[ARM] Add support for MVE pre and post inc loads and stores
[llvm-core.git] / lib / Target / ARM / ARMISelLowering.cpp
blob66435c41963babd98571684173cde09f2e5697f2
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
115 using namespace llvm;
116 using namespace llvm::PatternMatch;
118 #define DEBUG_TYPE "arm-isel"
120 STATISTIC(NumTailCalls, "Number of tail calls");
121 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted,
124 "Number of constants with their storage promoted into constant pools");
126 static cl::opt<bool>
127 ARMInterworking("arm-interworking", cl::Hidden,
128 cl::desc("Enable / disable ARM interworking (for debugging only)"),
129 cl::init(true));
131 static cl::opt<bool> EnableConstpoolPromotion(
132 "arm-promote-constant", cl::Hidden,
133 cl::desc("Enable / disable promotion of unnamed_addr constants into "
134 "constant pools"),
135 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
137 "arm-promote-constant-max-size", cl::Hidden,
138 cl::desc("Maximum size of constant to promote into a constant pool"),
139 cl::init(64));
140 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
141 "arm-promote-constant-max-total", cl::Hidden,
142 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
143 cl::init(128));
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs[] = {
147 ARM::R0, ARM::R1, ARM::R2, ARM::R3
150 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
151 MVT PromotedBitwiseVT) {
152 if (VT != PromotedLdStVT) {
153 setOperationAction(ISD::LOAD, VT, Promote);
154 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
156 setOperationAction(ISD::STORE, VT, Promote);
157 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
160 MVT ElemTy = VT.getVectorElementType();
161 if (ElemTy != MVT::f64)
162 setOperationAction(ISD::SETCC, VT, Custom);
163 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
164 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
165 if (ElemTy == MVT::i32) {
166 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
167 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
168 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
169 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
170 } else {
171 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
172 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
173 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
174 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
176 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
177 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
178 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
179 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
180 setOperationAction(ISD::SELECT, VT, Expand);
181 setOperationAction(ISD::SELECT_CC, VT, Expand);
182 setOperationAction(ISD::VSELECT, VT, Expand);
183 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
184 if (VT.isInteger()) {
185 setOperationAction(ISD::SHL, VT, Custom);
186 setOperationAction(ISD::SRA, VT, Custom);
187 setOperationAction(ISD::SRL, VT, Custom);
190 // Promote all bit-wise operations.
191 if (VT.isInteger() && VT != PromotedBitwiseVT) {
192 setOperationAction(ISD::AND, VT, Promote);
193 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
194 setOperationAction(ISD::OR, VT, Promote);
195 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
196 setOperationAction(ISD::XOR, VT, Promote);
197 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
200 // Neon does not support vector divide/remainder operations.
201 setOperationAction(ISD::SDIV, VT, Expand);
202 setOperationAction(ISD::UDIV, VT, Expand);
203 setOperationAction(ISD::FDIV, VT, Expand);
204 setOperationAction(ISD::SREM, VT, Expand);
205 setOperationAction(ISD::UREM, VT, Expand);
206 setOperationAction(ISD::FREM, VT, Expand);
208 if (!VT.isFloatingPoint() &&
209 VT != MVT::v2i64 && VT != MVT::v1i64)
210 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211 setOperationAction(Opcode, VT, Legal);
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
215 addRegisterClass(VT, &ARM::DPRRegClass);
216 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
220 addRegisterClass(VT, &ARM::DPairRegClass);
221 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
224 void ARMTargetLowering::setAllExpand(MVT VT) {
225 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
226 setOperationAction(Opc, VT, Expand);
228 // We support these really simple operations even on types where all
229 // the actual arithmetic has to be broken down into simpler
230 // operations or turned into library calls.
231 setOperationAction(ISD::BITCAST, VT, Legal);
232 setOperationAction(ISD::LOAD, VT, Legal);
233 setOperationAction(ISD::STORE, VT, Legal);
234 setOperationAction(ISD::UNDEF, VT, Legal);
237 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
238 LegalizeAction Action) {
239 setLoadExtAction(ISD::EXTLOAD, From, To, Action);
240 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
241 setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
245 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
247 for (auto VT : IntTypes) {
248 addRegisterClass(VT, &ARM::QPRRegClass);
249 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
250 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
252 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
253 setOperationAction(ISD::SHL, VT, Custom);
254 setOperationAction(ISD::SRA, VT, Custom);
255 setOperationAction(ISD::SRL, VT, Custom);
256 setOperationAction(ISD::SMIN, VT, Legal);
257 setOperationAction(ISD::SMAX, VT, Legal);
258 setOperationAction(ISD::UMIN, VT, Legal);
259 setOperationAction(ISD::UMAX, VT, Legal);
260 setOperationAction(ISD::ABS, VT, Legal);
261 setOperationAction(ISD::SETCC, VT, Custom);
263 // No native support for these.
264 setOperationAction(ISD::UDIV, VT, Expand);
265 setOperationAction(ISD::SDIV, VT, Expand);
266 setOperationAction(ISD::UREM, VT, Expand);
267 setOperationAction(ISD::SREM, VT, Expand);
268 setOperationAction(ISD::CTPOP, VT, Expand);
270 if (!HasMVEFP) {
271 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
272 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
273 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
274 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
277 // Pre and Post inc are supported on loads and stores
278 for (unsigned im = (unsigned)ISD::PRE_INC;
279 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
280 setIndexedLoadAction(im, VT, Legal);
281 setIndexedStoreAction(im, VT, Legal);
285 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
286 for (auto VT : FloatTypes) {
287 addRegisterClass(VT, &ARM::QPRRegClass);
288 if (!HasMVEFP)
289 setAllExpand(VT);
291 // These are legal or custom whether we have MVE.fp or not
292 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
293 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
294 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
295 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
296 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
297 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
298 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
299 setOperationAction(ISD::SETCC, VT, Custom);
301 // Pre and Post inc are supported on loads and stores
302 for (unsigned im = (unsigned)ISD::PRE_INC;
303 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
304 setIndexedLoadAction(im, VT, Legal);
305 setIndexedStoreAction(im, VT, Legal);
308 if (HasMVEFP) {
309 setOperationAction(ISD::FMINNUM, VT, Legal);
310 setOperationAction(ISD::FMAXNUM, VT, Legal);
311 setOperationAction(ISD::FROUND, VT, Legal);
313 // No native support for these.
314 setOperationAction(ISD::FDIV, VT, Expand);
315 setOperationAction(ISD::FREM, VT, Expand);
316 setOperationAction(ISD::FSQRT, VT, Expand);
317 setOperationAction(ISD::FSIN, VT, Expand);
318 setOperationAction(ISD::FCOS, VT, Expand);
319 setOperationAction(ISD::FPOW, VT, Expand);
320 setOperationAction(ISD::FLOG, VT, Expand);
321 setOperationAction(ISD::FLOG2, VT, Expand);
322 setOperationAction(ISD::FLOG10, VT, Expand);
323 setOperationAction(ISD::FEXP, VT, Expand);
324 setOperationAction(ISD::FEXP2, VT, Expand);
325 setOperationAction(ISD::FNEARBYINT, VT, Expand);
329 // We 'support' these types up to bitcast/load/store level, regardless of
330 // MVE integer-only / float support. Only doing FP data processing on the FP
331 // vector types is inhibited at integer-only level.
332 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
333 for (auto VT : LongTypes) {
334 addRegisterClass(VT, &ARM::QPRRegClass);
335 setAllExpand(VT);
336 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
337 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
338 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
340 // We can do bitwise operations on v2i64 vectors
341 setOperationAction(ISD::AND, MVT::v2i64, Legal);
342 setOperationAction(ISD::OR, MVT::v2i64, Legal);
343 setOperationAction(ISD::XOR, MVT::v2i64, Legal);
345 // It is legal to extload from v4i8 to v4i16 or v4i32.
346 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
347 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
348 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
350 // Some truncating stores are legal too.
351 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
352 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
353 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
355 // Pre and Post inc on these are legal, given the correct extends
356 for (unsigned im = (unsigned)ISD::PRE_INC;
357 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
358 setIndexedLoadAction(im, MVT::v8i8, Legal);
359 setIndexedStoreAction(im, MVT::v8i8, Legal);
360 setIndexedLoadAction(im, MVT::v4i8, Legal);
361 setIndexedStoreAction(im, MVT::v4i8, Legal);
362 setIndexedLoadAction(im, MVT::v4i16, Legal);
363 setIndexedStoreAction(im, MVT::v4i16, Legal);
366 // Predicate types
367 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
368 for (auto VT : pTypes) {
369 addRegisterClass(VT, &ARM::VCCRRegClass);
370 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
371 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
372 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
373 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
374 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
375 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
376 setOperationAction(ISD::SETCC, VT, Custom);
377 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
381 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
382 const ARMSubtarget &STI)
383 : TargetLowering(TM), Subtarget(&STI) {
384 RegInfo = Subtarget->getRegisterInfo();
385 Itins = Subtarget->getInstrItineraryData();
387 setBooleanContents(ZeroOrOneBooleanContent);
388 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
390 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
391 !Subtarget->isTargetWatchOS()) {
392 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
393 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
394 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
395 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
396 : CallingConv::ARM_AAPCS);
399 if (Subtarget->isTargetMachO()) {
400 // Uses VFP for Thumb libfuncs if available.
401 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
402 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
403 static const struct {
404 const RTLIB::Libcall Op;
405 const char * const Name;
406 const ISD::CondCode Cond;
407 } LibraryCalls[] = {
408 // Single-precision floating-point arithmetic.
409 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
410 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
411 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
412 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
414 // Double-precision floating-point arithmetic.
415 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
416 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
417 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
418 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
420 // Single-precision comparisons.
421 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
422 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
423 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
424 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
425 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
426 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
427 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
428 { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
430 // Double-precision comparisons.
431 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
432 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
433 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
434 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
435 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
436 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
437 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
438 { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
440 // Floating-point to integer conversions.
441 // i64 conversions are done via library routines even when generating VFP
442 // instructions, so use the same ones.
443 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
444 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
445 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
446 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
448 // Conversions between floating types.
449 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
450 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
452 // Integer to floating-point conversions.
453 // i64 conversions are done via library routines even when generating VFP
454 // instructions, so use the same ones.
455 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
456 // e.g., __floatunsidf vs. __floatunssidfvfp.
457 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
458 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
459 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
460 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
463 for (const auto &LC : LibraryCalls) {
464 setLibcallName(LC.Op, LC.Name);
465 if (LC.Cond != ISD::SETCC_INVALID)
466 setCmpLibcallCC(LC.Op, LC.Cond);
471 // These libcalls are not available in 32-bit.
472 setLibcallName(RTLIB::SHL_I128, nullptr);
473 setLibcallName(RTLIB::SRL_I128, nullptr);
474 setLibcallName(RTLIB::SRA_I128, nullptr);
476 // RTLIB
477 if (Subtarget->isAAPCS_ABI() &&
478 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
479 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
480 static const struct {
481 const RTLIB::Libcall Op;
482 const char * const Name;
483 const CallingConv::ID CC;
484 const ISD::CondCode Cond;
485 } LibraryCalls[] = {
486 // Double-precision floating-point arithmetic helper functions
487 // RTABI chapter 4.1.2, Table 2
488 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
489 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
490 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
491 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
493 // Double-precision floating-point comparison helper functions
494 // RTABI chapter 4.1.2, Table 3
495 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
496 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
497 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
498 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
499 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
500 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
501 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
502 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
504 // Single-precision floating-point arithmetic helper functions
505 // RTABI chapter 4.1.2, Table 4
506 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
507 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
508 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
509 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
511 // Single-precision floating-point comparison helper functions
512 // RTABI chapter 4.1.2, Table 5
513 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
514 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
515 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
516 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
517 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
518 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
519 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
520 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
522 // Floating-point to integer conversions.
523 // RTABI chapter 4.1.2, Table 6
524 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
525 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
526 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
527 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
528 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
529 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
530 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
531 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
533 // Conversions between floating types.
534 // RTABI chapter 4.1.2, Table 7
535 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
536 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
537 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
539 // Integer to floating-point conversions.
540 // RTABI chapter 4.1.2, Table 8
541 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
542 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
543 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
544 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
545 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
546 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
547 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
548 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
550 // Long long helper functions
551 // RTABI chapter 4.2, Table 9
552 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
553 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
554 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
555 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
557 // Integer division functions
558 // RTABI chapter 4.3.1
559 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
560 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
561 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
562 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
563 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
564 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
565 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
566 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
569 for (const auto &LC : LibraryCalls) {
570 setLibcallName(LC.Op, LC.Name);
571 setLibcallCallingConv(LC.Op, LC.CC);
572 if (LC.Cond != ISD::SETCC_INVALID)
573 setCmpLibcallCC(LC.Op, LC.Cond);
576 // EABI dependent RTLIB
577 if (TM.Options.EABIVersion == EABI::EABI4 ||
578 TM.Options.EABIVersion == EABI::EABI5) {
579 static const struct {
580 const RTLIB::Libcall Op;
581 const char *const Name;
582 const CallingConv::ID CC;
583 const ISD::CondCode Cond;
584 } MemOpsLibraryCalls[] = {
585 // Memory operations
586 // RTABI chapter 4.3.4
587 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
588 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
589 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592 for (const auto &LC : MemOpsLibraryCalls) {
593 setLibcallName(LC.Op, LC.Name);
594 setLibcallCallingConv(LC.Op, LC.CC);
595 if (LC.Cond != ISD::SETCC_INVALID)
596 setCmpLibcallCC(LC.Op, LC.Cond);
601 if (Subtarget->isTargetWindows()) {
602 static const struct {
603 const RTLIB::Libcall Op;
604 const char * const Name;
605 const CallingConv::ID CC;
606 } LibraryCalls[] = {
607 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
608 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
609 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
610 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
611 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
612 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
613 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
614 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
617 for (const auto &LC : LibraryCalls) {
618 setLibcallName(LC.Op, LC.Name);
619 setLibcallCallingConv(LC.Op, LC.CC);
623 // Use divmod compiler-rt calls for iOS 5.0 and later.
624 if (Subtarget->isTargetMachO() &&
625 !(Subtarget->isTargetIOS() &&
626 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
627 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
628 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
631 // The half <-> float conversion functions are always soft-float on
632 // non-watchos platforms, but are needed for some targets which use a
633 // hard-float calling convention by default.
634 if (!Subtarget->isTargetWatchABI()) {
635 if (Subtarget->isAAPCS_ABI()) {
636 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
637 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
638 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
639 } else {
640 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
641 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
642 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
646 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
647 // a __gnu_ prefix (which is the default).
648 if (Subtarget->isTargetAEABI()) {
649 static const struct {
650 const RTLIB::Libcall Op;
651 const char * const Name;
652 const CallingConv::ID CC;
653 } LibraryCalls[] = {
654 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
655 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
656 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
659 for (const auto &LC : LibraryCalls) {
660 setLibcallName(LC.Op, LC.Name);
661 setLibcallCallingConv(LC.Op, LC.CC);
665 if (Subtarget->isThumb1Only())
666 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
667 else
668 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
670 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
671 Subtarget->hasFPRegs()) {
672 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
673 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
674 if (!Subtarget->hasVFP2Base())
675 setAllExpand(MVT::f32);
676 if (!Subtarget->hasFP64())
677 setAllExpand(MVT::f64);
680 if (Subtarget->hasFullFP16()) {
681 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
682 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
683 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
684 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
686 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
687 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
690 for (MVT VT : MVT::vector_valuetypes()) {
691 for (MVT InnerVT : MVT::vector_valuetypes()) {
692 setTruncStoreAction(VT, InnerVT, Expand);
693 addAllExtLoads(VT, InnerVT, Expand);
696 setOperationAction(ISD::MULHS, VT, Expand);
697 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
698 setOperationAction(ISD::MULHU, VT, Expand);
699 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
701 setOperationAction(ISD::BSWAP, VT, Expand);
704 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
705 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
707 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
708 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
710 if (Subtarget->hasMVEIntegerOps())
711 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
713 // Combine low-overhead loop intrinsics so that we can lower i1 types.
714 if (Subtarget->hasLOB()) {
715 setTargetDAGCombine(ISD::BRCOND);
716 setTargetDAGCombine(ISD::BR_CC);
719 if (Subtarget->hasNEON()) {
720 addDRTypeForNEON(MVT::v2f32);
721 addDRTypeForNEON(MVT::v8i8);
722 addDRTypeForNEON(MVT::v4i16);
723 addDRTypeForNEON(MVT::v2i32);
724 addDRTypeForNEON(MVT::v1i64);
726 addQRTypeForNEON(MVT::v4f32);
727 addQRTypeForNEON(MVT::v2f64);
728 addQRTypeForNEON(MVT::v16i8);
729 addQRTypeForNEON(MVT::v8i16);
730 addQRTypeForNEON(MVT::v4i32);
731 addQRTypeForNEON(MVT::v2i64);
733 if (Subtarget->hasFullFP16()) {
734 addQRTypeForNEON(MVT::v8f16);
735 addDRTypeForNEON(MVT::v4f16);
739 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
740 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
741 // none of Neon, MVE or VFP supports any arithmetic operations on it.
742 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
743 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
744 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
745 // FIXME: Code duplication: FDIV and FREM are expanded always, see
746 // ARMTargetLowering::addTypeForNEON method for details.
747 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
748 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
749 // FIXME: Create unittest.
750 // In another words, find a way when "copysign" appears in DAG with vector
751 // operands.
752 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
753 // FIXME: Code duplication: SETCC has custom operation action, see
754 // ARMTargetLowering::addTypeForNEON method for details.
755 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
756 // FIXME: Create unittest for FNEG and for FABS.
757 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
758 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
759 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
760 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
761 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
762 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
763 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
764 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
765 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
766 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
767 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
768 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
769 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
770 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
771 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
772 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
773 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
774 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
777 if (Subtarget->hasNEON()) {
778 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
779 // supported for v4f32.
780 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
781 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
782 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
783 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
784 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
785 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
786 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
787 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
788 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
789 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
790 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
791 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
792 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
793 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
795 // Mark v2f32 intrinsics.
796 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
797 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
798 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
799 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
800 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
801 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
802 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
803 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
804 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
805 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
806 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
807 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
808 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
809 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
811 // Neon does not support some operations on v1i64 and v2i64 types.
812 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
813 // Custom handling for some quad-vector types to detect VMULL.
814 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
815 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
816 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
817 // Custom handling for some vector types to avoid expensive expansions
818 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
819 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
820 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
821 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
822 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
823 // a destination type that is wider than the source, and nor does
824 // it have a FP_TO_[SU]INT instruction with a narrower destination than
825 // source.
826 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
827 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
828 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
829 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
830 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
831 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
832 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
833 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
835 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
836 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
838 // NEON does not have single instruction CTPOP for vectors with element
839 // types wider than 8-bits. However, custom lowering can leverage the
840 // v8i8/v16i8 vcnt instruction.
841 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
842 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
843 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
844 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
845 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
846 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
848 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
849 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
851 // NEON does not have single instruction CTTZ for vectors.
852 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
853 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
854 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
855 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
857 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
858 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
859 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
860 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
862 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
863 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
864 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
865 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
867 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
868 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
869 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
870 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
872 // NEON only has FMA instructions as of VFP4.
873 if (!Subtarget->hasVFP4Base()) {
874 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
875 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
878 setTargetDAGCombine(ISD::INTRINSIC_VOID);
879 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
880 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
881 setTargetDAGCombine(ISD::SHL);
882 setTargetDAGCombine(ISD::SRL);
883 setTargetDAGCombine(ISD::SRA);
884 setTargetDAGCombine(ISD::SIGN_EXTEND);
885 setTargetDAGCombine(ISD::ZERO_EXTEND);
886 setTargetDAGCombine(ISD::ANY_EXTEND);
887 setTargetDAGCombine(ISD::STORE);
888 setTargetDAGCombine(ISD::FP_TO_SINT);
889 setTargetDAGCombine(ISD::FP_TO_UINT);
890 setTargetDAGCombine(ISD::FDIV);
891 setTargetDAGCombine(ISD::LOAD);
893 // It is legal to extload from v4i8 to v4i16 or v4i32.
894 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
895 MVT::v2i32}) {
896 for (MVT VT : MVT::integer_vector_valuetypes()) {
897 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
898 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
899 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
904 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
905 setTargetDAGCombine(ISD::BUILD_VECTOR);
906 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
907 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
910 if (!Subtarget->hasFP64()) {
911 // When targeting a floating-point unit with only single-precision
912 // operations, f64 is legal for the few double-precision instructions which
913 // are present However, no double-precision operations other than moves,
914 // loads and stores are provided by the hardware.
915 setOperationAction(ISD::FADD, MVT::f64, Expand);
916 setOperationAction(ISD::FSUB, MVT::f64, Expand);
917 setOperationAction(ISD::FMUL, MVT::f64, Expand);
918 setOperationAction(ISD::FMA, MVT::f64, Expand);
919 setOperationAction(ISD::FDIV, MVT::f64, Expand);
920 setOperationAction(ISD::FREM, MVT::f64, Expand);
921 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
922 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
923 setOperationAction(ISD::FNEG, MVT::f64, Expand);
924 setOperationAction(ISD::FABS, MVT::f64, Expand);
925 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
926 setOperationAction(ISD::FSIN, MVT::f64, Expand);
927 setOperationAction(ISD::FCOS, MVT::f64, Expand);
928 setOperationAction(ISD::FPOW, MVT::f64, Expand);
929 setOperationAction(ISD::FLOG, MVT::f64, Expand);
930 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
931 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
932 setOperationAction(ISD::FEXP, MVT::f64, Expand);
933 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
934 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
935 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
936 setOperationAction(ISD::FRINT, MVT::f64, Expand);
937 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
938 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
939 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
940 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
941 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
942 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
943 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
944 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
945 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
948 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
949 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
950 if (Subtarget->hasFullFP16())
951 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
954 if (!Subtarget->hasFP16())
955 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
957 if (!Subtarget->hasFP64())
958 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
960 computeRegisterProperties(Subtarget->getRegisterInfo());
962 // ARM does not have floating-point extending loads.
963 for (MVT VT : MVT::fp_valuetypes()) {
964 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
965 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
968 // ... or truncating stores
969 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
970 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
971 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
973 // ARM does not have i1 sign extending load.
974 for (MVT VT : MVT::integer_valuetypes())
975 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
977 // ARM supports all 4 flavors of integer indexed load / store.
978 if (!Subtarget->isThumb1Only()) {
979 for (unsigned im = (unsigned)ISD::PRE_INC;
980 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
981 setIndexedLoadAction(im, MVT::i1, Legal);
982 setIndexedLoadAction(im, MVT::i8, Legal);
983 setIndexedLoadAction(im, MVT::i16, Legal);
984 setIndexedLoadAction(im, MVT::i32, Legal);
985 setIndexedStoreAction(im, MVT::i1, Legal);
986 setIndexedStoreAction(im, MVT::i8, Legal);
987 setIndexedStoreAction(im, MVT::i16, Legal);
988 setIndexedStoreAction(im, MVT::i32, Legal);
990 } else {
991 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
992 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
993 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
996 setOperationAction(ISD::SADDO, MVT::i32, Custom);
997 setOperationAction(ISD::UADDO, MVT::i32, Custom);
998 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
999 setOperationAction(ISD::USUBO, MVT::i32, Custom);
1001 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1002 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1004 // i64 operation support.
1005 setOperationAction(ISD::MUL, MVT::i64, Expand);
1006 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1007 if (Subtarget->isThumb1Only()) {
1008 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1009 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1011 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1012 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1013 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1015 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1016 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1017 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1018 setOperationAction(ISD::SRL, MVT::i64, Custom);
1019 setOperationAction(ISD::SRA, MVT::i64, Custom);
1020 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1022 // MVE lowers 64 bit shifts to lsll and lsrl
1023 // assuming that ISD::SRL and SRA of i64 are already marked custom
1024 if (Subtarget->hasMVEIntegerOps())
1025 setOperationAction(ISD::SHL, MVT::i64, Custom);
1027 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1028 if (Subtarget->isThumb1Only()) {
1029 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1030 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1031 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1034 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1035 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1037 // ARM does not have ROTL.
1038 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1039 for (MVT VT : MVT::vector_valuetypes()) {
1040 setOperationAction(ISD::ROTL, VT, Expand);
1041 setOperationAction(ISD::ROTR, VT, Expand);
1043 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1044 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1045 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1046 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1047 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1050 // @llvm.readcyclecounter requires the Performance Monitors extension.
1051 // Default to the 0 expansion on unsupported platforms.
1052 // FIXME: Technically there are older ARM CPUs that have
1053 // implementation-specific ways of obtaining this information.
1054 if (Subtarget->hasPerfMon())
1055 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1057 // Only ARMv6 has BSWAP.
1058 if (!Subtarget->hasV6Ops())
1059 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1061 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1062 : Subtarget->hasDivideInARMMode();
1063 if (!hasDivide) {
1064 // These are expanded into libcalls if the cpu doesn't have HW divider.
1065 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1066 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1069 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1070 setOperationAction(ISD::SDIV, MVT::i32, Custom);
1071 setOperationAction(ISD::UDIV, MVT::i32, Custom);
1073 setOperationAction(ISD::SDIV, MVT::i64, Custom);
1074 setOperationAction(ISD::UDIV, MVT::i64, Custom);
1077 setOperationAction(ISD::SREM, MVT::i32, Expand);
1078 setOperationAction(ISD::UREM, MVT::i32, Expand);
1080 // Register based DivRem for AEABI (RTABI 4.2)
1081 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1082 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1083 Subtarget->isTargetWindows()) {
1084 setOperationAction(ISD::SREM, MVT::i64, Custom);
1085 setOperationAction(ISD::UREM, MVT::i64, Custom);
1086 HasStandaloneRem = false;
1088 if (Subtarget->isTargetWindows()) {
1089 const struct {
1090 const RTLIB::Libcall Op;
1091 const char * const Name;
1092 const CallingConv::ID CC;
1093 } LibraryCalls[] = {
1094 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1095 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1096 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1097 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1099 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1100 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1101 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1102 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1105 for (const auto &LC : LibraryCalls) {
1106 setLibcallName(LC.Op, LC.Name);
1107 setLibcallCallingConv(LC.Op, LC.CC);
1109 } else {
1110 const struct {
1111 const RTLIB::Libcall Op;
1112 const char * const Name;
1113 const CallingConv::ID CC;
1114 } LibraryCalls[] = {
1115 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1116 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1117 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1118 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1120 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1121 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1122 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1123 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1126 for (const auto &LC : LibraryCalls) {
1127 setLibcallName(LC.Op, LC.Name);
1128 setLibcallCallingConv(LC.Op, LC.CC);
1132 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1133 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1134 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1135 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1136 } else {
1137 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1138 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1141 if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
1142 for (auto &VT : {MVT::f32, MVT::f64})
1143 setOperationAction(ISD::FPOWI, VT, Custom);
1145 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1146 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1147 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1148 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1150 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1151 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1153 // Use the default implementation.
1154 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1155 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1156 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1157 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1158 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1159 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1161 if (Subtarget->isTargetWindows())
1162 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1163 else
1164 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1166 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1167 // the default expansion.
1168 InsertFencesForAtomic = false;
1169 if (Subtarget->hasAnyDataBarrier() &&
1170 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1171 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1172 // to ldrex/strex loops already.
1173 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1174 if (!Subtarget->isThumb() || !Subtarget->isMClass())
1175 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1177 // On v8, we have particularly efficient implementations of atomic fences
1178 // if they can be combined with nearby atomic loads and stores.
1179 if (!Subtarget->hasAcquireRelease() ||
1180 getTargetMachine().getOptLevel() == 0) {
1181 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1182 InsertFencesForAtomic = true;
1184 } else {
1185 // If there's anything we can use as a barrier, go through custom lowering
1186 // for ATOMIC_FENCE.
1187 // If target has DMB in thumb, Fences can be inserted.
1188 if (Subtarget->hasDataBarrier())
1189 InsertFencesForAtomic = true;
1191 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1192 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1194 // Set them all for expansion, which will force libcalls.
1195 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
1196 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
1197 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
1198 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1199 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1200 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1201 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1202 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1203 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1204 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1205 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1206 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1207 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1208 // Unordered/Monotonic case.
1209 if (!InsertFencesForAtomic) {
1210 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1211 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1215 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1217 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1218 if (!Subtarget->hasV6Ops()) {
1219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1220 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1222 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1224 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1225 !Subtarget->isThumb1Only()) {
1226 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1227 // iff target supports vfp2.
1228 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1229 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1232 // We want to custom lower some of our intrinsics.
1233 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1234 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1235 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1236 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1237 if (Subtarget->useSjLjEH())
1238 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1240 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1241 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1242 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1243 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1244 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1245 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1246 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1247 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1248 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1249 if (Subtarget->hasFullFP16()) {
1250 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1251 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1252 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1255 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1257 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1258 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1259 if (Subtarget->hasFullFP16())
1260 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1261 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1262 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1263 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1265 // We don't support sin/cos/fmod/copysign/pow
1266 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1267 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1268 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1269 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1270 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1271 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1272 setOperationAction(ISD::FREM, MVT::f64, Expand);
1273 setOperationAction(ISD::FREM, MVT::f32, Expand);
1274 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1275 !Subtarget->isThumb1Only()) {
1276 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1277 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1279 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1280 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1282 if (!Subtarget->hasVFP4Base()) {
1283 setOperationAction(ISD::FMA, MVT::f64, Expand);
1284 setOperationAction(ISD::FMA, MVT::f32, Expand);
1287 // Various VFP goodness
1288 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1289 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1290 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1291 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1292 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1295 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1296 if (!Subtarget->hasFP16()) {
1297 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1298 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1302 // Use __sincos_stret if available.
1303 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1304 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1305 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1306 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1309 // FP-ARMv8 implements a lot of rounding-like FP operations.
1310 if (Subtarget->hasFPARMv8Base()) {
1311 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1312 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1313 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1314 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1315 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1316 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1317 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1318 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1319 if (Subtarget->hasNEON()) {
1320 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1321 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1322 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1323 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1326 if (Subtarget->hasFP64()) {
1327 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1328 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1329 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1330 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1331 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1332 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1333 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1334 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1338 // FP16 often need to be promoted to call lib functions
1339 if (Subtarget->hasFullFP16()) {
1340 setOperationAction(ISD::FREM, MVT::f16, Promote);
1341 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1342 setOperationAction(ISD::FSIN, MVT::f16, Promote);
1343 setOperationAction(ISD::FCOS, MVT::f16, Promote);
1344 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1345 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1346 setOperationAction(ISD::FPOW, MVT::f16, Promote);
1347 setOperationAction(ISD::FEXP, MVT::f16, Promote);
1348 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1349 setOperationAction(ISD::FLOG, MVT::f16, Promote);
1350 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1351 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1353 setOperationAction(ISD::FROUND, MVT::f16, Legal);
1356 if (Subtarget->hasNEON()) {
1357 // vmin and vmax aren't available in a scalar form, so we use
1358 // a NEON instruction with an undef lane instead.
1359 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1360 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1361 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1362 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1363 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1364 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1365 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1366 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1368 if (Subtarget->hasFullFP16()) {
1369 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1370 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1371 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1372 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1374 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1375 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1376 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1377 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1381 // We have target-specific dag combine patterns for the following nodes:
1382 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1383 setTargetDAGCombine(ISD::ADD);
1384 setTargetDAGCombine(ISD::SUB);
1385 setTargetDAGCombine(ISD::MUL);
1386 setTargetDAGCombine(ISD::AND);
1387 setTargetDAGCombine(ISD::OR);
1388 setTargetDAGCombine(ISD::XOR);
1390 if (Subtarget->hasV6Ops())
1391 setTargetDAGCombine(ISD::SRL);
1392 if (Subtarget->isThumb1Only())
1393 setTargetDAGCombine(ISD::SHL);
1395 setStackPointerRegisterToSaveRestore(ARM::SP);
1397 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1398 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1399 setSchedulingPreference(Sched::RegPressure);
1400 else
1401 setSchedulingPreference(Sched::Hybrid);
1403 //// temporary - rewrite interface to use type
1404 MaxStoresPerMemset = 8;
1405 MaxStoresPerMemsetOptSize = 4;
1406 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1407 MaxStoresPerMemcpyOptSize = 2;
1408 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1409 MaxStoresPerMemmoveOptSize = 2;
1411 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1412 // are at least 4 bytes aligned.
1413 setMinStackArgumentAlignment(4);
1415 // Prefer likely predicted branches to selects on out-of-order cores.
1416 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1418 setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
1420 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1422 if (Subtarget->isThumb() || Subtarget->isThumb2())
1423 setTargetDAGCombine(ISD::ABS);
1426 bool ARMTargetLowering::useSoftFloat() const {
1427 return Subtarget->useSoftFloat();
1430 // FIXME: It might make sense to define the representative register class as the
1431 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1432 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1433 // SPR's representative would be DPR_VFP2. This should work well if register
1434 // pressure tracking were modified such that a register use would increment the
1435 // pressure of the register class's representative and all of it's super
1436 // classes' representatives transitively. We have not implemented this because
1437 // of the difficulty prior to coalescing of modeling operand register classes
1438 // due to the common occurrence of cross class copies and subregister insertions
1439 // and extractions.
1440 std::pair<const TargetRegisterClass *, uint8_t>
1441 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1442 MVT VT) const {
1443 const TargetRegisterClass *RRC = nullptr;
1444 uint8_t Cost = 1;
1445 switch (VT.SimpleTy) {
1446 default:
1447 return TargetLowering::findRepresentativeClass(TRI, VT);
1448 // Use DPR as representative register class for all floating point
1449 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1450 // the cost is 1 for both f32 and f64.
1451 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1452 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1453 RRC = &ARM::DPRRegClass;
1454 // When NEON is used for SP, only half of the register file is available
1455 // because operations that define both SP and DP results will be constrained
1456 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1457 // coalescing by double-counting the SP regs. See the FIXME above.
1458 if (Subtarget->useNEONForSinglePrecisionFP())
1459 Cost = 2;
1460 break;
1461 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1462 case MVT::v4f32: case MVT::v2f64:
1463 RRC = &ARM::DPRRegClass;
1464 Cost = 2;
1465 break;
1466 case MVT::v4i64:
1467 RRC = &ARM::DPRRegClass;
1468 Cost = 4;
1469 break;
1470 case MVT::v8i64:
1471 RRC = &ARM::DPRRegClass;
1472 Cost = 8;
1473 break;
1475 return std::make_pair(RRC, Cost);
1478 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1479 switch ((ARMISD::NodeType)Opcode) {
1480 case ARMISD::FIRST_NUMBER: break;
1481 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1482 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1483 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1484 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1485 case ARMISD::CALL: return "ARMISD::CALL";
1486 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1487 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1488 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1489 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1490 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1491 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1492 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1493 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1494 case ARMISD::CMP: return "ARMISD::CMP";
1495 case ARMISD::CMN: return "ARMISD::CMN";
1496 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1497 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1498 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1499 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1500 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1502 case ARMISD::CMOV: return "ARMISD::CMOV";
1503 case ARMISD::SUBS: return "ARMISD::SUBS";
1505 case ARMISD::SSAT: return "ARMISD::SSAT";
1506 case ARMISD::USAT: return "ARMISD::USAT";
1508 case ARMISD::ASRL: return "ARMISD::ASRL";
1509 case ARMISD::LSRL: return "ARMISD::LSRL";
1510 case ARMISD::LSLL: return "ARMISD::LSLL";
1512 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1513 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1514 case ARMISD::RRX: return "ARMISD::RRX";
1516 case ARMISD::ADDC: return "ARMISD::ADDC";
1517 case ARMISD::ADDE: return "ARMISD::ADDE";
1518 case ARMISD::SUBC: return "ARMISD::SUBC";
1519 case ARMISD::SUBE: return "ARMISD::SUBE";
1520 case ARMISD::LSLS: return "ARMISD::LSLS";
1522 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1523 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1524 case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
1525 case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
1526 case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
1528 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1529 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1530 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1532 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1534 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1536 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1538 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1540 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1542 case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
1543 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
1545 case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1546 case ARMISD::VCMP: return "ARMISD::VCMP";
1547 case ARMISD::VCMPZ: return "ARMISD::VCMPZ";
1548 case ARMISD::VTST: return "ARMISD::VTST";
1550 case ARMISD::VSHLs: return "ARMISD::VSHLs";
1551 case ARMISD::VSHLu: return "ARMISD::VSHLu";
1552 case ARMISD::VSHLIMM: return "ARMISD::VSHLIMM";
1553 case ARMISD::VSHRsIMM: return "ARMISD::VSHRsIMM";
1554 case ARMISD::VSHRuIMM: return "ARMISD::VSHRuIMM";
1555 case ARMISD::VRSHRsIMM: return "ARMISD::VRSHRsIMM";
1556 case ARMISD::VRSHRuIMM: return "ARMISD::VRSHRuIMM";
1557 case ARMISD::VRSHRNIMM: return "ARMISD::VRSHRNIMM";
1558 case ARMISD::VQSHLsIMM: return "ARMISD::VQSHLsIMM";
1559 case ARMISD::VQSHLuIMM: return "ARMISD::VQSHLuIMM";
1560 case ARMISD::VQSHLsuIMM: return "ARMISD::VQSHLsuIMM";
1561 case ARMISD::VQSHRNsIMM: return "ARMISD::VQSHRNsIMM";
1562 case ARMISD::VQSHRNuIMM: return "ARMISD::VQSHRNuIMM";
1563 case ARMISD::VQSHRNsuIMM: return "ARMISD::VQSHRNsuIMM";
1564 case ARMISD::VQRSHRNsIMM: return "ARMISD::VQRSHRNsIMM";
1565 case ARMISD::VQRSHRNuIMM: return "ARMISD::VQRSHRNuIMM";
1566 case ARMISD::VQRSHRNsuIMM: return "ARMISD::VQRSHRNsuIMM";
1567 case ARMISD::VSLIIMM: return "ARMISD::VSLIIMM";
1568 case ARMISD::VSRIIMM: return "ARMISD::VSRIIMM";
1569 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1570 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1571 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1572 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1573 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1574 case ARMISD::VDUP: return "ARMISD::VDUP";
1575 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1576 case ARMISD::VEXT: return "ARMISD::VEXT";
1577 case ARMISD::VREV64: return "ARMISD::VREV64";
1578 case ARMISD::VREV32: return "ARMISD::VREV32";
1579 case ARMISD::VREV16: return "ARMISD::VREV16";
1580 case ARMISD::VZIP: return "ARMISD::VZIP";
1581 case ARMISD::VUZP: return "ARMISD::VUZP";
1582 case ARMISD::VTRN: return "ARMISD::VTRN";
1583 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1584 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1585 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1586 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1587 case ARMISD::UMAAL: return "ARMISD::UMAAL";
1588 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1589 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1590 case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
1591 case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
1592 case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
1593 case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
1594 case ARMISD::SMULWB: return "ARMISD::SMULWB";
1595 case ARMISD::SMULWT: return "ARMISD::SMULWT";
1596 case ARMISD::SMLALD: return "ARMISD::SMLALD";
1597 case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
1598 case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
1599 case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
1600 case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
1601 case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
1602 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1603 case ARMISD::BFI: return "ARMISD::BFI";
1604 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1605 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1606 case ARMISD::VBSL: return "ARMISD::VBSL";
1607 case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
1608 case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
1609 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1610 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1611 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1612 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1613 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1614 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1615 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1616 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1617 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1618 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1619 case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
1620 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1621 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1622 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1623 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1624 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1625 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1626 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1627 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1628 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1629 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1630 case ARMISD::WLS: return "ARMISD::WLS";
1631 case ARMISD::LE: return "ARMISD::LE";
1632 case ARMISD::LOOP_DEC: return "ARMISD::LOOP_DEC";
1634 return nullptr;
1637 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1638 EVT VT) const {
1639 if (!VT.isVector())
1640 return getPointerTy(DL);
1642 // MVE has a predicate register.
