[llvm-objcopy] [COFF] Fix a test matching pathnames for Windows. NFC.
[llvm-core.git] / utils / TableGen / DAGISelMatcherGen.cpp
blob612342ddcddf14b41ba7936efea972752fb8d6fa
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/TableGen/Error.h"
16 #include "llvm/TableGen/Record.h"
17 #include <utility>
18 using namespace llvm;
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25 const CodeGenTarget &T) {
26 bool FoundRC = false;
27 MVT::SimpleValueType VT = MVT::Other;
28 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
30 for (const auto &RC : T.getRegBank().getRegClasses()) {
31 if (!RC.contains(Reg))
32 continue;
34 if (!FoundRC) {
35 FoundRC = true;
36 const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
37 if (VVT.isSimple())
38 VT = VVT.getSimple().SimpleTy;
39 continue;
42 #ifndef NDEBUG
43 // If this occurs in multiple register classes, they all have to agree.
44 const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
45 assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
46 "ValueType mismatch between register classes for this register");
47 #endif
49 return VT;
53 namespace {
54 class MatcherGen {
55 const PatternToMatch &Pattern;
56 const CodeGenDAGPatterns &CGP;
58 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
59 /// out with all of the types removed. This allows us to insert type checks
60 /// as we scan the tree.
61 TreePatternNodePtr PatWithNoTypes;
63 /// VariableMap - A map from variable names ('$dst') to the recorded operand
64 /// number that they were captured as. These are biased by 1 to make
65 /// insertion easier.
66 StringMap<unsigned> VariableMap;
68 /// This maintains the recorded operand number that OPC_CheckComplexPattern
69 /// drops each sub-operand into. We don't want to insert these into
70 /// VariableMap because that leads to identity checking if they are
71 /// encountered multiple times. Biased by 1 like VariableMap for
72 /// consistency.
73 StringMap<unsigned> NamedComplexPatternOperands;
75 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
76 /// the RecordedNodes array, this keeps track of which slot will be next to
77 /// record into.
78 unsigned NextRecordedOperandNo;
80 /// MatchedChainNodes - This maintains the position in the recorded nodes
81 /// array of all of the recorded input nodes that have chains.
82 SmallVector<unsigned, 2> MatchedChainNodes;
84 /// MatchedComplexPatterns - This maintains a list of all of the
85 /// ComplexPatterns that we need to check. The second element of each pair
86 /// is the recorded operand number of the input node.
87 SmallVector<std::pair<const TreePatternNode*,
88 unsigned>, 2> MatchedComplexPatterns;
90 /// PhysRegInputs - List list has an entry for each explicitly specified
91 /// physreg input to the pattern. The first elt is the Register node, the
92 /// second is the recorded slot number the input pattern match saved it in.
93 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
95 /// Matcher - This is the top level of the generated matcher, the result.
96 Matcher *TheMatcher;
98 /// CurPredicate - As we emit matcher nodes, this points to the latest check
99 /// which should have future checks stuck into its Next position.
100 Matcher *CurPredicate;
101 public:
102 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
104 bool EmitMatcherCode(unsigned Variant);
105 void EmitResultCode();
107 Matcher *GetMatcher() const { return TheMatcher; }
108 private:
109 void AddMatcher(Matcher *NewNode);
110 void InferPossibleTypes(unsigned ForceMode);
112 // Matcher Generation.
113 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
114 unsigned ForceMode);
115 void EmitLeafMatchCode(const TreePatternNode *N);
116 void EmitOperatorMatchCode(const TreePatternNode *N,
117 TreePatternNode *NodeNoTypes,
118 unsigned ForceMode);
120 /// If this is the first time a node with unique identifier Name has been
121 /// seen, record it. Otherwise, emit a check to make sure this is the same
122 /// node. Returns true if this is the first encounter.
123 bool recordUniqueNode(ArrayRef<std::string> Names);
125 // Result Code Generation.
