R.StoreOrLoadInst;
113 OS << ", IsValid=false.";
114 return OS;
117 OS << *R.BasePointer;
118 for (const SCEV *Subscript : R.Subscripts)
119 OS << "[" << *Subscript << "]";
121 OS << ", Sizes: ";
122 for (const SCEV *Size : R.Sizes)
123 OS << "[" << *Size << "]";
125 return OS;
128 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
129 const LoopInfo &LI, ScalarEvolution &SE)
130 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
131 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
132 "Expecting a load or store instruction");
134 IsValid = delinearize(LI);
135 if (IsValid)
136 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
137 << "\n");
140 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
141 unsigned CLS,
142 AliasAnalysis &AA) const {
143 assert(IsValid && "Expecting a valid reference");
145 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
146 LLVM_DEBUG(dbgs().indent(2)
147 << "No spacial reuse: different base pointers\n");
148 return false;
151 unsigned NumSubscripts = getNumSubscripts();
152 if (NumSubscripts != Other.getNumSubscripts()) {
153 LLVM_DEBUG(dbgs().indent(2)
154 << "No spacial reuse: different number of subscripts\n");
155 return false;
158 // all subscripts must be equal, except the leftmost one (the last one).
159 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
160 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
161 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
162 << "\n\t" << *getSubscript(SubNum) << "\n\t"
163 << *Other.getSubscript(SubNum) << "\n");
164 return false;
168 // the difference between the last subscripts must be less than the cache line
169 // size.
170 const SCEV *LastSubscript = getLastSubscript();
171 const SCEV *OtherLastSubscript = Other.getLastSubscript();
172 const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
173 SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
175 if (Diff == nullptr) {
176 LLVM_DEBUG(dbgs().indent(2)
177 << "No spacial reuse, difference between subscript:\n\t"
178 << *LastSubscript << "\n\t" << OtherLastSubscript
179 << "\nis not constant.\n");
180 return None;
183 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
185 LLVM_DEBUG({
186 if (InSameCacheLine)
187 dbgs().indent(2) << "Found spacial reuse.\n";
188 else
189 dbgs().indent(2) << "No spacial reuse.\n";
192 return InSameCacheLine;
195 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
196 unsigned MaxDistance,
197 const Loop &L,
198 DependenceInfo &DI,
199 AliasAnalysis &AA) const {
200 assert(IsValid && "Expecting a valid reference");
202 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
203 LLVM_DEBUG(dbgs().indent(2)
204 << "No temporal reuse: different base pointer\n");
205 return false;
208 std::unique_ptr<Dependence> D =
209 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
211 if (D == nullptr) {
212 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
213 return false;
216 if (D->isLoopIndependent()) {
217 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
218 return true;
221 // Check the dependence distance at every loop level. There is temporal reuse
222 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
223 // it is zero at every other loop level.
224 int LoopDepth = L.getLoopDepth();
225 int Levels = D->getLevels();
226 for (int Level = 1; Level <= Levels; ++Level) {
227 const SCEV *Distance = D->getDistance(Level);
228 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
230 if (SCEVConst == nullptr) {
231 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
232 return None;
235 const ConstantInt &CI = *SCEVConst->getValue();
236 if (Level != LoopDepth && !CI.isZero()) {
237 LLVM_DEBUG(dbgs().indent(2)
238 << "No temporal reuse: distance is not zero at depth=" << Level
239 << "\n");
240 return false;
241 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
242 LLVM_DEBUG(
243 dbgs().indent(2)
244 << "No temporal reuse: distance is greater than MaxDistance at depth="
245 << Level << "\n");
246 return false;
250 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
251 return true;
254 CacheCostTy IndexedReference::computeRefCost(const Loop &L,
255 unsigned CLS) const {
256 assert(IsValid && "Expecting a valid reference");
257 LLVM_DEBUG({
258 dbgs().indent(2) << "Computing cache cost for:\n";
259 dbgs().indent(4) << *this << "\n";
262 // If the indexed reference is loop invariant the cost is one.
263 if (isLoopInvariant(L)) {
264 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
265 return 1;
268 const SCEV *TripCount = computeTripCount(L, SE);
269 if (!TripCount) {
270 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
271 << " could not be computed, using DefaultTripCount\n");
272 const SCEV *ElemSize = Sizes.back();
273 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
275 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
277 // If the indexed reference is 'consecutive' the cost is
278 // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
279 const SCEV *RefCost = TripCount;
281 if (isConsecutive(L, CLS)) {
282 const SCEV *Coeff = getLastCoefficient();
283 const SCEV *ElemSize = Sizes.back();
284 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
285 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
286 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
287 RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
288 LLVM_DEBUG(dbgs().indent(4)
289 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
290 << *RefCost << "\n");
291 } else
292 LLVM_DEBUG(dbgs().indent(4)
293 << "Access is not consecutive: RefCost=TripCount=" << *RefCost
294 << "\n");
296 // Attempt to fold RefCost into a constant.