1643 if (Subtarget->hasMVEIntegerOps() &&
1644 (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1645 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1646 return VT.changeVectorElementTypeToInteger();
1649 /// getRegClassFor - Return the register class that should be used for the
1650 /// specified value type.
1651 const TargetRegisterClass *
1652 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1653 (void)isDivergent;
1654 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1655 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1656 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1657 // MVE Q registers.
1658 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1659 if (VT == MVT::v4i64)
1660 return &ARM::QQPRRegClass;
1661 if (VT == MVT::v8i64)
1662 return &ARM::QQQQPRRegClass;
1664 return TargetLowering::getRegClassFor(VT);
1667 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1668 // source/dest is aligned and the copy size is large enough. We therefore want
1669 // to align such objects passed to memory intrinsics.
1670 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1671 unsigned &PrefAlign) const {
1672 if (!isa<MemIntrinsic>(CI))
1673 return false;
1674 MinSize = 8;
1675 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1676 // cycle faster than 4-byte aligned LDM.
1677 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1678 return true;
1681 // Create a fast isel object.
1682 FastISel *
1683 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1684 const TargetLibraryInfo *libInfo) const {
1685 return ARM::createFastISel(funcInfo, libInfo);
1688 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1689 unsigned NumVals = N->getNumValues();
1690 if (!NumVals)
1691 return Sched::RegPressure;
1693 for (unsigned i = 0; i != NumVals; ++i) {
1694 EVT VT = N->getValueType(i);
1695 if (VT == MVT::Glue || VT == MVT::Other)
1696 continue;
1697 if (VT.isFloatingPoint() || VT.isVector())
1698 return Sched::ILP;
1701 if (!N->isMachineOpcode())
1702 return Sched::RegPressure;
1704 // Load are scheduled for latency even if there instruction itinerary
1705 // is not available.
1706 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1707 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1709 if (MCID.getNumDefs() == 0)
1710 return Sched::RegPressure;
1711 if (!Itins->isEmpty() &&
1712 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1713 return Sched::ILP;
1715 return Sched::RegPressure;
1718 //===----------------------------------------------------------------------===//
1719 // Lowering Code
1720 //===----------------------------------------------------------------------===//
1722 static bool isSRL16(const SDValue &Op) {
1723 if (Op.getOpcode() != ISD::SRL)
1724 return false;
1725 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1726 return Const->getZExtValue() == 16;
1727 return false;
1730 static bool isSRA16(const SDValue &Op) {
1731 if (Op.getOpcode() != ISD::SRA)
1732 return false;
1733 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1734 return Const->getZExtValue() == 16;
1735 return false;
1738 static bool isSHL16(const SDValue &Op) {
1739 if (Op.getOpcode() != ISD::SHL)
1740 return false;
1741 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1742 return Const->getZExtValue() == 16;
1743 return false;
1746 // Check for a signed 16-bit value. We special case SRA because it makes it
1747 // more simple when also looking for SRAs that aren't sign extending a
1748 // smaller value. Without the check, we'd need to take extra care with
1749 // checking order for some operations.
1750 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1751 if (isSRA16(Op))
1752 return isSHL16(Op.getOperand(0));
1753 return DAG.ComputeNumSignBits(Op) == 17;
1756 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1757 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1758 switch (CC) {
1759 default: llvm_unreachable("Unknown condition code!");
1760 case ISD::SETNE: return ARMCC::NE;
1761 case ISD::SETEQ: return ARMCC::EQ;
1762 case ISD::SETGT: return ARMCC::GT;
1763 case ISD::SETGE: return ARMCC::GE;
1764 case ISD::SETLT: return ARMCC::LT;
1765 case ISD::SETLE: return ARMCC::LE;
1766 case ISD::SETUGT: return ARMCC::HI;
1767 case ISD::SETUGE: return ARMCC::HS;
1768 case ISD::SETULT: return ARMCC::LO;
1769 case ISD::SETULE: return ARMCC::LS;
1773 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1774 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1775 ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1776 CondCode2 = ARMCC::AL;
1777 InvalidOnQNaN = true;
1778 switch (CC) {
1779 default: llvm_unreachable("Unknown FP condition!");
1780 case ISD::SETEQ:
1781 case ISD::SETOEQ:
1782 CondCode = ARMCC::EQ;
1783 InvalidOnQNaN = false;
1784 break;
1785 case ISD::SETGT:
1786 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1787 case ISD::SETGE:
1788 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1789 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1790 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1791 case ISD::SETONE:
1792 CondCode = ARMCC::MI;
1793 CondCode2 = ARMCC::GT;
1794 InvalidOnQNaN = false;
1795 break;
1796 case ISD::SETO: CondCode = ARMCC::VC; break;
1797 case ISD::SETUO: CondCode = ARMCC::VS; break;
1798 case ISD::SETUEQ:
1799 CondCode = ARMCC::EQ;
1800 CondCode2 = ARMCC::VS;
1801 InvalidOnQNaN = false;
1802 break;
1803 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1804 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1805 case ISD::SETLT:
1806 case ISD::SETULT: CondCode = ARMCC::LT; break;
1807 case ISD::SETLE:
1808 case ISD::SETULE: CondCode = ARMCC::LE; break;
1809 case ISD::SETNE:
1810 case ISD::SETUNE:
1811 CondCode = ARMCC::NE;
1812 InvalidOnQNaN = false;
1813 break;
1817 //===----------------------------------------------------------------------===//
1818 // Calling Convention Implementation
1819 //===----------------------------------------------------------------------===//
1821 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1822 /// account presence of floating point hardware and calling convention
1823 /// limitations, such as support for variadic functions.
1824 CallingConv::ID
1825 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1826 bool isVarArg) const {
1827 switch (CC) {
1828 default:
1829 report_fatal_error("Unsupported calling convention");
1830 case CallingConv::ARM_AAPCS:
1831 case CallingConv::ARM_APCS:
1832 case CallingConv::GHC:
1833 return CC;
1834 case CallingConv::PreserveMost:
1835 return CallingConv::PreserveMost;
1836 case CallingConv::ARM_AAPCS_VFP:
1837 case CallingConv::Swift:
1838 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1839 case CallingConv::C:
1840 if (!Subtarget->isAAPCS_ABI())
1841 return CallingConv::ARM_APCS;
1842 else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1843 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1844 !isVarArg)
1845 return CallingConv::ARM_AAPCS_VFP;
1846 else
1847 return CallingConv::ARM_AAPCS;
1848 case CallingConv::Fast:
1849 case CallingConv::CXX_FAST_TLS:
1850 if (!Subtarget->isAAPCS_ABI()) {
1851 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1852 return CallingConv::Fast;
1853 return CallingConv::ARM_APCS;
1854 } else if (Subtarget->hasVFP2Base() &&
1855 !Subtarget->isThumb1Only() && !isVarArg)
1856 return CallingConv::ARM_AAPCS_VFP;
1857 else
1858 return CallingConv::ARM_AAPCS;
1862 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1863 bool isVarArg) const {
1864 return CCAssignFnForNode(CC, false, isVarArg);
1867 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1868 bool isVarArg) const {
1869 return CCAssignFnForNode(CC, true, isVarArg);
1872 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1873 /// CallingConvention.
1874 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1875 bool Return,
1876 bool isVarArg) const {
1877 switch (getEffectiveCallingConv(CC, isVarArg)) {
1878 default:
1879 report_fatal_error("Unsupported calling convention");
1880 case CallingConv::ARM_APCS:
1881 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1882 case CallingConv::ARM_AAPCS:
1883 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1884 case CallingConv::ARM_AAPCS_VFP:
1885 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1886 case CallingConv::Fast:
1887 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1888 case CallingConv::GHC:
1889 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1890 case CallingConv::PreserveMost:
1891 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1895 /// LowerCallResult - Lower the result values of a call into the
1896 /// appropriate copies out of appropriate physical registers.
1897 SDValue ARMTargetLowering::LowerCallResult(
1898 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1899 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1900 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1901 SDValue ThisVal) const {
1902 // Assign locations to each value returned by this call.
1903 SmallVector<CCValAssign, 16> RVLocs;
1904 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1905 *DAG.getContext());
1906 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1908 // Copy all of the result registers out of their specified physreg.
1909 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1910 CCValAssign VA = RVLocs[i];
1912 // Pass 'this' value directly from the argument to return value, to avoid
1913 // reg unit interference
1914 if (i == 0 && isThisReturn) {
1915 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1916 "unexpected return calling convention register assignment");
1917 InVals.push_back(ThisVal);
1918 continue;
1921 SDValue Val;
1922 if (VA.needsCustom()) {
1923 // Handle f64 or half of a v2f64.
1924 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1925 InFlag);
1926 Chain = Lo.getValue(1);
1927 InFlag = Lo.getValue(2);
1928 VA = RVLocs[++i]; // skip ahead to next loc
1929 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1930 InFlag);
1931 Chain = Hi.getValue(1);
1932 InFlag = Hi.getValue(2);
1933 if (!Subtarget->isLittle())
1934 std::swap (Lo, Hi);
1935 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1937 if (VA.getLocVT() == MVT::v2f64) {
1938 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1939 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1940 DAG.getConstant(0, dl, MVT::i32));
1942 VA = RVLocs[++i]; // skip ahead to next loc
1943 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1944 Chain = Lo.getValue(1);
1945 InFlag = Lo.getValue(2);
1946 VA = RVLocs[++i]; // skip ahead to next loc
1947 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1948 Chain = Hi.getValue(1);
1949 InFlag = Hi.getValue(2);
1950 if (!Subtarget->isLittle())
1951 std::swap (Lo, Hi);
1952 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1953 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1954 DAG.getConstant(1, dl, MVT::i32));
1956 } else {
1957 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1958 InFlag);
1959 Chain = Val.getValue(1);
1960 InFlag = Val.getValue(2);
1963 switch (VA.getLocInfo()) {
1964 default: llvm_unreachable("Unknown loc info!");
1965 case CCValAssign::Full: break;
1966 case CCValAssign::BCvt:
1967 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1968 break;
1971 InVals.push_back(Val);
1974 return Chain;
1977 /// LowerMemOpCallTo - Store the argument to the stack.
1978 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1979 SDValue Arg, const SDLoc &dl,
1980 SelectionDAG &DAG,
1981 const CCValAssign &VA,
1982 ISD::ArgFlagsTy Flags) const {
1983 unsigned LocMemOffset = VA.getLocMemOffset();
1984 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1985 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1986 StackPtr, PtrOff);
1987 return DAG.getStore(
1988 Chain, dl, Arg, PtrOff,
1989 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1992 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1993 SDValue Chain, SDValue &Arg,
1994 RegsToPassVector &RegsToPass,
1995 CCValAssign &VA, CCValAssign &NextVA,
1996 SDValue &StackPtr,
1997 SmallVectorImpl<SDValue> &MemOpChains,
1998 ISD::ArgFlagsTy Flags) const {
1999 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2000 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2001 unsigned id = Subtarget->isLittle() ? 0 : 1;
2002 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2004 if (NextVA.isRegLoc())
2005 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2006 else {
2007 assert(NextVA.isMemLoc());
2008 if (!StackPtr.getNode())
2009 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2010 getPointerTy(DAG.getDataLayout()));
2012 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2013 dl, DAG, NextVA,
2014 Flags));
2018 /// LowerCall - Lowering a call into a callseq_start <-
2019 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2020 /// nodes.
2021 SDValue
2022 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2023 SmallVectorImpl<SDValue> &InVals) const {
2024 SelectionDAG &DAG = CLI.DAG;
2025 SDLoc &dl = CLI.DL;
2026 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2027 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2028 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2029 SDValue Chain = CLI.Chain;
2030 SDValue Callee = CLI.Callee;
2031 bool &isTailCall = CLI.IsTailCall;
2032 CallingConv::ID CallConv = CLI.CallConv;
2033 bool doesNotRet = CLI.DoesNotReturn;
2034 bool isVarArg = CLI.IsVarArg;
2036 MachineFunction &MF = DAG.getMachineFunction();
2037 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2038 bool isThisReturn = false;
2039 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
2040 bool PreferIndirect = false;
2042 // Disable tail calls if they're not supported.
2043 if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
2044 isTailCall = false;
2046 if (isa<GlobalAddressSDNode>(Callee)) {
2047 // If we're optimizing for minimum size and the function is called three or
2048 // more times in this block, we can improve codesize by calling indirectly
2049 // as BLXr has a 16-bit encoding.
2050 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2051 if (CLI.CS) {
2052 auto *BB = CLI.CS.getParent();
2053 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2054 count_if(GV->users(), [&BB](const User *U) {
2055 return isa<Instruction>(U) &&
2056 cast<Instruction>(U)->getParent() == BB;
2057 }) > 2;
2060 if (isTailCall) {
2061 // Check if it's really possible to do a tail call.
2062 isTailCall = IsEligibleForTailCallOptimization(
2063 Callee, CallConv, isVarArg, isStructRet,
2064 MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2065 PreferIndirect);
2066 if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
2067 report_fatal_error("failed to perform tail call elimination on a call "
2068 "site marked musttail");
2069 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2070 // detected sibcalls.
2071 if (isTailCall)
2072 ++NumTailCalls;
2075 // Analyze operands of the call, assigning locations to each operand.
2076 SmallVector<CCValAssign, 16> ArgLocs;
2077 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2078 *DAG.getContext());
2079 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2081 // Get a count of how many bytes are to be pushed on the stack.
2082 unsigned NumBytes = CCInfo.getNextStackOffset();
2084 if (isTailCall) {
2085 // For tail calls, memory operands are available in our caller's stack.
2086 NumBytes = 0;
2087 } else {
2088 // Adjust the stack pointer for the new arguments...
2089 // These operations are automatically eliminated by the prolog/epilog pass
2090 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2093 SDValue StackPtr =
2094 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2096 RegsToPassVector RegsToPass;
2097 SmallVector<SDValue, 8> MemOpChains;
2099 // Walk the register/memloc assignments, inserting copies/loads. In the case
2100 // of tail call optimization, arguments are handled later.
2101 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2102 i != e;
2103 ++i, ++realArgIdx) {
2104 CCValAssign &VA = ArgLocs[i];
2105 SDValue Arg = OutVals[realArgIdx];
2106 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2107 bool isByVal = Flags.isByVal();
2109 // Promote the value if needed.
2110 switch (VA.getLocInfo()) {
2111 default: llvm_unreachable("Unknown loc info!");
2112 case CCValAssign::Full: break;
2113 case CCValAssign::SExt:
2114 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2115 break;
2116 case CCValAssign::ZExt:
2117 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2118 break;
2119 case CCValAssign::AExt:
2120 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2121 break;
2122 case CCValAssign::BCvt:
2123 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2124 break;
2127 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2128 if (VA.needsCustom()) {
2129 if (VA.getLocVT() == MVT::v2f64) {
2130 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2131 DAG.getConstant(0, dl, MVT::i32));
2132 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2133 DAG.getConstant(1, dl, MVT::i32));
2135 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
2136 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2138 VA = ArgLocs[++i]; // skip ahead to next loc
2139 if (VA.isRegLoc()) {
2140 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
2141 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2142 } else {
2143 assert(VA.isMemLoc());
2145 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
2146 dl, DAG, VA, Flags));
2148 } else {
2149 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2150 StackPtr, MemOpChains, Flags);
2152 } else if (VA.isRegLoc()) {
2153 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2154 Outs[0].VT == MVT::i32) {
2155 assert(VA.getLocVT() == MVT::i32 &&
2156 "unexpected calling convention register assignment");
2157 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2158 "unexpected use of 'returned'");
2159 isThisReturn = true;
2161 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2162 } else if (isByVal) {
2163 assert(VA.isMemLoc());
2164 unsigned offset = 0;
2166 // True if this byval aggregate will be split between registers
2167 // and memory.
2168 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2169 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2171 if (CurByValIdx < ByValArgsCount) {
2173 unsigned RegBegin, RegEnd;
2174 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2176 EVT PtrVT =
2177 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2178 unsigned int i, j;
2179 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2180 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2181 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2182 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
2183 MachinePointerInfo(),
2184 DAG.InferPtrAlignment(AddArg));
2185 MemOpChains.push_back(Load.getValue(1));
2186 RegsToPass.push_back(std::make_pair(j, Load));
2189 // If parameter size outsides register area, "offset" value
2190 // helps us to calculate stack slot for remained part properly.
2191 offset = RegEnd - RegBegin;
2193 CCInfo.nextInRegsParam();
2196 if (Flags.getByValSize() > 4*offset) {
2197 auto PtrVT = getPointerTy(DAG.getDataLayout());
2198 unsigned LocMemOffset = VA.getLocMemOffset();
2199 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2200 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2201 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2202 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2203 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2204 MVT::i32);
2205 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2206 MVT::i32);
2208 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2209 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2210 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2211 Ops));
2213 } else if (!isTailCall) {
2214 assert(VA.isMemLoc());
2216 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2217 dl, DAG, VA, Flags));
2221 if (!MemOpChains.empty())
2222 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2224 // Build a sequence of copy-to-reg nodes chained together with token chain
2225 // and flag operands which copy the outgoing args into the appropriate regs.
2226 SDValue InFlag;
2227 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2228 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2229 RegsToPass[i].second, InFlag);
2230 InFlag = Chain.getValue(1);
2233 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2234 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2235 // node so that legalize doesn't hack it.
2236 bool isDirect = false;
2238 const TargetMachine &TM = getTargetMachine();
2239 const Module *Mod = MF.getFunction().getParent();
2240 const GlobalValue *GV = nullptr;
2241 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2242 GV = G->getGlobal();
2243 bool isStub =
2244 !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2246 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2247 bool isLocalARMFunc = false;
2248 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2249 auto PtrVt = getPointerTy(DAG.getDataLayout());
2251 if (Subtarget->genLongCalls()) {
2252 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2253 "long-calls codegen is not position independent!");
2254 // Handle a global address or an external symbol. If it's not one of
2255 // those, the target's already in a register, so we don't need to do
2256 // anything extra.
2257 if (isa<GlobalAddressSDNode>(Callee)) {
2258 // Create a constant pool entry for the callee address
2259 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2260 ARMConstantPoolValue *CPV =
2261 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2263 // Get the address of the callee into a register
2264 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2265 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2266 Callee = DAG.getLoad(
2267 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2268 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2269 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2270 const char *Sym = S->getSymbol();
2272 // Create a constant pool entry for the callee address
2273 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2274 ARMConstantPoolValue *CPV =
2275 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2276 ARMPCLabelIndex, 0);
2277 // Get the address of the callee into a register
2278 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2279 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2280 Callee = DAG.getLoad(
2281 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2282 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2284 } else if (isa<GlobalAddressSDNode>(Callee)) {
2285 if (!PreferIndirect) {
2286 isDirect = true;
2287 bool isDef = GV->isStrongDefinitionForLinker();
2289 // ARM call to a local ARM function is predicable.
2290 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2291 // tBX takes a register source operand.
2292 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2293 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2294 Callee = DAG.getNode(
2295 ARMISD::WrapperPIC, dl, PtrVt,
2296 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2297 Callee = DAG.getLoad(
2298 PtrVt, dl, DAG.getEntryNode(), Callee,
2299 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2300 /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2301 MachineMemOperand::MOInvariant);
2302 } else if (Subtarget->isTargetCOFF()) {
2303 assert(Subtarget->isTargetWindows() &&
2304 "Windows is the only supported COFF target");
2305 unsigned TargetFlags = GV->hasDLLImportStorageClass()
2306 ? ARMII::MO_DLLIMPORT
2307 : ARMII::MO_NO_FLAG;
2308 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2309 TargetFlags);
2310 if (GV->hasDLLImportStorageClass())
2311 Callee =
2312 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2313 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2314 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2315 } else {
2316 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2319 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2320 isDirect = true;
2321 // tBX takes a register source operand.
2322 const char *Sym = S->getSymbol();
2323 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2324 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2325 ARMConstantPoolValue *CPV =
2326 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2327 ARMPCLabelIndex, 4);
2328 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2329 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2330 Callee = DAG.getLoad(
2331 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2332 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2333 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2334 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2335 } else {
2336 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2340 // FIXME: handle tail calls differently.
2341 unsigned CallOpc;
2342 if (Subtarget->isThumb()) {
2343 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2344 CallOpc = ARMISD::CALL_NOLINK;
2345 else
2346 CallOpc = ARMISD::CALL;
2347 } else {
2348 if (!isDirect && !Subtarget->hasV5TOps())
2349 CallOpc = ARMISD::CALL_NOLINK;
2350 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2351 // Emit regular call when code size is the priority
2352 !Subtarget->hasMinSize())
2353 // "mov lr, pc; b _foo" to avoid confusing the RSP
2354 CallOpc = ARMISD::CALL_NOLINK;
2355 else
2356 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2359 std::vector<SDValue> Ops;
2360 Ops.push_back(Chain);
2361 Ops.push_back(Callee);
2363 // Add argument registers to the end of the list so that they are known live
2364 // into the call.
2365 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2366 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2367 RegsToPass[i].second.getValueType()));
2369 // Add a register mask operand representing the call-preserved registers.
2370 if (!isTailCall) {
2371 const uint32_t *Mask;
2372 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2373 if (isThisReturn) {
2374 // For 'this' returns, use the R0-preserving mask if applicable
2375 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2376 if (!Mask) {
2377 // Set isThisReturn to false if the calling convention is not one that
2378 // allows 'returned' to be modeled in this way, so LowerCallResult does
2379 // not try to pass 'this' straight through
2380 isThisReturn = false;
2381 Mask = ARI->getCallPreservedMask(MF, CallConv);
2383 } else
2384 Mask = ARI->getCallPreservedMask(MF, CallConv);
2386 assert(Mask && "Missing call preserved mask for calling convention");
2387 Ops.push_back(DAG.getRegisterMask(Mask));
2390 if (InFlag.getNode())
2391 Ops.push_back(InFlag);
2393 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2394 if (isTailCall) {
2395 MF.getFrameInfo().setHasTailCall();
2396 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2399 // Returns a chain and a flag for retval copy to use.
2400 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2401 InFlag = Chain.getValue(1);
2403 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2404 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2405 if (!Ins.empty())
2406 InFlag = Chain.getValue(1);
2408 // Handle result values, copying them out of physregs into vregs that we
2409 // return.
2410 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2411 InVals, isThisReturn,
2412 isThisReturn ? OutVals[0] : SDValue());
2415 /// HandleByVal - Every parameter *after* a byval parameter is passed
2416 /// on the stack. Remember the next parameter register to allocate,
2417 /// and then confiscate the rest of the parameter registers to insure
2418 /// this.
2419 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2420 unsigned Align) const {
2421 // Byval (as with any stack) slots are always at least 4 byte aligned.
2422 Align = std::max(Align, 4U);
2424 unsigned Reg = State->AllocateReg(GPRArgRegs);
2425 if (!Reg)
2426 return;
2428 unsigned AlignInRegs = Align / 4;
2429 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2430 for (unsigned i = 0; i < Waste; ++i)
2431 Reg = State->AllocateReg(GPRArgRegs);
2433 if (!Reg)
2434 return;
2436 unsigned Excess = 4 * (ARM::R4 - Reg);
2438 // Special case when NSAA != SP and parameter size greater than size of
2439 // all remained GPR regs. In that case we can't split parameter, we must
2440 // send it to stack. We also must set NCRN to R4, so waste all
2441 // remained registers.
2442 const unsigned NSAAOffset = State->getNextStackOffset();
2443 if (NSAAOffset != 0 && Size > Excess) {
2444 while (State->AllocateReg(GPRArgRegs))
2446 return;
2449 // First register for byval parameter is the first register that wasn't
2450 // allocated before this method call, so it would be "reg".
2451 // If parameter is small enough to be saved in range [reg, r4), then
2452 // the end (first after last) register would be reg + param-size-in-regs,
2453 // else parameter would be splitted between registers and stack,
2454 // end register would be r4 in this case.
2455 unsigned ByValRegBegin = Reg;
2456 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2457 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2458 // Note, first register is allocated in the beginning of function already,
2459 // allocate remained amount of registers we need.
2460 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2461 State->AllocateReg(GPRArgRegs);
2462 // A byval parameter that is split between registers and memory needs its
2463 // size truncated here.
2464 // In the case where the entire structure fits in registers, we set the
2465 // size in memory to zero.
2466 Size = std::max<int>(Size - Excess, 0);
2469 /// MatchingStackOffset - Return true if the given stack call argument is
2470 /// already available in the same position (relatively) of the caller's
2471 /// incoming argument stack.
2472 static
2473 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2474 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2475 const TargetInstrInfo *TII) {
2476 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2477 int FI = std::numeric_limits<int>::max();
2478 if (Arg.getOpcode() == ISD::CopyFromReg) {
2479 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2480 if (!Register::isVirtualRegister(VR))
2481 return false;
2482 MachineInstr *Def = MRI->getVRegDef(VR);
2483 if (!Def)
2484 return false;
2485 if (!Flags.isByVal()) {
2486 if (!TII->isLoadFromStackSlot(*Def, FI))
2487 return false;
2488 } else {
2489 return false;
2491 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2492 if (Flags.isByVal())
2493 // ByVal argument is passed in as a pointer but it's now being
2494 // dereferenced. e.g.
2495 // define @foo(%struct.X* %A) {
2496 // tail call @bar(%struct.X* byval %A)
2497 // }
2498 return false;
2499 SDValue Ptr = Ld->getBasePtr();
2500 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2501 if (!FINode)
2502 return false;
2503 FI = FINode->getIndex();
2504 } else
2505 return false;
2507 assert(FI != std::numeric_limits<int>::max());
2508 if (!MFI.isFixedObjectIndex(FI))
2509 return false;
2510 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2513 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2514 /// for tail call optimization. Targets which want to do tail call
2515 /// optimization should implement this function.
2516 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2517 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2518 bool isCalleeStructRet, bool isCallerStructRet,
2519 const SmallVectorImpl<ISD::OutputArg> &Outs,
2520 const SmallVectorImpl<SDValue> &OutVals,
2521 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2522 const bool isIndirect) const {
2523 MachineFunction &MF = DAG.getMachineFunction();
2524 const Function &CallerF = MF.getFunction();
2525 CallingConv::ID CallerCC = CallerF.getCallingConv();
2527 assert(Subtarget->supportsTailCall());
2529 // Indirect tail calls cannot be optimized for Thumb1 if the args
2530 // to the call take up r0-r3. The reason is that there are no legal registers
2531 // left to hold the pointer to the function to be called.
2532 if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2533 (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2534 return false;
2536 // Look for obvious safe cases to perform tail call optimization that do not
2537 // require ABI changes. This is what gcc calls sibcall.
2539 // Exception-handling functions need a special set of instructions to indicate
2540 // a return to the hardware. Tail-calling another function would probably
2541 // break this.
2542 if (CallerF.hasFnAttribute("interrupt"))
2543 return false;
2545 // Also avoid sibcall optimization if either caller or callee uses struct
2546 // return semantics.
2547 if (isCalleeStructRet || isCallerStructRet)
2548 return false;
2550 // Externally-defined functions with weak linkage should not be
2551 // tail-called on ARM when the OS does not support dynamic
2552 // pre-emption of symbols, as the AAELF spec requires normal calls
2553 // to undefined weak functions to be replaced with a NOP or jump to the
2554 // next instruction. The behaviour of branch instructions in this
2555 // situation (as used for tail calls) is implementation-defined, so we
2556 // cannot rely on the linker replacing the tail call with a return.
2557 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2558 const GlobalValue *GV = G->getGlobal();
2559 const Triple &TT = getTargetMachine().getTargetTriple();
2560 if (GV->hasExternalWeakLinkage() &&
2561 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2562 return false;
2565 // Check that the call results are passed in the same way.
2566 LLVMContext &C = *DAG.getContext();
2567 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2568 CCAssignFnForReturn(CalleeCC, isVarArg),
2569 CCAssignFnForReturn(CallerCC, isVarArg)))
2570 return false;
2571 // The callee has to preserve all registers the caller needs to preserve.
2572 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2573 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2574 if (CalleeCC != CallerCC) {
2575 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2576 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2577 return false;
2580 // If Caller's vararg or byval argument has been split between registers and
2581 // stack, do not perform tail call, since part of the argument is in caller's
2582 // local frame.
2583 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2584 if (AFI_Caller->getArgRegsSaveSize())
2585 return false;
2587 // If the callee takes no arguments then go on to check the results of the
2588 // call.
2589 if (!Outs.empty()) {
2590 // Check if stack adjustment is needed. For now, do not do this if any
2591 // argument is passed on the stack.
2592 SmallVector<CCValAssign, 16> ArgLocs;
2593 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2594 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2595 if (CCInfo.getNextStackOffset()) {
2596 // Check if the arguments are already laid out in the right way as
2597 // the caller's fixed stack objects.
2598 MachineFrameInfo &MFI = MF.getFrameInfo();
2599 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2600 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2601 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2602 i != e;
2603 ++i, ++realArgIdx) {
2604 CCValAssign &VA = ArgLocs[i];
2605 EVT RegVT = VA.getLocVT();
2606 SDValue Arg = OutVals[realArgIdx];
2607 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2608 if (VA.getLocInfo() == CCValAssign::Indirect)
2609 return false;
2610 if (VA.needsCustom()) {
2611 // f64 and vector types are split into multiple registers or
2612 // register/stack-slot combinations. The types will not match
2613 // the registers; give up on memory f64 refs until we figure
2614 // out what to do about this.
2615 if (!VA.isRegLoc())
2616 return false;
2617 if (!ArgLocs[++i].isRegLoc())
2618 return false;
2619 if (RegVT == MVT::v2f64) {
2620 if (!ArgLocs[++i].isRegLoc())
2621 return false;
2622 if (!ArgLocs[++i].isRegLoc())
2623 return false;
2625 } else if (!VA.isRegLoc()) {
2626 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2627 MFI, MRI, TII))
2628 return false;
2633 const MachineRegisterInfo &MRI = MF.getRegInfo();
2634 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2635 return false;
2638 return true;
2641 bool
2642 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2643 MachineFunction &MF, bool isVarArg,
2644 const SmallVectorImpl<ISD::OutputArg> &Outs,
2645 LLVMContext &Context) const {
2646 SmallVector<CCValAssign, 16> RVLocs;
2647 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2648 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2651 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2652 const SDLoc &DL, SelectionDAG &DAG) {
2653 const MachineFunction &MF = DAG.getMachineFunction();
2654 const Function &F = MF.getFunction();
2656 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2658 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2659 // version of the "preferred return address". These offsets affect the return
2660 // instruction if this is a return from PL1 without hypervisor extensions.
2661 // IRQ/FIQ: +4 "subs pc, lr, #4"
2662 // SWI: 0 "subs pc, lr, #0"
2663 // ABORT: +4 "subs pc, lr, #4"
2664 // UNDEF: +4/+2 "subs pc, lr, #0"
2665 // UNDEF varies depending on where the exception came from ARM or Thumb
2666 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2668 int64_t LROffset;
2669 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2670 IntKind == "ABORT")
2671 LROffset = 4;
2672 else if (IntKind == "SWI" || IntKind == "UNDEF")
2673 LROffset = 0;
2674 else
2675 report_fatal_error("Unsupported interrupt attribute. If present, value "
2676 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2678 RetOps.insert(RetOps.begin() + 1,
2679 DAG.getConstant(LROffset, DL, MVT::i32, false));
2681 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2684 SDValue
2685 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2686 bool isVarArg,
2687 const SmallVectorImpl<ISD::OutputArg> &Outs,
2688 const SmallVectorImpl<SDValue> &OutVals,
2689 const SDLoc &dl, SelectionDAG &DAG) const {
2690 // CCValAssign - represent the assignment of the return value to a location.
2691 SmallVector<CCValAssign, 16> RVLocs;
2693 // CCState - Info about the registers and stack slots.
2694 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2695 *DAG.getContext());
2697 // Analyze outgoing return values.
2698 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2700 SDValue Flag;
2701 SmallVector<SDValue, 4> RetOps;
2702 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2703 bool isLittleEndian = Subtarget->isLittle();
2705 MachineFunction &MF = DAG.getMachineFunction();
2706 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2707 AFI->setReturnRegsCount(RVLocs.size());
2709 // Copy the result values into the output registers.
2710 for (unsigned i = 0, realRVLocIdx = 0;
2711 i != RVLocs.size();
2712 ++i, ++realRVLocIdx) {
2713 CCValAssign &VA = RVLocs[i];
2714 assert(VA.isRegLoc() && "Can only return in registers!");
2716 SDValue Arg = OutVals[realRVLocIdx];
2717 bool ReturnF16 = false;
2719 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2720 // Half-precision return values can be returned like this:
2722 // t11 f16 = fadd ...
2723 // t12: i16 = bitcast t11
2724 // t13: i32 = zero_extend t12
2725 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2727 // to avoid code generation for bitcasts, we simply set Arg to the node
2728 // that produces the f16 value, t11 in this case.
2730 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2731 SDValue ZE = Arg.getOperand(0);
2732 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2733 SDValue BC = ZE.getOperand(0);
2734 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2735 Arg = BC.getOperand(0);
2736 ReturnF16 = true;
2742 switch (VA.getLocInfo()) {
2743 default: llvm_unreachable("Unknown loc info!");
2744 case CCValAssign::Full: break;
2745 case CCValAssign::BCvt:
2746 if (!ReturnF16)
2747 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2748 break;
2751 if (VA.needsCustom()) {
2752 if (VA.getLocVT() == MVT::v2f64) {
2753 // Extract the first half and return it in two registers.
2754 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2755 DAG.getConstant(0, dl, MVT::i32));
2756 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2757 DAG.getVTList(MVT::i32, MVT::i32), Half);
2759 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2760 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2761 Flag);
2762 Flag = Chain.getValue(1);
2763 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2764 VA = RVLocs[++i]; // skip ahead to next loc
2765 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2766 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2767 Flag);
2768 Flag = Chain.getValue(1);
2769 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2770 VA = RVLocs[++i]; // skip ahead to next loc
2772 // Extract the 2nd half and fall through to handle it as an f64 value.
2773 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2774 DAG.getConstant(1, dl, MVT::i32));
2776 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2777 // available.
2778 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2779 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2780 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2781 fmrrd.getValue(isLittleEndian ? 0 : 1),
2782 Flag);
2783 Flag = Chain.getValue(1);
2784 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2785 VA = RVLocs[++i]; // skip ahead to next loc
2786 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2787 fmrrd.getValue(isLittleEndian ? 1 : 0),
2788 Flag);
2789 } else
2790 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2792 // Guarantee that all emitted copies are
2793 // stuck together, avoiding something bad.
2794 Flag = Chain.getValue(1);
2795 RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2796 ReturnF16 ? MVT::f16 : VA.getLocVT()));
2798 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2799 const MCPhysReg *I =
2800 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2801 if (I) {
2802 for (; *I; ++I) {
2803 if (ARM::GPRRegClass.contains(*I))
2804 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2805 else if (ARM::DPRRegClass.contains(*I))
2806 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2807 else
2808 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2812 // Update chain and glue.
2813 RetOps[0] = Chain;
2814 if (Flag.getNode())
2815 RetOps.push_back(Flag);
2817 // CPUs which aren't M-class use a special sequence to return from
2818 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2819 // though we use "subs pc, lr, #N").
2821 // M-class CPUs actually use a normal return sequence with a special
2822 // (hardware-provided) value in LR, so the normal code path works.
2823 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2824 !Subtarget->isMClass()) {
2825 if (Subtarget->isThumb1Only())
2826 report_fatal_error("interrupt attribute is not supported in Thumb1");
2827 return LowerInterruptReturn(RetOps, dl, DAG);
2830 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2833 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2834 if (N->getNumValues() != 1)
2835 return false;
2836 if (!N->hasNUsesOfValue(1, 0))
2837 return false;
2839 SDValue TCChain = Chain;
2840 SDNode *Copy = *N->use_begin();
2841 if (Copy->getOpcode() == ISD::CopyToReg) {
2842 // If the copy has a glue operand, we conservatively assume it isn't safe to
2843 // perform a tail call.
2844 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2845 return false;
2846 TCChain = Copy->getOperand(0);
2847 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2848 SDNode *VMov = Copy;
2849 // f64 returned in a pair of GPRs.
2850 SmallPtrSet<SDNode*, 2> Copies;
2851 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2852 UI != UE; ++UI) {
2853 if (UI->getOpcode() != ISD::CopyToReg)
2854 return false;
2855 Copies.insert(*UI);
2857 if (Copies.size() > 2)
2858 return false;
2860 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2861 UI != UE; ++UI) {
2862 SDValue UseChain = UI->getOperand(0);
2863 if (Copies.count(UseChain.getNode()))
2864 // Second CopyToReg
2865 Copy = *UI;
2866 else {
2867 // We are at the top of this chain.
2868 // If the copy has a glue operand, we conservatively assume it
2869 // isn't safe to perform a tail call.
2870 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2871 return false;
2872 // First CopyToReg
2873 TCChain = UseChain;
2876 } else if (Copy->getOpcode() == ISD::BITCAST) {
2877 // f32 returned in a single GPR.
2878 if (!Copy->hasOneUse())
2879 return false;
2880 Copy = *Copy->use_begin();
2881 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2882 return false;
2883 // If the copy has a glue operand, we conservatively assume it isn't safe to
2884 // perform a tail call.
2885 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2886 return false;
2887 TCChain = Copy->getOperand(0);
2888 } else {
2889 return false;
2892 bool HasRet = false;
2893 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2894 UI != UE; ++UI) {
2895 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2896 UI->getOpcode() != ARMISD::INTRET_FLAG)
2897 return false;
2898 HasRet = true;
2901 if (!HasRet)
2902 return false;
2904 Chain = TCChain;
2905 return true;
2908 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2909 if (!Subtarget->supportsTailCall())
2910 return false;
2912 auto Attr =
2913 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2914 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2915 return false;
2917 return true;
2920 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2921 // and pass the lower and high parts through.
2922 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2923 SDLoc DL(Op);
2924 SDValue WriteValue = Op->getOperand(2);
2926 // This function is only supposed to be called for i64 type argument.