126 unsigned getNamedArgumentSlot(StringRef Name) {
127 unsigned VarMapEntry = VariableMap[Name];
128 assert(VarMapEntry != 0 &&
129 "Variable referenced but not defined and not caught earlier!");
130 return VarMapEntry-1;
133 void EmitResultOperand(const TreePatternNode *N,
134 SmallVectorImpl<unsigned> &ResultOps);
135 void EmitResultOfNamedOperand(const TreePatternNode *N,
136 SmallVectorImpl<unsigned> &ResultOps);
137 void EmitResultLeafAsOperand(const TreePatternNode *N,
138 SmallVectorImpl<unsigned> &ResultOps);
139 void EmitResultInstructionAsOperand(const TreePatternNode *N,
140 SmallVectorImpl<unsigned> &ResultOps);
141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142 SmallVectorImpl<unsigned> &ResultOps);
145 } // end anon namespace.
147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
148 const CodeGenDAGPatterns &cgp)
149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150 TheMatcher(nullptr), CurPredicate(nullptr) {
151 // We need to produce the matcher tree for the patterns source pattern. To do
152 // this we need to match the structure as well as the types. To do the type
153 // matching, we want to figure out the fewest number of type checks we need to
154 // emit. For example, if there is only one integer type supported by a
155 // target, there should be no type comparisons at all for integer patterns!
157 // To figure out the fewest number of type checks needed, clone the pattern,
158 // remove the types, then perform type inference on the pattern as a whole.
159 // If there are unresolved types, emit an explicit check for those types,
160 // apply the type to the tree, then rerun type inference. Iterate until all
161 // types are resolved.
163 PatWithNoTypes = Pattern.getSrcPattern()->clone();
164 PatWithNoTypes->RemoveAllTypes();
166 // If there are types that are manifestly known, infer them.
167 InferPossibleTypes(Pattern.ForceMode);
170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
171 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
172 /// want to propagate implied types as far throughout the tree as possible so
173 /// that we avoid doing redundant type checks. This does the type propagation.
174 void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
175 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
176 // diagnostics, which we know are impossible at this point.
177 TreePattern &TP = *CGP.pf_begin()->second;
178 TP.getInfer().CodeGen = true;
179 TP.getInfer().ForceMode = ForceMode;
181 bool MadeChange = true;
182 while (MadeChange)
183 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
184 true/*Ignore reg constraints*/);
188 /// AddMatcher - Add a matcher node to the current graph we're building.
189 void MatcherGen::AddMatcher(Matcher *NewNode) {
190 if (CurPredicate)
191 CurPredicate->setNext(NewNode);
192 else
193 TheMatcher = NewNode;
194 CurPredicate = NewNode;
198 //===----------------------------------------------------------------------===//
199 // Pattern Match Generation
200 //===----------------------------------------------------------------------===//
202 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
203 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
204 assert(N->isLeaf() && "Not a leaf?");
206 // Direct match against an integer constant.
207 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
208 // If this is the root of the dag we're matching, we emit a redundant opcode
209 // check to ensure that this gets folded into the normal top-level
210 // OpcodeSwitch.
211 if (N == Pattern.getSrcPattern()) {
212 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
213 AddMatcher(new CheckOpcodeMatcher(NI));
216 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
219 // An UnsetInit represents a named node without any constraints.
220 if (isa<UnsetInit>(N->getLeafValue())) {
221 assert(N->hasName() && "Unnamed ? leaf");
222 return;
225 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
226 if (!DI) {
227 errs() << "Unknown leaf kind: " << *N << "\n";
228 abort();
231 Record *LeafRec = DI->getDef();
233 // A ValueType leaf node can represent a register when named, or itself when
234 // unnamed.
235 if (LeafRec->isSubClassOf("ValueType")) {
236 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
237 if (N->hasName())
238 return;
239 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
240 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
243 if (// Handle register references. Nothing to do here, they always match.
244 LeafRec->isSubClassOf("RegisterClass") ||
245 LeafRec->isSubClassOf("RegisterOperand") ||
246 LeafRec->isSubClassOf("PointerLikeRegClass") ||
247 LeafRec->isSubClassOf("SubRegIndex") ||
248 // Place holder for SRCVALUE nodes. Nothing to do here.