297 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
298 return ConstantCost->getValue()->getSExtValue();
300 LLVM_DEBUG(dbgs().indent(4)
301 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
302 "(invalid value).\n");
304 return CacheCost::InvalidCost;
307 bool IndexedReference::delinearize(const LoopInfo &LI) {
308 assert(Subscripts.empty() && "Subscripts should be empty");
309 assert(Sizes.empty() && "Sizes should be empty");
310 assert(!IsValid && "Should be called once from the constructor");
311 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
313 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
314 const BasicBlock *BB = StoreOrLoadInst.getParent();
316 for (Loop *L = LI.getLoopFor(BB); L != nullptr; L = L->getParentLoop()) {
317 const SCEV *AccessFn =
318 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
320 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
321 if (BasePointer == nullptr) {
322 LLVM_DEBUG(
323 dbgs().indent(2)
324 << "ERROR: failed to delinearize, can't identify base pointer\n");
325 return false;
328 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
330 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
331 << "', AccessFn: " << *AccessFn << "\n");
333 SE.delinearize(AccessFn, Subscripts, Sizes,
334 SE.getElementSize(&StoreOrLoadInst));
336 if (Subscripts.empty() || Sizes.empty() ||
337 Subscripts.size() != Sizes.size()) {
338 // Attempt to determine whether we have a single dimensional array access.
339 // before giving up.
340 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
341 LLVM_DEBUG(dbgs().indent(2)
342 << "ERROR: failed to delinearize reference\n");
343 Subscripts.clear();
344 Sizes.clear();
345 break;
348 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
349 Subscripts.push_back(Div);
350 Sizes.push_back(ElemSize);
353 return all_of(Subscripts, [&](const SCEV *Subscript) {
354 return isSimpleAddRecurrence(*Subscript, *L);
358 return false;
361 bool IndexedReference::isLoopInvariant(const Loop &L) const {
362 Value *Addr = getPointerOperand(&StoreOrLoadInst);
363 assert(Addr != nullptr && "Expecting either a load or a store instruction");
364 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
366 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
367 return true;
369 // The indexed reference is loop invariant if none of the coefficients use
370 // the loop induction variable.
371 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
372 return isCoeffForLoopZeroOrInvariant(*Subscript, L);
375 return allCoeffForLoopAreZero;
378 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
379 // The indexed reference is 'consecutive' if the only coefficient that uses
380 // the loop induction variable is the last one...
381 const SCEV *LastSubscript = Subscripts.back();
382 for (const SCEV *Subscript : Subscripts) {
383 if (Subscript == LastSubscript)
384 continue;
385 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
386 return false;
389 // ...and the access stride is less than the cache line size.
390 const SCEV *Coeff = getLastCoefficient();
391 const SCEV *ElemSize = Sizes.back();
392 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
393 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
395 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
398 const SCEV *IndexedReference::getLastCoefficient() const {
399 const SCEV *LastSubscript = getLastSubscript();
400 assert(isa<SCEVAddRecExpr>(LastSubscript) &&
401 "Expecting a SCEV add recurrence expression");
402 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
403 return AR->getStepRecurrence(SE);
406 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
407 const Loop &L) const {
408 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
409 return (AR != nullptr) ? AR->getLoop() != &L
410 : SE.isLoopInvariant(&Subscript, &L);
413 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
414 const Loop &L) const {
415 if (!isa<SCEVAddRecExpr>(Subscript))
416 return false;
418 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
419 assert(AR->getLoop() && "AR should have a loop");
421 if (!AR->isAffine())
422 return false;
424 const SCEV *Start = AR->getStart();
425 const SCEV *Step = AR->getStepRecurrence(SE);
427 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
428 return false;
430 return true;
433 bool IndexedReference::isAliased(const IndexedReference &Other,
434 AliasAnalysis &AA) const {
435 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
436 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
437 return AA.isMustAlias(Loc1, Loc2);
440 //===----------------------------------------------------------------------===//
441 // CacheCost implementation
443 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
444 for (const auto &LC : CC.LoopCosts) {
445 const Loop *L = LC.first;
446 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
448 return OS;
451 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