2927 assert(WriteValue.getValueType() == MVT::i64
2928 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2930 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2931 DAG.getConstant(0, DL, MVT::i32));
2932 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2933 DAG.getConstant(1, DL, MVT::i32));
2934 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2935 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2938 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2939 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2940 // one of the above mentioned nodes. It has to be wrapped because otherwise
2941 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2942 // be used to form addressing mode. These wrapped nodes will be selected
2943 // into MOVi.
2944 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2945 SelectionDAG &DAG) const {
2946 EVT PtrVT = Op.getValueType();
2947 // FIXME there is no actual debug info here
2948 SDLoc dl(Op);
2949 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2950 SDValue Res;
2952 // When generating execute-only code Constant Pools must be promoted to the
2953 // global data section. It's a bit ugly that we can't share them across basic
2954 // blocks, but this way we guarantee that execute-only behaves correct with
2955 // position-independent addressing modes.
2956 if (Subtarget->genExecuteOnly()) {
2957 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2958 auto T = const_cast<Type*>(CP->getType());
2959 auto C = const_cast<Constant*>(CP->getConstVal());
2960 auto M = const_cast<Module*>(DAG.getMachineFunction().
2961 getFunction().getParent());
2962 auto GV = new GlobalVariable(
2963 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
2964 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2965 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2966 Twine(AFI->createPICLabelUId())
2968 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2969 dl, PtrVT);
2970 return LowerGlobalAddress(GA, DAG);
2973 if (CP->isMachineConstantPoolEntry())
2974 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2975 CP->getAlignment());
2976 else
2977 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2978 CP->getAlignment());
2979 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2982 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2983 return MachineJumpTableInfo::EK_Inline;
2986 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2987 SelectionDAG &DAG) const {
2988 MachineFunction &MF = DAG.getMachineFunction();
2989 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2990 unsigned ARMPCLabelIndex = 0;
2991 SDLoc DL(Op);
2992 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2993 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2994 SDValue CPAddr;
2995 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2996 if (!IsPositionIndependent) {
2997 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2998 } else {
2999 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3000 ARMPCLabelIndex = AFI->createPICLabelUId();
3001 ARMConstantPoolValue *CPV =
3002 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3003 ARMCP::CPBlockAddress, PCAdj);
3004 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3006 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3007 SDValue Result = DAG.getLoad(
3008 PtrVT, DL, DAG.getEntryNode(), CPAddr,
3009 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3010 if (!IsPositionIndependent)
3011 return Result;
3012 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3013 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3016 /// Convert a TLS address reference into the correct sequence of loads
3017 /// and calls to compute the variable's address for Darwin, and return an
3018 /// SDValue containing the final node.
3020 /// Darwin only has one TLS scheme which must be capable of dealing with the
3021 /// fully general situation, in the worst case. This means:
3022 /// + "extern __thread" declaration.
3023 /// + Defined in a possibly unknown dynamic library.
3025 /// The general system is that each __thread variable has a [3 x i32] descriptor
3026 /// which contains information used by the runtime to calculate the address. The
3027 /// only part of this the compiler needs to know about is the first word, which
3028 /// contains a function pointer that must be called with the address of the
3029 /// entire descriptor in "r0".
3031 /// Since this descriptor may be in a different unit, in general access must
3032 /// proceed along the usual ARM rules. A common sequence to produce is:
3034 /// movw rT1, :lower16:_var$non_lazy_ptr
3035 /// movt rT1, :upper16:_var$non_lazy_ptr
3036 /// ldr r0, [rT1]
3037 /// ldr rT2, [r0]
3038 /// blx rT2
3039 /// [...address now in r0...]
3040 SDValue
3041 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3042 SelectionDAG &DAG) const {
3043 assert(Subtarget->isTargetDarwin() &&
3044 "This function expects a Darwin target");
3045 SDLoc DL(Op);
3047 // First step is to get the address of the actua global symbol. This is where
3048 // the TLS descriptor lives.
3049 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3051 // The first entry in the descriptor is a function pointer that we must call
3052 // to obtain the address of the variable.
3053 SDValue Chain = DAG.getEntryNode();
3054 SDValue FuncTLVGet = DAG.getLoad(
3055 MVT::i32, DL, Chain, DescAddr,
3056 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
3057 /* Alignment = */ 4,
3058 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3059 MachineMemOperand::MOInvariant);
3060 Chain = FuncTLVGet.getValue(1);
3062 MachineFunction &F = DAG.getMachineFunction();
3063 MachineFrameInfo &MFI = F.getFrameInfo();
3064 MFI.setAdjustsStack(true);
3066 // TLS calls preserve all registers except those that absolutely must be
3067 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3068 // silly).
3069 auto TRI =
3070 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3071 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3072 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3074 // Finally, we can make the call. This is just a degenerate version of a
3075 // normal AArch64 call node: r0 takes the address of the descriptor, and
3076 // returns the address of the variable in this thread.
3077 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3078 Chain =
3079 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3080 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3081 DAG.getRegisterMask(Mask), Chain.getValue(1));
3082 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3085 SDValue
3086 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3087 SelectionDAG &DAG) const {
3088 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3090 SDValue Chain = DAG.getEntryNode();
3091 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3092 SDLoc DL(Op);
3094 // Load the current TEB (thread environment block)
3095 SDValue Ops[] = {Chain,
3096 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3097 DAG.getConstant(15, DL, MVT::i32),
3098 DAG.getConstant(0, DL, MVT::i32),
3099 DAG.getConstant(13, DL, MVT::i32),
3100 DAG.getConstant(0, DL, MVT::i32),
3101 DAG.getConstant(2, DL, MVT::i32)};
3102 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3103 DAG.getVTList(MVT::i32, MVT::Other), Ops);
3105 SDValue TEB = CurrentTEB.getValue(0);
3106 Chain = CurrentTEB.getValue(1);
3108 // Load the ThreadLocalStoragePointer from the TEB
3109 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3110 SDValue TLSArray =
3111 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3112 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3114 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3115 // offset into the TLSArray.
3117 // Load the TLS index from the C runtime
3118 SDValue TLSIndex =
3119 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3120 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3121 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3123 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3124 DAG.getConstant(2, DL, MVT::i32));
3125 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3126 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3127 MachinePointerInfo());
3129 // Get the offset of the start of the .tls section (section base)
3130 const auto *GA = cast<GlobalAddressSDNode>(Op);
3131 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3132 SDValue Offset = DAG.getLoad(
3133 PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3134 DAG.getTargetConstantPool(CPV, PtrVT, 4)),
3135 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3137 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3140 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3141 SDValue
3142 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3143 SelectionDAG &DAG) const {
3144 SDLoc dl(GA);
3145 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3146 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3147 MachineFunction &MF = DAG.getMachineFunction();
3148 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3149 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3150 ARMConstantPoolValue *CPV =
3151 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3152 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3153 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3154 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3155 Argument = DAG.getLoad(
3156 PtrVT, dl, DAG.getEntryNode(), Argument,
3157 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3158 SDValue Chain = Argument.getValue(1);
3160 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3161 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3163 // call __tls_get_addr.
3164 ArgListTy Args;
3165 ArgListEntry Entry;
3166 Entry.Node = Argument;
3167 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3168 Args.push_back(Entry);
3170 // FIXME: is there useful debug info available here?
3171 TargetLowering::CallLoweringInfo CLI(DAG);
3172 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3173 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3174 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3176 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3177 return CallResult.first;
3180 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3181 // "local exec" model.
3182 SDValue
3183 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3184 SelectionDAG &DAG,
3185 TLSModel::Model model) const {
3186 const GlobalValue *GV = GA->getGlobal();
3187 SDLoc dl(GA);
3188 SDValue Offset;
3189 SDValue Chain = DAG.getEntryNode();
3190 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3191 // Get the Thread Pointer
3192 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3194 if (model == TLSModel::InitialExec) {
3195 MachineFunction &MF = DAG.getMachineFunction();
3196 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3197 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3198 // Initial exec model.
3199 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3200 ARMConstantPoolValue *CPV =
3201 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3202 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3203 true);
3204 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3205 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3206 Offset = DAG.getLoad(
3207 PtrVT, dl, Chain, Offset,
3208 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3209 Chain = Offset.getValue(1);
3211 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3212 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3214 Offset = DAG.getLoad(
3215 PtrVT, dl, Chain, Offset,
3216 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3217 } else {
3218 // local exec model
3219 assert(model == TLSModel::LocalExec);
3220 ARMConstantPoolValue *CPV =
3221 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3222 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3223 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3224 Offset = DAG.getLoad(
3225 PtrVT, dl, Chain, Offset,
3226 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3229 // The address of the thread local variable is the add of the thread
3230 // pointer with the offset of the variable.
3231 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3234 SDValue
3235 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3236 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3237 if (DAG.getTarget().useEmulatedTLS())
3238 return LowerToTLSEmulatedModel(GA, DAG);
3240 if (Subtarget->isTargetDarwin())
3241 return LowerGlobalTLSAddressDarwin(Op, DAG);
3243 if (Subtarget->isTargetWindows())
3244 return LowerGlobalTLSAddressWindows(Op, DAG);
3246 // TODO: implement the "local dynamic" model
3247 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3248 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3250 switch (model) {
3251 case TLSModel::GeneralDynamic:
3252 case TLSModel::LocalDynamic:
3253 return LowerToTLSGeneralDynamicModel(GA, DAG);
3254 case TLSModel::InitialExec:
3255 case TLSModel::LocalExec:
3256 return LowerToTLSExecModels(GA, DAG, model);
3258 llvm_unreachable("bogus TLS model");
3261 /// Return true if all users of V are within function F, looking through
3262 /// ConstantExprs.
3263 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3264 SmallVector<const User*,4> Worklist;
3265 for (auto *U : V->users())
3266 Worklist.push_back(U);
3267 while (!Worklist.empty()) {
3268 auto *U = Worklist.pop_back_val();
3269 if (isa<ConstantExpr>(U)) {
3270 for (auto *UU : U->users())
3271 Worklist.push_back(UU);
3272 continue;
3275 auto *I = dyn_cast<Instruction>(U);
3276 if (!I || I->getParent()->getParent() != F)
3277 return false;
3279 return true;
3282 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3283 const GlobalValue *GV, SelectionDAG &DAG,
3284 EVT PtrVT, const SDLoc &dl) {
3285 // If we're creating a pool entry for a constant global with unnamed address,
3286 // and the global is small enough, we can emit it inline into the constant pool
3287 // to save ourselves an indirection.
3289 // This is a win if the constant is only used in one function (so it doesn't
3290 // need to be duplicated) or duplicating the constant wouldn't increase code
3291 // size (implying the constant is no larger than 4 bytes).
3292 const Function &F = DAG.getMachineFunction().getFunction();
3294 // We rely on this decision to inline being idemopotent and unrelated to the
3295 // use-site. We know that if we inline a variable at one use site, we'll
3296 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3297 // doesn't know about this optimization, so bail out if it's enabled else
3298 // we could decide to inline here (and thus never emit the GV) but require
3299 // the GV from fast-isel generated code.
3300 if (!EnableConstpoolPromotion ||
3301 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3302 return SDValue();
3304 auto *GVar = dyn_cast<GlobalVariable>(GV);
3305 if (!GVar || !GVar->hasInitializer() ||
3306 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3307 !GVar->hasLocalLinkage())
3308 return SDValue();
3310 // If we inline a value that contains relocations, we move the relocations
3311 // from .data to .text. This is not allowed in position-independent code.
3312 auto *Init = GVar->getInitializer();
3313 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3314 Init->needsRelocation())
3315 return SDValue();
3317 // The constant islands pass can only really deal with alignment requests
3318 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3319 // any type wanting greater alignment requirements than 4 bytes. We also
3320 // can only promote constants that are multiples of 4 bytes in size or
3321 // are paddable to a multiple of 4. Currently we only try and pad constants
3322 // that are strings for simplicity.
3323 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3324 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3325 unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3326 unsigned RequiredPadding = 4 - (Size % 4);
3327 bool PaddingPossible =
3328 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3329 if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3330 Size == 0)
3331 return SDValue();
3333 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3334 MachineFunction &MF = DAG.getMachineFunction();
3335 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3337 // We can't bloat the constant pool too much, else the ConstantIslands pass
3338 // may fail to converge. If we haven't promoted this global yet (it may have
3339 // multiple uses), and promoting it would increase the constant pool size (Sz
3340 // > 4), ensure we have space to do so up to MaxTotal.
3341 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3342 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3343 ConstpoolPromotionMaxTotal)
3344 return SDValue();
3346 // This is only valid if all users are in a single function; we can't clone
3347 // the constant in general. The LLVM IR unnamed_addr allows merging
3348 // constants, but not cloning them.
3350 // We could potentially allow cloning if we could prove all uses of the
3351 // constant in the current function don't care about the address, like
3352 // printf format strings. But that isn't implemented for now.
3353 if (!allUsersAreInFunction(GVar, &F))
3354 return SDValue();
3356 // We're going to inline this global. Pad it out if needed.
3357 if (RequiredPadding != 4) {
3358 StringRef S = CDAInit->getAsString();
3360 SmallVector<uint8_t,16> V(S.size());
3361 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3362 while (RequiredPadding--)
3363 V.push_back(0);
3364 Init = ConstantDataArray::get(*DAG.getContext(), V);
3367 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3368 SDValue CPAddr =
3369 DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3370 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3371 AFI->markGlobalAsPromotedToConstantPool(GVar);
3372 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3373 PaddedSize - 4);
3375 ++NumConstpoolPromoted;
3376 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3379 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3380 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3381 if (!(GV = GA->getBaseObject()))
3382 return false;
3383 if (const auto *V = dyn_cast<GlobalVariable>(GV))
3384 return V->isConstant();
3385 return isa<Function>(GV);
3388 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3389 SelectionDAG &DAG) const {
3390 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3391 default: llvm_unreachable("unknown object format");
3392 case Triple::COFF:
3393 return LowerGlobalAddressWindows(Op, DAG);
3394 case Triple::ELF:
3395 return LowerGlobalAddressELF(Op, DAG);
3396 case Triple::MachO:
3397 return LowerGlobalAddressDarwin(Op, DAG);
3401 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3402 SelectionDAG &DAG) const {
3403 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3404 SDLoc dl(Op);
3405 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3406 const TargetMachine &TM = getTargetMachine();
3407 bool IsRO = isReadOnly(GV);
3409 // promoteToConstantPool only if not generating XO text section
3410 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3411 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3412 return V;
3414 if (isPositionIndependent()) {
3415 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3416 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3417 UseGOT_PREL ? ARMII::MO_GOT : 0);
3418 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3419 if (UseGOT_PREL)
3420 Result =
3421 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3422 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3423 return Result;
3424 } else if (Subtarget->isROPI() && IsRO) {
3425 // PC-relative.
3426 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3427 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3428 return Result;
3429 } else if (Subtarget->isRWPI() && !IsRO) {
3430 // SB-relative.
3431 SDValue RelAddr;
3432 if (Subtarget->useMovt()) {
3433 ++NumMovwMovt;
3434 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3435 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3436 } else { // use literal pool for address constant
3437 ARMConstantPoolValue *CPV =
3438 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3439 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3440 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3441 RelAddr = DAG.getLoad(
3442 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3443 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3445 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3446 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3447 return Result;
3450 // If we have T2 ops, we can materialize the address directly via movt/movw
3451 // pair. This is always cheaper.
3452 if (Subtarget->useMovt()) {
3453 ++NumMovwMovt;
3454 // FIXME: Once remat is capable of dealing with instructions with register
3455 // operands, expand this into two nodes.
3456 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3457 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3458 } else {
3459 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3460 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3461 return DAG.getLoad(
3462 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3463 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3467 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3468 SelectionDAG &DAG) const {
3469 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3470 "ROPI/RWPI not currently supported for Darwin");
3471 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3472 SDLoc dl(Op);
3473 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3475 if (Subtarget->useMovt())
3476 ++NumMovwMovt;
3478 // FIXME: Once remat is capable of dealing with instructions with register
3479 // operands, expand this into multiple nodes
3480 unsigned Wrapper =
3481 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3483 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3484 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3486 if (Subtarget->isGVIndirectSymbol(GV))
3487 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3488 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3489 return Result;
3492 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3493 SelectionDAG &DAG) const {
3494 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3495 assert(Subtarget->useMovt() &&
3496 "Windows on ARM expects to use movw/movt");
3497 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3498 "ROPI/RWPI not currently supported for Windows");
3500 const TargetMachine &TM = getTargetMachine();
3501 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3502 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3503 if (GV->hasDLLImportStorageClass())
3504 TargetFlags = ARMII::MO_DLLIMPORT;
3505 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3506 TargetFlags = ARMII::MO_COFFSTUB;
3507 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3508 SDValue Result;
3509 SDLoc DL(Op);
3511 ++NumMovwMovt;
3513 // FIXME: Once remat is capable of dealing with instructions with register
3514 // operands, expand this into two nodes.
3515 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3516 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3517 TargetFlags));
3518 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3519 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3520 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3521 return Result;
3524 SDValue
3525 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3526 SDLoc dl(Op);
3527 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3528 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3529 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3530 Op.getOperand(1), Val);
3533 SDValue
3534 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3535 SDLoc dl(Op);
3536 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3537 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3540 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3541 SelectionDAG &DAG) const {
3542 SDLoc dl(Op);
3543 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3544 Op.getOperand(0));
3547 SDValue
3548 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3549 const ARMSubtarget *Subtarget) const {
3550 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3551 SDLoc dl(Op);
3552 switch (IntNo) {
3553 default: return SDValue(); // Don't custom lower most intrinsics.
3554 case Intrinsic::thread_pointer: {
3555 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3556 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3558 case Intrinsic::eh_sjlj_lsda: {
3559 MachineFunction &MF = DAG.getMachineFunction();
3560 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3561 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3562 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3563 SDValue CPAddr;
3564 bool IsPositionIndependent = isPositionIndependent();
3565 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3566 ARMConstantPoolValue *CPV =
3567 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3568 ARMCP::CPLSDA, PCAdj);
3569 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3570 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3571 SDValue Result = DAG.getLoad(
3572 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3573 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3575 if (IsPositionIndependent) {
3576 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3577 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3579 return Result;
3581 case Intrinsic::arm_neon_vabs:
3582 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3583 Op.getOperand(1));
3584 case Intrinsic::arm_neon_vmulls:
3585 case Intrinsic::arm_neon_vmullu: {
3586 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3587 ? ARMISD::VMULLs : ARMISD::VMULLu;
3588 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3589 Op.getOperand(1), Op.getOperand(2));
3591 case Intrinsic::arm_neon_vminnm:
3592 case Intrinsic::arm_neon_vmaxnm: {
3593 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3594 ? ISD::FMINNUM : ISD::FMAXNUM;
3595 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3596 Op.getOperand(1), Op.getOperand(2));
3598 case Intrinsic::arm_neon_vminu:
3599 case Intrinsic::arm_neon_vmaxu: {
3600 if (Op.getValueType().isFloatingPoint())
3601 return SDValue();
3602 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3603 ? ISD::UMIN : ISD::UMAX;
3604 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3605 Op.getOperand(1), Op.getOperand(2));
3607 case Intrinsic::arm_neon_vmins:
3608 case Intrinsic::arm_neon_vmaxs: {
3609 // v{min,max}s is overloaded between signed integers and floats.
3610 if (!Op.getValueType().isFloatingPoint()) {
3611 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3612 ? ISD::SMIN : ISD::SMAX;
3613 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3614 Op.getOperand(1), Op.getOperand(2));
3616 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3617 ? ISD::FMINIMUM : ISD::FMAXIMUM;
3618 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3619 Op.getOperand(1), Op.getOperand(2));
3621 case Intrinsic::arm_neon_vtbl1:
3622 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3623 Op.getOperand(1), Op.getOperand(2));
3624 case Intrinsic::arm_neon_vtbl2:
3625 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3626 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3630 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3631 const ARMSubtarget *Subtarget) {
3632 SDLoc dl(Op);
3633 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3634 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3635 if (SSID == SyncScope::SingleThread)
3636 return Op;
3638 if (!Subtarget->hasDataBarrier()) {
3639 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3640 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3641 // here.
3642 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3643 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3644 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3645 DAG.getConstant(0, dl, MVT::i32));
3648 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3649 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3650 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3651 if (Subtarget->isMClass()) {
3652 // Only a full system barrier exists in the M-class architectures.
3653 Domain = ARM_MB::SY;
3654 } else if (Subtarget->preferISHSTBarriers() &&
3655 Ord == AtomicOrdering::Release) {
3656 // Swift happens to implement ISHST barriers in a way that's compatible with
3657 // Release semantics but weaker than ISH so we'd be fools not to use
3658 // it. Beware: other processors probably don't!
3659 Domain = ARM_MB::ISHST;
3662 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3663 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3664 DAG.getConstant(Domain, dl, MVT::i32));
3667 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3668 const ARMSubtarget *Subtarget) {
3669 // ARM pre v5TE and Thumb1 does not have preload instructions.
3670 if (!(Subtarget->isThumb2() ||
3671 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3672 // Just preserve the chain.
3673 return Op.getOperand(0);
3675 SDLoc dl(Op);
3676 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3677 if (!isRead &&
3678 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3679 // ARMv7 with MP extension has PLDW.
3680 return Op.getOperand(0);
3682 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3683 if (Subtarget->isThumb()) {
3684 // Invert the bits.
3685 isRead = ~isRead & 1;
3686 isData = ~isData & 1;
3689 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3690 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3691 DAG.getConstant(isData, dl, MVT::i32));
3694 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3695 MachineFunction &MF = DAG.getMachineFunction();
3696 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3698 // vastart just stores the address of the VarArgsFrameIndex slot into the
3699 // memory location argument.
3700 SDLoc dl(Op);
3701 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3702 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3703 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3704 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3705 MachinePointerInfo(SV));
3708 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3709 CCValAssign &NextVA,
3710 SDValue &Root,
3711 SelectionDAG &DAG,
3712 const SDLoc &dl) const {
3713 MachineFunction &MF = DAG.getMachineFunction();
3714 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3716 const TargetRegisterClass *RC;
3717 if (AFI->isThumb1OnlyFunction())
3718 RC = &ARM::tGPRRegClass;
3719 else
3720 RC = &ARM::GPRRegClass;
3722 // Transform the arguments stored in physical registers into virtual ones.
3723 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3724 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3726 SDValue ArgValue2;
3727 if (NextVA.isMemLoc()) {
3728 MachineFrameInfo &MFI = MF.getFrameInfo();
3729 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3731 // Create load node to retrieve arguments from the stack.
3732 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3733 ArgValue2 = DAG.getLoad(
3734 MVT::i32, dl, Root, FIN,
3735 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3736 } else {
3737 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3738 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3740 if (!Subtarget->isLittle())
3741 std::swap (ArgValue, ArgValue2);
3742 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3745 // The remaining GPRs hold either the beginning of variable-argument
3746 // data, or the beginning of an aggregate passed by value (usually
3747 // byval). Either way, we allocate stack slots adjacent to the data
3748 // provided by our caller, and store the unallocated registers there.
3749 // If this is a variadic function, the va_list pointer will begin with
3750 // these values; otherwise, this reassembles a (byval) structure that
3751 // was split between registers and memory.
3752 // Return: The frame index registers were stored into.
3753 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3754 const SDLoc &dl, SDValue &Chain,
3755 const Value *OrigArg,
3756 unsigned InRegsParamRecordIdx,
3757 int ArgOffset, unsigned ArgSize) const {
3758 // Currently, two use-cases possible:
3759 // Case #1. Non-var-args function, and we meet first byval parameter.
3760 // Setup first unallocated register as first byval register;
3761 // eat all remained registers
3762 // (these two actions are performed by HandleByVal method).
3763 // Then, here, we initialize stack frame with
3764 // "store-reg" instructions.
3765 // Case #2. Var-args function, that doesn't contain byval parameters.
3766 // The same: eat all remained unallocated registers,
3767 // initialize stack frame.
3769 MachineFunction &MF = DAG.getMachineFunction();
3770 MachineFrameInfo &MFI = MF.getFrameInfo();
3771 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3772 unsigned RBegin, REnd;
3773 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3774 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3775 } else {
3776 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3777 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3778 REnd = ARM::R4;
3781 if (REnd != RBegin)
3782 ArgOffset = -4 * (ARM::R4 - RBegin);
3784 auto PtrVT = getPointerTy(DAG.getDataLayout());
3785 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3786 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3788 SmallVector<SDValue, 4> MemOps;
3789 const TargetRegisterClass *RC =
3790 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3792 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3793 unsigned VReg = MF.addLiveIn(Reg, RC);
3794 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3795 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3796 MachinePointerInfo(OrigArg, 4 * i));
3797 MemOps.push_back(Store);
3798 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3801 if (!MemOps.empty())
3802 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3803 return FrameIndex;
3806 // Setup stack frame, the va_list pointer will start from.
3807 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3808 const SDLoc &dl, SDValue &Chain,
3809 unsigned ArgOffset,
3810 unsigned TotalArgRegsSaveSize,
3811 bool ForceMutable) const {
3812 MachineFunction &MF = DAG.getMachineFunction();
3813 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3815 // Try to store any remaining integer argument regs
3816 // to their spots on the stack so that they may be loaded by dereferencing
3817 // the result of va_next.
3818 // If there is no regs to be stored, just point address after last
3819 // argument passed via stack.
3820 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3821 CCInfo.getInRegsParamsCount(),
3822 CCInfo.getNextStackOffset(),
3823 std::max(4U, TotalArgRegsSaveSize));
3824 AFI->setVarArgsFrameIndex(FrameIndex);
3827 SDValue ARMTargetLowering::LowerFormalArguments(
3828 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3829 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3830 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3831 MachineFunction &MF = DAG.getMachineFunction();
3832 MachineFrameInfo &MFI = MF.getFrameInfo();
3834 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3836 // Assign locations to all of the incoming arguments.
3837 SmallVector<CCValAssign, 16> ArgLocs;
3838 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3839 *DAG.getContext());
3840 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3842 SmallVector<SDValue, 16> ArgValues;
3843 SDValue ArgValue;
3844 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3845 unsigned CurArgIdx = 0;
3847 // Initially ArgRegsSaveSize is zero.
3848 // Then we increase this value each time we meet byval parameter.
3849 // We also increase this value in case of varargs function.
3850 AFI->setArgRegsSaveSize(0);
3852 // Calculate the amount of stack space that we need to allocate to store
3853 // byval and variadic arguments that are passed in registers.
3854 // We need to know this before we allocate the first byval or variadic
3855 // argument, as they will be allocated a stack slot below the CFA (Canonical
3856 // Frame Address, the stack pointer at entry to the function).
3857 unsigned ArgRegBegin = ARM::R4;
3858 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3859 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3860 break;
3862 CCValAssign &VA = ArgLocs[i];
3863 unsigned Index = VA.getValNo();
3864 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3865 if (!Flags.isByVal())
3866 continue;
3868 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3869 unsigned RBegin, REnd;
3870 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3871 ArgRegBegin = std::min(ArgRegBegin, RBegin);
3873 CCInfo.nextInRegsParam();
3875 CCInfo.rewindByValRegsInfo();
3877 int lastInsIndex = -1;
3878 if (isVarArg && MFI.hasVAStart()) {
3879 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3880 if (RegIdx != array_lengthof(GPRArgRegs))
3881 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3884 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3885 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3886 auto PtrVT = getPointerTy(DAG.getDataLayout());
3888 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3889 CCValAssign &VA = ArgLocs[i];
3890 if (Ins[VA.getValNo()].isOrigArg()) {
3891 std::advance(CurOrigArg,
3892 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3893 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3895 // Arguments stored in registers.
3896 if (VA.isRegLoc()) {
3897 EVT RegVT = VA.getLocVT();
3899 if (VA.needsCustom()) {
3900 // f64 and vector types are split up into multiple registers or
3901 // combinations of registers and stack slots.
3902 if (VA.getLocVT() == MVT::v2f64) {
3903 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3904 Chain, DAG, dl);
3905 VA = ArgLocs[++i]; // skip ahead to next loc
3906 SDValue ArgValue2;
3907 if (VA.isMemLoc()) {
3908 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3909 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3910 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3911 MachinePointerInfo::getFixedStack(
3912 DAG.getMachineFunction(), FI));
3913 } else {
3914 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3915 Chain, DAG, dl);
3917 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3918 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3919 ArgValue, ArgValue1,
3920 DAG.getIntPtrConstant(0, dl));
3921 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3922 ArgValue, ArgValue2,
3923 DAG.getIntPtrConstant(1, dl));
3924 } else
3925 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3926 } else {
3927 const TargetRegisterClass *RC;
3930 if (RegVT == MVT::f16)
3931 RC = &ARM::HPRRegClass;
3932 else if (RegVT == MVT::f32)
3933 RC = &ARM::SPRRegClass;
3934 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3935 RC = &ARM::DPRRegClass;
3936 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3937 RC = &ARM::QPRRegClass;
3938 else if (RegVT == MVT::i32)
3939 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3940 : &ARM::GPRRegClass;
3941 else
3942 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3944 // Transform the arguments in physical registers into virtual ones.
3945 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3946 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3948 // If this value is passed in r0 and has the returned attribute (e.g.
3949 // C++ 'structors), record this fact for later use.
3950 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
3951 AFI->setPreservesR0();
3955 // If this is an 8 or 16-bit value, it is really passed promoted
3956 // to 32 bits. Insert an assert[sz]ext to capture this, then
3957 // truncate to the right size.
3958 switch (VA.getLocInfo()) {
3959 default: llvm_unreachable("Unknown loc info!");
3960 case CCValAssign::Full: break;
3961 case CCValAssign::BCvt:
3962 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3963 break;
3964 case CCValAssign::SExt:
3965 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3966 DAG.getValueType(VA.getValVT()));
3967 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3968 break;
3969 case CCValAssign::ZExt:
3970 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3971 DAG.getValueType(VA.getValVT()));
3972 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3973 break;
3976 InVals.push_back(ArgValue);
3977 } else { // VA.isRegLoc()
3978 // sanity check
3979 assert(VA.isMemLoc());
3980 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3982 int index = VA.getValNo();
3984 // Some Ins[] entries become multiple ArgLoc[] entries.
3985 // Process them only once.
3986 if (index != lastInsIndex)
3988 ISD::ArgFlagsTy Flags = Ins[index].Flags;
3989 // FIXME: For now, all byval parameter objects are marked mutable.
3990 // This can be changed with more analysis.
3991 // In case of tail call optimization mark all arguments mutable.
3992 // Since they could be overwritten by lowering of arguments in case of
3993 // a tail call.
3994 if (Flags.isByVal()) {
3995 assert(Ins[index].isOrigArg() &&
3996 "Byval arguments cannot be implicit");
3997 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3999 int FrameIndex = StoreByValRegs(
4000 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4001 VA.getLocMemOffset(), Flags.getByValSize());
4002 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4003 CCInfo.nextInRegsParam();
4004 } else {
4005 unsigned FIOffset = VA.getLocMemOffset();
4006 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4007 FIOffset, true);
4009 // Create load nodes to retrieve arguments from the stack.
4010 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4011 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4012 MachinePointerInfo::getFixedStack(
4013 DAG.getMachineFunction(), FI)));
4015 lastInsIndex = index;
4020 // varargs
4021 if (isVarArg && MFI.hasVAStart())
4022 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
4023 CCInfo.getNextStackOffset(),
4024 TotalArgRegsSaveSize);
4026 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4028 return Chain;
4031 /// isFloatingPointZero - Return true if this is +0.0.
4032 static bool isFloatingPointZero(SDValue Op) {
4033 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4034 return CFP->getValueAPF().isPosZero();
4035 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4036 // Maybe this has already been legalized into the constant pool?
4037 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4038 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4039 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4040 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4041 return CFP->getValueAPF().isPosZero();
4043 } else if (Op->getOpcode() == ISD::BITCAST &&
4044 Op->getValueType(0) == MVT::f64) {
4045 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4046 // created by LowerConstantFP().
4047 SDValue BitcastOp = Op->getOperand(0);
4048 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4049 isNullConstant(BitcastOp->getOperand(0)))
4050 return true;
4052 return false;
4055 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4056 /// the given operands.
4057 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4058 SDValue &ARMcc, SelectionDAG &DAG,
4059 const SDLoc &dl) const {
4060 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4061 unsigned C = RHSC->getZExtValue();
4062 if (!isLegalICmpImmediate((int32_t)C)) {
4063 // Constant does not fit, try adjusting it by one.
4064 switch (CC) {
4065 default: break;
4066 case ISD::SETLT:
4067 case ISD::SETGE:
4068 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4069 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4070 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4072 break;
4073 case ISD::SETULT:
4074 case ISD::SETUGE:
4075 if (C != 0 && isLegalICmpImmediate(C-1)) {
4076 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4077 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4079 break;
4080 case ISD::SETLE:
4081 case ISD::SETGT:
4082 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4083 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4084 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4086 break;
4087 case ISD::SETULE:
4088 case ISD::SETUGT:
4089 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4090 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4091 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4093 break;
4096 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4097 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4098 // In ARM and Thumb-2, the compare instructions can shift their second
4099 // operand.
4100 CC = ISD::getSetCCSwappedOperands(CC);
4101 std::swap(LHS, RHS);
4104 // Thumb1 has very limited immediate modes, so turning an "and" into a
4105 // shift can save multiple instructions.
4107 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4108 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4109 // own. If it's the operand to an unsigned comparison with an immediate,
4110 // we can eliminate one of the shifts: we transform
4111 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4113 // We avoid transforming cases which aren't profitable due to encoding
4114 // details:
4116 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4117 // would not; in that case, we're essentially trading one immediate load for
4118 // another.
4119 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4120 // 3. C2 is zero; we have other code for this special case.
4122 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4123 // instruction, since the AND is always one instruction anyway, but we could
4124 // use narrow instructions in some cases.
4125 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4126 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4127 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4128 !isSignedIntSetCC(CC)) {
4129 unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4130 auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4131 uint64_t RHSV = RHSC->getZExtValue();
4132 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4133 unsigned ShiftBits = countLeadingZeros(Mask);
4134 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4135 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4136 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4137 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4142 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4143 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4144 // way a cmp would.
4145 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4146 // some tweaks to the heuristics for the previous and->shift transform.
4147 // FIXME: Optimize cases where the LHS isn't a shift.
4148 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4149 isa<ConstantSDNode>(RHS) &&
4150 cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4151 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4152 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4153 unsigned ShiftAmt =
4154 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4155 SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4156 DAG.getVTList(MVT::i32, MVT::i32),
4157 LHS.getOperand(0),
4158 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4159 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4160 Shift.getValue(1), SDValue());
4161 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4162 return Chain.getValue(1);
4165 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4167 // If the RHS is a constant zero then the V (overflow) flag will never be
4168 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4169 // simpler for other passes (like the peephole optimiser) to deal with.
4170 if (isNullConstant(RHS)) {
4171 switch (CondCode) {
4172 default: break;
4173 case ARMCC::GE:
4174 CondCode = ARMCC::PL;
4175 break;
4176 case ARMCC::LT:
4177 CondCode = ARMCC::MI;
4178 break;
4182 ARMISD::NodeType CompareType;
4183 switch (CondCode) {
4184 default:
4185 CompareType = ARMISD::CMP;
4186 break;
4187 case ARMCC::EQ:
4188 case ARMCC::NE:
4189 // Uses only Z Flag
4190 CompareType = ARMISD::CMPZ;
4191 break;
4193 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4194 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4197 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4198 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4199 SelectionDAG &DAG, const SDLoc &dl,
4200 bool InvalidOnQNaN) const {
4201 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4202 SDValue Cmp;
4203 SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
4204 if (!isFloatingPointZero(RHS))
4205 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
4206 else
4207 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
4208 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4211 /// duplicateCmp - Glue values can have only one use, so this function
4212 /// duplicates a comparison node.
4213 SDValue
4214 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4215 unsigned Opc = Cmp.getOpcode();
4216 SDLoc DL(Cmp);
4217 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4218 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4220 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4221 Cmp = Cmp.getOperand(0);
4222 Opc = Cmp.getOpcode();
4223 if (Opc == ARMISD::CMPFP)
4224 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4225 Cmp.getOperand(1), Cmp.getOperand(2));
4226 else {
4227 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4228 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4229 Cmp.getOperand(1));
4231 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4234 // This function returns three things: the arithmetic computation itself
4235 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4236 // comparison and the condition code define the case in which the arithmetic
4237 // computation *does not* overflow.
4238 std::pair<SDValue, SDValue>
4239 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4240 SDValue &ARMcc) const {
4241 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
4243 SDValue Value, OverflowCmp;
4244 SDValue LHS = Op.getOperand(0);
4245 SDValue RHS = Op.getOperand(1);
4246 SDLoc dl(Op);
4248 // FIXME: We are currently always generating CMPs because we don't support
4249 // generating CMN through the backend. This is not as good as the natural
4250 // CMP case because it causes a register dependency and cannot be folded
4251 // later.
4253 switch (Op.getOpcode()) {
4254 default:
4255 llvm_unreachable("Unknown overflow instruction!");
4256 case ISD::SADDO:
4257 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4258 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4259 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4260 break;
4261 case ISD::UADDO:
4262 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4263 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4264 // We do not use it in the USUBO case as Value may not be used.
4265 Value = DAG.getNode(ARMISD::ADDC, dl,
4266 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4267 .getValue(0);
4268 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4269 break;
4270 case ISD::SSUBO:
4271 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4272 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4273 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4274 break;
4275 case ISD::USUBO:
4276 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4277 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4278 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4279 break;
4280 case ISD::UMULO:
4281 // We generate a UMUL_LOHI and then check if the high word is 0.
4282 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4283 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4284 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4285 LHS, RHS);
4286 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4287 DAG.getConstant(0, dl, MVT::i32));
4288 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4289 break;
4290 case ISD::SMULO:
4291 // We generate a SMUL_LOHI and then check if all the bits of the high word
4292 // are the same as the sign bit of the low word.
4293 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4294 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4295 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4296 LHS, RHS);
4297 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4298 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4299 Value.getValue(0),
4300 DAG.getConstant(31, dl, MVT::i32)));
4301 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4302 break;
4303 } // switch (...)
4305 return std::make_pair(Value, OverflowCmp);
4308 SDValue
4309 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4310 // Let legalize expand this if it isn't a legal type yet.
4311 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4312 return SDValue();
4314 SDValue Value, OverflowCmp;
4315 SDValue ARMcc;
4316 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4317 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4318 SDLoc dl(Op);
4319 // We use 0 and 1 as false and true values.
4320 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4321 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4322 EVT VT = Op.getValueType();
4324 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4325 ARMcc, CCR, OverflowCmp);
4327 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4328 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4331 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4332 SelectionDAG &DAG) {
4333 SDLoc DL(BoolCarry);
4334 EVT CarryVT = BoolCarry.getValueType();
4336 // This converts the boolean value carry into the carry flag by doing
4337 // ARMISD::SUBC Carry, 1
4338 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4339 DAG.getVTList(CarryVT, MVT::i32),
4340 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4341 return Carry.getValue(1);
4344 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4345 SelectionDAG &DAG) {
4346 SDLoc DL(Flags);
4348 // Now convert the carry flag into a boolean carry. We do this
4349 // using ARMISD:ADDE 0, 0, Carry
4350 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4351 DAG.getConstant(0, DL, MVT::i32),
4352 DAG.getConstant(0, DL, MVT::i32), Flags);
4355 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4356 SelectionDAG &DAG) const {
4357 // Let legalize expand this if it isn't a legal type yet.