249 LeafRec->getName() == "srcvalue")
250 return;
252 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
253 // record the register
254 if (LeafRec->isSubClassOf("Register")) {
255 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
256 NextRecordedOperandNo));
257 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
258 return;
261 if (LeafRec->isSubClassOf("CondCode"))
262 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
264 if (LeafRec->isSubClassOf("ComplexPattern")) {
265 // We can't model ComplexPattern uses that don't have their name taken yet.
266 // The OPC_CheckComplexPattern operation implicitly records the results.
267 if (N->getName().empty()) {
268 std::string S;
269 raw_string_ostream OS(S);
270 OS << "We expect complex pattern uses to have names: " << *N;
271 PrintFatalError(OS.str());
274 // Remember this ComplexPattern so that we can emit it after all the other
275 // structural matches are done.
276 unsigned InputOperand = VariableMap[N->getName()] - 1;
277 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
278 return;
281 errs() << "Unknown leaf kind: " << *N << "\n";
282 abort();
285 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
286 TreePatternNode *NodeNoTypes,
287 unsigned ForceMode) {
288 assert(!N->isLeaf() && "Not an operator?");
290 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
291 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
292 // "MY_PAT:op1:op2". We should already have validated that the uses are
293 // consistent.
294 std::string PatternName = N->getOperator()->getName();
295 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
296 PatternName += ":";
297 PatternName += N->getChild(i)->getName();
300 if (recordUniqueNode(PatternName)) {
301 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
302 MatchedComplexPatterns.push_back(NodeAndOpNum);
305 return;
308 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
310 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
311 // a constant without a predicate fn that has more than one bit set, handle
312 // this as a special case. This is usually for targets that have special
313 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
314 // handling stuff). Using these instructions is often far more efficient
315 // than materializing the constant. Unfortunately, both the instcombiner
316 // and the dag combiner can often infer that bits are dead, and thus drop
317 // them from the mask in the dag. For example, it might turn 'AND X, 255'
318 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
319 // to handle this.
320 if ((N->getOperator()->getName() == "and" ||
321 N->getOperator()->getName() == "or") &&
322 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
323 N->getPredicateCalls().empty()) {
324 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
325 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
326 // If this is at the root of the pattern, we emit a redundant
327 // CheckOpcode so that the following checks get factored properly under
328 // a single opcode check.
329 if (N == Pattern.getSrcPattern())
330 AddMatcher(new CheckOpcodeMatcher(CInfo));
332 // Emit the CheckAndImm/CheckOrImm node.
333 if (N->getOperator()->getName() == "and")
334 AddMatcher(new CheckAndImmMatcher(II->getValue()));
335 else
336 AddMatcher(new CheckOrImmMatcher(II->getValue()));
338 // Match the LHS of the AND as appropriate.
339 AddMatcher(new MoveChildMatcher(0));
340 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
341 AddMatcher(new MoveParentMatcher());
342 return;
347 // Check that the current opcode lines up.
348 AddMatcher(new CheckOpcodeMatcher(CInfo));
350 // If this node has memory references (i.e. is a load or store), tell the
351 // interpreter to capture them in the memref array.
352 if (N->NodeHasProperty(SDNPMemOperand, CGP))
353 AddMatcher(new RecordMemRefMatcher());
355 // If this node has a chain, then the chain is operand #0 is the SDNode, and
356 // the child numbers of the node are all offset by one.
357 unsigned OpNo = 0;
358 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
359 // Record the node and remember it in our chained nodes list.
360 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
361 "' chained node",
362 NextRecordedOperandNo));
363 // Remember all of the input chains our pattern will match.
364 MatchedChainNodes.push_back(NextRecordedOperandNo++);
366 // Don't look at the input chain when matching the tree pattern to the
367 // SDNode.
368 OpNo = 1;
370 // If this node is not the root and the subtree underneath it produces a
371 // chain, then the result of matching the node is also produce a chain.
372 // Beyond that, this means that we're also folding (at least) the root node
373 // into the node that produce the chain (for example, matching
374 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
375 // problematic, if the 'reg' node also uses the load (say, its chain).