452 ScalarEvolution &SE, TargetTransformInfo &TTI,
453 AliasAnalysis &AA, DependenceInfo &DI,
454 Optional<unsigned> TRT)
455 : Loops(Loops), TripCounts(), LoopCosts(),
456 TRT(TRT == None ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
457 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
458 assert(!Loops.empty() && "Expecting a non-empty loop vector.");
460 for (const Loop *L : Loops) {
461 unsigned TripCount = SE.getSmallConstantTripCount(L);
462 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
463 TripCounts.push_back({L, TripCount});
466 calculateCacheFootprint();
469 std::unique_ptr<CacheCost>
470 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
471 DependenceInfo &DI, Optional<unsigned> TRT) {
472 if (Root.getParentLoop()) {
473 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
474 return nullptr;
477 LoopVectorTy Loops;
478 for (Loop *L : breadth_first(&Root))
479 Loops.push_back(L);
481 if (!getInnerMostLoop(Loops)) {
482 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
483 "than one innermost loop\n");
484 return nullptr;
487 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
490 void CacheCost::calculateCacheFootprint() {
491 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
492 ReferenceGroupsTy RefGroups;
493 if (!populateReferenceGroups(RefGroups))
494 return;
496 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
497 for (const Loop *L : Loops) {
498 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
499 [L](const LoopCacheCostTy &LCC) {
500 return LCC.first == L;
501 }) == LoopCosts.end()) &&
502 "Should not add duplicate element");
503 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
504 LoopCosts.push_back(std::make_pair(L, LoopCost));
507 sortLoopCosts();
508 RefGroups.clear();
511 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
512 assert(RefGroups.empty() && "Reference groups should be empty");
514 unsigned CLS = TTI.getCacheLineSize();
515 Loop *InnerMostLoop = getInnerMostLoop(Loops);
516 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
518 for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
519 for (Instruction &I : *BB) {
520 if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
521 continue;
523 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
524 if (!R->isValid())
525 continue;
527 bool Added = false;
528 for (ReferenceGroupTy &RefGroup : RefGroups) {
529 const IndexedReference &Representative = *RefGroup.front().get();
530 LLVM_DEBUG({
531 dbgs() << "References:\n";
532 dbgs().indent(2) << *R << "\n";
533 dbgs().indent(2) << Representative << "\n";
536 Optional<bool> HasTemporalReuse =
537 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
538 Optional<bool> HasSpacialReuse =
539 R->hasSpacialReuse(Representative, CLS, AA);
541 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
542 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
543 RefGroup.push_back(std::move(R));
544 Added = true;
545 break;
549 if (!Added) {
550 ReferenceGroupTy RG;
551 RG.push_back(std::move(R));
552 RefGroups.push_back(std::move(RG));
557 if (RefGroups.empty())
558 return false;
560 LLVM_DEBUG({
561 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
562 int n = 1;
563 for (const ReferenceGroupTy &RG : RefGroups) {
564 dbgs().indent(2) << "RefGroup " << n << ":\n";
565 for (const auto &IR : RG)
566 dbgs().indent(4) << *IR << "\n";
567 n++;
569 dbgs() << "\n";
572 return true;
575 CacheCostTy
576 CacheCost::computeLoopCacheCost(const Loop &L,
577 const ReferenceGroupsTy &RefGroups) const {
578 if (!L.isLoopSimplifyForm())
579 return InvalidCost;
581 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
582 << "' as innermost loop.\n");
584 // Compute the product of the trip counts of each other loop in the nest.
585 CacheCostTy TripCountsProduct = 1;
586 for (const auto &TC : TripCounts) {
587 if (TC.first == &L)
588 continue;
589 TripCountsProduct *= TC.second;
592 CacheCostTy LoopCost = 0;
593 for (const ReferenceGroupTy &RG : RefGroups) {
594 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
595 LoopCost += RefGroupCost * TripCountsProduct;
598 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
599 << "' has cost=" << LoopCost << "\n");
601 return LoopCost;
604 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
605 const Loop &L) const {
606 assert(!RG.empty() && "Reference group should have at least one member.");
608 const IndexedReference *Representative = RG.front().get();
609 return Representative->computeRefCost(L, TTI.getCacheLineSize());
612 //===----------------------------------------------------------------------===//
613 // LoopCachePrinterPass implementation
615 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
616 LoopStandardAnalysisResults &AR,
617 LPMUpdater &U) {
618 Function *F = L.getHeader()->getParent();
619 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
621 if (auto CC = CacheCost::getCacheCost(L, AR, DI))
622 OS << *CC;
624 return PreservedAnalyses::all();