4358 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4359 return SDValue();
4361 SDValue LHS = Op.getOperand(0);
4362 SDValue RHS = Op.getOperand(1);
4363 SDLoc dl(Op);
4365 EVT VT = Op.getValueType();
4366 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4367 SDValue Value;
4368 SDValue Overflow;
4369 switch (Op.getOpcode()) {
4370 default:
4371 llvm_unreachable("Unknown overflow instruction!");
4372 case ISD::UADDO:
4373 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4374 // Convert the carry flag into a boolean value.
4375 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4376 break;
4377 case ISD::USUBO: {
4378 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4379 // Convert the carry flag into a boolean value.
4380 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4381 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4382 // value. So compute 1 - C.
4383 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4384 DAG.getConstant(1, dl, MVT::i32), Overflow);
4385 break;
4389 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4392 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4393 SDValue Cond = Op.getOperand(0);
4394 SDValue SelectTrue = Op.getOperand(1);
4395 SDValue SelectFalse = Op.getOperand(2);
4396 SDLoc dl(Op);
4397 unsigned Opc = Cond.getOpcode();
4399 if (Cond.getResNo() == 1 &&
4400 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4401 Opc == ISD::USUBO)) {
4402 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4403 return SDValue();
4405 SDValue Value, OverflowCmp;
4406 SDValue ARMcc;
4407 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4408 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4409 EVT VT = Op.getValueType();
4411 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4412 OverflowCmp, DAG);
4415 // Convert:
4417 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4418 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4420 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4421 const ConstantSDNode *CMOVTrue =
4422 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4423 const ConstantSDNode *CMOVFalse =
4424 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4426 if (CMOVTrue && CMOVFalse) {
4427 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4428 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4430 SDValue True;
4431 SDValue False;
4432 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4433 True = SelectTrue;
4434 False = SelectFalse;
4435 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4436 True = SelectFalse;
4437 False = SelectTrue;
4440 if (True.getNode() && False.getNode()) {
4441 EVT VT = Op.getValueType();
4442 SDValue ARMcc = Cond.getOperand(2);
4443 SDValue CCR = Cond.getOperand(3);
4444 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4445 assert(True.getValueType() == VT);
4446 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4451 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4452 // undefined bits before doing a full-word comparison with zero.
4453 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4454 DAG.getConstant(1, dl, Cond.getValueType()));
4456 return DAG.getSelectCC(dl, Cond,
4457 DAG.getConstant(0, dl, Cond.getValueType()),
4458 SelectTrue, SelectFalse, ISD::SETNE);
4461 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4462 bool &swpCmpOps, bool &swpVselOps) {
4463 // Start by selecting the GE condition code for opcodes that return true for
4464 // 'equality'
4465 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4466 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
4467 CondCode = ARMCC::GE;
4469 // and GT for opcodes that return false for 'equality'.
4470 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4471 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
4472 CondCode = ARMCC::GT;
4474 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4475 // to swap the compare operands.
4476 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4477 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
4478 swpCmpOps = true;
4480 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4481 // If we have an unordered opcode, we need to swap the operands to the VSEL
4482 // instruction (effectively negating the condition).
4484 // This also has the effect of swapping which one of 'less' or 'greater'
4485 // returns true, so we also swap the compare operands. It also switches
4486 // whether we return true for 'equality', so we compensate by picking the
4487 // opposite condition code to our original choice.
4488 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4489 CC == ISD::SETUGT) {
4490 swpCmpOps = !swpCmpOps;
4491 swpVselOps = !swpVselOps;
4492 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4495 // 'ordered' is 'anything but unordered', so use the VS condition code and
4496 // swap the VSEL operands.
4497 if (CC == ISD::SETO) {
4498 CondCode = ARMCC::VS;
4499 swpVselOps = true;
4502 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4503 // code and swap the VSEL operands. Also do this if we don't care about the
4504 // unordered case.
4505 if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4506 CondCode = ARMCC::EQ;
4507 swpVselOps = true;
4511 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4512 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4513 SDValue Cmp, SelectionDAG &DAG) const {
4514 if (!Subtarget->hasFP64() && VT == MVT::f64) {
4515 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4516 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4517 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4518 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4520 SDValue TrueLow = TrueVal.getValue(0);
4521 SDValue TrueHigh = TrueVal.getValue(1);
4522 SDValue FalseLow = FalseVal.getValue(0);
4523 SDValue FalseHigh = FalseVal.getValue(1);
4525 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4526 ARMcc, CCR, Cmp);
4527 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4528 ARMcc, CCR, duplicateCmp(Cmp, DAG));
4530 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4531 } else {
4532 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4533 Cmp);
4537 static bool isGTorGE(ISD::CondCode CC) {
4538 return CC == ISD::SETGT || CC == ISD::SETGE;
4541 static bool isLTorLE(ISD::CondCode CC) {
4542 return CC == ISD::SETLT || CC == ISD::SETLE;
4545 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4546 // All of these conditions (and their <= and >= counterparts) will do:
4547 // x < k ? k : x
4548 // x > k ? x : k
4549 // k < x ? x : k
4550 // k > x ? k : x
4551 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4552 const SDValue TrueVal, const SDValue FalseVal,
4553 const ISD::CondCode CC, const SDValue K) {
4554 return (isGTorGE(CC) &&
4555 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4556 (isLTorLE(CC) &&
4557 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4560 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4561 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4562 const SDValue TrueVal, const SDValue FalseVal,
4563 const ISD::CondCode CC, const SDValue K) {
4564 return (isGTorGE(CC) &&
4565 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4566 (isLTorLE(CC) &&
4567 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4570 // Check if two chained conditionals could be converted into SSAT or USAT.
4572 // SSAT can replace a set of two conditional selectors that bound a number to an
4573 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4575 // x < -k ? -k : (x > k ? k : x)
4576 // x < -k ? -k : (x < k ? x : k)
4577 // x > -k ? (x > k ? k : x) : -k
4578 // x < k ? (x < -k ? -k : x) : k
4579 // etc.
4581 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4582 // a power of 2.
4584 // It returns true if the conversion can be done, false otherwise.
4585 // Additionally, the variable is returned in parameter V, the constant in K and
4586 // usat is set to true if the conditional represents an unsigned saturation
4587 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4588 uint64_t &K, bool &usat) {
4589 SDValue LHS1 = Op.getOperand(0);
4590 SDValue RHS1 = Op.getOperand(1);
4591 SDValue TrueVal1 = Op.getOperand(2);
4592 SDValue FalseVal1 = Op.getOperand(3);
4593 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4595 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4596 if (Op2.getOpcode() != ISD::SELECT_CC)
4597 return false;
4599 SDValue LHS2 = Op2.getOperand(0);
4600 SDValue RHS2 = Op2.getOperand(1);
4601 SDValue TrueVal2 = Op2.getOperand(2);
4602 SDValue FalseVal2 = Op2.getOperand(3);
4603 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4605 // Find out which are the constants and which are the variables
4606 // in each conditional
4607 SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4608 ? &RHS1
4609 : nullptr;
4610 SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4611 ? &RHS2
4612 : nullptr;
4613 SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4614 SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4615 SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4616 SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4618 // We must detect cases where the original operations worked with 16- or
4619 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4620 // must work with sign-extended values but the select operations return
4621 // the original non-extended value.
4622 SDValue V2TmpReg = V2Tmp;
4623 if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4624 V2TmpReg = V2Tmp->getOperand(0);
4626 // Check that the registers and the constants have the correct values
4627 // in both conditionals
4628 if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4629 V2TmpReg != V2)
4630 return false;
4632 // Figure out which conditional is saturating the lower/upper bound.
4633 const SDValue *LowerCheckOp =
4634 isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4635 ? &Op
4636 : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4637 ? &Op2
4638 : nullptr;
4639 const SDValue *UpperCheckOp =
4640 isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4641 ? &Op
4642 : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4643 ? &Op2
4644 : nullptr;
4646 if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4647 return false;
4649 // Check that the constant in the lower-bound check is
4650 // the opposite of the constant in the upper-bound check
4651 // in 1's complement.
4652 int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4653 int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4654 int64_t PosVal = std::max(Val1, Val2);
4655 int64_t NegVal = std::min(Val1, Val2);
4657 if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4658 (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4659 isPowerOf2_64(PosVal + 1)) {
4661 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4662 if (Val1 == ~Val2)
4663 usat = false;
4664 else if (NegVal == 0)
4665 usat = true;
4666 else
4667 return false;
4669 V = V2;
4670 K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4672 return true;
4675 return false;
4678 // Check if a condition of the type x < k ? k : x can be converted into a
4679 // bit operation instead of conditional moves.
4680 // Currently this is allowed given:
4681 // - The conditions and values match up
4682 // - k is 0 or -1 (all ones)
4683 // This function will not check the last condition, thats up to the caller
4684 // It returns true if the transformation can be made, and in such case
4685 // returns x in V, and k in SatK.
4686 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4687 SDValue &SatK)
4689 SDValue LHS = Op.getOperand(0);
4690 SDValue RHS = Op.getOperand(1);
4691 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4692 SDValue TrueVal = Op.getOperand(2);
4693 SDValue FalseVal = Op.getOperand(3);
4695 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4696 ? &RHS
4697 : nullptr;
4699 // No constant operation in comparison, early out
4700 if (!K)
4701 return false;
4703 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4704 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4705 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4707 // If the constant on left and right side, or variable on left and right,
4708 // does not match, early out
4709 if (*K != KTmp || V != VTmp)
4710 return false;
4712 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4713 SatK = *K;
4714 return true;
4717 return false;
4720 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
4721 if (VT == MVT::f32)
4722 return !Subtarget->hasVFP2Base();
4723 if (VT == MVT::f64)
4724 return !Subtarget->hasFP64();
4725 if (VT == MVT::f16)
4726 return !Subtarget->hasFullFP16();
4727 return false;
4730 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4731 EVT VT = Op.getValueType();
4732 SDLoc dl(Op);
4734 // Try to convert two saturating conditional selects into a single SSAT
4735 SDValue SatValue;
4736 uint64_t SatConstant;
4737 bool SatUSat;
4738 if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4739 isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4740 if (SatUSat)
4741 return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4742 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4743 else
4744 return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4745 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4748 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4749 // into more efficient bit operations, which is possible when k is 0 or -1
4750 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4751 // single instructions. On Thumb the shift and the bit operation will be two
4752 // instructions.
4753 // Only allow this transformation on full-width (32-bit) operations
4754 SDValue LowerSatConstant;
4755 if (VT == MVT::i32 &&
4756 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4757 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4758 DAG.getConstant(31, dl, VT));
4759 if (isNullConstant(LowerSatConstant)) {
4760 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4761 DAG.getAllOnesConstant(dl, VT));
4762 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4763 } else if (isAllOnesConstant(LowerSatConstant))
4764 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4767 SDValue LHS = Op.getOperand(0);
4768 SDValue RHS = Op.getOperand(1);
4769 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4770 SDValue TrueVal = Op.getOperand(2);
4771 SDValue FalseVal = Op.getOperand(3);
4773 if (isUnsupportedFloatingType(LHS.getValueType())) {
4774 DAG.getTargetLoweringInfo().softenSetCCOperands(
4775 DAG, LHS.getValueType(), LHS, RHS, CC, dl);
4777 // If softenSetCCOperands only returned one value, we should compare it to
4778 // zero.
4779 if (!RHS.getNode()) {
4780 RHS = DAG.getConstant(0, dl, LHS.getValueType());
4781 CC = ISD::SETNE;
4785 if (LHS.getValueType() == MVT::i32) {
4786 // Try to generate VSEL on ARMv8.
4787 // The VSEL instruction can't use all the usual ARM condition
4788 // codes: it only has two bits to select the condition code, so it's
4789 // constrained to use only GE, GT, VS and EQ.
4791 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4792 // swap the operands of the previous compare instruction (effectively
4793 // inverting the compare condition, swapping 'less' and 'greater') and
4794 // sometimes need to swap the operands to the VSEL (which inverts the
4795 // condition in the sense of firing whenever the previous condition didn't)
4796 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
4797 TrueVal.getValueType() == MVT::f32 ||
4798 TrueVal.getValueType() == MVT::f64)) {
4799 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4800 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4801 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4802 CC = ISD::getSetCCInverse(CC, true);
4803 std::swap(TrueVal, FalseVal);
4807 SDValue ARMcc;
4808 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4809 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4810 // Choose GE over PL, which vsel does now support
4811 if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
4812 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
4813 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4816 ARMCC::CondCodes CondCode, CondCode2;
4817 bool InvalidOnQNaN;
4818 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4820 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4821 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4822 // must use VSEL (limited condition codes), due to not having conditional f16
4823 // moves.
4824 if (Subtarget->hasFPARMv8Base() &&
4825 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
4826 (TrueVal.getValueType() == MVT::f16 ||
4827 TrueVal.getValueType() == MVT::f32 ||
4828 TrueVal.getValueType() == MVT::f64)) {
4829 bool swpCmpOps = false;
4830 bool swpVselOps = false;
4831 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4833 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4834 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4835 if (swpCmpOps)
4836 std::swap(LHS, RHS);
4837 if (swpVselOps)
4838 std::swap(TrueVal, FalseVal);
4842 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4843 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4844 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4845 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4846 if (CondCode2 != ARMCC::AL) {
4847 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4848 // FIXME: Needs another CMP because flag can have but one use.
4849 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4850 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4852 return Result;
4855 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4856 /// to morph to an integer compare sequence.
4857 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4858 const ARMSubtarget *Subtarget) {
4859 SDNode *N = Op.getNode();
4860 if (!N->hasOneUse())
4861 // Otherwise it requires moving the value from fp to integer registers.
4862 return false;
4863 if (!N->getNumValues())
4864 return false;
4865 EVT VT = Op.getValueType();
4866 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4867 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4868 // vmrs are very slow, e.g. cortex-a8.
4869 return false;
4871 if (isFloatingPointZero(Op)) {
4872 SeenZero = true;
4873 return true;
4875 return ISD::isNormalLoad(N);
4878 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4879 if (isFloatingPointZero(Op))
4880 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4882 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4883 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4884 Ld->getPointerInfo(), Ld->getAlignment(),
4885 Ld->getMemOperand()->getFlags());
4887 llvm_unreachable("Unknown VFP cmp argument!");
4890 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4891 SDValue &RetVal1, SDValue &RetVal2) {
4892 SDLoc dl(Op);
4894 if (isFloatingPointZero(Op)) {
4895 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4896 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4897 return;
4900 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4901 SDValue Ptr = Ld->getBasePtr();
4902 RetVal1 =
4903 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4904 Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4906 EVT PtrType = Ptr.getValueType();
4907 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4908 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4909 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4910 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4911 Ld->getPointerInfo().getWithOffset(4), NewAlign,
4912 Ld->getMemOperand()->getFlags());
4913 return;
4916 llvm_unreachable("Unknown VFP cmp argument!");
4919 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4920 /// f32 and even f64 comparisons to integer ones.
4921 SDValue
4922 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4923 SDValue Chain = Op.getOperand(0);
4924 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4925 SDValue LHS = Op.getOperand(2);
4926 SDValue RHS = Op.getOperand(3);
4927 SDValue Dest = Op.getOperand(4);
4928 SDLoc dl(Op);
4930 bool LHSSeenZero = false;
4931 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4932 bool RHSSeenZero = false;
4933 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4934 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4935 // If unsafe fp math optimization is enabled and there are no other uses of
4936 // the CMP operands, and the condition code is EQ or NE, we can optimize it
4937 // to an integer comparison.
4938 if (CC == ISD::SETOEQ)
4939 CC = ISD::SETEQ;
4940 else if (CC == ISD::SETUNE)
4941 CC = ISD::SETNE;
4943 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4944 SDValue ARMcc;
4945 if (LHS.getValueType() == MVT::f32) {
4946 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4947 bitcastf32Toi32(LHS, DAG), Mask);
4948 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4949 bitcastf32Toi32(RHS, DAG), Mask);
4950 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4951 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4952 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4953 Chain, Dest, ARMcc, CCR, Cmp);
4956 SDValue LHS1, LHS2;
4957 SDValue RHS1, RHS2;
4958 expandf64Toi32(LHS, DAG, LHS1, LHS2);
4959 expandf64Toi32(RHS, DAG, RHS1, RHS2);
4960 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4961 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4962 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4963 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4964 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4965 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4966 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4969 return SDValue();
4972 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4973 SDValue Chain = Op.getOperand(0);
4974 SDValue Cond = Op.getOperand(1);
4975 SDValue Dest = Op.getOperand(2);
4976 SDLoc dl(Op);
4978 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4979 // instruction.
4980 unsigned Opc = Cond.getOpcode();
4981 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4982 !Subtarget->isThumb1Only();
4983 if (Cond.getResNo() == 1 &&
4984 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4985 Opc == ISD::USUBO || OptimizeMul)) {
4986 // Only lower legal XALUO ops.
4987 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4988 return SDValue();
4990 // The actual operation with overflow check.
4991 SDValue Value, OverflowCmp;
4992 SDValue ARMcc;
4993 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4995 // Reverse the condition code.
4996 ARMCC::CondCodes CondCode =
4997 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4998 CondCode = ARMCC::getOppositeCondition(CondCode);
4999 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5000 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5002 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5003 OverflowCmp);
5006 return SDValue();
5009 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5010 SDValue Chain = Op.getOperand(0);
5011 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5012 SDValue LHS = Op.getOperand(2);
5013 SDValue RHS = Op.getOperand(3);
5014 SDValue Dest = Op.getOperand(4);
5015 SDLoc dl(Op);
5017 if (isUnsupportedFloatingType(LHS.getValueType())) {
5018 DAG.getTargetLoweringInfo().softenSetCCOperands(
5019 DAG, LHS.getValueType(), LHS, RHS, CC, dl);
5021 // If softenSetCCOperands only returned one value, we should compare it to
5022 // zero.
5023 if (!RHS.getNode()) {
5024 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5025 CC = ISD::SETNE;
5029 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5030 // instruction.
5031 unsigned Opc = LHS.getOpcode();
5032 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5033 !Subtarget->isThumb1Only();
5034 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5035 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5036 Opc == ISD::USUBO || OptimizeMul) &&
5037 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5038 // Only lower legal XALUO ops.
5039 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5040 return SDValue();
5042 // The actual operation with overflow check.
5043 SDValue Value, OverflowCmp;
5044 SDValue ARMcc;
5045 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5047 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5048 // Reverse the condition code.
5049 ARMCC::CondCodes CondCode =
5050 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5051 CondCode = ARMCC::getOppositeCondition(CondCode);
5052 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5054 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5056 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5057 OverflowCmp);
5060 if (LHS.getValueType() == MVT::i32) {
5061 SDValue ARMcc;
5062 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5063 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5064 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5065 Chain, Dest, ARMcc, CCR, Cmp);
5068 if (getTargetMachine().Options.UnsafeFPMath &&
5069 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5070 CC == ISD::SETNE || CC == ISD::SETUNE)) {
5071 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5072 return Result;
5075 ARMCC::CondCodes CondCode, CondCode2;
5076 bool InvalidOnQNaN;
5077 FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
5079 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5080 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
5081 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5082 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5083 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5084 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5085 if (CondCode2 != ARMCC::AL) {
5086 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5087 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5088 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5090 return Res;
5093 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5094 SDValue Chain = Op.getOperand(0);
5095 SDValue Table = Op.getOperand(1);
5096 SDValue Index = Op.getOperand(2);
5097 SDLoc dl(Op);
5099 EVT PTy = getPointerTy(DAG.getDataLayout());
5100 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5101 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5102 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5103 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5104 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5105 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5106 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5107 // which does another jump to the destination. This also makes it easier
5108 // to translate it to TBB / TBH later (Thumb2 only).
5109 // FIXME: This might not work if the function is extremely large.
5110 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5111 Addr, Op.getOperand(2), JTI);
5113 if (isPositionIndependent() || Subtarget->isROPI()) {
5114 Addr =
5115 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5116 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5117 Chain = Addr.getValue(1);
5118 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5119 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5120 } else {
5121 Addr =
5122 DAG.getLoad(PTy, dl, Chain, Addr,
5123 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5124 Chain = Addr.getValue(1);
5125 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5129 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5130 EVT VT = Op.getValueType();
5131 SDLoc dl(Op);
5133 if (Op.getValueType().getVectorElementType() == MVT::i32) {
5134 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5135 return Op;
5136 return DAG.UnrollVectorOp(Op.getNode());
5139 const bool HasFullFP16 =
5140 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5142 EVT NewTy;
5143 const EVT OpTy = Op.getOperand(0).getValueType();
5144 if (OpTy == MVT::v4f32)
5145 NewTy = MVT::v4i32;
5146 else if (OpTy == MVT::v4f16 && HasFullFP16)
5147 NewTy = MVT::v4i16;
5148 else if (OpTy == MVT::v8f16 && HasFullFP16)
5149 NewTy = MVT::v8i16;
5150 else
5151 llvm_unreachable("Invalid type for custom lowering!");
5153 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5154 return DAG.UnrollVectorOp(Op.getNode());
5156 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5157 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5160 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5161 EVT VT = Op.getValueType();
5162 if (VT.isVector())
5163 return LowerVectorFP_TO_INT(Op, DAG);
5164 if (isUnsupportedFloatingType(Op.getOperand(0).getValueType())) {
5165 RTLIB::Libcall LC;
5166 if (Op.getOpcode() == ISD::FP_TO_SINT)
5167 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
5168 Op.getValueType());
5169 else
5170 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
5171 Op.getValueType());
5172 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5173 /*isSigned*/ false, SDLoc(Op)).first;
5176 return Op;
5179 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5180 EVT VT = Op.getValueType();
5181 SDLoc dl(Op);
5183 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5184 if (VT.getVectorElementType() == MVT::f32)
5185 return Op;
5186 return DAG.UnrollVectorOp(Op.getNode());
5189 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5190 Op.getOperand(0).getValueType() == MVT::v8i16) &&
5191 "Invalid type for custom lowering!");
5193 const bool HasFullFP16 =
5194 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5196 EVT DestVecType;
5197 if (VT == MVT::v4f32)
5198 DestVecType = MVT::v4i32;
5199 else if (VT == MVT::v4f16 && HasFullFP16)
5200 DestVecType = MVT::v4i16;
5201 else if (VT == MVT::v8f16 && HasFullFP16)
5202 DestVecType = MVT::v8i16;
5203 else
5204 return DAG.UnrollVectorOp(Op.getNode());
5206 unsigned CastOpc;
5207 unsigned Opc;
5208 switch (Op.getOpcode()) {
5209 default: llvm_unreachable("Invalid opcode!");
5210 case ISD::SINT_TO_FP:
5211 CastOpc = ISD::SIGN_EXTEND;
5212 Opc = ISD::SINT_TO_FP;
5213 break;
5214 case ISD::UINT_TO_FP:
5215 CastOpc = ISD::ZERO_EXTEND;
5216 Opc = ISD::UINT_TO_FP;
5217 break;
5220 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5221 return DAG.getNode(Opc, dl, VT, Op);
5224 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5225 EVT VT = Op.getValueType();
5226 if (VT.isVector())
5227 return LowerVectorINT_TO_FP(Op, DAG);
5228 if (isUnsupportedFloatingType(VT)) {
5229 RTLIB::Libcall LC;
5230 if (Op.getOpcode() == ISD::SINT_TO_FP)
5231 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5232 Op.getValueType());
5233 else
5234 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5235 Op.getValueType());
5236 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5237 /*isSigned*/ false, SDLoc(Op)).first;
5240 return Op;
5243 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5244 // Implement fcopysign with a fabs and a conditional fneg.
5245 SDValue Tmp0 = Op.getOperand(0);
5246 SDValue Tmp1 = Op.getOperand(1);
5247 SDLoc dl(Op);
5248 EVT VT = Op.getValueType();
5249 EVT SrcVT = Tmp1.getValueType();
5250 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5251 Tmp0.getOpcode() == ARMISD::VMOVDRR;
5252 bool UseNEON = !InGPR && Subtarget->hasNEON();
5254 if (UseNEON) {
5255 // Use VBSL to copy the sign bit.
5256 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5257 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5258 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5259 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5260 if (VT == MVT::f64)
5261 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5262 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5263 DAG.getConstant(32, dl, MVT::i32));
5264 else /*if (VT == MVT::f32)*/
5265 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5266 if (SrcVT == MVT::f32) {
5267 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5268 if (VT == MVT::f64)
5269 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5270 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5271 DAG.getConstant(32, dl, MVT::i32));
5272 } else if (VT == MVT::f32)
5273 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5274 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5275 DAG.getConstant(32, dl, MVT::i32));
5276 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5277 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5279 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5280 dl, MVT::i32);
5281 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5282 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5283 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5285 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5286 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5287 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5288 if (VT == MVT::f32) {
5289 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5290 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5291 DAG.getConstant(0, dl, MVT::i32));
5292 } else {
5293 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5296 return Res;
5299 // Bitcast operand 1 to i32.
5300 if (SrcVT == MVT::f64)
5301 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5302 Tmp1).getValue(1);
5303 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5305 // Or in the signbit with integer operations.
5306 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5307 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5308 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5309 if (VT == MVT::f32) {
5310 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5311 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5312 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5313 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5316 // f64: Or the high part with signbit and then combine two parts.
5317 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5318 Tmp0);
5319 SDValue Lo = Tmp0.getValue(0);
5320 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5321 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5322 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5325 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5326 MachineFunction &MF = DAG.getMachineFunction();
5327 MachineFrameInfo &MFI = MF.getFrameInfo();
5328 MFI.setReturnAddressIsTaken(true);
5330 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5331 return SDValue();
5333 EVT VT = Op.getValueType();
5334 SDLoc dl(Op);
5335 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5336 if (Depth) {
5337 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5338 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5339 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5340 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5341 MachinePointerInfo());
5344 // Return LR, which contains the return address. Mark it an implicit live-in.
5345 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5346 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5349 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5350 const ARMBaseRegisterInfo &ARI =
5351 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5352 MachineFunction &MF = DAG.getMachineFunction();
5353 MachineFrameInfo &MFI = MF.getFrameInfo();
5354 MFI.setFrameAddressIsTaken(true);
5356 EVT VT = Op.getValueType();
5357 SDLoc dl(Op); // FIXME probably not meaningful
5358 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5359 unsigned FrameReg = ARI.getFrameRegister(MF);
5360 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5361 while (Depth--)
5362 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5363 MachinePointerInfo());
5364 return FrameAddr;
5367 // FIXME? Maybe this could be a TableGen attribute on some registers and
5368 // this table could be generated automatically from RegInfo.
5369 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5370 SelectionDAG &DAG) const {
5371 unsigned Reg = StringSwitch<unsigned>(RegName)
5372 .Case("sp", ARM::SP)
5373 .Default(0);
5374 if (Reg)
5375 return Reg;
5376 report_fatal_error(Twine("Invalid register name \""
5377 + StringRef(RegName) + "\"."));
5380 // Result is 64 bit value so split into two 32 bit values and return as a
5381 // pair of values.
5382 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5383 SelectionDAG &DAG) {
5384 SDLoc DL(N);
5386 // This function is only supposed to be called for i64 type destination.
5387 assert(N->getValueType(0) == MVT::i64
5388 && "ExpandREAD_REGISTER called for non-i64 type result.");
5390 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5391 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5392 N->getOperand(0),
5393 N->getOperand(1));
5395 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5396 Read.getValue(1)));
5397 Results.push_back(Read.getOperand(0));
5400 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5401 /// When \p DstVT, the destination type of \p BC, is on the vector
5402 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5403 /// it might be possible to combine them, such that everything stays on the
5404 /// vector register bank.
5405 /// \p return The node that would replace \p BT, if the combine
5406 /// is possible.
5407 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5408 SelectionDAG &DAG) {
5409 SDValue Op = BC->getOperand(0);
5410 EVT DstVT = BC->getValueType(0);
5412 // The only vector instruction that can produce a scalar (remember,
5413 // since the bitcast was about to be turned into VMOVDRR, the source
5414 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5415 // Moreover, we can do this combine only if there is one use.
5416 // Finally, if the destination type is not a vector, there is not
5417 // much point on forcing everything on the vector bank.
5418 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5419 !Op.hasOneUse())
5420 return SDValue();
5422 // If the index is not constant, we will introduce an additional
5423 // multiply that will stick.
5424 // Give up in that case.
5425 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5426 if (!Index)
5427 return SDValue();
5428 unsigned DstNumElt = DstVT.getVectorNumElements();
5430 // Compute the new index.
5431 const APInt &APIntIndex = Index->getAPIntValue();
5432 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5433 NewIndex *= APIntIndex;
5434 // Check if the new constant index fits into i32.
5435 if (NewIndex.getBitWidth() > 32)
5436 return SDValue();
5438 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5439 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5440 SDLoc dl(Op);
5441 SDValue ExtractSrc = Op.getOperand(0);
5442 EVT VecVT = EVT::getVectorVT(
5443 *DAG.getContext(), DstVT.getScalarType(),
5444 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5445 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5446 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5447 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5450 /// ExpandBITCAST - If the target supports VFP, this function is called to
5451 /// expand a bit convert where either the source or destination type is i64 to
5452 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5453 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5454 /// vectors), since the legalizer won't know what to do with that.
5455 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5456 const ARMSubtarget *Subtarget) {
5457 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5458 SDLoc dl(N);
5459 SDValue Op = N->getOperand(0);
5461 // This function is only supposed to be called for i64 types, either as the
5462 // source or destination of the bit convert.
5463 EVT SrcVT = Op.getValueType();
5464 EVT DstVT = N->getValueType(0);
5465 const bool HasFullFP16 = Subtarget->hasFullFP16();
5467 if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5468 // FullFP16: half values are passed in S-registers, and we don't
5469 // need any of the bitcast and moves:
5471 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5472 // t5: i32 = bitcast t2
5473 // t18: f16 = ARMISD::VMOVhr t5
5474 if (Op.getOpcode() != ISD::CopyFromReg ||
5475 Op.getValueType() != MVT::f32)
5476 return SDValue();
5478 auto Move = N->use_begin();
5479 if (Move->getOpcode() != ARMISD::VMOVhr)
5480 return SDValue();
5482 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5483 SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5484 DAG.ReplaceAllUsesWith(*Move, &Copy);
5485 return Copy;
5488 if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5489 if (!HasFullFP16)
5490 return SDValue();
5491 // SoftFP: read half-precision arguments:
5493 // t2: i32,ch = ...
5494 // t7: i16 = truncate t2 <~~~~ Op
5495 // t8: f16 = bitcast t7 <~~~~ N
5497 if (Op.getOperand(0).getValueType() == MVT::i32)
5498 return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5499 MVT::f16, Op.getOperand(0));
5501 return SDValue();
5504 // Half-precision return values
5505 if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5506 if (!HasFullFP16)
5507 return SDValue();
5509 // t11: f16 = fadd t8, t10
5510 // t12: i16 = bitcast t11 <~~~ SDNode N
5511 // t13: i32 = zero_extend t12
5512 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5513 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5515 // transform this into:
5517 // t20: i32 = ARMISD::VMOVrh t11
5518 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5520 auto ZeroExtend = N->use_begin();
5521 if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5522 ZeroExtend->getValueType(0) != MVT::i32)
5523 return SDValue();
5525 auto Copy = ZeroExtend->use_begin();
5526 if (Copy->getOpcode() == ISD::CopyToReg &&
5527 Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5528 SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5529 DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5530 return Cvt;
5532 return SDValue();
5535 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5536 return SDValue();
5538 // Turn i64->f64 into VMOVDRR.
5539 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5540 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5541 // if we can combine the bitcast with its source.
5542 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5543 return Val;
5545 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5546 DAG.getConstant(0, dl, MVT::i32));
5547 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5548 DAG.getConstant(1, dl, MVT::i32));
5549 return DAG.getNode(ISD::BITCAST, dl, DstVT,
5550 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5553 // Turn f64->i64 into VMOVRRD.
5554 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5555 SDValue Cvt;
5556 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5557 SrcVT.getVectorNumElements() > 1)
5558 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5559 DAG.getVTList(MVT::i32, MVT::i32),
5560 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5561 else
5562 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5563 DAG.getVTList(MVT::i32, MVT::i32), Op);
5564 // Merge the pieces into a single i64 value.
5565 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5568 return SDValue();
5571 /// getZeroVector - Returns a vector of specified type with all zero elements.
5572 /// Zero vectors are used to represent vector negation and in those cases
5573 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5574 /// not support i64 elements, so sometimes the zero vectors will need to be
5575 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5576 /// zero vector.
5577 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5578 assert(VT.isVector() && "Expected a vector type");
5579 // The canonical modified immediate encoding of a zero vector is....0!
5580 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5581 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5582 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5583 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5586 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5587 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5588 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5589 SelectionDAG &DAG) const {
5590 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5591 EVT VT = Op.getValueType();
5592 unsigned VTBits = VT.getSizeInBits();
5593 SDLoc dl(Op);
5594 SDValue ShOpLo = Op.getOperand(0);
5595 SDValue ShOpHi = Op.getOperand(1);
5596 SDValue ShAmt = Op.getOperand(2);
5597 SDValue ARMcc;
5598 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5599 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5601 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5603 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5604 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5605 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5606 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5607 DAG.getConstant(VTBits, dl, MVT::i32));
5608 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5609 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5610 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5611 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5612 ISD::SETGE, ARMcc, DAG, dl);
5613 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5614 ARMcc, CCR, CmpLo);
5616 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5617 SDValue HiBigShift = Opc == ISD::SRA
5618 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5619 DAG.getConstant(VTBits - 1, dl, VT))
5620 : DAG.getConstant(0, dl, VT);
5621 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5622 ISD::SETGE, ARMcc, DAG, dl);
5623 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5624 ARMcc, CCR, CmpHi);
5626 SDValue Ops[2] = { Lo, Hi };
5627 return DAG.getMergeValues(Ops, dl);
5630 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5631 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5632 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5633 SelectionDAG &DAG) const {
5634 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5635 EVT VT = Op.getValueType();
5636 unsigned VTBits = VT.getSizeInBits();
5637 SDLoc dl(Op);
5638 SDValue ShOpLo = Op.getOperand(0);
5639 SDValue ShOpHi = Op.getOperand(1);
5640 SDValue ShAmt = Op.getOperand(2);
5641 SDValue ARMcc;
5642 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5644 assert(Op.getOpcode() == ISD::SHL_PARTS);
5645 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5646 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5647 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5648 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5649 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5651 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5652 DAG.getConstant(VTBits, dl, MVT::i32));
5653 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5654 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5655 ISD::SETGE, ARMcc, DAG, dl);
5656 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5657 ARMcc, CCR, CmpHi);
5659 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5660 ISD::SETGE, ARMcc, DAG, dl);
5661 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5662 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5663 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5665 SDValue Ops[2] = { Lo, Hi };
5666 return DAG.getMergeValues(Ops, dl);
5669 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5670 SelectionDAG &DAG) const {
5671 // The rounding mode is in bits 23:22 of the FPSCR.
5672 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5673 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5674 // so that the shift + and get folded into a bitfield extract.
5675 SDLoc dl(Op);
5676 SDValue Ops[] = { DAG.getEntryNode(),
5677 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5679 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5680 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5681 DAG.getConstant(1U << 22, dl, MVT::i32));
5682 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5683 DAG.getConstant(22, dl, MVT::i32));
5684 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5685 DAG.getConstant(3, dl, MVT::i32));
5688 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5689 const ARMSubtarget *ST) {
5690 SDLoc dl(N);
5691 EVT VT = N->getValueType(0);
5692 if (VT.isVector()) {
5693 assert(ST->hasNEON());
5695 // Compute the least significant set bit: LSB = X & -X
5696 SDValue X = N->getOperand(0);
5697 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5698 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5700 EVT ElemTy = VT.getVectorElementType();
5702 if (ElemTy == MVT::i8) {
5703 // Compute with: cttz(x) = ctpop(lsb - 1)
5704 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5705 DAG.getTargetConstant(1, dl, ElemTy));
5706 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5707 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5710 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5711 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5712 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5713 unsigned NumBits = ElemTy.getSizeInBits();
5714 SDValue WidthMinus1 =
5715 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5716 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5717 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5718 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5721 // Compute with: cttz(x) = ctpop(lsb - 1)
5723 // Compute LSB - 1.
5724 SDValue Bits;
5725 if (ElemTy == MVT::i64) {
5726 // Load constant 0xffff'ffff'ffff'ffff to register.
5727 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5728 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5729 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5730 } else {
5731 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5732 DAG.getTargetConstant(1, dl, ElemTy));
5733 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5735 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5738 if (!ST->hasV6T2Ops())
5739 return SDValue();
5741 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5742 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5745 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5746 const ARMSubtarget *ST) {
5747 EVT VT = N->getValueType(0);
5748 SDLoc DL(N);
5750 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5751 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5752 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5753 "Unexpected type for custom ctpop lowering");
5755 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5756 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5757 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
5758 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
5760 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5761 unsigned EltSize = 8;
5762 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5763 while (EltSize != VT.getScalarSizeInBits()) {
5764 SmallVector<SDValue, 8> Ops;
5765 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
5766 TLI.getPointerTy(DAG.getDataLayout())));
5767 Ops.push_back(Res);
5769 EltSize *= 2;
5770 NumElts /= 2;
5771 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5772 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
5775 return Res;
5778 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
5779 /// operand of a vector shift operation, where all the elements of the
5780 /// build_vector must have the same constant integer value.
5781 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5782 // Ignore bit_converts.
5783 while (Op.getOpcode() == ISD::BITCAST)
5784 Op = Op.getOperand(0);
5785 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5786 APInt SplatBits, SplatUndef;
5787 unsigned SplatBitSize;
5788 bool HasAnyUndefs;
5789 if (!BVN ||
5790 !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5791 ElementBits) ||
5792 SplatBitSize > ElementBits)
5793 return false;
5794 Cnt = SplatBits.getSExtValue();
5795 return true;
5798 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
5799 /// operand of a vector shift left operation. That value must be in the range:
5800 /// 0 <= Value < ElementBits for a left shift; or
5801 /// 0 <= Value <= ElementBits for a long left shift.