376 // Graphically:
378 // [LD]
379 // ^ ^
380 // | \ DAG's like cheese.
381 // / |
382 // / [YY]
383 // | ^
384 // [XX]--/
386 // It would be invalid to fold XX and LD. In this case, folding the two
387 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
388 // To prevent this, we emit a dynamic check for legality before allowing
389 // this to be folded.
391 const TreePatternNode *Root = Pattern.getSrcPattern();
392 if (N != Root) { // Not the root of the pattern.
393 // If there is a node between the root and this node, then we definitely
394 // need to emit the check.
395 bool NeedCheck = !Root->hasChild(N);
397 // If it *is* an immediate child of the root, we can still need a check if
398 // the root SDNode has multiple inputs. For us, this means that it is an
399 // intrinsic, has multiple operands, or has other inputs like chain or
400 // glue).
401 if (!NeedCheck) {
402 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
403 NeedCheck =
404 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
405 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
406 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
407 PInfo.getNumOperands() > 1 ||
408 PInfo.hasProperty(SDNPHasChain) ||
409 PInfo.hasProperty(SDNPInGlue) ||
410 PInfo.hasProperty(SDNPOptInGlue);
413 if (NeedCheck)
414 AddMatcher(new CheckFoldableChainNodeMatcher());
418 // If this node has an output glue and isn't the root, remember it.
419 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
420 N != Pattern.getSrcPattern()) {
421 // TODO: This redundantly records nodes with both glues and chains.
423 // Record the node and remember it in our chained nodes list.
424 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
425 "' glue output node",
426 NextRecordedOperandNo));
429 // If this node is known to have an input glue or if it *might* have an input
430 // glue, capture it as the glue input of the pattern.
431 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
432 N->NodeHasProperty(SDNPInGlue, CGP))
433 AddMatcher(new CaptureGlueInputMatcher());
435 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
436 // Get the code suitable for matching this child. Move to the child, check
437 // it then move back to the parent.
438 AddMatcher(new MoveChildMatcher(OpNo));
439 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
440 AddMatcher(new MoveParentMatcher());
444 bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
445 unsigned Entry = 0;
446 for (const std::string &Name : Names) {
447 unsigned &VarMapEntry = VariableMap[Name];
448 if (!Entry)
449 Entry = VarMapEntry;
450 assert(Entry == VarMapEntry);
453 bool NewRecord = false;
454 if (Entry == 0) {
455 // If it is a named node, we must emit a 'Record' opcode.
456 std::string WhatFor;
457 for (const std::string &Name : Names) {
458 if (!WhatFor.empty())
459 WhatFor += ',';
460 WhatFor += "$" + Name;
462 AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
463 Entry = ++NextRecordedOperandNo;
464 NewRecord = true;
465 } else {
466 // If we get here, this is a second reference to a specific name. Since
467 // we already have checked that the first reference is valid, we don't
468 // have to recursively match it, just check that it's the same as the
469 // previously named thing.
470 AddMatcher(new CheckSameMatcher(Entry-1));
473 for (const std::string &Name : Names)
474 VariableMap[Name] = Entry;
476 return NewRecord;
479 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
480 TreePatternNode *NodeNoTypes,
481 unsigned ForceMode) {
482 // If N and NodeNoTypes don't agree on a type, then this is a case where we
483 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
484 // reinfer any correlated types.
485 SmallVector<unsigned, 2> ResultsToTypeCheck;
487 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
488 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
489 NodeNoTypes->setType(i, N->getExtType(i));
490 InferPossibleTypes(ForceMode);
491 ResultsToTypeCheck.push_back(i);
494 // If this node has a name associated with it, capture it in VariableMap. If
495 // we already saw this in the pattern, emit code to verify dagness.
496 SmallVector<std::string, 4> Names;
497 if (!N->getName().empty())
498 Names.push_back(N->getName());
500 for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
501 Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
504 if (!Names.empty()) {
505 if (!recordUniqueNode(Names))
506 return;
509 if (N->isLeaf())
510 EmitLeafMatchCode(N);
511 else
512 EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
514 // If there are node predicates for this node, generate their checks.
515 for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
516 const TreePredicateCall &Pred = N->getPredicateCalls()[i];
517 SmallVector<unsigned, 4> Operands;
518 if (Pred.Fn.usesOperands()) {
519 TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
520 for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
521 std::string Name =
522 ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
523 Operands.push_back(getNamedArgumentSlot(Name));
526 AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
529 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
530 AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
531 ResultsToTypeCheck[i]));
534 /// EmitMatcherCode - Generate the code that matches the predicate of this
535 /// pattern for the specified Variant. If the variant is invalid this returns
536 /// true and does not generate code, if it is valid, it returns false.
537 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
538 // If the root of the pattern is a ComplexPattern and if it is specified to
539 // match some number of root opcodes, these are considered to be our variants.
540 // Depending on which variant we're generating code for, emit the root opcode
541 // check.
542 if (const ComplexPattern *CP =
543 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
544 const std::vector<Record*> &OpNodes = CP->getRootNodes();
545 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
546 if (Variant >= OpNodes.size()) return true;
548 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
549 } else {
550 if (Variant != 0) return true;
553 // Emit the matcher for the pattern structure and types.
554 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
555 Pattern.ForceMode);
557 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
558 // feature is around, do the check).
559 if (!Pattern.getPredicateCheck().empty())
560 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
562 // Now that we've completed the structural type match, emit any ComplexPattern
563 // checks (e.g. addrmode matches). We emit this after the structural match
564 // because they are generally more expensive to evaluate and more difficult to
565 // factor.
566 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
567 auto N = MatchedComplexPatterns[i].first;
569 // Remember where the results of this match get stuck.
570 if (N->isLeaf()) {
571 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
572 } else {
573 unsigned CurOp = NextRecordedOperandNo;
574 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
575 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
576 CurOp += N->getChild(i)->getNumMIResults(CGP);
580 // Get the slot we recorded the value in from the name on the node.
581 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
583 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
585 // Emit a CheckComplexPat operation, which does the match (aborting if it
586 // fails) and pushes the matched operands onto the recorded nodes list.
587 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
588 N->getName(), NextRecordedOperandNo));
590 // Record the right number of operands.
591 NextRecordedOperandNo += CP.getNumOperands();
592 if (CP.hasProperty(SDNPHasChain)) {
593 // If the complex pattern has a chain, then we need to keep track of the
594 // fact that we just recorded a chain input. The chain input will be
595 // matched as the last operand of the predicate if it was successful.
596 ++NextRecordedOperandNo; // Chained node operand.
598 // It is the last operand recorded.
599 assert(NextRecordedOperandNo > 1 &&
600 "Should have recorded input/result chains at least!");
601 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
604 // TODO: Complex patterns can't have output glues, if they did, we'd want
605 // to record them.
608 return false;
612 //===----------------------------------------------------------------------===//
613 // Node Result Generation
614 //===----------------------------------------------------------------------===//
616 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
617 SmallVectorImpl<unsigned> &ResultOps){
618 assert(!N->getName().empty() && "Operand not named!");
620 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
621 // Complex operands have already been completely selected, just find the
622 // right slot ant add the arguments directly.
623 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
624 ResultOps.push_back(SlotNo - 1 + i);
626 return;
629 unsigned SlotNo = getNamedArgumentSlot(N->getName());
631 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
632 // version of the immediate so that it doesn't get selected due to some other
633 // node use.
634 if (!N->isLeaf()) {
635 StringRef OperatorName = N->getOperator()->getName();
636 if (OperatorName == "imm" || OperatorName == "fpimm") {
637 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
638 ResultOps.push_back(NextRecordedOperandNo++);
639 return;
643 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
644 ResultOps.push_back(SlotNo + i);
647 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
648 SmallVectorImpl<unsigned> &ResultOps) {
649 assert(N->isLeaf() && "Must be a leaf");
651 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
652 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
653 ResultOps.push_back(NextRecordedOperandNo++);
654 return;
657 // If this is an explicit register reference, handle it.