5802 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5803 assert(VT.isVector() && "vector shift count is not a vector type");
5804 int64_t ElementBits = VT.getScalarSizeInBits();
5805 if (!getVShiftImm(Op, ElementBits, Cnt))
5806 return false;
5807 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
5810 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
5811 /// operand of a vector shift right operation. For a shift opcode, the value
5812 /// is positive, but for an intrinsic the value count must be negative. The
5813 /// absolute value must be in the range:
5814 /// 1 <= |Value| <= ElementBits for a right shift; or
5815 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
5816 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5817 int64_t &Cnt) {
5818 assert(VT.isVector() && "vector shift count is not a vector type");
5819 int64_t ElementBits = VT.getScalarSizeInBits();
5820 if (!getVShiftImm(Op, ElementBits, Cnt))
5821 return false;
5822 if (!isIntrinsic)
5823 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
5824 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
5825 Cnt = -Cnt;
5826 return true;
5828 return false;
5831 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5832 const ARMSubtarget *ST) {
5833 EVT VT = N->getValueType(0);
5834 SDLoc dl(N);
5835 int64_t Cnt;
5837 if (!VT.isVector())
5838 return SDValue();
5840 // We essentially have two forms here. Shift by an immediate and shift by a
5841 // vector register (there are also shift by a gpr, but that is just handled
5842 // with a tablegen pattern). We cannot easily match shift by an immediate in
5843 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
5844 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
5845 // signed or unsigned, and a negative shift indicates a shift right).
5846 if (N->getOpcode() == ISD::SHL) {
5847 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
5848 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
5849 DAG.getConstant(Cnt, dl, MVT::i32));
5850 return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
5851 N->getOperand(1));
5854 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
5855 "unexpected vector shift opcode");
5857 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
5858 unsigned VShiftOpc =
5859 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
5860 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
5861 DAG.getConstant(Cnt, dl, MVT::i32));
5864 // Other right shifts we don't have operations for (we use a shift left by a
5865 // negative number).
5866 EVT ShiftVT = N->getOperand(1).getValueType();
5867 SDValue NegatedCount = DAG.getNode(
5868 ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
5869 unsigned VShiftOpc =
5870 (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
5871 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
5874 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5875 const ARMSubtarget *ST) {
5876 EVT VT = N->getValueType(0);
5877 SDLoc dl(N);
5879 // We can get here for a node like i32 = ISD::SHL i32, i64
5880 if (VT != MVT::i64)
5881 return SDValue();
5883 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
5884 N->getOpcode() == ISD::SHL) &&
5885 "Unknown shift to lower!");
5887 unsigned ShOpc = N->getOpcode();
5888 if (ST->hasMVEIntegerOps()) {
5889 SDValue ShAmt = N->getOperand(1);
5890 unsigned ShPartsOpc = ARMISD::LSLL;
5891 ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
5893 // If the shift amount is greater than 32 then do the default optimisation
5894 if (Con && Con->getZExtValue() > 32)
5895 return SDValue();
5897 // Extract the lower 32 bits of the shift amount if it's an i64
5898 if (ShAmt->getValueType(0) == MVT::i64)
5899 ShAmt = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, ShAmt,
5900 DAG.getConstant(0, dl, MVT::i32));
5902 if (ShOpc == ISD::SRL) {
5903 if (!Con)
5904 // There is no t2LSRLr instruction so negate and perform an lsll if the
5905 // shift amount is in a register, emulating a right shift.
5906 ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5907 DAG.getConstant(0, dl, MVT::i32), ShAmt);
5908 else
5909 // Else generate an lsrl on the immediate shift amount
5910 ShPartsOpc = ARMISD::LSRL;
5911 } else if (ShOpc == ISD::SRA)
5912 ShPartsOpc = ARMISD::ASRL;
5914 // Lower 32 bits of the destination/source
5915 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5916 DAG.getConstant(0, dl, MVT::i32));
5917 // Upper 32 bits of the destination/source
5918 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5919 DAG.getConstant(1, dl, MVT::i32));
5921 // Generate the shift operation as computed above
5922 Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
5923 ShAmt);
5924 // The upper 32 bits come from the second return value of lsll
5925 Hi = SDValue(Lo.getNode(), 1);
5926 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5929 // We only lower SRA, SRL of 1 here, all others use generic lowering.
5930 if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
5931 return SDValue();
5933 // If we are in thumb mode, we don't have RRX.
5934 if (ST->isThumb1Only())
5935 return SDValue();
5937 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
5938 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5939 DAG.getConstant(0, dl, MVT::i32));
5940 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5941 DAG.getConstant(1, dl, MVT::i32));
5943 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5944 // captures the result into a carry flag.
5945 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5946 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5948 // The low part is an ARMISD::RRX operand, which shifts the carry in.
5949 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5951 // Merge the pieces into a single i64 value.
5952 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5955 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
5956 const ARMSubtarget *ST) {
5957 bool Invert = false;
5958 bool Swap = false;
5959 unsigned Opc = ARMCC::AL;
5961 SDValue Op0 = Op.getOperand(0);
5962 SDValue Op1 = Op.getOperand(1);
5963 SDValue CC = Op.getOperand(2);
5964 EVT VT = Op.getValueType();
5965 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5966 SDLoc dl(Op);
5968 EVT CmpVT;
5969 if (ST->hasNEON())
5970 CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5971 else {
5972 assert(ST->hasMVEIntegerOps() &&
5973 "No hardware support for integer vector comparison!");
5975 if (Op.getValueType().getVectorElementType() != MVT::i1)
5976 return SDValue();
5978 // Make sure we expand floating point setcc to scalar if we do not have
5979 // mve.fp, so that we can handle them from there.
5980 if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
5981 return SDValue();
5983 CmpVT = VT;
5986 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5987 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5988 // Special-case integer 64-bit equality comparisons. They aren't legal,
5989 // but they can be lowered with a few vector instructions.
5990 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5991 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5992 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5993 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5994 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5995 DAG.getCondCode(ISD::SETEQ));
5996 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5997 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5998 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5999 if (SetCCOpcode == ISD::SETNE)
6000 Merged = DAG.getNOT(dl, Merged, CmpVT);
6001 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6002 return Merged;
6005 if (CmpVT.getVectorElementType() == MVT::i64)
6006 // 64-bit comparisons are not legal in general.
6007 return SDValue();
6009 if (Op1.getValueType().isFloatingPoint()) {
6010 switch (SetCCOpcode) {
6011 default: llvm_unreachable("Illegal FP comparison");
6012 case ISD::SETUNE:
6013 case ISD::SETNE:
6014 if (ST->hasMVEFloatOps()) {
6015 Opc = ARMCC::NE; break;
6016 } else {
6017 Invert = true; LLVM_FALLTHROUGH;
6019 case ISD::SETOEQ:
6020 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6021 case ISD::SETOLT:
6022 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6023 case ISD::SETOGT:
6024 case ISD::SETGT: Opc = ARMCC::GT; break;
6025 case ISD::SETOLE:
6026 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6027 case ISD::SETOGE:
6028 case ISD::SETGE: Opc = ARMCC::GE; break;
6029 case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6030 case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6031 case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6032 case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6033 case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6034 case ISD::SETONE: {
6035 // Expand this to (OLT | OGT).
6036 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6037 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6038 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6039 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6040 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6041 if (Invert)
6042 Result = DAG.getNOT(dl, Result, VT);
6043 return Result;
6045 case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6046 case ISD::SETO: {
6047 // Expand this to (OLT | OGE).
6048 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6049 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6050 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6051 DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6052 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6053 if (Invert)
6054 Result = DAG.getNOT(dl, Result, VT);
6055 return Result;
6058 } else {
6059 // Integer comparisons.
6060 switch (SetCCOpcode) {
6061 default: llvm_unreachable("Illegal integer comparison");
6062 case ISD::SETNE:
6063 if (ST->hasMVEIntegerOps()) {
6064 Opc = ARMCC::NE; break;
6065 } else {
6066 Invert = true; LLVM_FALLTHROUGH;
6068 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6069 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6070 case ISD::SETGT: Opc = ARMCC::GT; break;
6071 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6072 case ISD::SETGE: Opc = ARMCC::GE; break;
6073 case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6074 case ISD::SETUGT: Opc = ARMCC::HI; break;
6075 case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6076 case ISD::SETUGE: Opc = ARMCC::HS; break;
6079 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6080 if (ST->hasNEON() && Opc == ARMCC::EQ) {
6081 SDValue AndOp;
6082 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6083 AndOp = Op0;
6084 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6085 AndOp = Op1;
6087 // Ignore bitconvert.
6088 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6089 AndOp = AndOp.getOperand(0);
6091 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6092 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6093 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6094 SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6095 if (!Invert)
6096 Result = DAG.getNOT(dl, Result, VT);
6097 return Result;
6102 if (Swap)
6103 std::swap(Op0, Op1);
6105 // If one of the operands is a constant vector zero, attempt to fold the
6106 // comparison to a specialized compare-against-zero form.
6107 SDValue SingleOp;
6108 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6109 SingleOp = Op0;
6110 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6111 if (Opc == ARMCC::GE)
6112 Opc = ARMCC::LE;
6113 else if (Opc == ARMCC::GT)
6114 Opc = ARMCC::LT;
6115 SingleOp = Op1;
6118 SDValue Result;
6119 if (SingleOp.getNode()) {
6120 Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6121 DAG.getConstant(Opc, dl, MVT::i32));
6122 } else {
6123 Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6124 DAG.getConstant(Opc, dl, MVT::i32));
6127 Result = DAG.getSExtOrTrunc(Result, dl, VT);
6129 if (Invert)
6130 Result = DAG.getNOT(dl, Result, VT);
6132 return Result;
6135 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6136 SDValue LHS = Op.getOperand(0);
6137 SDValue RHS = Op.getOperand(1);
6138 SDValue Carry = Op.getOperand(2);
6139 SDValue Cond = Op.getOperand(3);
6140 SDLoc DL(Op);
6142 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6144 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6145 // have to invert the carry first.
6146 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6147 DAG.getConstant(1, DL, MVT::i32), Carry);
6148 // This converts the boolean value carry into the carry flag.
6149 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6151 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6152 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6154 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6155 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6156 SDValue ARMcc = DAG.getConstant(
6157 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6158 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6159 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6160 Cmp.getValue(1), SDValue());
6161 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6162 CCR, Chain.getValue(1));
6165 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6166 /// valid vector constant for a NEON or MVE instruction with a "modified
6167 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
6168 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6169 unsigned SplatBitSize, SelectionDAG &DAG,
6170 const SDLoc &dl, EVT &VT, bool is128Bits,
6171 VMOVModImmType type) {
6172 unsigned OpCmode, Imm;
6174 // SplatBitSize is set to the smallest size that splats the vector, so a
6175 // zero vector will always have SplatBitSize == 8. However, NEON modified
6176 // immediate instructions others than VMOV do not support the 8-bit encoding
6177 // of a zero vector, and the default encoding of zero is supposed to be the
6178 // 32-bit version.
6179 if (SplatBits == 0)
6180 SplatBitSize = 32;
6182 switch (SplatBitSize) {
6183 case 8:
6184 if (type != VMOVModImm)
6185 return SDValue();
6186 // Any 1-byte value is OK. Op=0, Cmode=1110.
6187 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6188 OpCmode = 0xe;
6189 Imm = SplatBits;
6190 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6191 break;
6193 case 16:
6194 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6195 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6196 if ((SplatBits & ~0xff) == 0) {
6197 // Value = 0x00nn: Op=x, Cmode=100x.
6198 OpCmode = 0x8;
6199 Imm = SplatBits;
6200 break;
6202 if ((SplatBits & ~0xff00) == 0) {
6203 // Value = 0xnn00: Op=x, Cmode=101x.
6204 OpCmode = 0xa;
6205 Imm = SplatBits >> 8;
6206 break;
6208 return SDValue();
6210 case 32:
6211 // NEON's 32-bit VMOV supports splat values where:
6212 // * only one byte is nonzero, or
6213 // * the least significant byte is 0xff and the second byte is nonzero, or
6214 // * the least significant 2 bytes are 0xff and the third is nonzero.
6215 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6216 if ((SplatBits & ~0xff) == 0) {
6217 // Value = 0x000000nn: Op=x, Cmode=000x.
6218 OpCmode = 0;
6219 Imm = SplatBits;
6220 break;
6222 if ((SplatBits & ~0xff00) == 0) {
6223 // Value = 0x0000nn00: Op=x, Cmode=001x.
6224 OpCmode = 0x2;
6225 Imm = SplatBits >> 8;
6226 break;
6228 if ((SplatBits & ~0xff0000) == 0) {
6229 // Value = 0x00nn0000: Op=x, Cmode=010x.
6230 OpCmode = 0x4;
6231 Imm = SplatBits >> 16;
6232 break;
6234 if ((SplatBits & ~0xff000000) == 0) {
6235 // Value = 0xnn000000: Op=x, Cmode=011x.
6236 OpCmode = 0x6;
6237 Imm = SplatBits >> 24;
6238 break;
6241 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6242 if (type == OtherModImm) return SDValue();
6244 if ((SplatBits & ~0xffff) == 0 &&
6245 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6246 // Value = 0x0000nnff: Op=x, Cmode=1100.
6247 OpCmode = 0xc;
6248 Imm = SplatBits >> 8;
6249 break;
6252 // cmode == 0b1101 is not supported for MVE VMVN
6253 if (type == MVEVMVNModImm)
6254 return SDValue();
6256 if ((SplatBits & ~0xffffff) == 0 &&
6257 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6258 // Value = 0x00nnffff: Op=x, Cmode=1101.
6259 OpCmode = 0xd;
6260 Imm = SplatBits >> 16;
6261 break;
6264 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6265 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6266 // VMOV.I32. A (very) minor optimization would be to replicate the value
6267 // and fall through here to test for a valid 64-bit splat. But, then the
6268 // caller would also need to check and handle the change in size.
6269 return SDValue();
6271 case 64: {
6272 if (type != VMOVModImm)
6273 return SDValue();
6274 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6275 uint64_t BitMask = 0xff;
6276 uint64_t Val = 0;
6277 unsigned ImmMask = 1;
6278 Imm = 0;
6279 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6280 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6281 Val |= BitMask;
6282 Imm |= ImmMask;
6283 } else if ((SplatBits & BitMask) != 0) {
6284 return SDValue();
6286 BitMask <<= 8;
6287 ImmMask <<= 1;
6290 if (DAG.getDataLayout().isBigEndian())
6291 // swap higher and lower 32 bit word
6292 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
6294 // Op=1, Cmode=1110.
6295 OpCmode = 0x1e;
6296 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6297 break;
6300 default:
6301 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6304 unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6305 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6308 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6309 const ARMSubtarget *ST) const {
6310 EVT VT = Op.getValueType();
6311 bool IsDouble = (VT == MVT::f64);
6312 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6313 const APFloat &FPVal = CFP->getValueAPF();
6315 // Prevent floating-point constants from using literal loads
6316 // when execute-only is enabled.
6317 if (ST->genExecuteOnly()) {
6318 // If we can represent the constant as an immediate, don't lower it
6319 if (isFPImmLegal(FPVal, VT))
6320 return Op;
6321 // Otherwise, construct as integer, and move to float register
6322 APInt INTVal = FPVal.bitcastToAPInt();
6323 SDLoc DL(CFP);
6324 switch (VT.getSimpleVT().SimpleTy) {
6325 default:
6326 llvm_unreachable("Unknown floating point type!");
6327 break;
6328 case MVT::f64: {
6329 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6330 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6331 if (!ST->isLittle())
6332 std::swap(Lo, Hi);
6333 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6335 case MVT::f32:
6336 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6337 DAG.getConstant(INTVal, DL, MVT::i32));
6341 if (!ST->hasVFP3Base())
6342 return SDValue();
6344 // Use the default (constant pool) lowering for double constants when we have
6345 // an SP-only FPU
6346 if (IsDouble && !Subtarget->hasFP64())
6347 return SDValue();
6349 // Try splatting with a VMOV.f32...
6350 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6352 if (ImmVal != -1) {
6353 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6354 // We have code in place to select a valid ConstantFP already, no need to
6355 // do any mangling.
6356 return Op;
6359 // It's a float and we are trying to use NEON operations where
6360 // possible. Lower it to a splat followed by an extract.
6361 SDLoc DL(Op);
6362 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6363 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6364 NewVal);
6365 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6366 DAG.getConstant(0, DL, MVT::i32));
6369 // The rest of our options are NEON only, make sure that's allowed before
6370 // proceeding..
6371 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6372 return SDValue();
6374 EVT VMovVT;
6375 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6377 // It wouldn't really be worth bothering for doubles except for one very
6378 // important value, which does happen to match: 0.0. So make sure we don't do
6379 // anything stupid.
6380 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6381 return SDValue();
6383 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6384 SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6385 VMovVT, false, VMOVModImm);
6386 if (NewVal != SDValue()) {
6387 SDLoc DL(Op);
6388 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6389 NewVal);
6390 if (IsDouble)
6391 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6393 // It's a float: cast and extract a vector element.
6394 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6395 VecConstant);
6396 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6397 DAG.getConstant(0, DL, MVT::i32));
6400 // Finally, try a VMVN.i32
6401 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6402 false, VMVNModImm);
6403 if (NewVal != SDValue()) {
6404 SDLoc DL(Op);
6405 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6407 if (IsDouble)
6408 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6410 // It's a float: cast and extract a vector element.
6411 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6412 VecConstant);
6413 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6414 DAG.getConstant(0, DL, MVT::i32));
6417 return SDValue();
6420 // check if an VEXT instruction can handle the shuffle mask when the
6421 // vector sources of the shuffle are the same.
6422 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6423 unsigned NumElts = VT.getVectorNumElements();
6425 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6426 if (M[0] < 0)
6427 return false;
6429 Imm = M[0];
6431 // If this is a VEXT shuffle, the immediate value is the index of the first
6432 // element. The other shuffle indices must be the successive elements after
6433 // the first one.
6434 unsigned ExpectedElt = Imm;
6435 for (unsigned i = 1; i < NumElts; ++i) {
6436 // Increment the expected index. If it wraps around, just follow it
6437 // back to index zero and keep going.
6438 ++ExpectedElt;
6439 if (ExpectedElt == NumElts)
6440 ExpectedElt = 0;
6442 if (M[i] < 0) continue; // ignore UNDEF indices
6443 if (ExpectedElt != static_cast<unsigned>(M[i]))
6444 return false;
6447 return true;
6450 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6451 bool &ReverseVEXT, unsigned &Imm) {
6452 unsigned NumElts = VT.getVectorNumElements();
6453 ReverseVEXT = false;
6455 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6456 if (M[0] < 0)
6457 return false;
6459 Imm = M[0];
6461 // If this is a VEXT shuffle, the immediate value is the index of the first
6462 // element. The other shuffle indices must be the successive elements after
6463 // the first one.
6464 unsigned ExpectedElt = Imm;
6465 for (unsigned i = 1; i < NumElts; ++i) {
6466 // Increment the expected index. If it wraps around, it may still be
6467 // a VEXT but the source vectors must be swapped.
6468 ExpectedElt += 1;
6469 if (ExpectedElt == NumElts * 2) {
6470 ExpectedElt = 0;
6471 ReverseVEXT = true;
6474 if (M[i] < 0) continue; // ignore UNDEF indices
6475 if (ExpectedElt != static_cast<unsigned>(M[i]))
6476 return false;
6479 // Adjust the index value if the source operands will be swapped.
6480 if (ReverseVEXT)
6481 Imm -= NumElts;
6483 return true;
6486 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6487 /// instruction with the specified blocksize. (The order of the elements
6488 /// within each block of the vector is reversed.)
6489 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6490 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6491 "Only possible block sizes for VREV are: 16, 32, 64");
6493 unsigned EltSz = VT.getScalarSizeInBits();
6494 if (EltSz == 64)
6495 return false;
6497 unsigned NumElts = VT.getVectorNumElements();
6498 unsigned BlockElts = M[0] + 1;
6499 // If the first shuffle index is UNDEF, be optimistic.
6500 if (M[0] < 0)
6501 BlockElts = BlockSize / EltSz;
6503 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6504 return false;
6506 for (unsigned i = 0; i < NumElts; ++i) {
6507 if (M[i] < 0) continue; // ignore UNDEF indices
6508 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6509 return false;
6512 return true;
6515 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6516 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6517 // range, then 0 is placed into the resulting vector. So pretty much any mask
6518 // of 8 elements can work here.
6519 return VT == MVT::v8i8 && M.size() == 8;
6522 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6523 unsigned Index) {
6524 if (Mask.size() == Elements * 2)
6525 return Index / Elements;
6526 return Mask[Index] == 0 ? 0 : 1;
6529 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6530 // checking that pairs of elements in the shuffle mask represent the same index
6531 // in each vector, incrementing the expected index by 2 at each step.
6532 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6533 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6534 // v2={e,f,g,h}
6535 // WhichResult gives the offset for each element in the mask based on which
6536 // of the two results it belongs to.
6538 // The transpose can be represented either as:
6539 // result1 = shufflevector v1, v2, result1_shuffle_mask
6540 // result2 = shufflevector v1, v2, result2_shuffle_mask
6541 // where v1/v2 and the shuffle masks have the same number of elements
6542 // (here WhichResult (see below) indicates which result is being checked)
6544 // or as:
6545 // results = shufflevector v1, v2, shuffle_mask
6546 // where both results are returned in one vector and the shuffle mask has twice
6547 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6548 // want to check the low half and high half of the shuffle mask as if it were
6549 // the other case
6550 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6551 unsigned EltSz = VT.getScalarSizeInBits();
6552 if (EltSz == 64)
6553 return false;
6555 unsigned NumElts = VT.getVectorNumElements();
6556 if (M.size() != NumElts && M.size() != NumElts*2)
6557 return false;
6559 // If the mask is twice as long as the input vector then we need to check the
6560 // upper and lower parts of the mask with a matching value for WhichResult
6561 // FIXME: A mask with only even values will be rejected in case the first
6562 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6563 // M[0] is used to determine WhichResult
6564 for (unsigned i = 0; i < M.size(); i += NumElts) {
6565 WhichResult = SelectPairHalf(NumElts, M, i);
6566 for (unsigned j = 0; j < NumElts; j += 2) {
6567 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6568 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6569 return false;
6573 if (M.size() == NumElts*2)
6574 WhichResult = 0;
6576 return true;
6579 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6580 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6581 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6582 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6583 unsigned EltSz = VT.getScalarSizeInBits();
6584 if (EltSz == 64)
6585 return false;
6587 unsigned NumElts = VT.getVectorNumElements();
6588 if (M.size() != NumElts && M.size() != NumElts*2)
6589 return false;
6591 for (unsigned i = 0; i < M.size(); i += NumElts) {
6592 WhichResult = SelectPairHalf(NumElts, M, i);
6593 for (unsigned j = 0; j < NumElts; j += 2) {
6594 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6595 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6596 return false;
6600 if (M.size() == NumElts*2)
6601 WhichResult = 0;
6603 return true;
6606 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6607 // that the mask elements are either all even and in steps of size 2 or all odd
6608 // and in steps of size 2.
6609 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6610 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6611 // v2={e,f,g,h}
6612 // Requires similar checks to that of isVTRNMask with
6613 // respect the how results are returned.
6614 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6615 unsigned EltSz = VT.getScalarSizeInBits();
6616 if (EltSz == 64)
6617 return false;
6619 unsigned NumElts = VT.getVectorNumElements();
6620 if (M.size() != NumElts && M.size() != NumElts*2)
6621 return false;
6623 for (unsigned i = 0; i < M.size(); i += NumElts) {
6624 WhichResult = SelectPairHalf(NumElts, M, i);
6625 for (unsigned j = 0; j < NumElts; ++j) {
6626 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6627 return false;
6631 if (M.size() == NumElts*2)
6632 WhichResult = 0;
6634 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6635 if (VT.is64BitVector() && EltSz == 32)
6636 return false;
6638 return true;
6641 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6642 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6643 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6644 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6645 unsigned EltSz = VT.getScalarSizeInBits();
6646 if (EltSz == 64)
6647 return false;
6649 unsigned NumElts = VT.getVectorNumElements();
6650 if (M.size() != NumElts && M.size() != NumElts*2)
6651 return false;
6653 unsigned Half = NumElts / 2;
6654 for (unsigned i = 0; i < M.size(); i += NumElts) {
6655 WhichResult = SelectPairHalf(NumElts, M, i);
6656 for (unsigned j = 0; j < NumElts; j += Half) {
6657 unsigned Idx = WhichResult;
6658 for (unsigned k = 0; k < Half; ++k) {
6659 int MIdx = M[i + j + k];
6660 if (MIdx >= 0 && (unsigned) MIdx != Idx)
6661 return false;
6662 Idx += 2;
6667 if (M.size() == NumElts*2)
6668 WhichResult = 0;
6670 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6671 if (VT.is64BitVector() && EltSz == 32)
6672 return false;
6674 return true;
6677 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6678 // that pairs of elements of the shufflemask represent the same index in each
6679 // vector incrementing sequentially through the vectors.
6680 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6681 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6682 // v2={e,f,g,h}
6683 // Requires similar checks to that of isVTRNMask with respect the how results
6684 // are returned.
6685 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6686 unsigned EltSz = VT.getScalarSizeInBits();
6687 if (EltSz == 64)
6688 return false;
6690 unsigned NumElts = VT.getVectorNumElements();
6691 if (M.size() != NumElts && M.size() != NumElts*2)
6692 return false;
6694 for (unsigned i = 0; i < M.size(); i += NumElts) {
6695 WhichResult = SelectPairHalf(NumElts, M, i);
6696 unsigned Idx = WhichResult * NumElts / 2;
6697 for (unsigned j = 0; j < NumElts; j += 2) {
6698 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6699 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6700 return false;
6701 Idx += 1;
6705 if (M.size() == NumElts*2)
6706 WhichResult = 0;
6708 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6709 if (VT.is64BitVector() && EltSz == 32)
6710 return false;
6712 return true;
6715 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6716 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6717 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6718 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6719 unsigned EltSz = VT.getScalarSizeInBits();
6720 if (EltSz == 64)
6721 return false;
6723 unsigned NumElts = VT.getVectorNumElements();
6724 if (M.size() != NumElts && M.size() != NumElts*2)
6725 return false;
6727 for (unsigned i = 0; i < M.size(); i += NumElts) {
6728 WhichResult = SelectPairHalf(NumElts, M, i);
6729 unsigned Idx = WhichResult * NumElts / 2;
6730 for (unsigned j = 0; j < NumElts; j += 2) {
6731 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6732 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6733 return false;
6734 Idx += 1;
6738 if (M.size() == NumElts*2)
6739 WhichResult = 0;
6741 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6742 if (VT.is64BitVector() && EltSz == 32)
6743 return false;
6745 return true;
6748 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6749 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6750 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6751 unsigned &WhichResult,
6752 bool &isV_UNDEF) {
6753 isV_UNDEF = false;
6754 if (isVTRNMask(ShuffleMask, VT, WhichResult))
6755 return ARMISD::VTRN;
6756 if (isVUZPMask(ShuffleMask, VT, WhichResult))
6757 return ARMISD::VUZP;
6758 if (isVZIPMask(ShuffleMask, VT, WhichResult))
6759 return ARMISD::VZIP;
6761 isV_UNDEF = true;
6762 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6763 return ARMISD::VTRN;
6764 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6765 return ARMISD::VUZP;
6766 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6767 return ARMISD::VZIP;
6769 return 0;
6772 /// \return true if this is a reverse operation on an vector.
6773 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6774 unsigned NumElts = VT.getVectorNumElements();
6775 // Make sure the mask has the right size.
6776 if (NumElts != M.size())
6777 return false;
6779 // Look for <15, ..., 3, -1, 1, 0>.
6780 for (unsigned i = 0; i != NumElts; ++i)
6781 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6782 return false;
6784 return true;
6787 // If N is an integer constant that can be moved into a register in one
6788 // instruction, return an SDValue of such a constant (will become a MOV
6789 // instruction). Otherwise return null.
6790 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6791 const ARMSubtarget *ST, const SDLoc &dl) {
6792 uint64_t Val;
6793 if (!isa<ConstantSDNode>(N))
6794 return SDValue();
6795 Val = cast<ConstantSDNode>(N)->getZExtValue();
6797 if (ST->isThumb1Only()) {
6798 if (Val <= 255 || ~Val <= 255)
6799 return DAG.getConstant(Val, dl, MVT::i32);
6800 } else {
6801 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6802 return DAG.getConstant(Val, dl, MVT::i32);
6804 return SDValue();
6807 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
6808 const ARMSubtarget *ST) {
6809 SDLoc dl(Op);
6810 EVT VT = Op.getValueType();
6812 assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
6814 unsigned NumElts = VT.getVectorNumElements();
6815 unsigned BoolMask;
6816 unsigned BitsPerBool;
6817 if (NumElts == 4) {
6818 BitsPerBool = 4;
6819 BoolMask = 0xf;
6820 } else if (NumElts == 8) {
6821 BitsPerBool = 2;
6822 BoolMask = 0x3;
6823 } else if (NumElts == 16) {
6824 BitsPerBool = 1;
6825 BoolMask = 0x1;
6826 } else
6827 return SDValue();
6829 // First create base with bits set where known
6830 unsigned Bits32 = 0;
6831 for (unsigned i = 0; i < NumElts; ++i) {
6832 SDValue V = Op.getOperand(i);
6833 if (!isa<ConstantSDNode>(V) && !V.isUndef())
6834 continue;
6835 bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
6836 if (BitSet)
6837 Bits32 |= BoolMask << (i * BitsPerBool);
6840 // Add in unknown nodes
6841 // FIXME: Handle splats of the same value better.
6842 SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
6843 DAG.getConstant(Bits32, dl, MVT::i32));
6844 for (unsigned i = 0; i < NumElts; ++i) {
6845 SDValue V = Op.getOperand(i);
6846 if (isa<ConstantSDNode>(V) || V.isUndef())
6847 continue;
6848 Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
6849 DAG.getConstant(i, dl, MVT::i32));
6852 return Base;
6855 // If this is a case we can't handle, return null and let the default
6856 // expansion code take care of it.
6857 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6858 const ARMSubtarget *ST) const {
6859 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6860 SDLoc dl(Op);
6861 EVT VT = Op.getValueType();
6863 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
6864 return LowerBUILD_VECTOR_i1(Op, DAG, ST);
6866 APInt SplatBits, SplatUndef;
6867 unsigned SplatBitSize;
6868 bool HasAnyUndefs;
6869 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6870 if (SplatUndef.isAllOnesValue())
6871 return DAG.getUNDEF(VT);
6873 if ((ST->hasNEON() && SplatBitSize <= 64) ||
6874 (ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
6875 // Check if an immediate VMOV works.
6876 EVT VmovVT;
6877 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
6878 SplatUndef.getZExtValue(), SplatBitSize,
6879 DAG, dl, VmovVT, VT.is128BitVector(),
6880 VMOVModImm);
6882 if (Val.getNode()) {
6883 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6884 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6887 // Try an immediate VMVN.
6888 uint64_t NegatedImm = (~SplatBits).getZExtValue();
6889 Val = isVMOVModifiedImm(
6890 NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
6891 DAG, dl, VmovVT, VT.is128BitVector(),
6892 ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
6893 if (Val.getNode()) {
6894 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6895 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6898 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6899 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6900 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6901 if (ImmVal != -1) {
6902 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6903 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6909 // Scan through the operands to see if only one value is used.
6911 // As an optimisation, even if more than one value is used it may be more
6912 // profitable to splat with one value then change some lanes.
6914 // Heuristically we decide to do this if the vector has a "dominant" value,
6915 // defined as splatted to more than half of the lanes.
6916 unsigned NumElts = VT.getVectorNumElements();
6917 bool isOnlyLowElement = true;
6918 bool usesOnlyOneValue = true;
6919 bool hasDominantValue = false;
6920 bool isConstant = true;
6922 // Map of the number of times a particular SDValue appears in the
6923 // element list.
6924 DenseMap<SDValue, unsigned> ValueCounts;
6925 SDValue Value;
6926 for (unsigned i = 0; i < NumElts; ++i) {
6927 SDValue V = Op.getOperand(i);
6928 if (V.isUndef())
6929 continue;
6930 if (i > 0)
6931 isOnlyLowElement = false;
6932 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6933 isConstant = false;
6935 ValueCounts.insert(std::make_pair(V, 0));
6936 unsigned &Count = ValueCounts[V];
6938 // Is this value dominant? (takes up more than half of the lanes)
6939 if (++Count > (NumElts / 2)) {
6940 hasDominantValue = true;
6941 Value = V;
6944 if (ValueCounts.size() != 1)
6945 usesOnlyOneValue = false;
6946 if (!Value.getNode() && !ValueCounts.empty())
6947 Value = ValueCounts.begin()->first;
6949 if (ValueCounts.empty())
6950 return DAG.getUNDEF(VT);
6952 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6953 // Keep going if we are hitting this case.
6954 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6955 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6957 unsigned EltSize = VT.getScalarSizeInBits();
6959 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
6960 // i32 and try again.
6961 if (hasDominantValue && EltSize <= 32) {
6962 if (!isConstant) {
6963 SDValue N;
6965 // If we are VDUPing a value that comes directly from a vector, that will
6966 // cause an unnecessary move to and from a GPR, where instead we could
6967 // just use VDUPLANE. We can only do this if the lane being extracted
6968 // is at a constant index, as the VDUP from lane instructions only have
6969 // constant-index forms.
6970 ConstantSDNode *constIndex;
6971 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6972 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6973 // We need to create a new undef vector to use for the VDUPLANE if the
6974 // size of the vector from which we get the value is different than the
6975 // size of the vector that we need to create. We will insert the element
6976 // such that the register coalescer will remove unnecessary copies.
6977 if (VT != Value->getOperand(0).getValueType()) {
6978 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6979 VT.getVectorNumElements();
6980 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6981 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6982 Value, DAG.getConstant(index, dl, MVT::i32)),
6983 DAG.getConstant(index, dl, MVT::i32));
6984 } else
6985 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6986 Value->getOperand(0), Value->getOperand(1));
6987 } else
6988 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6990 if (!usesOnlyOneValue) {
6991 // The dominant value was splatted as 'N', but we now have to insert
6992 // all differing elements.
6993 for (unsigned I = 0; I < NumElts; ++I) {
6994 if (Op.getOperand(I) == Value)
6995 continue;
6996 SmallVector<SDValue, 3> Ops;
6997 Ops.push_back(N);
6998 Ops.push_back(Op.getOperand(I));
6999 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7000 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7003 return N;
7005 if (VT.getVectorElementType().isFloatingPoint()) {
7006 SmallVector<SDValue, 8> Ops;
7007 MVT FVT = VT.getVectorElementType().getSimpleVT();
7008 assert(FVT == MVT::f32 || FVT == MVT::f16);
7009 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7010 for (unsigned i = 0; i < NumElts; ++i)
7011 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7012 Op.getOperand(i)));
7013 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7014 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7015 Val = LowerBUILD_VECTOR(Val, DAG, ST);
7016 if (Val.getNode())
7017 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7019 if (usesOnlyOneValue) {
7020 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7021 if (isConstant && Val.getNode())
7022 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7026 // If all elements are constants and the case above didn't get hit, fall back
7027 // to the default expansion, which will generate a load from the constant
7028 // pool.
7029 if (isConstant)
7030 return SDValue();
7032 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7033 if (NumElts >= 4) {
7034 SDValue shuffle = ReconstructShuffle(Op, DAG);
7035 if (shuffle != SDValue())
7036 return shuffle;
7039 if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7040 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7041 // into two 64-bit vectors; we might discover a better way to lower it.
7042 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7043 EVT ExtVT = VT.getVectorElementType();
7044 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7045 SDValue Lower =
7046 DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7047 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7048 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7049 SDValue Upper = DAG.getBuildVector(
7050 HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7051 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7052 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7053 if (Lower && Upper)
7054 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7057 // Vectors with 32- or 64-bit elements can be built by directly assigning
7058 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7059 // will be legalized.
7060 if (EltSize >= 32) {
7061 // Do the expansion with floating-point types, since that is what the VFP
7062 // registers are defined to use, and since i64 is not legal.
7063 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7064 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7065 SmallVector<SDValue, 8> Ops;
7066 for (unsigned i = 0; i < NumElts; ++i)
7067 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7068 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7069 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7072 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7073 // know the default expansion would otherwise fall back on something even
7074 // worse. For a vector with one or two non-undef values, that's
7075 // scalar_to_vector for the elements followed by a shuffle (provided the
7076 // shuffle is valid for the target) and materialization element by element
7077 // on the stack followed by a load for everything else.
7078 if (!isConstant && !usesOnlyOneValue) {
7079 SDValue Vec = DAG.getUNDEF(VT);
7080 for (unsigned i = 0 ; i < NumElts; ++i) {
7081 SDValue V = Op.getOperand(i);
7082 if (V.isUndef())
7083 continue;
7084 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7085 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7087 return Vec;
7090 return SDValue();
7093 // Gather data to see if the operation can be modelled as a
7094 // shuffle in combination with VEXTs.
7095 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7096 SelectionDAG &DAG) const {
7097 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7098 SDLoc dl(Op);
7099 EVT VT = Op.getValueType();
7100 unsigned NumElts = VT.getVectorNumElements();
7102 struct ShuffleSourceInfo {
7103 SDValue Vec;
7104 unsigned MinElt = std::numeric_limits<unsigned>::max();
7105 unsigned MaxElt = 0;
7107 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7108 // be compatible with the shuffle we intend to construct. As a result
7109 // ShuffleVec will be some sliding window into the original Vec.
7110 SDValue ShuffleVec;
7112 // Code should guarantee that element i in Vec starts at element "WindowBase
7113 // + i * WindowScale in ShuffleVec".
7114 int WindowBase = 0;
7115 int WindowScale = 1;
7117 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7119 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7122 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7123 // node.
7124 SmallVector<ShuffleSourceInfo, 2> Sources;
7125 for (unsigned i = 0; i < NumElts; ++i) {
7126 SDValue V = Op.getOperand(i);
7127 if (V.isUndef())
7128 continue;
7129 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7130 // A shuffle can only come from building a vector from various
7131 // elements of other vectors.
7132 return SDValue();
7133 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7134 // Furthermore, shuffles require a constant mask, whereas extractelts
7135 // accept variable indices.
7136 return SDValue();
7139 // Add this element source to the list if it's not already there.
7140 SDValue SourceVec = V.getOperand(0);
7141 auto Source = llvm::find(Sources, SourceVec);
7142 if (Source == Sources.end())
7143 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7145 // Update the minimum and maximum lane number seen.
7146 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7147 Source->MinElt = std::min(Source->MinElt, EltNo);
7148 Source->MaxElt = std::max(Source->MaxElt, EltNo);
7151 // Currently only do something sane when at most two source vectors
7152 // are involved.
7153 if (Sources.size() > 2)
7154 return SDValue();
7156 // Find out the smallest element size among result and two sources, and use
7157 // it as element size to build the shuffle_vector.
7158 EVT SmallestEltTy = VT.getVectorElementType();
7159 for (auto &Source : Sources) {
7160 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7161 if (SrcEltTy.bitsLT(SmallestEltTy))
7162 SmallestEltTy = SrcEltTy;
7164 unsigned ResMultiplier =
7165 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7166 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7167 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7169 // If the source vector is too wide or too narrow, we may nevertheless be able
7170 // to construct a compatible shuffle either by concatenating it with UNDEF or
7171 // extracting a suitable range of elements.