658 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
659 Record *Def = DI->getDef();
660 if (Def->isSubClassOf("Register")) {
661 const CodeGenRegister *Reg =
662 CGP.getTargetInfo().getRegBank().getReg(Def);
663 AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
664 ResultOps.push_back(NextRecordedOperandNo++);
665 return;
668 if (Def->getName() == "zero_reg") {
669 AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
670 ResultOps.push_back(NextRecordedOperandNo++);
671 return;
674 // Handle a reference to a register class. This is used
675 // in COPY_TO_SUBREG instructions.
676 if (Def->isSubClassOf("RegisterOperand"))
677 Def = Def->getValueAsDef("RegClass");
678 if (Def->isSubClassOf("RegisterClass")) {
679 std::string Value = getQualifiedName(Def) + "RegClassID";
680 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
681 ResultOps.push_back(NextRecordedOperandNo++);
682 return;
685 // Handle a subregister index. This is used for INSERT_SUBREG etc.
686 if (Def->isSubClassOf("SubRegIndex")) {
687 std::string Value = getQualifiedName(Def);
688 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
689 ResultOps.push_back(NextRecordedOperandNo++);
690 return;
694 errs() << "unhandled leaf node: \n";
695 N->dump();
698 static bool
699 mayInstNodeLoadOrStore(const TreePatternNode *N,
700 const CodeGenDAGPatterns &CGP) {
701 Record *Op = N->getOperator();
702 const CodeGenTarget &CGT = CGP.getTargetInfo();
703 CodeGenInstruction &II = CGT.getInstruction(Op);
704 return II.mayLoad || II.mayStore;
707 static unsigned
708 numNodesThatMayLoadOrStore(const TreePatternNode *N,
709 const CodeGenDAGPatterns &CGP) {
710 if (N->isLeaf())
711 return 0;
713 Record *OpRec = N->getOperator();
714 if (!OpRec->isSubClassOf("Instruction"))
715 return 0;
717 unsigned Count = 0;
718 if (mayInstNodeLoadOrStore(N, CGP))
719 ++Count;
721 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
722 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
724 return Count;
727 void MatcherGen::
728 EmitResultInstructionAsOperand(const TreePatternNode *N,
729 SmallVectorImpl<unsigned> &OutputOps) {
730 Record *Op = N->getOperator();
731 const CodeGenTarget &CGT = CGP.getTargetInfo();
732 CodeGenInstruction &II = CGT.getInstruction(Op);
733 const DAGInstruction &Inst = CGP.getInstruction(Op);
735 bool isRoot = N == Pattern.getDstPattern();
737 // TreeHasOutGlue - True if this tree has glue.
738 bool TreeHasInGlue = false, TreeHasOutGlue = false;
739 if (isRoot) {
740 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
741 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
742 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
744 // FIXME2: this is checking the entire pattern, not just the node in
745 // question, doing this just for the root seems like a total hack.
746 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
749 // NumResults - This is the number of results produced by the instruction in
750 // the "outs" list.
751 unsigned NumResults = Inst.getNumResults();
753 // Number of operands we know the output instruction must have. If it is
754 // variadic, we could have more operands.
755 unsigned NumFixedOperands = II.Operands.size();
757 SmallVector<unsigned, 8> InstOps;
759 // Loop over all of the fixed operands of the instruction pattern, emitting
760 // code to fill them all in. The node 'N' usually has number children equal to
761 // the number of input operands of the instruction. However, in cases where
762 // there are predicate operands for an instruction, we need to fill in the
763 // 'execute always' values. Match up the node operands to the instruction
764 // operands to do this.
765 unsigned ChildNo = 0;
766 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
767 InstOpNo != e; ++InstOpNo) {
768 // Determine what to emit for this operand.
769 Record *OperandNode = II.Operands[InstOpNo].Rec;
770 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
771 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
772 // This is a predicate or optional def operand; emit the
773 // 'default ops' operands.
774 const DAGDefaultOperand &DefaultOp
775 = CGP.getDefaultOperand(OperandNode);
776 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
777 EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
778 continue;
781 // Otherwise this is a normal operand or a predicate operand without
782 // 'execute always'; emit it.