7172 for (auto &Src : Sources) {
7173 EVT SrcVT = Src.ShuffleVec.getValueType();
7175 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
7176 continue;
7178 // This stage of the search produces a source with the same element type as
7179 // the original, but with a total width matching the BUILD_VECTOR output.
7180 EVT EltVT = SrcVT.getVectorElementType();
7181 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
7182 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7184 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
7185 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
7186 return SDValue();
7187 // We can pad out the smaller vector for free, so if it's part of a
7188 // shuffle...
7189 Src.ShuffleVec =
7190 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7191 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7192 continue;
7195 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
7196 return SDValue();
7198 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7199 // Span too large for a VEXT to cope
7200 return SDValue();
7203 if (Src.MinElt >= NumSrcElts) {
7204 // The extraction can just take the second half
7205 Src.ShuffleVec =
7206 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7207 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7208 Src.WindowBase = -NumSrcElts;
7209 } else if (Src.MaxElt < NumSrcElts) {
7210 // The extraction can just take the first half
7211 Src.ShuffleVec =
7212 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7213 DAG.getConstant(0, dl, MVT::i32));
7214 } else {
7215 // An actual VEXT is needed
7216 SDValue VEXTSrc1 =
7217 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7218 DAG.getConstant(0, dl, MVT::i32));
7219 SDValue VEXTSrc2 =
7220 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7221 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7223 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7224 VEXTSrc2,
7225 DAG.getConstant(Src.MinElt, dl, MVT::i32));
7226 Src.WindowBase = -Src.MinElt;
7230 // Another possible incompatibility occurs from the vector element types. We
7231 // can fix this by bitcasting the source vectors to the same type we intend
7232 // for the shuffle.
7233 for (auto &Src : Sources) {
7234 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7235 if (SrcEltTy == SmallestEltTy)
7236 continue;
7237 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7238 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
7239 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7240 Src.WindowBase *= Src.WindowScale;
7243 // Final sanity check before we try to actually produce a shuffle.
7244 LLVM_DEBUG(for (auto Src
7245 : Sources)
7246 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7248 // The stars all align, our next step is to produce the mask for the shuffle.
7249 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7250 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7251 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7252 SDValue Entry = Op.getOperand(i);
7253 if (Entry.isUndef())
7254 continue;
7256 auto Src = llvm::find(Sources, Entry.getOperand(0));
7257 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7259 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7260 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7261 // segment.
7262 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7263 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
7264 VT.getScalarSizeInBits());
7265 int LanesDefined = BitsDefined / BitsPerShuffleLane;
7267 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7268 // starting at the appropriate offset.
7269 int *LaneMask = &Mask[i * ResMultiplier];
7271 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7272 ExtractBase += NumElts * (Src - Sources.begin());
7273 for (int j = 0; j < LanesDefined; ++j)
7274 LaneMask[j] = ExtractBase + j;
7277 // Final check before we try to produce nonsense...
7278 if (!isShuffleMaskLegal(Mask, ShuffleVT))
7279 return SDValue();
7281 // We can't handle more than two sources. This should have already
7282 // been checked before this point.
7283 assert(Sources.size() <= 2 && "Too many sources!");
7285 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7286 for (unsigned i = 0; i < Sources.size(); ++i)
7287 ShuffleOps[i] = Sources[i].ShuffleVec;
7289 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7290 ShuffleOps[1], Mask);
7291 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
7294 enum ShuffleOpCodes {
7295 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7296 OP_VREV,
7297 OP_VDUP0,
7298 OP_VDUP1,
7299 OP_VDUP2,
7300 OP_VDUP3,
7301 OP_VEXT1,
7302 OP_VEXT2,
7303 OP_VEXT3,
7304 OP_VUZPL, // VUZP, left result
7305 OP_VUZPR, // VUZP, right result
7306 OP_VZIPL, // VZIP, left result
7307 OP_VZIPR, // VZIP, right result
7308 OP_VTRNL, // VTRN, left result
7309 OP_VTRNR // VTRN, right result
7312 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7313 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7314 switch (OpNum) {
7315 case OP_COPY:
7316 case OP_VREV:
7317 case OP_VDUP0:
7318 case OP_VDUP1:
7319 case OP_VDUP2:
7320 case OP_VDUP3:
7321 return true;
7323 return false;
7326 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7327 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7328 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7329 /// are assumed to be legal.
7330 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7331 if (VT.getVectorNumElements() == 4 &&
7332 (VT.is128BitVector() || VT.is64BitVector())) {
7333 unsigned PFIndexes[4];
7334 for (unsigned i = 0; i != 4; ++i) {
7335 if (M[i] < 0)
7336 PFIndexes[i] = 8;
7337 else
7338 PFIndexes[i] = M[i];
7341 // Compute the index in the perfect shuffle table.
7342 unsigned PFTableIndex =
7343 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7344 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7345 unsigned Cost = (PFEntry >> 30);
7347 if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7348 return true;
7351 bool ReverseVEXT, isV_UNDEF;
7352 unsigned Imm, WhichResult;
7354 unsigned EltSize = VT.getScalarSizeInBits();
7355 if (EltSize >= 32 ||
7356 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7357 isVREVMask(M, VT, 64) ||
7358 isVREVMask(M, VT, 32) ||
7359 isVREVMask(M, VT, 16))
7360 return true;
7361 else if (Subtarget->hasNEON() &&
7362 (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7363 isVTBLMask(M, VT) ||
7364 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7365 return true;
7366 else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7367 isReverseMask(M, VT))
7368 return true;
7369 else
7370 return false;
7373 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7374 /// the specified operations to build the shuffle.
7375 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7376 SDValue RHS, SelectionDAG &DAG,
7377 const SDLoc &dl) {
7378 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7379 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7380 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7382 if (OpNum == OP_COPY) {
7383 if (LHSID == (1*9+2)*9+3) return LHS;
7384 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7385 return RHS;
7388 SDValue OpLHS, OpRHS;
7389 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7390 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7391 EVT VT = OpLHS.getValueType();
7393 switch (OpNum) {
7394 default: llvm_unreachable("Unknown shuffle opcode!");
7395 case OP_VREV:
7396 // VREV divides the vector in half and swaps within the half.
7397 if (VT.getVectorElementType() == MVT::i32 ||
7398 VT.getVectorElementType() == MVT::f32)
7399 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7400 // vrev <4 x i16> -> VREV32
7401 if (VT.getVectorElementType() == MVT::i16)
7402 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7403 // vrev <4 x i8> -> VREV16
7404 assert(VT.getVectorElementType() == MVT::i8);
7405 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7406 case OP_VDUP0:
7407 case OP_VDUP1:
7408 case OP_VDUP2:
7409 case OP_VDUP3:
7410 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7411 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7412 case OP_VEXT1:
7413 case OP_VEXT2:
7414 case OP_VEXT3:
7415 return DAG.getNode(ARMISD::VEXT, dl, VT,
7416 OpLHS, OpRHS,
7417 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
7418 case OP_VUZPL:
7419 case OP_VUZPR:
7420 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7421 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7422 case OP_VZIPL:
7423 case OP_VZIPR:
7424 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7425 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7426 case OP_VTRNL:
7427 case OP_VTRNR:
7428 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7429 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7433 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7434 ArrayRef<int> ShuffleMask,
7435 SelectionDAG &DAG) {
7436 // Check to see if we can use the VTBL instruction.
7437 SDValue V1 = Op.getOperand(0);
7438 SDValue V2 = Op.getOperand(1);
7439 SDLoc DL(Op);
7441 SmallVector<SDValue, 8> VTBLMask;
7442 for (ArrayRef<int>::iterator
7443 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7444 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7446 if (V2.getNode()->isUndef())
7447 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7448 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7450 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7451 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7454 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7455 SelectionDAG &DAG) {
7456 SDLoc DL(Op);
7457 SDValue OpLHS = Op.getOperand(0);
7458 EVT VT = OpLHS.getValueType();
7460 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7461 "Expect an v8i16/v16i8 type");
7462 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7463 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7464 // extract the first 8 bytes into the top double word and the last 8 bytes
7465 // into the bottom double word. The v8i16 case is similar.
7466 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7467 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7468 DAG.getConstant(ExtractNum, DL, MVT::i32));
7471 static EVT getVectorTyFromPredicateVector(EVT VT) {
7472 switch (VT.getSimpleVT().SimpleTy) {
7473 case MVT::v4i1:
7474 return MVT::v4i32;
7475 case MVT::v8i1:
7476 return MVT::v8i16;
7477 case MVT::v16i1:
7478 return MVT::v16i8;
7479 default:
7480 llvm_unreachable("Unexpected vector predicate type");
7484 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
7485 SelectionDAG &DAG) {
7486 // Converting from boolean predicates to integers involves creating a vector
7487 // of all ones or all zeroes and selecting the lanes based upon the real
7488 // predicate.
7489 SDValue AllOnes =
7490 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
7491 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
7493 SDValue AllZeroes =
7494 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
7495 AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
7497 // Get full vector type from predicate type
7498 EVT NewVT = getVectorTyFromPredicateVector(VT);
7500 SDValue RecastV1;
7501 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7502 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7503 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7504 // since we know in hardware the sizes are really the same.
7505 if (VT != MVT::v16i1)
7506 RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
7507 else
7508 RecastV1 = Pred;
7510 // Select either all ones or zeroes depending upon the real predicate bits.
7511 SDValue PredAsVector =
7512 DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
7514 // Recast our new predicate-as-integer v16i8 vector into something
7515 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7516 return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
7519 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
7520 const ARMSubtarget *ST) {
7521 EVT VT = Op.getValueType();
7522 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7523 ArrayRef<int> ShuffleMask = SVN->getMask();
7525 assert(ST->hasMVEIntegerOps() &&
7526 "No support for vector shuffle of boolean predicates");
7528 SDValue V1 = Op.getOperand(0);
7529 SDLoc dl(Op);
7530 if (isReverseMask(ShuffleMask, VT)) {
7531 SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
7532 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
7533 SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
7534 DAG.getConstant(16, dl, MVT::i32));
7535 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
7538 // Until we can come up with optimised cases for every single vector
7539 // shuffle in existence we have chosen the least painful strategy. This is
7540 // to essentially promote the boolean predicate to a 8-bit integer, where
7541 // each predicate represents a byte. Then we fall back on a normal integer
7542 // vector shuffle and convert the result back into a predicate vector. In
7543 // many cases the generated code might be even better than scalar code
7544 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7545 // fields in a register into 8 other arbitrary 2-bit fields!
7546 SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
7547 EVT NewVT = PredAsVector.getValueType();
7549 // Do the shuffle!
7550 SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
7551 DAG.getUNDEF(NewVT), ShuffleMask);
7553 // Now return the result of comparing the shuffled vector with zero,
7554 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7555 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
7556 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7559 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
7560 const ARMSubtarget *ST) {
7561 SDValue V1 = Op.getOperand(0);
7562 SDValue V2 = Op.getOperand(1);
7563 SDLoc dl(Op);
7564 EVT VT = Op.getValueType();
7565 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7566 unsigned EltSize = VT.getScalarSizeInBits();
7568 if (ST->hasMVEIntegerOps() && EltSize == 1)
7569 return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
7571 // Convert shuffles that are directly supported on NEON to target-specific
7572 // DAG nodes, instead of keeping them as shuffles and matching them again
7573 // during code selection. This is more efficient and avoids the possibility
7574 // of inconsistencies between legalization and selection.
7575 // FIXME: floating-point vectors should be canonicalized to integer vectors
7576 // of the same time so that they get CSEd properly.
7577 ArrayRef<int> ShuffleMask = SVN->getMask();
7579 if (EltSize <= 32) {
7580 if (SVN->isSplat()) {
7581 int Lane = SVN->getSplatIndex();
7582 // If this is undef splat, generate it via "just" vdup, if possible.
7583 if (Lane == -1) Lane = 0;
7585 // Test if V1 is a SCALAR_TO_VECTOR.
7586 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7587 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7589 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7590 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7591 // reaches it).
7592 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7593 !isa<ConstantSDNode>(V1.getOperand(0))) {
7594 bool IsScalarToVector = true;
7595 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7596 if (!V1.getOperand(i).isUndef()) {
7597 IsScalarToVector = false;
7598 break;
7600 if (IsScalarToVector)
7601 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7603 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7604 DAG.getConstant(Lane, dl, MVT::i32));
7607 bool ReverseVEXT = false;
7608 unsigned Imm = 0;
7609 if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7610 if (ReverseVEXT)
7611 std::swap(V1, V2);
7612 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7613 DAG.getConstant(Imm, dl, MVT::i32));
7616 if (isVREVMask(ShuffleMask, VT, 64))
7617 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7618 if (isVREVMask(ShuffleMask, VT, 32))
7619 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7620 if (isVREVMask(ShuffleMask, VT, 16))
7621 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7623 if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7624 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7625 DAG.getConstant(Imm, dl, MVT::i32));
7628 // Check for Neon shuffles that modify both input vectors in place.
7629 // If both results are used, i.e., if there are two shuffles with the same
7630 // source operands and with masks corresponding to both results of one of
7631 // these operations, DAG memoization will ensure that a single node is
7632 // used for both shuffles.
7633 unsigned WhichResult = 0;
7634 bool isV_UNDEF = false;
7635 if (ST->hasNEON()) {
7636 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7637 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7638 if (isV_UNDEF)
7639 V2 = V1;
7640 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7641 .getValue(WhichResult);
7645 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7646 // shuffles that produce a result larger than their operands with:
7647 // shuffle(concat(v1, undef), concat(v2, undef))
7648 // ->
7649 // shuffle(concat(v1, v2), undef)
7650 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7652 // This is useful in the general case, but there are special cases where
7653 // native shuffles produce larger results: the two-result ops.
7655 // Look through the concat when lowering them:
7656 // shuffle(concat(v1, v2), undef)
7657 // ->
7658 // concat(VZIP(v1, v2):0, :1)
7660 if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7661 SDValue SubV1 = V1->getOperand(0);
7662 SDValue SubV2 = V1->getOperand(1);
7663 EVT SubVT = SubV1.getValueType();
7665 // We expect these to have been canonicalized to -1.
7666 assert(llvm::all_of(ShuffleMask, [&](int i) {
7667 return i < (int)VT.getVectorNumElements();
7668 }) && "Unexpected shuffle index into UNDEF operand!");
7670 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7671 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7672 if (isV_UNDEF)
7673 SubV2 = SubV1;
7674 assert((WhichResult == 0) &&
7675 "In-place shuffle of concat can only have one result!");
7676 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7677 SubV1, SubV2);
7678 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7679 Res.getValue(1));
7684 // If the shuffle is not directly supported and it has 4 elements, use
7685 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7686 unsigned NumElts = VT.getVectorNumElements();
7687 if (NumElts == 4) {
7688 unsigned PFIndexes[4];
7689 for (unsigned i = 0; i != 4; ++i) {
7690 if (ShuffleMask[i] < 0)
7691 PFIndexes[i] = 8;
7692 else
7693 PFIndexes[i] = ShuffleMask[i];
7696 // Compute the index in the perfect shuffle table.
7697 unsigned PFTableIndex =
7698 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7699 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7700 unsigned Cost = (PFEntry >> 30);
7702 if (Cost <= 4) {
7703 if (ST->hasNEON())
7704 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7705 else if (isLegalMVEShuffleOp(PFEntry)) {
7706 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7707 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7708 unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
7709 unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
7710 if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
7711 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7716 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7717 if (EltSize >= 32) {
7718 // Do the expansion with floating-point types, since that is what the VFP
7719 // registers are defined to use, and since i64 is not legal.
7720 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7721 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7722 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7723 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7724 SmallVector<SDValue, 8> Ops;
7725 for (unsigned i = 0; i < NumElts; ++i) {
7726 if (ShuffleMask[i] < 0)
7727 Ops.push_back(DAG.getUNDEF(EltVT));
7728 else
7729 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7730 ShuffleMask[i] < (int)NumElts ? V1 : V2,
7731 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7732 dl, MVT::i32)));
7734 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7735 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7738 if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7739 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7741 if (ST->hasNEON() && VT == MVT::v8i8)
7742 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7743 return NewOp;
7745 return SDValue();
7748 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
7749 const ARMSubtarget *ST) {
7750 EVT VecVT = Op.getOperand(0).getValueType();
7751 SDLoc dl(Op);
7753 assert(ST->hasMVEIntegerOps() &&
7754 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7756 SDValue Conv =
7757 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
7758 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7759 unsigned LaneWidth =
7760 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
7761 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
7762 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
7763 Op.getOperand(1), DAG.getValueType(MVT::i1));
7764 SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
7765 DAG.getConstant(~Mask, dl, MVT::i32));
7766 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
7769 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
7770 SelectionDAG &DAG) const {
7771 // INSERT_VECTOR_ELT is legal only for immediate indexes.
7772 SDValue Lane = Op.getOperand(2);
7773 if (!isa<ConstantSDNode>(Lane))
7774 return SDValue();
7776 SDValue Elt = Op.getOperand(1);
7777 EVT EltVT = Elt.getValueType();
7779 if (Subtarget->hasMVEIntegerOps() &&
7780 Op.getValueType().getScalarSizeInBits() == 1)
7781 return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
7783 if (getTypeAction(*DAG.getContext(), EltVT) ==
7784 TargetLowering::TypePromoteFloat) {
7785 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7786 // but the type system will try to do that if we don't intervene.
7787 // Reinterpret any such vector-element insertion as one with the
7788 // corresponding integer types.
7790 SDLoc dl(Op);
7792 EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
7793 assert(getTypeAction(*DAG.getContext(), IEltVT) !=
7794 TargetLowering::TypePromoteFloat);
7796 SDValue VecIn = Op.getOperand(0);
7797 EVT VecVT = VecIn.getValueType();
7798 EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
7799 VecVT.getVectorNumElements());
7801 SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
7802 SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
7803 SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
7804 IVecIn, IElt, Lane);
7805 return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
7808 return Op;
7811 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
7812 const ARMSubtarget *ST) {
7813 EVT VecVT = Op.getOperand(0).getValueType();
7814 SDLoc dl(Op);
7816 assert(ST->hasMVEIntegerOps() &&
7817 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
7819 SDValue Conv =
7820 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
7821 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7822 unsigned LaneWidth =
7823 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
7824 SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
7825 DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
7826 return Shift;
7829 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
7830 const ARMSubtarget *ST) {
7831 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7832 SDValue Lane = Op.getOperand(1);
7833 if (!isa<ConstantSDNode>(Lane))
7834 return SDValue();
7836 SDValue Vec = Op.getOperand(0);
7837 EVT VT = Vec.getValueType();
7839 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7840 return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
7842 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7843 SDLoc dl(Op);
7844 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7847 return Op;
7850 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
7851 const ARMSubtarget *ST) {
7852 SDValue V1 = Op.getOperand(0);
7853 SDValue V2 = Op.getOperand(1);
7854 SDLoc dl(Op);
7855 EVT VT = Op.getValueType();
7856 EVT Op1VT = V1.getValueType();
7857 EVT Op2VT = V2.getValueType();
7858 unsigned NumElts = VT.getVectorNumElements();
7860 assert(Op1VT == Op2VT && "Operand types don't match!");
7861 assert(VT.getScalarSizeInBits() == 1 &&
7862 "Unexpected custom CONCAT_VECTORS lowering");
7863 assert(ST->hasMVEIntegerOps() &&
7864 "CONCAT_VECTORS lowering only supported for MVE");
7866 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
7867 SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
7869 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
7870 // promoted to v8i16, etc.
7872 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
7874 // Extract the vector elements from Op1 and Op2 one by one and truncate them
7875 // to be the right size for the destination. For example, if Op1 is v4i1 then
7876 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
7877 // which when promoted is v8i16. That means each i32 element from Op1 needs
7878 // truncating to i16 and inserting in the result.
7879 EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
7880 SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
7881 auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
7882 EVT NewVT = NewV.getValueType();
7883 EVT ConcatVT = ConVec.getValueType();
7884 for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
7885 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
7886 DAG.getIntPtrConstant(i, dl));
7887 ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
7888 DAG.getConstant(j, dl, MVT::i32));
7890 return ConVec;
7892 unsigned j = 0;
7893 ConVec = ExractInto(NewV1, ConVec, j);
7894 ConVec = ExractInto(NewV2, ConVec, j);
7896 // Now return the result of comparing the subvector with zero,
7897 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7898 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
7899 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7902 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
7903 const ARMSubtarget *ST) {
7904 EVT VT = Op->getValueType(0);
7905 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7906 return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
7908 // The only time a CONCAT_VECTORS operation can have legal types is when
7909 // two 64-bit vectors are concatenated to a 128-bit vector.
7910 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7911 "unexpected CONCAT_VECTORS");
7912 SDLoc dl(Op);
7913 SDValue Val = DAG.getUNDEF(MVT::v2f64);
7914 SDValue Op0 = Op.getOperand(0);
7915 SDValue Op1 = Op.getOperand(1);
7916 if (!Op0.isUndef())
7917 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7918 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7919 DAG.getIntPtrConstant(0, dl));
7920 if (!Op1.isUndef())
7921 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7922 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7923 DAG.getIntPtrConstant(1, dl));
7924 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7927 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
7928 const ARMSubtarget *ST) {
7929 SDValue V1 = Op.getOperand(0);
7930 SDValue V2 = Op.getOperand(1);
7931 SDLoc dl(Op);
7932 EVT VT = Op.getValueType();
7933 EVT Op1VT = V1.getValueType();
7934 unsigned NumElts = VT.getVectorNumElements();
7935 unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
7937 assert(VT.getScalarSizeInBits() == 1 &&
7938 "Unexpected custom EXTRACT_SUBVECTOR lowering");
7939 assert(ST->hasMVEIntegerOps() &&
7940 "EXTRACT_SUBVECTOR lowering only supported for MVE");
7942 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
7944 // We now have Op1 promoted to a vector of integers, where v8i1 gets
7945 // promoted to v8i16, etc.
7947 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
7949 EVT SubVT = MVT::getVectorVT(ElType, NumElts);
7950 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
7951 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
7952 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
7953 DAG.getIntPtrConstant(i, dl));
7954 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
7955 DAG.getConstant(j, dl, MVT::i32));
7958 // Now return the result of comparing the subvector with zero,
7959 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7960 return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
7961 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7964 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7965 /// element has been zero/sign-extended, depending on the isSigned parameter,
7966 /// from an integer type half its size.
7967 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7968 bool isSigned) {
7969 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7970 EVT VT = N->getValueType(0);
7971 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7972 SDNode *BVN = N->getOperand(0).getNode();
7973 if (BVN->getValueType(0) != MVT::v4i32 ||
7974 BVN->getOpcode() != ISD::BUILD_VECTOR)
7975 return false;
7976 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7977 unsigned HiElt = 1 - LoElt;
7978 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7979 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7980 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7981 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7982 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7983 return false;
7984 if (isSigned) {
7985 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7986 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7987 return true;
7988 } else {
7989 if (Hi0->isNullValue() && Hi1->isNullValue())
7990 return true;
7992 return false;
7995 if (N->getOpcode() != ISD::BUILD_VECTOR)
7996 return false;
7998 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7999 SDNode *Elt = N->getOperand(i).getNode();
8000 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8001 unsigned EltSize = VT.getScalarSizeInBits();
8002 unsigned HalfSize = EltSize / 2;
8003 if (isSigned) {
8004 if (!isIntN(HalfSize, C->getSExtValue()))
8005 return false;
8006 } else {
8007 if (!isUIntN(HalfSize, C->getZExtValue()))
8008 return false;
8010 continue;
8012 return false;
8015 return true;
8018 /// isSignExtended - Check if a node is a vector value that is sign-extended
8019 /// or a constant BUILD_VECTOR with sign-extended elements.
8020 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8021 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8022 return true;
8023 if (isExtendedBUILD_VECTOR(N, DAG, true))
8024 return true;
8025 return false;
8028 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8029 /// or a constant BUILD_VECTOR with zero-extended elements.
8030 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8031 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
8032 return true;
8033 if (isExtendedBUILD_VECTOR(N, DAG, false))
8034 return true;
8035 return false;
8038 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8039 if (OrigVT.getSizeInBits() >= 64)
8040 return OrigVT;
8042 assert(OrigVT.isSimple() && "Expecting a simple value type");
8044 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8045 switch (OrigSimpleTy) {
8046 default: llvm_unreachable("Unexpected Vector Type");
8047 case MVT::v2i8:
8048 case MVT::v2i16:
8049 return MVT::v2i32;
8050 case MVT::v4i8:
8051 return MVT::v4i16;
8055 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8056 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8057 /// We insert the required extension here to get the vector to fill a D register.
8058 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8059 const EVT &OrigTy,
8060 const EVT &ExtTy,
8061 unsigned ExtOpcode) {
8062 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8063 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8064 // 64-bits we need to insert a new extension so that it will be 64-bits.
8065 assert(ExtTy.is128BitVector() && "Unexpected extension size");
8066 if (OrigTy.getSizeInBits() >= 64)
8067 return N;
8069 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8070 EVT NewVT = getExtensionTo64Bits(OrigTy);
8072 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8075 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8076 /// does not do any sign/zero extension. If the original vector is less
8077 /// than 64 bits, an appropriate extension will be added after the load to
8078 /// reach a total size of 64 bits. We have to add the extension separately
8079 /// because ARM does not have a sign/zero extending load for vectors.
8080 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8081 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8083 // The load already has the right type.
8084 if (ExtendedTy == LD->getMemoryVT())
8085 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8086 LD->getBasePtr(), LD->getPointerInfo(),
8087 LD->getAlignment(), LD->getMemOperand()->getFlags());
8089 // We need to create a zextload/sextload. We cannot just create a load
8090 // followed by a zext/zext node because LowerMUL is also run during normal
8091 // operation legalization where we can't create illegal types.
8092 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8093 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8094 LD->getMemoryVT(), LD->getAlignment(),
8095 LD->getMemOperand()->getFlags());
8098 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8099 /// extending load, or BUILD_VECTOR with extended elements, return the
8100 /// unextended value. The unextended vector should be 64 bits so that it can
8101 /// be used as an operand to a VMULL instruction. If the original vector size
8102 /// before extension is less than 64 bits we add a an extension to resize
8103 /// the vector to 64 bits.
8104 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8105 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
8106 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8107 N->getOperand(0)->getValueType(0),
8108 N->getValueType(0),
8109 N->getOpcode());
8111 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8112 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8113 "Expected extending load");
8115 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8116 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8117 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8118 SDValue extLoad =
8119 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8120 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8122 return newLoad;
8125 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8126 // have been legalized as a BITCAST from v4i32.
8127 if (N->getOpcode() == ISD::BITCAST) {
8128 SDNode *BVN = N->getOperand(0).getNode();
8129 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8130 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8131 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8132 return DAG.getBuildVector(
8133 MVT::v2i32, SDLoc(N),
8134 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8136 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8137 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8138 EVT VT = N->getValueType(0);
8139 unsigned EltSize = VT.getScalarSizeInBits() / 2;
8140 unsigned NumElts = VT.getVectorNumElements();
8141 MVT TruncVT = MVT::getIntegerVT(EltSize);
8142 SmallVector<SDValue, 8> Ops;
8143 SDLoc dl(N);
8144 for (unsigned i = 0; i != NumElts; ++i) {
8145 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8146 const APInt &CInt = C->getAPIntValue();
8147 // Element types smaller than 32 bits are not legal, so use i32 elements.
8148 // The values are implicitly truncated so sext vs. zext doesn't matter.
8149 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8151 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8154 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8155 unsigned Opcode = N->getOpcode();
8156 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8157 SDNode *N0 = N->getOperand(0).getNode();
8158 SDNode *N1 = N->getOperand(1).getNode();
8159 return N0->hasOneUse() && N1->hasOneUse() &&
8160 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8162 return false;
8165 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8166 unsigned Opcode = N->getOpcode();
8167 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8168 SDNode *N0 = N->getOperand(0).getNode();
8169 SDNode *N1 = N->getOperand(1).getNode();
8170 return N0->hasOneUse() && N1->hasOneUse() &&
8171 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8173 return false;
8176 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8177 // Multiplications are only custom-lowered for 128-bit vectors so that
8178 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8179 EVT VT = Op.getValueType();
8180 assert(VT.is128BitVector() && VT.isInteger() &&
8181 "unexpected type for custom-lowering ISD::MUL");
8182 SDNode *N0 = Op.getOperand(0).getNode();
8183 SDNode *N1 = Op.getOperand(1).getNode();
8184 unsigned NewOpc = 0;
8185 bool isMLA = false;
8186 bool isN0SExt = isSignExtended(N0, DAG);
8187 bool isN1SExt = isSignExtended(N1, DAG);
8188 if (isN0SExt && isN1SExt)
8189 NewOpc = ARMISD::VMULLs;
8190 else {
8191 bool isN0ZExt = isZeroExtended(N0, DAG);
8192 bool isN1ZExt = isZeroExtended(N1, DAG);
8193 if (isN0ZExt && isN1ZExt)
8194 NewOpc = ARMISD::VMULLu;
8195 else if (isN1SExt || isN1ZExt) {
8196 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8197 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8198 if (isN1SExt && isAddSubSExt(N0, DAG)) {
8199 NewOpc = ARMISD::VMULLs;
8200 isMLA = true;
8201 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8202 NewOpc = ARMISD::VMULLu;
8203 isMLA = true;
8204 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8205 std::swap(N0, N1);
8206 NewOpc = ARMISD::VMULLu;
8207 isMLA = true;
8211 if (!NewOpc) {
8212 if (VT == MVT::v2i64)
8213 // Fall through to expand this. It is not legal.
8214 return SDValue();
8215 else
8216 // Other vector multiplications are legal.
8217 return Op;
8221 // Legalize to a VMULL instruction.
8222 SDLoc DL(Op);
8223 SDValue Op0;
8224 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8225 if (!isMLA) {
8226 Op0 = SkipExtensionForVMULL(N0, DAG);
8227 assert(Op0.getValueType().is64BitVector() &&
8228 Op1.getValueType().is64BitVector() &&
8229 "unexpected types for extended operands to VMULL");
8230 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8233 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8234 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8235 // vmull q0, d4, d6
8236 // vmlal q0, d5, d6
8237 // is faster than
8238 // vaddl q0, d4, d5
8239 // vmovl q1, d6
8240 // vmul q0, q0, q1
8241 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8242 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8243 EVT Op1VT = Op1.getValueType();
8244 return DAG.getNode(N0->getOpcode(), DL, VT,
8245 DAG.getNode(NewOpc, DL, VT,
8246 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8247 DAG.getNode(NewOpc, DL, VT,
8248 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8251 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8252 SelectionDAG &DAG) {
8253 // TODO: Should this propagate fast-math-flags?
8255 // Convert to float
8256 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8257 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8258 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8259 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8260 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8261 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8262 // Get reciprocal estimate.
8263 // float4 recip = vrecpeq_f32(yf);
8264 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8265 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8267 // Because char has a smaller range than uchar, we can actually get away
8268 // without any newton steps. This requires that we use a weird bias
8269 // of 0xb000, however (again, this has been exhaustively tested).
8270 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8271 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8272 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8273 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8274 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8275 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8276 // Convert back to short.
8277 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8278 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8279 return X;
8282 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8283 SelectionDAG &DAG) {
8284 // TODO: Should this propagate fast-math-flags?
8286 SDValue N2;
8287 // Convert to float.
8288 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8289 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8290 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8291 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8292 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8293 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8295 // Use reciprocal estimate and one refinement step.
8296 // float4 recip = vrecpeq_f32(yf);
8297 // recip *= vrecpsq_f32(yf, recip);
8298 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8299 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8300 N1);
8301 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8302 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8303 N1, N2);
8304 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8305 // Because short has a smaller range than ushort, we can actually get away
8306 // with only a single newton step. This requires that we use a weird bias
8307 // of 89, however (again, this has been exhaustively tested).
8308 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8309 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8310 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8311 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
8312 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8313 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8314 // Convert back to integer and return.
8315 // return vmovn_s32(vcvt_s32_f32(result));
8316 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8317 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8318 return N0;
8321 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
8322 const ARMSubtarget *ST) {
8323 EVT VT = Op.getValueType();
8324 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8325 "unexpected type for custom-lowering ISD::SDIV");
8327 SDLoc dl(Op);
8328 SDValue N0 = Op.getOperand(0);
8329 SDValue N1 = Op.getOperand(1);
8330 SDValue N2, N3;
8332 if (VT == MVT::v8i8) {
8333 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
8334 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
8336 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8337 DAG.getIntPtrConstant(4, dl));
8338 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8339 DAG.getIntPtrConstant(4, dl));
8340 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8341 DAG.getIntPtrConstant(0, dl));
8342 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8343 DAG.getIntPtrConstant(0, dl));
8345 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
8346 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
8348 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8349 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8351 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
8352 return N0;
8354 return LowerSDIV_v4i16(N0, N1, dl, DAG);
8357 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
8358 const ARMSubtarget *ST) {
8359 // TODO: Should this propagate fast-math-flags?
8360 EVT VT = Op.getValueType();
8361 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8362 "unexpected type for custom-lowering ISD::UDIV");
8364 SDLoc dl(Op);
8365 SDValue N0 = Op.getOperand(0);
8366 SDValue N1 = Op.getOperand(1);
8367 SDValue N2, N3;
8369 if (VT == MVT::v8i8) {
8370 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
8371 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
8373 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8374 DAG.getIntPtrConstant(4, dl));
8375 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8376 DAG.getIntPtrConstant(4, dl));
8377 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8378 DAG.getIntPtrConstant(0, dl));
8379 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8380 DAG.getIntPtrConstant(0, dl));
8382 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
8383 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
8385 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8386 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8388 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
8389 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
8390 MVT::i32),
8391 N0);
8392 return N0;
8395 // v4i16 sdiv ... Convert to float.
8396 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8397 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8398 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
8399 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
8400 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8401 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8403 // Use reciprocal estimate and two refinement steps.
8404 // float4 recip = vrecpeq_f32(yf);
8405 // recip *= vrecpsq_f32(yf, recip);
8406 // recip *= vrecpsq_f32(yf, recip);
8407 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8408 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8409 BN1);
8410 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8411 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8412 BN1, N2);
8413 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8414 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8415 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8416 BN1, N2);
8417 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8418 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8419 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8420 // and that it will never cause us to return an answer too large).
8421 // float4 result = as_float4(as_int4(xf*recip) + 2);
8422 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8423 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8424 N1 = DAG.getConstant(2, dl, MVT::v4i32);
8425 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8426 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8427 // Convert back to integer and return.
8428 // return vmovn_u32(vcvt_s32_f32(result));
8429 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8430 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8431 return N0;
8434 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
8435 SDNode *N = Op.getNode();
8436 EVT VT = N->getValueType(0);
8437 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8439 SDValue Carry = Op.getOperand(2);
8441 SDLoc DL(Op);
8443 SDValue Result;
8444 if (Op.getOpcode() == ISD::ADDCARRY) {
8445 // This converts the boolean value carry into the carry flag.
8446 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8448 // Do the addition proper using the carry flag we wanted.
8449 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
8450 Op.getOperand(1), Carry);
8452 // Now convert the carry flag into a boolean value.
8453 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8454 } else {
8455 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8456 // have to invert the carry first.
8457 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8458 DAG.getConstant(1, DL, MVT::i32), Carry);
8459 // This converts the boolean value carry into the carry flag.
8460 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8462 // Do the subtraction proper using the carry flag we wanted.
8463 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
8464 Op.getOperand(1), Carry);
8466 // Now convert the carry flag into a boolean value.
8467 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8468 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8469 // by ISD::SUBCARRY, so compute 1 - C.
8470 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8471 DAG.getConstant(1, DL, MVT::i32), Carry);
8474 // Return both values.
8475 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
8478 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
8479 assert(Subtarget->isTargetDarwin());
8481 // For iOS, we want to call an alternative entry point: __sincos_stret,
8482 // return values are passed via sret.
8483 SDLoc dl(Op);
8484 SDValue Arg = Op.getOperand(0);
8485 EVT ArgVT = Arg.getValueType();
8486 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8487 auto PtrVT = getPointerTy(DAG.getDataLayout());
8489 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8490 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8492 // Pair of floats / doubles used to pass the result.
8493 Type *RetTy = StructType::get(ArgTy, ArgTy);
8494 auto &DL = DAG.getDataLayout();
8496 ArgListTy Args;
8497 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
8498 SDValue SRet;
8499 if (ShouldUseSRet) {
8500 // Create stack object for sret.
8501 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
8502 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
8503 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
8504 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
8506 ArgListEntry Entry;
8507 Entry.Node = SRet;
8508 Entry.Ty = RetTy->getPointerTo();
8509 Entry.IsSExt = false;
8510 Entry.IsZExt = false;
8511 Entry.IsSRet = true;
8512 Args.push_back(Entry);
8513 RetTy = Type::getVoidTy(*DAG.getContext());
8516 ArgListEntry Entry;
8517 Entry.Node = Arg;
8518 Entry.Ty = ArgTy;
8519 Entry.IsSExt = false;
8520 Entry.IsZExt = false;
8521 Args.push_back(Entry);
8523 RTLIB::Libcall LC =
8524 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
8525 const char *LibcallName = getLibcallName(LC);
8526 CallingConv::ID CC = getLibcallCallingConv(LC);
8527 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
8529 TargetLowering::CallLoweringInfo CLI(DAG);
8530 CLI.setDebugLoc(dl)
8531 .setChain(DAG.getEntryNode())
8532 .setCallee(CC, RetTy, Callee, std::move(Args))
8533 .setDiscardResult(ShouldUseSRet);
8534 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8536 if (!ShouldUseSRet)
8537 return CallResult.first;
8539 SDValue LoadSin =
8540 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
8542 // Address of cos field.
8543 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
8544 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
8545 SDValue LoadCos =
8546 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
8548 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
8549 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
8550 LoadSin.getValue(0), LoadCos.getValue(0));
8553 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
8554 bool Signed,
8555 SDValue &Chain) const {
8556 EVT VT = Op.getValueType();
8557 assert((VT == MVT::i32 || VT == MVT::i64) &&
8558 "unexpected type for custom lowering DIV");
8559 SDLoc dl(Op);
8561 const auto &DL = DAG.getDataLayout();
8562 const auto &TLI = DAG.getTargetLoweringInfo();
8564 const char *Name = nullptr;
8565 if (Signed)
8566 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
8567 else
8568 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
8570 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
8572 ARMTargetLowering::ArgListTy Args;
8574 for (auto AI : {1, 0}) {
8575 ArgListEntry Arg;
8576 Arg.Node = Op.getOperand(AI);
8577 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
8578 Args.push_back(Arg);
8581 CallLoweringInfo CLI(DAG);
8582 CLI.setDebugLoc(dl)
8583 .setChain(Chain)
8584 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
8585 ES, std::move(Args));
8587 return LowerCallTo(CLI).first;
8590 // This is a code size optimisation: return the original SDIV node to
8591 // DAGCombiner when we don't want to expand SDIV into a sequence of
8592 // instructions, and an empty node otherwise which will cause the
8593 // SDIV to be expanded in DAGCombine.
8594 SDValue
8595 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8596 SelectionDAG &DAG,
8597 SmallVectorImpl<SDNode *> &Created) const {
8598 // TODO: Support SREM
8599 if (N->getOpcode() != ISD::SDIV)
8600 return SDValue();
8602 const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
8603 const bool MinSize = ST.hasMinSize();
8604 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
8605 : ST.hasDivideInARMMode();
8607 // Don't touch vector types; rewriting this may lead to scalarizing
8608 // the int divs.
8609 if (N->getOperand(0).getValueType().isVector())
8610 return SDValue();
8612 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8613 // hwdiv support for this to be really profitable.
8614 if (!(MinSize && HasDivide))
8615 return SDValue();
8617 // ARM mode is a bit simpler than Thumb: we can handle large power
8618 // of 2 immediates with 1 mov instruction; no further checks required,
8619 // just return the sdiv node.
8620 if (!ST.isThumb())
8621 return SDValue(N, 0);
8623 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8624 // and thus lose the code size benefits of a MOVS that requires only 2.
8625 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8626 // but as it's doing exactly this, it's not worth the trouble to get TTI.
8627 if (Divisor.sgt(128))
8628 return SDValue();
8630 return SDValue(N, 0);
8633 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
8634 bool Signed) const {
8635 assert(Op.getValueType() == MVT::i32 &&
8636 "unexpected type for custom lowering DIV");
8637 SDLoc dl(Op);
8639 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
8640 DAG.getEntryNode(), Op.getOperand(1));
8642 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8645 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
8646 SDLoc DL(N);
8647 SDValue Op = N->getOperand(1);
8648 if (N->getValueType(0) == MVT::i32)
8649 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
8650 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8651 DAG.getConstant(0, DL, MVT::i32));
8652 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8653 DAG.getConstant(1, DL, MVT::i32));
8654 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
8655 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
8658 void ARMTargetLowering::ExpandDIV_Windows(
8659 SDValue Op, SelectionDAG &DAG, bool Signed,
8660 SmallVectorImpl<SDValue> &Results) const {
8661 const auto &DL = DAG.getDataLayout();
8662 const auto &TLI = DAG.getTargetLoweringInfo();
8664 assert(Op.getValueType() == MVT::i64 &&
8665 "unexpected type for custom lowering DIV");
8666 SDLoc dl(Op);
8668 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
8670 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8672 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
8673 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
8674 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
8675 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
8677 Results.push_back(Lower);
8678 Results.push_back(Upper);
8681 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
8682 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
8683 // Acquire/Release load/store is not legal for targets without a dmb or
8684 // equivalent available.
8685 return SDValue();
8687 // Monotonic load/store is legal for all targets.
8688 return Op;
8691 static void ReplaceREADCYCLECOUNTER(SDNode *N,
8692 SmallVectorImpl<SDValue> &Results,
8693 SelectionDAG &DAG,
8694 const ARMSubtarget *Subtarget) {
8695 SDLoc DL(N);
8696 // Under Power Management extensions, the cycle-count is:
8697 // mrc p15, #0, <Rt>, c9, c13, #0
8698 SDValue Ops[] = { N->getOperand(0), // Chain
8699 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
8700 DAG.getConstant(15, DL, MVT::i32),
8701 DAG.getConstant(0, DL, MVT::i32),
8702 DAG.getConstant(9, DL, MVT::i32),
8703 DAG.getConstant(13, DL, MVT::i32),
8704 DAG.getConstant(0, DL, MVT::i32)
8707 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
8708 DAG.getVTList(MVT::i32, MVT::Other), Ops);
8709 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
8710 DAG.getConstant(0, DL, MVT::i32)));
8711 Results.push_back(Cycles32.getValue(1));
8714 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
8715 SDLoc dl(V.getNode());
8716 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
8717 SDValue VHi = DAG.getAnyExtOrTrunc(
8718 DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
8719 dl, MVT::i32);
8720 bool isBigEndian = DAG.getDataLayout().isBigEndian();
8721 if (isBigEndian)
8722 std::swap (VLo, VHi);
8723 SDValue RegClass =
8724 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
8725 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
8726 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
8727 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
8728 return SDValue(
8729 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
8732 static void ReplaceCMP_SWAP_64Results(SDNode *N,
8733 SmallVectorImpl<SDValue> & Results,
8734 SelectionDAG &DAG) {
8735 assert(N->getValueType(0) == MVT::i64 &&
8736 "AtomicCmpSwap on types less than 64 should be legal");
8737 SDValue Ops[] = {N->getOperand(1),
8738 createGPRPairNode(DAG, N->getOperand(2)),
8739 createGPRPairNode(DAG, N->getOperand(3)),
8740 N->getOperand(0)};
8741 SDNode *CmpSwap = DAG.getMachineNode(
8742 ARM::CMP_SWAP_64, SDLoc(N),
8743 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
8745 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
8746 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
8748 bool isBigEndian = DAG.getDataLayout().isBigEndian();
8750 Results.push_back(
8751 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8752 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8753 Results.push_back(
8754 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8755 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8756 Results.push_back(SDValue(CmpSwap, 2));
8759 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8760 SelectionDAG &DAG) {
8761 const auto &TLI = DAG.getTargetLoweringInfo();
8763 assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8764 "Custom lowering is MSVCRT specific!");
8766 SDLoc dl(Op);
8767 SDValue Val = Op.getOperand(0);
8768 MVT Ty = Val->getSimpleValueType(0);
8769 SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8770 SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8771 TLI.getPointerTy(DAG.getDataLayout()));
8773 TargetLowering::ArgListTy Args;
8774 TargetLowering::ArgListEntry Entry;
8776 Entry.Node = Val;
8777 Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8778 Entry.IsZExt = true;
8779 Args.push_back(Entry);
8781 Entry.Node = Exponent;
8782 Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8783 Entry.IsZExt = true;
8784 Args.push_back(Entry);
8786 Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8788 // In the in-chain to the call is the entry node If we are emitting a
8789 // tailcall, the chain will be mutated if the node has a non-entry input
8790 // chain.
8791 SDValue InChain = DAG.getEntryNode();
8792 SDValue TCChain = InChain;
8794 const Function &F = DAG.getMachineFunction().getFunction();
8795 bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8796 F.getReturnType() == LCRTy;
8797 if (IsTC)
8798 InChain = TCChain;
8800 TargetLowering::CallLoweringInfo CLI(DAG);
8801 CLI.setDebugLoc(dl)
8802 .setChain(InChain)
8803 .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8804 .setTailCall(IsTC);
8805 std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8807 // Return the chain (the DAG root) if it is a tail call
8808 return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8811 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8812 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8813 switch (Op.getOpcode()) {
8814 default: llvm_unreachable("Don't know how to custom lower this!");
8815 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8816 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8817 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
8818 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8819 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8820 case ISD::SELECT: return LowerSELECT(Op, DAG);
8821 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
8822 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
8823 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
8824 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
8825 case ISD::VASTART: return LowerVASTART(Op, DAG);
8826 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8827 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
8828 case ISD::SINT_TO_FP:
8829 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
8830 case ISD::FP_TO_SINT:
8831 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
8832 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
8833 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
8834 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
8835 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8836 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8837 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8838 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8839 Subtarget);
8840 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8841 case ISD::SHL:
8842 case ISD::SRL:
8843 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
8844 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
8845 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
8846 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
8847 case ISD::SRL_PARTS:
8848 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
8849 case ISD::CTTZ:
8850 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8851 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8852 case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
8853 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
8854 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
8855 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8856 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
8857 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
8858 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8859 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
8860 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
8861 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
8862 case ISD::MUL: return LowerMUL(Op, DAG);
8863 case ISD::SDIV:
8864 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8865 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8866 return LowerSDIV(Op, DAG, Subtarget);
8867 case ISD::UDIV:
8868 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8869 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8870 return LowerUDIV(Op, DAG, Subtarget);
8871 case ISD::ADDCARRY:
8872 case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
8873 case ISD::SADDO:
8874 case ISD::SSUBO:
8875 return LowerSignedALUO(Op, DAG);
8876 case ISD::UADDO:
8877 case ISD::USUBO:
8878 return LowerUnsignedALUO(Op, DAG);
8879 case ISD::ATOMIC_LOAD:
8880 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
8881 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
8882 case ISD::SDIVREM:
8883 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
8884 case ISD::DYNAMIC_STACKALLOC:
8885 if (Subtarget->isTargetWindows())
8886 return LowerDYNAMIC_STACKALLOC(Op, DAG);
8887 llvm_unreachable("Don't know how to custom lower this!");
8888 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8889 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8890 case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8891 case ARMISD::WIN__DBZCHK: return SDValue();
8895 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8896 SelectionDAG &DAG) {
8897 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8898 unsigned Opc = 0;
8899 if (IntNo == Intrinsic::arm_smlald)
8900 Opc = ARMISD::SMLALD;
8901 else if (IntNo == Intrinsic::arm_smlaldx)
8902 Opc = ARMISD::SMLALDX;
8903 else if (IntNo == Intrinsic::arm_smlsld)
8904 Opc = ARMISD::SMLSLD;
8905 else if (IntNo == Intrinsic::arm_smlsldx)
8906 Opc = ARMISD::SMLSLDX;
8907 else
8908 return;
8910 SDLoc dl(N);
8911 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8912 N->getOperand(3),
8913 DAG.getConstant(0, dl, MVT::i32));
8914 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8915 N->getOperand(3),
8916 DAG.getConstant(1, dl, MVT::i32));
8918 SDValue LongMul = DAG.getNode(Opc, dl,
8919 DAG.getVTList(MVT::i32, MVT::i32),
8920 N->getOperand(1), N->getOperand(2),
8921 Lo, Hi);
8922 Results.push_back(LongMul.getValue(0));
8923 Results.push_back(LongMul.getValue(1));
8926 /// ReplaceNodeResults - Replace the results of node with an illegal result
8927 /// type with new values built out of custom code.
8928 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8929 SmallVectorImpl<SDValue> &Results,
8930 SelectionDAG &DAG) const {
8931 SDValue Res;
8932 switch (N->getOpcode()) {
8933 default:
8934 llvm_unreachable("Don't know how to custom expand this!");
8935 case ISD::READ_REGISTER:
8936 ExpandREAD_REGISTER(N, Results, DAG);
8937 break;
8938 case ISD::BITCAST:
8939 Res = ExpandBITCAST(N, DAG, Subtarget);
8940 break;
8941 case ISD::SRL:
8942 case ISD::SRA:
8943 case ISD::SHL:
8944 Res = Expand64BitShift(N, DAG, Subtarget);
8945 break;
8946 case ISD::SREM:
8947 case ISD::UREM:
8948 Res = LowerREM(N, DAG);
8949 break;
8950 case ISD::SDIVREM:
8951 case ISD::UDIVREM:
8952 Res = LowerDivRem(SDValue(N, 0), DAG);
8953 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8954 Results.push_back(Res.getValue(0));
8955 Results.push_back(Res.getValue(1));
8956 return;
8957 case ISD::READCYCLECOUNTER:
8958 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8959 return;
8960 case ISD::UDIV:
8961 case ISD::SDIV:
8962 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8963 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8964 Results);
8965 case ISD::ATOMIC_CMP_SWAP:
8966 ReplaceCMP_SWAP_64Results(N, Results, DAG);
8967 return;
8968 case ISD::INTRINSIC_WO_CHAIN:
8969 return ReplaceLongIntrinsic(N, Results, DAG);
8970 case ISD::ABS:
8971 lowerABS(N, Results, DAG);
8972 return ;
8975 if (Res.getNode())
8976 Results.push_back(Res);
8979 //===----------------------------------------------------------------------===//
8980 // ARM Scheduler Hooks
8981 //===----------------------------------------------------------------------===//
8983 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8984 /// registers the function context.
8985 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8986 MachineBasicBlock *MBB,
8987 MachineBasicBlock *DispatchBB,
8988 int FI) const {
8989 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8990 "ROPI/RWPI not currently supported with SjLj");
8991 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8992 DebugLoc dl = MI.getDebugLoc();
8993 MachineFunction *MF = MBB->getParent();
8994 MachineRegisterInfo *MRI = &MF->getRegInfo();
8995 MachineConstantPool *MCP = MF->getConstantPool();
8996 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8997 const Function &F = MF->getFunction();
8999 bool isThumb = Subtarget->isThumb();
9000 bool isThumb2 = Subtarget->isThumb2();
9002 unsigned PCLabelId = AFI->createPICLabelUId();
9003 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
9004 ARMConstantPoolValue *CPV =
9005 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
9006 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
9008 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
9009 : &ARM::GPRRegClass;
9011 // Grab constant pool and fixed stack memory operands.
9012 MachineMemOperand *CPMMO =
9013 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9014 MachineMemOperand::MOLoad, 4, 4);
9016 MachineMemOperand *FIMMOSt =
9017 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
9018 MachineMemOperand::MOStore, 4, 4);
9020 // Load the address of the dispatch MBB into the jump buffer.
9021 if (isThumb2) {
9022 // Incoming value: jbuf
9023 // ldr.n r5, LCPI1_1
9024 // orr r5, r5, #1
9025 // add r5, pc
9026 // str r5, [$jbuf, #+4] ; &jbuf[1]
9027 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9028 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9029 .addConstantPoolIndex(CPI)
9030 .addMemOperand(CPMMO)
9031 .add(predOps(ARMCC::AL));
9032 // Set the low bit because of thumb mode.
9033 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9034 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9035 .addReg(NewVReg1, RegState::Kill)
9036 .addImm(0x01)
9037 .add(predOps(ARMCC::AL))
9038 .add(condCodeOp());
9039 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9040 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9041 .addReg(NewVReg2, RegState::Kill)
9042 .addImm(PCLabelId);
9043 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9044 .addReg(NewVReg3, RegState::Kill)
9045 .addFrameIndex(FI)
9046 .addImm(36) // &jbuf[1] :: pc
9047 .addMemOperand(FIMMOSt)
9048 .add(predOps(ARMCC::AL));
9049 } else if (isThumb) {
9050 // Incoming value: jbuf
9051 // ldr.n r1, LCPI1_4
9052 // add r1, pc
9053 // mov r2, #1
9054 // orrs r1, r2
9055 // add r2, $jbuf, #+4 ; &jbuf[1]
9056 // str r1, [r2]
9057 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9058 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
9059 .addConstantPoolIndex(CPI)
9060 .addMemOperand(CPMMO)
9061 .add(predOps(ARMCC::AL));
9062 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9063 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
9064 .addReg(NewVReg1, RegState::Kill)
9065 .addImm(PCLabelId);
9066 // Set the low bit because of thumb mode.
9067 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9068 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
9069 .addReg(ARM::CPSR, RegState::Define)
9070 .addImm(1)
9071 .add(predOps(ARMCC::AL));
9072 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9073 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
9074 .addReg(ARM::CPSR, RegState::Define)
9075 .addReg(NewVReg2, RegState::Kill)
9076 .addReg(NewVReg3, RegState::Kill)
9077 .add(predOps(ARMCC::AL));
9078 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9079 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
9080 .addFrameIndex(FI)
9081 .addImm(36); // &jbuf[1] :: pc
9082 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
9083 .addReg(NewVReg4, RegState::Kill)
9084 .addReg(NewVReg5, RegState::Kill)
9085 .addImm(0)
9086 .addMemOperand(FIMMOSt)
9087 .add(predOps(ARMCC::AL));
9088 } else {
9089 // Incoming value: jbuf
9090 // ldr r1, LCPI1_1
9091 // add r1, pc, r1
9092 // str r1, [$jbuf, #+4] ; &jbuf[1]
9093 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9094 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
9095 .addConstantPoolIndex(CPI)
9096 .addImm(0)
9097 .addMemOperand(CPMMO)
9098 .add(predOps(ARMCC::AL));
9099 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9100 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
9101 .addReg(NewVReg1, RegState::Kill)
9102 .addImm(PCLabelId)
9103 .add(predOps(ARMCC::AL));
9104 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
9105 .addReg(NewVReg2, RegState::Kill)
9106 .addFrameIndex(FI)
9107 .addImm(36) // &jbuf[1] :: pc
9108 .addMemOperand(FIMMOSt)
9109 .add(predOps(ARMCC::AL));
9113 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
9114 MachineBasicBlock *MBB) const {
9115 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9116 DebugLoc dl = MI.getDebugLoc();
9117 MachineFunction *MF = MBB->getParent();
9118 MachineRegisterInfo *MRI = &MF->getRegInfo();
9119 MachineFrameInfo &MFI = MF->getFrameInfo();
9120 int FI = MFI.getFunctionContextIndex();
9122 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
9123 : &ARM::GPRnopcRegClass;
9125 // Get a mapping of the call site numbers to all of the landing pads they're
9126 // associated with.
9127 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
9128 unsigned MaxCSNum = 0;
9129 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
9130 ++BB) {
9131 if (!BB->isEHPad()) continue;
9133 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9134 // pad.
9135 for (MachineBasicBlock::iterator
9136 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
9137 if (!II->isEHLabel()) continue;
9139 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
9140 if (!MF->hasCallSiteLandingPad(Sym)) continue;
9142 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
9143 for (SmallVectorImpl<unsigned>::iterator
9144 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
9145 CSI != CSE; ++CSI) {
9146 CallSiteNumToLPad[*CSI].push_back(&*BB);
9147 MaxCSNum = std::max(MaxCSNum, *CSI);
9149 break;
9153 // Get an ordered list of the machine basic blocks for the jump table.
9154 std::vector<MachineBasicBlock*> LPadList;
9155 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
9156 LPadList.reserve(CallSiteNumToLPad.size());
9157 for (unsigned I = 1; I <= MaxCSNum; ++I) {
9158 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
9159 for (SmallVectorImpl<MachineBasicBlock*>::iterator
9160 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
9161 LPadList.push_back(*II);
9162 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
9166 assert(!LPadList.empty() &&
9167 "No landing pad destinations for the dispatch jump table!");
9169 // Create the jump table and associated information.
9170 MachineJumpTableInfo *JTI =
9171 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
9172 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
9174 // Create the MBBs for the dispatch code.
9176 // Shove the dispatch's address into the return slot in the function context.
9177 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
9178 DispatchBB->setIsEHPad();
9180 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9181 unsigned trap_opcode;
9182 if (Subtarget->isThumb())
9183 trap_opcode = ARM::tTRAP;
9184 else
9185 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
9187 BuildMI(TrapBB, dl, TII->get(trap_opcode));
9188 DispatchBB->addSuccessor(TrapBB);
9190 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
9191 DispatchBB->addSuccessor(DispContBB);
9193 // Insert and MBBs.
9194 MF->insert(MF->end(), DispatchBB);
9195 MF->insert(MF->end(), DispContBB);
9196 MF->insert(MF->end(), TrapBB);
9198 // Insert code into the entry block that creates and registers the function
9199 // context.
9200 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
9202 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
9203 MachinePointerInfo::getFixedStack(*MF, FI),
9204 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
9206 MachineInstrBuilder MIB;
9207 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
9209 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
9210 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
9212 // Add a register mask with no preserved registers. This results in all
9213 // registers being marked as clobbered. This can't work if the dispatch block
9214 // is in a Thumb1 function and is linked with ARM code which uses the FP
9215 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9216 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
9218 bool IsPositionIndependent = isPositionIndependent();
9219 unsigned NumLPads = LPadList.size();
9220 if (Subtarget->isThumb2()) {
9221 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9222 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
9223 .addFrameIndex(FI)
9224 .addImm(4)
9225 .addMemOperand(FIMMOLd)
9226 .add(predOps(ARMCC::AL));
9228 if (NumLPads < 256) {
9229 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
9230 .addReg(NewVReg1)
9231 .addImm(LPadList.size())
9232 .add(predOps(ARMCC::AL));
9233 } else {
9234 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9235 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
9236 .addImm(NumLPads & 0xFFFF)
9237 .add(predOps(ARMCC::AL));
9239 unsigned VReg2 = VReg1;
9240 if ((NumLPads & 0xFFFF0000) != 0) {
9241 VReg2 = MRI->createVirtualRegister(TRC);
9242 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
9243 .addReg(VReg1)
9244 .addImm(NumLPads >> 16)
9245 .add(predOps(ARMCC::AL));
9248 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
9249 .addReg(NewVReg1)
9250 .addReg(VReg2)
9251 .add(predOps(ARMCC::AL));
9254 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
9255 .addMBB(TrapBB)
9256 .addImm(ARMCC::HI)
9257 .addReg(ARM::CPSR);
9259 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9260 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
9261 .addJumpTableIndex(MJTI)
9262 .add(predOps(ARMCC::AL));
9264 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9265 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
9266 .addReg(NewVReg3, RegState::Kill)
9267 .addReg(NewVReg1)
9268 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9269 .add(predOps(ARMCC::AL))
9270 .add(condCodeOp());
9272 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
9273 .addReg(NewVReg4, RegState::Kill)
9274 .addReg(NewVReg1)
9275 .addJumpTableIndex(MJTI);
9276 } else if (Subtarget->isThumb()) {
9277 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9278 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
9279 .addFrameIndex(FI)
9280 .addImm(1)
9281 .addMemOperand(FIMMOLd)
9282 .add(predOps(ARMCC::AL));
9284 if (NumLPads < 256) {
9285 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
9286 .addReg(NewVReg1)
9287 .addImm(NumLPads)
9288 .add(predOps(ARMCC::AL));
9289 } else {
9290 MachineConstantPool *ConstantPool = MF->getConstantPool();
9291 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9292 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9294 // MachineConstantPool wants an explicit alignment.
9295 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9296 if (Align == 0)
9297 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9298 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9300 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9301 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
9302 .addReg(VReg1, RegState::Define)
9303 .addConstantPoolIndex(Idx)
9304 .add(predOps(ARMCC::AL));
9305 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
9306 .addReg(NewVReg1)
9307 .addReg(VReg1)
9308 .add(predOps(ARMCC::AL));
9311 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
9312 .addMBB(TrapBB)
9313 .addImm(ARMCC::HI)
9314 .addReg(ARM::CPSR);
9316 unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
9317 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
9318 .addReg(ARM::CPSR, RegState::Define)
9319 .addReg(NewVReg1)
9320 .addImm(2)
9321 .add(predOps(ARMCC::AL));
9323 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9324 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
9325 .addJumpTableIndex(MJTI)
9326 .add(predOps(ARMCC::AL));
9328 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9329 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
9330 .addReg(ARM::CPSR, RegState::Define)
9331 .addReg(NewVReg2, RegState::Kill)
9332 .addReg(NewVReg3)
9333 .add(predOps(ARMCC::AL));
9335 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9336 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9338 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9339 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
9340 .addReg(NewVReg4, RegState::Kill)
9341 .addImm(0)
9342 .addMemOperand(JTMMOLd)
9343 .add(predOps(ARMCC::AL));
9345 unsigned NewVReg6 = NewVReg5;
9346 if (IsPositionIndependent) {
9347 NewVReg6 = MRI->createVirtualRegister(TRC);
9348 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
9349 .addReg(ARM::CPSR, RegState::Define)
9350 .addReg(NewVReg5, RegState::Kill)
9351 .addReg(NewVReg3)
9352 .add(predOps(ARMCC::AL));
9355 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
9356 .addReg(NewVReg6, RegState::Kill)
9357 .addJumpTableIndex(MJTI);
9358 } else {
9359 unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
9360 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
9361 .addFrameIndex(FI)
9362 .addImm(4)
9363 .addMemOperand(FIMMOLd)
9364 .add(predOps(ARMCC::AL));
9366 if (NumLPads < 256) {
9367 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
9368 .addReg(NewVReg1)
9369 .addImm(NumLPads)
9370 .add(predOps(ARMCC::AL));
9371 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
9372 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9373 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
9374 .addImm(NumLPads & 0xFFFF)
9375 .add(predOps(ARMCC::AL));
9377 unsigned VReg2 = VReg1;
9378 if ((NumLPads & 0xFFFF0000) != 0) {
9379 VReg2 = MRI->createVirtualRegister(TRC);
9380 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
9381 .addReg(VReg1)
9382 .addImm(NumLPads >> 16)
9383 .add(predOps(ARMCC::AL));
9386 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9387 .addReg(NewVReg1)
9388 .addReg(VReg2)
9389 .add(predOps(ARMCC::AL));
9390 } else {
9391 MachineConstantPool *ConstantPool = MF->getConstantPool();
9392 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9393 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9395 // MachineConstantPool wants an explicit alignment.
9396 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9397 if (Align == 0)
9398 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9399 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9401 unsigned VReg1 = MRI->createVirtualRegister(TRC);
9402 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
9403 .addReg(VReg1, RegState::Define)
9404 .addConstantPoolIndex(Idx)
9405 .addImm(0)
9406 .add(predOps(ARMCC::AL));
9407 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9408 .addReg(NewVReg1)
9409 .addReg(VReg1, RegState::Kill)
9410 .add(predOps(ARMCC::AL));
9413 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
9414 .addMBB(TrapBB)
9415 .addImm(ARMCC::HI)
9416 .addReg(ARM::CPSR);
9418 unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
9419 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
9420 .addReg(NewVReg1)
9421 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9422 .add(predOps(ARMCC::AL))
9423 .add(condCodeOp());
9424 unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
9425 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
9426 .addJumpTableIndex(MJTI)
9427 .add(predOps(ARMCC::AL));
9429 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9430 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9431 unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
9432 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
9433 .addReg(NewVReg3, RegState::Kill)
9434 .addReg(NewVReg4)
9435 .addImm(0)
9436 .addMemOperand(JTMMOLd)
9437 .add(predOps(ARMCC::AL));
9439 if (IsPositionIndependent) {
9440 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
9441 .addReg(NewVReg5, RegState::Kill)
9442 .addReg(NewVReg4)
9443 .addJumpTableIndex(MJTI);
9444 } else {
9445 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
9446 .addReg(NewVReg5, RegState::Kill)
9447 .addJumpTableIndex(MJTI);
9451 // Add the jump table entries as successors to the MBB.
9452 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
9453 for (std::vector<MachineBasicBlock*>::iterator
9454 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
9455 MachineBasicBlock *CurMBB = *I;
9456 if (SeenMBBs.insert(CurMBB).second)
9457 DispContBB->addSuccessor(CurMBB);
9460 // N.B. the order the invoke BBs are processed in doesn't matter here.
9461 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
9462 SmallVector<MachineBasicBlock*, 64> MBBLPads;
9463 for (MachineBasicBlock *BB : InvokeBBs) {
9465 // Remove the landing pad successor from the invoke block and replace it
9466 // with the new dispatch block.
9467 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
9468 BB->succ_end());
9469 while (!Successors.empty()) {
9470 MachineBasicBlock *SMBB = Successors.pop_back_val();
9471 if (SMBB->isEHPad()) {
9472 BB->removeSuccessor(SMBB);
9473 MBBLPads.push_back(SMBB);
9477 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
9478 BB->normalizeSuccProbs();
9480 // Find the invoke call and mark all of the callee-saved registers as
9481 // 'implicit defined' so that they're spilled. This prevents code from
9482 // moving instructions to before the EH block, where they will never be
9483 // executed.
9484 for (MachineBasicBlock::reverse_iterator
9485 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
9486 if (!II->isCall()) continue;
9488 DenseMap<unsigned, bool> DefRegs;
9489 for (MachineInstr::mop_iterator
9490 OI = II->operands_begin(), OE = II->operands_end();
9491 OI != OE; ++OI) {
9492 if (!OI->isReg()) continue;
9493 DefRegs[OI->getReg()] = true;
9496 MachineInstrBuilder MIB(*MF, &*II);
9498 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
9499 unsigned Reg = SavedRegs[i];
9500 if (Subtarget->isThumb2() &&
9501 !ARM::tGPRRegClass.contains(Reg) &&
9502 !ARM::hGPRRegClass.contains(Reg))
9503 continue;
9504 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
9505 continue;
9506 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
9507 continue;
9508 if (!DefRegs[Reg])
9509 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
9512 break;
9516 // Mark all former landing pads as non-landing pads. The dispatch is the only
9517 // landing pad now.
9518 for (SmallVectorImpl<MachineBasicBlock*>::iterator
9519 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
9520 (*I)->setIsEHPad(false);
9522 // The instruction is gone now.
9523 MI.eraseFromParent();
9526 static
9527 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
9528 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
9529 E = MBB->succ_end(); I != E; ++I)
9530 if (*I != Succ)
9531 return *I;
9532 llvm_unreachable("Expecting a BB with two successors!");
9535 /// Return the load opcode for a given load size. If load size >= 8,
9536 /// neon opcode will be returned.
9537 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
9538 if (LdSize >= 8)
9539 return LdSize == 16 ? ARM::VLD1q32wb_fixed
9540 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
9541 if (IsThumb1)
9542 return LdSize == 4 ? ARM::tLDRi
9543 : LdSize == 2 ? ARM::tLDRHi
9544 : LdSize == 1 ? ARM::tLDRBi : 0;
9545 if (IsThumb2)
9546 return LdSize == 4 ? ARM::t2LDR_POST
9547 : LdSize == 2 ? ARM::t2LDRH_POST
9548 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
9549 return LdSize == 4 ? ARM::LDR_POST_IMM
9550 : LdSize == 2 ? ARM::LDRH_POST
9551 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
9554 /// Return the store opcode for a given store size. If store size >= 8,
9555 /// neon opcode will be returned.
9556 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
9557 if (StSize >= 8)
9558 return StSize == 16 ? ARM::VST1q32wb_fixed
9559 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
9560 if (IsThumb1)
9561 return StSize == 4 ? ARM::tSTRi
9562 : StSize == 2 ? ARM::tSTRHi
9563 : StSize == 1 ? ARM::tSTRBi : 0;
9564 if (IsThumb2)
9565 return StSize == 4 ? ARM::t2STR_POST
9566 : StSize == 2 ? ARM::t2STRH_POST
9567 : StSize == 1 ? ARM::t2STRB_POST : 0;
9568 return StSize == 4 ? ARM::STR_POST_IMM
9569 : StSize == 2 ? ARM::STRH_POST
9570 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
9573 /// Emit a post-increment load operation with given size. The instructions
9574 /// will be added to BB at Pos.
9575 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9576 const TargetInstrInfo *TII, const DebugLoc &dl,
9577 unsigned LdSize, unsigned Data, unsigned AddrIn,
9578 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9579 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
9580 assert(LdOpc != 0 && "Should have a load opcode");
9581 if (LdSize >= 8) {
9582 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9583 .addReg(AddrOut, RegState::Define)
9584 .addReg(AddrIn)
9585 .addImm(0)
9586 .add(predOps(ARMCC::AL));
9587 } else if (IsThumb1) {
9588 // load + update AddrIn
9589 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9590 .addReg(AddrIn)
9591 .addImm(0)
9592 .add(predOps(ARMCC::AL));
9593 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9594 .add(t1CondCodeOp())
9595 .addReg(AddrIn)
9596 .addImm(LdSize)
9597 .add(predOps(ARMCC::AL));
9598 } else if (IsThumb2) {
9599 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9600 .addReg(AddrOut, RegState::Define)
9601 .addReg(AddrIn)
9602 .addImm(LdSize)
9603 .add(predOps(ARMCC::AL));
9604 } else { // arm
9605 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9606 .addReg(AddrOut, RegState::Define)
9607 .addReg(AddrIn)
9608 .addReg(0)
9609 .addImm(LdSize)
9610 .add(predOps(ARMCC::AL));
9614 /// Emit a post-increment store operation with given size. The instructions
9615 /// will be added to BB at Pos.
9616 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9617 const TargetInstrInfo *TII, const DebugLoc &dl,
9618 unsigned StSize, unsigned Data, unsigned AddrIn,
9619 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9620 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
9621 assert(StOpc != 0 && "Should have a store opcode");
9622 if (StSize >= 8) {
9623 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9624 .addReg(AddrIn)
9625 .addImm(0)
9626 .addReg(Data)
9627 .add(predOps(ARMCC::AL));
9628 } else if (IsThumb1) {
9629 // store + update AddrIn
9630 BuildMI(*BB, Pos, dl, TII->get(StOpc))
9631 .addReg(Data)
9632 .addReg(AddrIn)
9633 .addImm(0)
9634 .add(predOps(ARMCC::AL));
9635 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9636 .add(t1CondCodeOp())
9637 .addReg(AddrIn)
9638 .addImm(StSize)
9639 .add(predOps(ARMCC::AL));
9640 } else if (IsThumb2) {
9641 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9642 .addReg(Data)
9643 .addReg(AddrIn)
9644 .addImm(StSize)
9645 .add(predOps(ARMCC::AL));
9646 } else { // arm
9647 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9648 .addReg(Data)
9649 .addReg(AddrIn)
9650 .addReg(0)
9651 .addImm(StSize)
9652 .add(predOps(ARMCC::AL));
9656 MachineBasicBlock *
9657 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
9658 MachineBasicBlock *BB) const {
9659 // This pseudo instruction has 3 operands: dst, src, size
9660 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9661 // Otherwise, we will generate unrolled scalar copies.
9662 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9663 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9664 MachineFunction::iterator It = ++BB->getIterator();
9666 unsigned dest = MI.getOperand(0).getReg();
9667 unsigned src = MI.getOperand(1).getReg();
9668 unsigned SizeVal = MI.getOperand(2).getImm();
9669 unsigned Align = MI.getOperand(3).getImm();
9670 DebugLoc dl = MI.getDebugLoc();
9672 MachineFunction *MF = BB->getParent();
9673 MachineRegisterInfo &MRI = MF->getRegInfo();
9674 unsigned UnitSize = 0;
9675 const TargetRegisterClass *TRC = nullptr;
9676 const TargetRegisterClass *VecTRC = nullptr;
9678 bool IsThumb1 = Subtarget->isThumb1Only();
9679 bool IsThumb2 = Subtarget->isThumb2();
9680 bool IsThumb = Subtarget->isThumb();
9682 if (Align & 1) {
9683 UnitSize = 1;
9684 } else if (Align & 2) {
9685 UnitSize = 2;
9686 } else {
9687 // Check whether we can use NEON instructions.
9688 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
9689 Subtarget->hasNEON()) {
9690 if ((Align % 16 == 0) && SizeVal >= 16)
9691 UnitSize = 16;
9692 else if ((Align % 8 == 0) && SizeVal >= 8)
9693 UnitSize = 8;
9695 // Can't use NEON instructions.
9696 if (UnitSize == 0)
9697 UnitSize = 4;
9700 // Select the correct opcode and register class for unit size load/store
9701 bool IsNeon = UnitSize >= 8;
9702 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
9703 if (IsNeon)
9704 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
9705 : UnitSize == 8 ? &ARM::DPRRegClass
9706 : nullptr;
9708 unsigned BytesLeft = SizeVal % UnitSize;
9709 unsigned LoopSize = SizeVal - BytesLeft;
9711 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
9712 // Use LDR and STR to copy.
9713 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9714 // [destOut] = STR_POST(scratch, destIn, UnitSize)
9715 unsigned srcIn = src;
9716 unsigned destIn = dest;
9717 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
9718 unsigned srcOut = MRI.createVirtualRegister(TRC);
9719 unsigned destOut = MRI.createVirtualRegister(TRC);
9720 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9721 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
9722 IsThumb1, IsThumb2);
9723 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
9724 IsThumb1, IsThumb2);
9725 srcIn = srcOut;
9726 destIn = destOut;
9729 // Handle the leftover bytes with LDRB and STRB.
9730 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9731 // [destOut] = STRB_POST(scratch, destIn, 1)
9732 for (unsigned i = 0; i < BytesLeft; i++) {
9733 unsigned srcOut = MRI.createVirtualRegister(TRC);
9734 unsigned destOut = MRI.createVirtualRegister(TRC);
9735 unsigned scratch = MRI.createVirtualRegister(TRC);
9736 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
9737 IsThumb1, IsThumb2);
9738 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
9739 IsThumb1, IsThumb2);
9740 srcIn = srcOut;
9741 destIn = destOut;
9743 MI.eraseFromParent(); // The instruction is gone now.
9744 return BB;
9747 // Expand the pseudo op to a loop.
9748 // thisMBB:
9749 // ...
9750 // movw varEnd, # --> with thumb2
9751 // movt varEnd, #
9752 // ldrcp varEnd, idx --> without thumb2
9753 // fallthrough --> loopMBB
9754 // loopMBB:
9755 // PHI varPhi, varEnd, varLoop
9756 // PHI srcPhi, src, srcLoop
9757 // PHI destPhi, dst, destLoop
9758 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9759 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9760 // subs varLoop, varPhi, #UnitSize
9761 // bne loopMBB
9762 // fallthrough --> exitMBB
9763 // exitMBB:
9764 // epilogue to handle left-over bytes
9765 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9766 // [destOut] = STRB_POST(scratch, destLoop, 1)
9767 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9768 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9769 MF->insert(It, loopMBB);
9770 MF->insert(It, exitMBB);
9772 // Transfer the remainder of BB and its successor edges to exitMBB.
9773 exitMBB->splice(exitMBB->begin(), BB,
9774 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9775 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9777 // Load an immediate to varEnd.
9778 unsigned varEnd = MRI.createVirtualRegister(TRC);
9779 if (Subtarget->useMovt()) {
9780 unsigned Vtmp = varEnd;
9781 if ((LoopSize & 0xFFFF0000) != 0)
9782 Vtmp = MRI.createVirtualRegister(TRC);
9783 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9784 .addImm(LoopSize & 0xFFFF)
9785 .add(predOps(ARMCC::AL));
9787 if ((LoopSize & 0xFFFF0000) != 0)
9788 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9789 .addReg(Vtmp)
9790 .addImm(LoopSize >> 16)
9791 .add(predOps(ARMCC::AL));
9792 } else {
9793 MachineConstantPool *ConstantPool = MF->getConstantPool();
9794 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9795 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9797 // MachineConstantPool wants an explicit alignment.
9798 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9799 if (Align == 0)
9800 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9801 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9802 MachineMemOperand *CPMMO =
9803 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9804 MachineMemOperand::MOLoad, 4, 4);
9806 if (IsThumb)
9807 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9808 .addReg(varEnd, RegState::Define)
9809 .addConstantPoolIndex(Idx)
9810 .add(predOps(ARMCC::AL))
9811 .addMemOperand(CPMMO);
9812 else
9813 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9814 .addReg(varEnd, RegState::Define)
9815 .addConstantPoolIndex(Idx)
9816 .addImm(0)
9817 .add(predOps(ARMCC::AL))
9818 .addMemOperand(CPMMO);
9820 BB->addSuccessor(loopMBB);
9822 // Generate the loop body:
9823 // varPhi = PHI(varLoop, varEnd)
9824 // srcPhi = PHI(srcLoop, src)
9825 // destPhi = PHI(destLoop, dst)
9826 MachineBasicBlock *entryBB = BB;
9827 BB = loopMBB;
9828 unsigned varLoop = MRI.createVirtualRegister(TRC);
9829 unsigned varPhi = MRI.createVirtualRegister(TRC);
9830 unsigned srcLoop = MRI.createVirtualRegister(TRC);
9831 unsigned srcPhi = MRI.createVirtualRegister(TRC);
9832 unsigned destLoop = MRI.createVirtualRegister(TRC);
9833 unsigned destPhi = MRI.createVirtualRegister(TRC);
9835 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9836 .addReg(varLoop).addMBB(loopMBB)
9837 .addReg(varEnd).addMBB(entryBB);
9838 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9839 .addReg(srcLoop).addMBB(loopMBB)
9840 .addReg(src).addMBB(entryBB);
9841 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9842 .addReg(destLoop).addMBB(loopMBB)
9843 .addReg(dest).addMBB(entryBB);
9845 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9846 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9847 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9848 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9849 IsThumb1, IsThumb2);
9850 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9851 IsThumb1, IsThumb2);
9853 // Decrement loop variable by UnitSize.