784 // For operands with multiple sub-operands we may need to emit
785 // multiple child patterns to cover them all. However, ComplexPattern
786 // children may themselves emit multiple MI operands.
787 unsigned NumSubOps = 1;
788 if (OperandNode->isSubClassOf("Operand")) {
789 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
790 if (unsigned NumArgs = MIOpInfo->getNumArgs())
791 NumSubOps = NumArgs;
794 unsigned FinalNumOps = InstOps.size() + NumSubOps;
795 while (InstOps.size() < FinalNumOps) {
796 const TreePatternNode *Child = N->getChild(ChildNo);
797 unsigned BeforeAddingNumOps = InstOps.size();
798 EmitResultOperand(Child, InstOps);
799 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
801 // If the operand is an instruction and it produced multiple results, just
802 // take the first one.
803 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
804 InstOps.resize(BeforeAddingNumOps+1);
806 ++ChildNo;
810 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
811 // expand suboperands, use default operands, or other features determined from
812 // the CodeGenInstruction after the fixed operands, which were handled
813 // above. Emit the remaining instructions implicitly added by the use for
814 // variable_ops.
815 if (II.Operands.isVariadic) {
816 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
817 EmitResultOperand(N->getChild(I), InstOps);
820 // If this node has input glue or explicitly specified input physregs, we
821 // need to add chained and glued copyfromreg nodes and materialize the glue
822 // input.
823 if (isRoot && !PhysRegInputs.empty()) {
824 // Emit all of the CopyToReg nodes for the input physical registers. These
825 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
826 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
827 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
828 PhysRegInputs[i].first));
829 // Even if the node has no other glue inputs, the resultant node must be
830 // glued to the CopyFromReg nodes we just generated.
831 TreeHasInGlue = true;
834 // Result order: node results, chain, glue
836 // Determine the result types.
837 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
838 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
839 ResultVTs.push_back(N->getSimpleType(i));
841 // If this is the root instruction of a pattern that has physical registers in
842 // its result pattern, add output VTs for them. For example, X86 has:
843 // (set AL, (mul ...))
844 // This also handles implicit results like:
845 // (implicit EFLAGS)
846 if (isRoot && !Pattern.getDstRegs().empty()) {
847 // If the root came from an implicit def in the instruction handling stuff,
848 // don't re-add it.
849 Record *HandledReg = nullptr;
850 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
851 HandledReg = II.ImplicitDefs[0];
853 for (Record *Reg : Pattern.getDstRegs()) {
854 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
855 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
859 // If this is the root of the pattern and the pattern we're matching includes
860 // a node that is variadic, mark the generated node as variadic so that it
861 // gets the excess operands from the input DAG.
862 int NumFixedArityOperands = -1;
863 if (isRoot &&
864 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
865 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
867 // If this is the root node and multiple matched nodes in the input pattern
868 // have MemRefs in them, have the interpreter collect them and plop them onto
869 // this node. If there is just one node with MemRefs, leave them on that node
870 // even if it is not the root.
872 // FIXME3: This is actively incorrect for result patterns with multiple
873 // memory-referencing instructions.
874 bool PatternHasMemOperands =
875 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
877 bool NodeHasMemRefs = false;
878 if (PatternHasMemOperands) {
879 unsigned NumNodesThatLoadOrStore =
880 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
881 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
882 NumNodesThatLoadOrStore == 1;
883 NodeHasMemRefs =
884 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
885 NumNodesThatLoadOrStore != 1));
888 // Determine whether we need to attach a chain to this node.
889 bool NodeHasChain = false;
890 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
891 // For some instructions, we were able to infer from the pattern whether
892 // they should have a chain. Otherwise, attach the chain to the root.
894 // FIXME2: This is extremely dubious for several reasons, not the least of
895 // which it gives special status to instructions with patterns that Pat<>
896 // nodes can't duplicate.
897 if (II.hasChain_Inferred)
898 NodeHasChain = II.hasChain;
899 else
900 NodeHasChain = isRoot;
901 // Instructions which load and store from memory should have a chain,
902 // regardless of whether they happen to have a pattern saying so.
903 if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
904 II.hasSideEffects)
905 NodeHasChain = true;
908 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
909 "Node has no result");
911 AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
912 ResultVTs, InstOps,
913 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
914 NodeHasMemRefs, NumFixedArityOperands,
915 NextRecordedOperandNo));
917 // The non-chain and non-glue results of the newly emitted node get recorded.
918 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
919 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
920 OutputOps.push_back(NextRecordedOperandNo++);
924 void MatcherGen::
925 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
926 SmallVectorImpl<unsigned> &ResultOps) {
927 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
929 // Emit the operand.
930 SmallVector<unsigned, 8> InputOps;
932 // FIXME2: Could easily generalize this to support multiple inputs and outputs
933 // to the SDNodeXForm. For now we just support one input and one output like
934 // the old instruction selector.
935 assert(N->getNumChildren() == 1);
936 EmitResultOperand(N->getChild(0), InputOps);
938 // The input currently must have produced exactly one result.
939 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
941 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
942 ResultOps.push_back(NextRecordedOperandNo++);
945 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
946 SmallVectorImpl<unsigned> &ResultOps) {
947 // This is something selected from the pattern we matched.
948 if (!N->getName().empty())
949 return EmitResultOfNamedOperand(N, ResultOps);
951 if (N->isLeaf())
952 return EmitResultLeafAsOperand(N, ResultOps);
954 Record *OpRec = N->getOperator();
955 if (OpRec->isSubClassOf("Instruction"))
956 return EmitResultInstructionAsOperand(N, ResultOps);
957 if (OpRec->isSubClassOf("SDNodeXForm"))
958 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
959 errs() << "Unknown result node to emit code for: " << *N << '\n';
960 PrintFatalError("Unknown node in result pattern!");
963 void MatcherGen::EmitResultCode() {
964 // Patterns that match nodes with (potentially multiple) chain inputs have to
965 // merge them together into a token factor. This informs the generated code
966 // what all the chained nodes are.
967 if (!MatchedChainNodes.empty())
968 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
970 // Codegen the root of the result pattern, capturing the resulting values.
971 SmallVector<unsigned, 8> Ops;
972 EmitResultOperand(Pattern.getDstPattern(), Ops);
974 // At this point, we have however many values the result pattern produces.
975 // However, the input pattern might not need all of these. If there are
976 // excess values at the end (such as implicit defs of condition codes etc)
977 // just lop them off. This doesn't need to worry about glue or chains, just
978 // explicit results.
980 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
982 // If the pattern also has (implicit) results, count them as well.
983 if (!Pattern.getDstRegs().empty()) {
984 // If the root came from an implicit def in the instruction handling stuff,
985 // don't re-add it.
986 Record *HandledReg = nullptr;
987 const TreePatternNode *DstPat = Pattern.getDstPattern();
988 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
989 const CodeGenTarget &CGT = CGP.getTargetInfo();
990 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
992 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
993 HandledReg = II.ImplicitDefs[0];
996 for (Record *Reg : Pattern.getDstRegs()) {
997 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
998 ++NumSrcResults;
1002 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
1003 SmallVector<unsigned, 8> Results(Ops);
1005 // Apply result permutation.
1006 for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
1007 ++ResNo) {
1008 Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
1011 Results.resize(NumSrcResults);
1012 AddMatcher(new CompleteMatchMatcher(Results, Pattern));
1016 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
1017 /// the specified variant. If the variant number is invalid, this returns null.
1018 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
1019 unsigned Variant,
1020 const CodeGenDAGPatterns &CGP) {
1021 MatcherGen Gen(Pattern, CGP);
1023 // Generate the code for the matcher.
1024 if (Gen.EmitMatcherCode(Variant))
1025 return nullptr;
1027 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1028 // FIXME2: Split result code out to another table, and make the matcher end
1029 // with an "Emit <index>" command. This allows result generation stuff to be
1030 // shared and factored?
1032 // If the match succeeds, then we generate Pattern.
1033 Gen.EmitResultCode();
1035 // Unconditional match.
1036 return Gen.GetMatcher();