9854 if (IsThumb1) {
9855 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9856 .add(t1CondCodeOp())
9857 .addReg(varPhi)
9858 .addImm(UnitSize)
9859 .add(predOps(ARMCC::AL));
9860 } else {
9861 MachineInstrBuilder MIB =
9862 BuildMI(*BB, BB->end(), dl,
9863 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9864 MIB.addReg(varPhi)
9865 .addImm(UnitSize)
9866 .add(predOps(ARMCC::AL))
9867 .add(condCodeOp());
9868 MIB->getOperand(5).setReg(ARM::CPSR);
9869 MIB->getOperand(5).setIsDef(true);
9871 BuildMI(*BB, BB->end(), dl,
9872 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9873 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9875 // loopMBB can loop back to loopMBB or fall through to exitMBB.
9876 BB->addSuccessor(loopMBB);
9877 BB->addSuccessor(exitMBB);
9879 // Add epilogue to handle BytesLeft.
9880 BB = exitMBB;
9881 auto StartOfExit = exitMBB->begin();
9883 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9884 // [destOut] = STRB_POST(scratch, destLoop, 1)
9885 unsigned srcIn = srcLoop;
9886 unsigned destIn = destLoop;
9887 for (unsigned i = 0; i < BytesLeft; i++) {
9888 unsigned srcOut = MRI.createVirtualRegister(TRC);
9889 unsigned destOut = MRI.createVirtualRegister(TRC);
9890 unsigned scratch = MRI.createVirtualRegister(TRC);
9891 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9892 IsThumb1, IsThumb2);
9893 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9894 IsThumb1, IsThumb2);
9895 srcIn = srcOut;
9896 destIn = destOut;
9899 MI.eraseFromParent(); // The instruction is gone now.
9900 return BB;
9903 MachineBasicBlock *
9904 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9905 MachineBasicBlock *MBB) const {
9906 const TargetMachine &TM = getTargetMachine();
9907 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9908 DebugLoc DL = MI.getDebugLoc();
9910 assert(Subtarget->isTargetWindows() &&
9911 "__chkstk is only supported on Windows");
9912 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9914 // __chkstk takes the number of words to allocate on the stack in R4, and
9915 // returns the stack adjustment in number of bytes in R4. This will not
9916 // clober any other registers (other than the obvious lr).
9918 // Although, technically, IP should be considered a register which may be
9919 // clobbered, the call itself will not touch it. Windows on ARM is a pure
9920 // thumb-2 environment, so there is no interworking required. As a result, we
9921 // do not expect a veneer to be emitted by the linker, clobbering IP.
9923 // Each module receives its own copy of __chkstk, so no import thunk is
9924 // required, again, ensuring that IP is not clobbered.
9926 // Finally, although some linkers may theoretically provide a trampoline for
9927 // out of range calls (which is quite common due to a 32M range limitation of
9928 // branches for Thumb), we can generate the long-call version via
9929 // -mcmodel=large, alleviating the need for the trampoline which may clobber
9930 // IP.
9932 switch (TM.getCodeModel()) {
9933 case CodeModel::Tiny:
9934 llvm_unreachable("Tiny code model not available on ARM.");
9935 case CodeModel::Small:
9936 case CodeModel::Medium:
9937 case CodeModel::Kernel:
9938 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9939 .add(predOps(ARMCC::AL))
9940 .addExternalSymbol("__chkstk")
9941 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9942 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9943 .addReg(ARM::R12,
9944 RegState::Implicit | RegState::Define | RegState::Dead)
9945 .addReg(ARM::CPSR,
9946 RegState::Implicit | RegState::Define | RegState::Dead);
9947 break;
9948 case CodeModel::Large: {
9949 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9950 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9952 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9953 .addExternalSymbol("__chkstk");
9954 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9955 .add(predOps(ARMCC::AL))
9956 .addReg(Reg, RegState::Kill)
9957 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9958 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9959 .addReg(ARM::R12,
9960 RegState::Implicit | RegState::Define | RegState::Dead)
9961 .addReg(ARM::CPSR,
9962 RegState::Implicit | RegState::Define | RegState::Dead);
9963 break;
9967 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9968 .addReg(ARM::SP, RegState::Kill)
9969 .addReg(ARM::R4, RegState::Kill)
9970 .setMIFlags(MachineInstr::FrameSetup)
9971 .add(predOps(ARMCC::AL))
9972 .add(condCodeOp());
9974 MI.eraseFromParent();
9975 return MBB;
9978 MachineBasicBlock *
9979 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9980 MachineBasicBlock *MBB) const {
9981 DebugLoc DL = MI.getDebugLoc();
9982 MachineFunction *MF = MBB->getParent();
9983 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9985 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9986 MF->insert(++MBB->getIterator(), ContBB);
9987 ContBB->splice(ContBB->begin(), MBB,
9988 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9989 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9990 MBB->addSuccessor(ContBB);
9992 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9993 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9994 MF->push_back(TrapBB);
9995 MBB->addSuccessor(TrapBB);
9997 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9998 .addReg(MI.getOperand(0).getReg())
9999 .addImm(0)
10000 .add(predOps(ARMCC::AL));
10001 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
10002 .addMBB(TrapBB)
10003 .addImm(ARMCC::EQ)
10004 .addReg(ARM::CPSR);
10006 MI.eraseFromParent();
10007 return ContBB;
10010 // The CPSR operand of SelectItr might be missing a kill marker
10011 // because there were multiple uses of CPSR, and ISel didn't know
10012 // which to mark. Figure out whether SelectItr should have had a
10013 // kill marker, and set it if it should. Returns the correct kill
10014 // marker value.
10015 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
10016 MachineBasicBlock* BB,
10017 const TargetRegisterInfo* TRI) {
10018 // Scan forward through BB for a use/def of CPSR.
10019 MachineBasicBlock::iterator miI(std::next(SelectItr));
10020 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
10021 const MachineInstr& mi = *miI;
10022 if (mi.readsRegister(ARM::CPSR))
10023 return false;
10024 if (mi.definesRegister(ARM::CPSR))
10025 break; // Should have kill-flag - update below.
10028 // If we hit the end of the block, check whether CPSR is live into a
10029 // successor.
10030 if (miI == BB->end()) {
10031 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10032 sEnd = BB->succ_end();
10033 sItr != sEnd; ++sItr) {
10034 MachineBasicBlock* succ = *sItr;
10035 if (succ->isLiveIn(ARM::CPSR))
10036 return false;
10040 // We found a def, or hit the end of the basic block and CPSR wasn't live
10041 // out. SelectMI should have a kill flag on CPSR.
10042 SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10043 return true;
10046 MachineBasicBlock *
10047 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10048 MachineBasicBlock *BB) const {
10049 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10050 DebugLoc dl = MI.getDebugLoc();
10051 bool isThumb2 = Subtarget->isThumb2();
10052 switch (MI.getOpcode()) {
10053 default: {
10054 MI.print(errs());
10055 llvm_unreachable("Unexpected instr type to insert");
10058 // Thumb1 post-indexed loads are really just single-register LDMs.
10059 case ARM::tLDR_postidx: {
10060 MachineOperand Def(MI.getOperand(1));
10061 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10062 .add(Def) // Rn_wb
10063 .add(MI.getOperand(2)) // Rn
10064 .add(MI.getOperand(3)) // PredImm
10065 .add(MI.getOperand(4)) // PredReg
10066 .add(MI.getOperand(0)) // Rt
10067 .cloneMemRefs(MI);
10068 MI.eraseFromParent();
10069 return BB;
10072 // The Thumb2 pre-indexed stores have the same MI operands, they just
10073 // define them differently in the .td files from the isel patterns, so
10074 // they need pseudos.
10075 case ARM::t2STR_preidx:
10076 MI.setDesc(TII->get(ARM::t2STR_PRE));
10077 return BB;
10078 case ARM::t2STRB_preidx:
10079 MI.setDesc(TII->get(ARM::t2STRB_PRE));
10080 return BB;
10081 case ARM::t2STRH_preidx:
10082 MI.setDesc(TII->get(ARM::t2STRH_PRE));
10083 return BB;
10085 case ARM::STRi_preidx:
10086 case ARM::STRBi_preidx: {
10087 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
10088 : ARM::STRB_PRE_IMM;
10089 // Decode the offset.
10090 unsigned Offset = MI.getOperand(4).getImm();
10091 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
10092 Offset = ARM_AM::getAM2Offset(Offset);
10093 if (isSub)
10094 Offset = -Offset;
10096 MachineMemOperand *MMO = *MI.memoperands_begin();
10097 BuildMI(*BB, MI, dl, TII->get(NewOpc))
10098 .add(MI.getOperand(0)) // Rn_wb
10099 .add(MI.getOperand(1)) // Rt
10100 .add(MI.getOperand(2)) // Rn
10101 .addImm(Offset) // offset (skip GPR==zero_reg)
10102 .add(MI.getOperand(5)) // pred
10103 .add(MI.getOperand(6))
10104 .addMemOperand(MMO);
10105 MI.eraseFromParent();
10106 return BB;
10108 case ARM::STRr_preidx:
10109 case ARM::STRBr_preidx:
10110 case ARM::STRH_preidx: {
10111 unsigned NewOpc;
10112 switch (MI.getOpcode()) {
10113 default: llvm_unreachable("unexpected opcode!");
10114 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
10115 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
10116 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
10118 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
10119 for (unsigned i = 0; i < MI.getNumOperands(); ++i)
10120 MIB.add(MI.getOperand(i));
10121 MI.eraseFromParent();
10122 return BB;
10125 case ARM::tMOVCCr_pseudo: {
10126 // To "insert" a SELECT_CC instruction, we actually have to insert the
10127 // diamond control-flow pattern. The incoming instruction knows the
10128 // destination vreg to set, the condition code register to branch on, the
10129 // true/false values to select between, and a branch opcode to use.
10130 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10131 MachineFunction::iterator It = ++BB->getIterator();
10133 // thisMBB:
10134 // ...
10135 // TrueVal = ...
10136 // cmpTY ccX, r1, r2
10137 // bCC copy1MBB
10138 // fallthrough --> copy0MBB
10139 MachineBasicBlock *thisMBB = BB;
10140 MachineFunction *F = BB->getParent();
10141 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10142 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10143 F->insert(It, copy0MBB);
10144 F->insert(It, sinkMBB);
10146 // Check whether CPSR is live past the tMOVCCr_pseudo.
10147 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
10148 if (!MI.killsRegister(ARM::CPSR) &&
10149 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
10150 copy0MBB->addLiveIn(ARM::CPSR);
10151 sinkMBB->addLiveIn(ARM::CPSR);
10154 // Transfer the remainder of BB and its successor edges to sinkMBB.
10155 sinkMBB->splice(sinkMBB->begin(), BB,
10156 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10157 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10159 BB->addSuccessor(copy0MBB);
10160 BB->addSuccessor(sinkMBB);
10162 BuildMI(BB, dl, TII->get(ARM::tBcc))
10163 .addMBB(sinkMBB)
10164 .addImm(MI.getOperand(3).getImm())
10165 .addReg(MI.getOperand(4).getReg());
10167 // copy0MBB:
10168 // %FalseValue = ...
10169 // # fallthrough to sinkMBB
10170 BB = copy0MBB;
10172 // Update machine-CFG edges
10173 BB->addSuccessor(sinkMBB);
10175 // sinkMBB:
10176 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10177 // ...
10178 BB = sinkMBB;
10179 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
10180 .addReg(MI.getOperand(1).getReg())
10181 .addMBB(copy0MBB)
10182 .addReg(MI.getOperand(2).getReg())
10183 .addMBB(thisMBB);
10185 MI.eraseFromParent(); // The pseudo instruction is gone now.
10186 return BB;
10189 case ARM::BCCi64:
10190 case ARM::BCCZi64: {
10191 // If there is an unconditional branch to the other successor, remove it.
10192 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
10194 // Compare both parts that make up the double comparison separately for
10195 // equality.
10196 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
10198 unsigned LHS1 = MI.getOperand(1).getReg();
10199 unsigned LHS2 = MI.getOperand(2).getReg();
10200 if (RHSisZero) {
10201 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10202 .addReg(LHS1)
10203 .addImm(0)
10204 .add(predOps(ARMCC::AL));
10205 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10206 .addReg(LHS2).addImm(0)
10207 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10208 } else {
10209 unsigned RHS1 = MI.getOperand(3).getReg();
10210 unsigned RHS2 = MI.getOperand(4).getReg();
10211 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10212 .addReg(LHS1)
10213 .addReg(RHS1)
10214 .add(predOps(ARMCC::AL));
10215 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10216 .addReg(LHS2).addReg(RHS2)
10217 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10220 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
10221 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
10222 if (MI.getOperand(0).getImm() == ARMCC::NE)
10223 std::swap(destMBB, exitMBB);
10225 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
10226 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
10227 if (isThumb2)
10228 BuildMI(BB, dl, TII->get(ARM::t2B))
10229 .addMBB(exitMBB)
10230 .add(predOps(ARMCC::AL));
10231 else
10232 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
10234 MI.eraseFromParent(); // The pseudo instruction is gone now.
10235 return BB;
10238 case ARM::Int_eh_sjlj_setjmp:
10239 case ARM::Int_eh_sjlj_setjmp_nofp:
10240 case ARM::tInt_eh_sjlj_setjmp:
10241 case ARM::t2Int_eh_sjlj_setjmp:
10242 case ARM::t2Int_eh_sjlj_setjmp_nofp:
10243 return BB;
10245 case ARM::Int_eh_sjlj_setup_dispatch:
10246 EmitSjLjDispatchBlock(MI, BB);
10247 return BB;
10249 case ARM::ABS:
10250 case ARM::t2ABS: {
10251 // To insert an ABS instruction, we have to insert the
10252 // diamond control-flow pattern. The incoming instruction knows the
10253 // source vreg to test against 0, the destination vreg to set,
10254 // the condition code register to branch on, the
10255 // true/false values to select between, and a branch opcode to use.
10256 // It transforms
10257 // V1 = ABS V0
10258 // into
10259 // V2 = MOVS V0
10260 // BCC (branch to SinkBB if V0 >= 0)
10261 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10262 // SinkBB: V1 = PHI(V2, V3)
10263 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10264 MachineFunction::iterator BBI = ++BB->getIterator();
10265 MachineFunction *Fn = BB->getParent();
10266 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10267 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10268 Fn->insert(BBI, RSBBB);
10269 Fn->insert(BBI, SinkBB);
10271 unsigned int ABSSrcReg = MI.getOperand(1).getReg();
10272 unsigned int ABSDstReg = MI.getOperand(0).getReg();
10273 bool ABSSrcKIll = MI.getOperand(1).isKill();
10274 bool isThumb2 = Subtarget->isThumb2();
10275 MachineRegisterInfo &MRI = Fn->getRegInfo();
10276 // In Thumb mode S must not be specified if source register is the SP or
10277 // PC and if destination register is the SP, so restrict register class
10278 unsigned NewRsbDstReg =
10279 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
10281 // Transfer the remainder of BB and its successor edges to sinkMBB.
10282 SinkBB->splice(SinkBB->begin(), BB,
10283 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10284 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
10286 BB->addSuccessor(RSBBB);
10287 BB->addSuccessor(SinkBB);
10289 // fall through to SinkMBB
10290 RSBBB->addSuccessor(SinkBB);
10292 // insert a cmp at the end of BB
10293 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10294 .addReg(ABSSrcReg)
10295 .addImm(0)
10296 .add(predOps(ARMCC::AL));
10298 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10299 BuildMI(BB, dl,
10300 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
10301 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
10303 // insert rsbri in RSBBB
10304 // Note: BCC and rsbri will be converted into predicated rsbmi
10305 // by if-conversion pass
10306 BuildMI(*RSBBB, RSBBB->begin(), dl,
10307 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
10308 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
10309 .addImm(0)
10310 .add(predOps(ARMCC::AL))
10311 .add(condCodeOp());
10313 // insert PHI in SinkBB,
10314 // reuse ABSDstReg to not change uses of ABS instruction
10315 BuildMI(*SinkBB, SinkBB->begin(), dl,
10316 TII->get(ARM::PHI), ABSDstReg)
10317 .addReg(NewRsbDstReg).addMBB(RSBBB)
10318 .addReg(ABSSrcReg).addMBB(BB);
10320 // remove ABS instruction
10321 MI.eraseFromParent();
10323 // return last added BB
10324 return SinkBB;
10326 case ARM::COPY_STRUCT_BYVAL_I32:
10327 ++NumLoopByVals;
10328 return EmitStructByval(MI, BB);
10329 case ARM::WIN__CHKSTK:
10330 return EmitLowered__chkstk(MI, BB);
10331 case ARM::WIN__DBZCHK:
10332 return EmitLowered__dbzchk(MI, BB);
10336 /// Attaches vregs to MEMCPY that it will use as scratch registers
10337 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10338 /// instead of as a custom inserter because we need the use list from the SDNode.
10339 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
10340 MachineInstr &MI, const SDNode *Node) {
10341 bool isThumb1 = Subtarget->isThumb1Only();
10343 DebugLoc DL = MI.getDebugLoc();
10344 MachineFunction *MF = MI.getParent()->getParent();
10345 MachineRegisterInfo &MRI = MF->getRegInfo();
10346 MachineInstrBuilder MIB(*MF, MI);
10348 // If the new dst/src is unused mark it as dead.
10349 if (!Node->hasAnyUseOfValue(0)) {
10350 MI.getOperand(0).setIsDead(true);
10352 if (!Node->hasAnyUseOfValue(1)) {
10353 MI.getOperand(1).setIsDead(true);
10356 // The MEMCPY both defines and kills the scratch registers.
10357 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
10358 unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
10359 : &ARM::GPRRegClass);
10360 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
10364 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10365 SDNode *Node) const {
10366 if (MI.getOpcode() == ARM::MEMCPY) {
10367 attachMEMCPYScratchRegs(Subtarget, MI, Node);
10368 return;
10371 const MCInstrDesc *MCID = &MI.getDesc();
10372 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10373 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10374 // operand is still set to noreg. If needed, set the optional operand's
10375 // register to CPSR, and remove the redundant implicit def.
10377 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10379 // Rename pseudo opcodes.
10380 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
10381 unsigned ccOutIdx;
10382 if (NewOpc) {
10383 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
10384 MCID = &TII->get(NewOpc);
10386 assert(MCID->getNumOperands() ==
10387 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
10388 && "converted opcode should be the same except for cc_out"
10389 " (and, on Thumb1, pred)");
10391 MI.setDesc(*MCID);
10393 // Add the optional cc_out operand
10394 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10396 // On Thumb1, move all input operands to the end, then add the predicate
10397 if (Subtarget->isThumb1Only()) {
10398 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
10399 MI.addOperand(MI.getOperand(1));
10400 MI.RemoveOperand(1);
10403 // Restore the ties
10404 for (unsigned i = MI.getNumOperands(); i--;) {
10405 const MachineOperand& op = MI.getOperand(i);
10406 if (op.isReg() && op.isUse()) {
10407 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
10408 if (DefIdx != -1)
10409 MI.tieOperands(DefIdx, i);
10413 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
10414 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10415 ccOutIdx = 1;
10416 } else
10417 ccOutIdx = MCID->getNumOperands() - 1;
10418 } else
10419 ccOutIdx = MCID->getNumOperands() - 1;
10421 // Any ARM instruction that sets the 's' bit should specify an optional
10422 // "cc_out" operand in the last operand position.
10423 if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
10424 assert(!NewOpc && "Optional cc_out operand required");
10425 return;
10427 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10428 // since we already have an optional CPSR def.
10429 bool definesCPSR = false;
10430 bool deadCPSR = false;
10431 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
10432 ++i) {
10433 const MachineOperand &MO = MI.getOperand(i);
10434 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
10435 definesCPSR = true;
10436 if (MO.isDead())
10437 deadCPSR = true;
10438 MI.RemoveOperand(i);
10439 break;
10442 if (!definesCPSR) {
10443 assert(!NewOpc && "Optional cc_out operand required");
10444 return;
10446 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
10447 if (deadCPSR) {
10448 assert(!MI.getOperand(ccOutIdx).getReg() &&
10449 "expect uninitialized optional cc_out operand");
10450 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10451 if (!Subtarget->isThumb1Only())
10452 return;
10455 // If this instruction was defined with an optional CPSR def and its dag node
10456 // had a live implicit CPSR def, then activate the optional CPSR def.
10457 MachineOperand &MO = MI.getOperand(ccOutIdx);
10458 MO.setReg(ARM::CPSR);
10459 MO.setIsDef(true);
10462 //===----------------------------------------------------------------------===//
10463 // ARM Optimization Hooks
10464 //===----------------------------------------------------------------------===//
10466 // Helper function that checks if N is a null or all ones constant.
10467 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
10468 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
10471 // Return true if N is conditionally 0 or all ones.
10472 // Detects these expressions where cc is an i1 value:
10474 // (select cc 0, y) [AllOnes=0]
10475 // (select cc y, 0) [AllOnes=0]
10476 // (zext cc) [AllOnes=0]
10477 // (sext cc) [AllOnes=0/1]
10478 // (select cc -1, y) [AllOnes=1]
10479 // (select cc y, -1) [AllOnes=1]
10481 // Invert is set when N is the null/all ones constant when CC is false.
10482 // OtherOp is set to the alternative value of N.
10483 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
10484 SDValue &CC, bool &Invert,
10485 SDValue &OtherOp,
10486 SelectionDAG &DAG) {
10487 switch (N->getOpcode()) {
10488 default: return false;
10489 case ISD::SELECT: {
10490 CC = N->getOperand(0);
10491 SDValue N1 = N->getOperand(1);
10492 SDValue N2 = N->getOperand(2);
10493 if (isZeroOrAllOnes(N1, AllOnes)) {
10494 Invert = false;
10495 OtherOp = N2;
10496 return true;
10498 if (isZeroOrAllOnes(N2, AllOnes)) {
10499 Invert = true;
10500 OtherOp = N1;
10501 return true;
10503 return false;
10505 case ISD::ZERO_EXTEND:
10506 // (zext cc) can never be the all ones value.
10507 if (AllOnes)
10508 return false;
10509 LLVM_FALLTHROUGH;
10510 case ISD::SIGN_EXTEND: {
10511 SDLoc dl(N);
10512 EVT VT = N->getValueType(0);
10513 CC = N->getOperand(0);
10514 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
10515 return false;
10516 Invert = !AllOnes;
10517 if (AllOnes)
10518 // When looking for an AllOnes constant, N is an sext, and the 'other'
10519 // value is 0.
10520 OtherOp = DAG.getConstant(0, dl, VT);
10521 else if (N->getOpcode() == ISD::ZERO_EXTEND)
10522 // When looking for a 0 constant, N can be zext or sext.
10523 OtherOp = DAG.getConstant(1, dl, VT);
10524 else
10525 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
10526 VT);
10527 return true;
10532 // Combine a constant select operand into its use:
10534 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10535 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10536 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
10537 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
10538 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
10540 // The transform is rejected if the select doesn't have a constant operand that
10541 // is null, or all ones when AllOnes is set.
10543 // Also recognize sext/zext from i1:
10545 // (add (zext cc), x) -> (select cc (add x, 1), x)
10546 // (add (sext cc), x) -> (select cc (add x, -1), x)
10548 // These transformations eventually create predicated instructions.
10550 // @param N The node to transform.
10551 // @param Slct The N operand that is a select.
10552 // @param OtherOp The other N operand (x above).
10553 // @param DCI Context.
10554 // @param AllOnes Require the select constant to be all ones instead of null.
10555 // @returns The new node, or SDValue() on failure.
10556 static
10557 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
10558 TargetLowering::DAGCombinerInfo &DCI,
10559 bool AllOnes = false) {
10560 SelectionDAG &DAG = DCI.DAG;
10561 EVT VT = N->getValueType(0);
10562 SDValue NonConstantVal;
10563 SDValue CCOp;
10564 bool SwapSelectOps;
10565 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
10566 NonConstantVal, DAG))
10567 return SDValue();
10569 // Slct is now know to be the desired identity constant when CC is true.
10570 SDValue TrueVal = OtherOp;
10571 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
10572 OtherOp, NonConstantVal);
10573 // Unless SwapSelectOps says CC should be false.
10574 if (SwapSelectOps)
10575 std::swap(TrueVal, FalseVal);
10577 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
10578 CCOp, TrueVal, FalseVal);
10581 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10582 static
10583 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
10584 TargetLowering::DAGCombinerInfo &DCI) {
10585 SDValue N0 = N->getOperand(0);
10586 SDValue N1 = N->getOperand(1);
10587 if (N0.getNode()->hasOneUse())
10588 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
10589 return Result;
10590 if (N1.getNode()->hasOneUse())
10591 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
10592 return Result;
10593 return SDValue();
10596 static bool IsVUZPShuffleNode(SDNode *N) {
10597 // VUZP shuffle node.
10598 if (N->getOpcode() == ARMISD::VUZP)
10599 return true;
10601 // "VUZP" on i32 is an alias for VTRN.
10602 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
10603 return true;
10605 return false;
10608 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
10609 TargetLowering::DAGCombinerInfo &DCI,
10610 const ARMSubtarget *Subtarget) {
10611 // Look for ADD(VUZP.0, VUZP.1).
10612 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
10613 N0 == N1)
10614 return SDValue();
10616 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10617 if (!N->getValueType(0).is64BitVector())
10618 return SDValue();
10620 // Generate vpadd.
10621 SelectionDAG &DAG = DCI.DAG;
10622 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10623 SDLoc dl(N);
10624 SDNode *Unzip = N0.getNode();
10625 EVT VT = N->getValueType(0);
10627 SmallVector<SDValue, 8> Ops;
10628 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
10629 TLI.getPointerTy(DAG.getDataLayout())));
10630 Ops.push_back(Unzip->getOperand(0));
10631 Ops.push_back(Unzip->getOperand(1));
10633 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10636 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10637 TargetLowering::DAGCombinerInfo &DCI,
10638 const ARMSubtarget *Subtarget) {
10639 // Check for two extended operands.
10640 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
10641 N1.getOpcode() == ISD::SIGN_EXTEND) &&
10642 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
10643 N1.getOpcode() == ISD::ZERO_EXTEND))
10644 return SDValue();
10646 SDValue N00 = N0.getOperand(0);
10647 SDValue N10 = N1.getOperand(0);
10649 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10650 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
10651 N00 == N10)
10652 return SDValue();
10654 // We only recognize Q register paddl here; this can't be reached until
10655 // after type legalization.
10656 if (!N00.getValueType().is64BitVector() ||
10657 !N0.getValueType().is128BitVector())
10658 return SDValue();
10660 // Generate vpaddl.
10661 SelectionDAG &DAG = DCI.DAG;
10662 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10663 SDLoc dl(N);
10664 EVT VT = N->getValueType(0);
10666 SmallVector<SDValue, 8> Ops;
10667 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10668 unsigned Opcode;
10669 if (N0.getOpcode() == ISD::SIGN_EXTEND)
10670 Opcode = Intrinsic::arm_neon_vpaddls;
10671 else
10672 Opcode = Intrinsic::arm_neon_vpaddlu;
10673 Ops.push_back(DAG.getConstant(Opcode, dl,
10674 TLI.getPointerTy(DAG.getDataLayout())));
10675 EVT ElemTy = N00.getValueType().getVectorElementType();
10676 unsigned NumElts = VT.getVectorNumElements();
10677 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
10678 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
10679 N00.getOperand(0), N00.getOperand(1));
10680 Ops.push_back(Concat);
10682 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10685 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10686 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10687 // much easier to match.
10688 static SDValue
10689 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10690 TargetLowering::DAGCombinerInfo &DCI,
10691 const ARMSubtarget *Subtarget) {
10692 // Only perform optimization if after legalize, and if NEON is available. We
10693 // also expected both operands to be BUILD_VECTORs.
10694 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
10695 || N0.getOpcode() != ISD::BUILD_VECTOR
10696 || N1.getOpcode() != ISD::BUILD_VECTOR)
10697 return SDValue();
10699 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10700 EVT VT = N->getValueType(0);
10701 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
10702 return SDValue();
10704 // Check that the vector operands are of the right form.
10705 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10706 // operands, where N is the size of the formed vector.
10707 // Each EXTRACT_VECTOR should have the same input vector and odd or even
10708 // index such that we have a pair wise add pattern.
10710 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10711 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10712 return SDValue();
10713 SDValue Vec = N0->getOperand(0)->getOperand(0);
10714 SDNode *V = Vec.getNode();
10715 unsigned nextIndex = 0;
10717 // For each operands to the ADD which are BUILD_VECTORs,
10718 // check to see if each of their operands are an EXTRACT_VECTOR with
10719 // the same vector and appropriate index.
10720 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
10721 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10722 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10724 SDValue ExtVec0 = N0->getOperand(i);
10725 SDValue ExtVec1 = N1->getOperand(i);
10727 // First operand is the vector, verify its the same.
10728 if (V != ExtVec0->getOperand(0).getNode() ||
10729 V != ExtVec1->getOperand(0).getNode())
10730 return SDValue();
10732 // Second is the constant, verify its correct.
10733 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
10734 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
10736 // For the constant, we want to see all the even or all the odd.
10737 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
10738 || C1->getZExtValue() != nextIndex+1)
10739 return SDValue();
10741 // Increment index.
10742 nextIndex+=2;
10743 } else
10744 return SDValue();
10747 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10748 // we're using the entire input vector, otherwise there's a size/legality
10749 // mismatch somewhere.
10750 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
10751 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
10752 return SDValue();
10754 // Create VPADDL node.
10755 SelectionDAG &DAG = DCI.DAG;
10756 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10758 SDLoc dl(N);
10760 // Build operand list.
10761 SmallVector<SDValue, 8> Ops;
10762 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
10763 TLI.getPointerTy(DAG.getDataLayout())));
10765 // Input is the vector.
10766 Ops.push_back(Vec);
10768 // Get widened type and narrowed type.
10769 MVT widenType;
10770 unsigned numElem = VT.getVectorNumElements();
10772 EVT inputLaneType = Vec.getValueType().getVectorElementType();
10773 switch (inputLaneType.getSimpleVT().SimpleTy) {
10774 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
10775 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
10776 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
10777 default:
10778 llvm_unreachable("Invalid vector element type for padd optimization.");
10781 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
10782 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
10783 return DAG.getNode(ExtOp, dl, VT, tmp);
10786 static SDValue findMUL_LOHI(SDValue V) {
10787 if (V->getOpcode() == ISD::UMUL_LOHI ||
10788 V->getOpcode() == ISD::SMUL_LOHI)
10789 return V;
10790 return SDValue();
10793 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10794 TargetLowering::DAGCombinerInfo &DCI,
10795 const ARMSubtarget *Subtarget) {
10796 if (Subtarget->isThumb()) {
10797 if (!Subtarget->hasDSP())
10798 return SDValue();
10799 } else if (!Subtarget->hasV5TEOps())
10800 return SDValue();
10802 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10803 // accumulates the product into a 64-bit value. The 16-bit values will
10804 // be sign extended somehow or SRA'd into 32-bit values
10805 // (addc (adde (mul 16bit, 16bit), lo), hi)
10806 SDValue Mul = AddcNode->getOperand(0);
10807 SDValue Lo = AddcNode->getOperand(1);
10808 if (Mul.getOpcode() != ISD::MUL) {
10809 Lo = AddcNode->getOperand(0);
10810 Mul = AddcNode->getOperand(1);
10811 if (Mul.getOpcode() != ISD::MUL)
10812 return SDValue();
10815 SDValue SRA = AddeNode->getOperand(0);
10816 SDValue Hi = AddeNode->getOperand(1);
10817 if (SRA.getOpcode() != ISD::SRA) {
10818 SRA = AddeNode->getOperand(1);
10819 Hi = AddeNode->getOperand(0);
10820 if (SRA.getOpcode() != ISD::SRA)
10821 return SDValue();
10823 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10824 if (Const->getZExtValue() != 31)
10825 return SDValue();
10826 } else
10827 return SDValue();
10829 if (SRA.getOperand(0) != Mul)
10830 return SDValue();
10832 SelectionDAG &DAG = DCI.DAG;
10833 SDLoc dl(AddcNode);
10834 unsigned Opcode = 0;
10835 SDValue Op0;
10836 SDValue Op1;
10838 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10839 Opcode = ARMISD::SMLALBB;
10840 Op0 = Mul.getOperand(0);
10841 Op1 = Mul.getOperand(1);
10842 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10843 Opcode = ARMISD::SMLALBT;
10844 Op0 = Mul.getOperand(0);
10845 Op1 = Mul.getOperand(1).getOperand(0);
10846 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10847 Opcode = ARMISD::SMLALTB;
10848 Op0 = Mul.getOperand(0).getOperand(0);
10849 Op1 = Mul.getOperand(1);
10850 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10851 Opcode = ARMISD::SMLALTT;
10852 Op0 = Mul->getOperand(0).getOperand(0);
10853 Op1 = Mul->getOperand(1).getOperand(0);
10856 if (!Op0 || !Op1)
10857 return SDValue();
10859 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10860 Op0, Op1, Lo, Hi);
10861 // Replace the ADDs' nodes uses by the MLA node's values.
10862 SDValue HiMLALResult(SMLAL.getNode(), 1);
10863 SDValue LoMLALResult(SMLAL.getNode(), 0);
10865 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10866 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10868 // Return original node to notify the driver to stop replacing.
10869 SDValue resNode(AddcNode, 0);
10870 return resNode;
10873 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10874 TargetLowering::DAGCombinerInfo &DCI,
10875 const ARMSubtarget *Subtarget) {
10876 // Look for multiply add opportunities.
10877 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10878 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10879 // a glue link from the first add to the second add.
10880 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10881 // a S/UMLAL instruction.
10882 // UMUL_LOHI
10883 // / :lo \ :hi
10884 // V \ [no multiline comment]
10885 // loAdd -> ADDC |
10886 // \ :carry /
10887 // V V
10888 // ADDE <- hiAdd
10890 // In the special case where only the higher part of a signed result is used
10891 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10892 // a constant with the exact value of 0x80000000, we recognize we are dealing
10893 // with a "rounded multiply and add" (or subtract) and transform it into
10894 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10896 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10897 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10898 "Expect an ADDE or SUBE");
10900 assert(AddeSubeNode->getNumOperands() == 3 &&
10901 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10902 "ADDE node has the wrong inputs");
10904 // Check that we are chained to the right ADDC or SUBC node.
10905 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10906 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10907 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10908 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10909 AddcSubcNode->getOpcode() != ARMISD::SUBC))
10910 return SDValue();
10912 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10913 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10915 // Check if the two operands are from the same mul_lohi node.
10916 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10917 return SDValue();
10919 assert(AddcSubcNode->getNumValues() == 2 &&
10920 AddcSubcNode->getValueType(0) == MVT::i32 &&
10921 "Expect ADDC with two result values. First: i32");
10923 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10924 // maybe a SMLAL which multiplies two 16-bit values.
10925 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10926 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10927 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10928 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10929 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10930 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10932 // Check for the triangle shape.
10933 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10934 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10936 // Make sure that the ADDE/SUBE operands are not coming from the same node.
10937 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10938 return SDValue();
10940 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10941 bool IsLeftOperandMUL = false;
10942 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10943 if (MULOp == SDValue())
10944 MULOp = findMUL_LOHI(AddeSubeOp1);
10945 else
10946 IsLeftOperandMUL = true;
10947 if (MULOp == SDValue())
10948 return SDValue();
10950 // Figure out the right opcode.
10951 unsigned Opc = MULOp->getOpcode();
10952 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10954 // Figure out the high and low input values to the MLAL node.
10955 SDValue *HiAddSub = nullptr;
10956 SDValue *LoMul = nullptr;
10957 SDValue *LowAddSub = nullptr;
10959 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10960 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10961 return SDValue();
10963 if (IsLeftOperandMUL)
10964 HiAddSub = &AddeSubeOp1;
10965 else
10966 HiAddSub = &AddeSubeOp0;
10968 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10969 // whose low result is fed to the ADDC/SUBC we are checking.
10971 if (AddcSubcOp0 == MULOp.getValue(0)) {
10972 LoMul = &AddcSubcOp0;
10973 LowAddSub = &AddcSubcOp1;
10975 if (AddcSubcOp1 == MULOp.getValue(0)) {
10976 LoMul = &AddcSubcOp1;
10977 LowAddSub = &AddcSubcOp0;
10980 if (!LoMul)
10981 return SDValue();
10983 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10984 // the replacement below will create a cycle.
10985 if (AddcSubcNode == HiAddSub->getNode() ||
10986 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10987 return SDValue();
10989 // Create the merged node.
10990 SelectionDAG &DAG = DCI.DAG;
10992 // Start building operand list.
10993 SmallVector<SDValue, 8> Ops;
10994 Ops.push_back(LoMul->getOperand(0));
10995 Ops.push_back(LoMul->getOperand(1));
10997 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
10998 // the case, we must be doing signed multiplication and only use the higher
10999 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11000 // addition or subtraction with the value of 0x800000.
11001 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
11002 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
11003 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
11004 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
11005 0x80000000) {
11006 Ops.push_back(*HiAddSub);
11007 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
11008 FinalOpc = ARMISD::SMMLSR;
11009 } else {
11010 FinalOpc = ARMISD::SMMLAR;
11012 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
11013 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
11015 return SDValue(AddeSubeNode, 0);
11016 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
11017 // SMMLS is generated during instruction selection and the rest of this
11018 // function can not handle the case where AddcSubcNode is a SUBC.
11019 return SDValue();
11021 // Finish building the operand list for {U/S}MLAL
11022 Ops.push_back(*LowAddSub);
11023 Ops.push_back(*HiAddSub);
11025 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
11026 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11028 // Replace the ADDs' nodes uses by the MLA node's values.
11029 SDValue HiMLALResult(MLALNode.getNode(), 1);
11030 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11032 SDValue LoMLALResult(MLALNode.getNode(), 0);
11033 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11035 // Return original node to notify the driver to stop replacing.
11036 return SDValue(AddeSubeNode, 0);
11039 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11040 TargetLowering::DAGCombinerInfo &DCI,
11041 const ARMSubtarget *Subtarget) {
11042 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11043 // While trying to combine for the other MLAL nodes, first search for the
11044 // chance to use UMAAL. Check if Addc uses a node which has already
11045 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11046 // as the addend, and it's handled in PerformUMLALCombine.
11048 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11049 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11051 // Check that we have a glued ADDC node.
11052 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11053 if (AddcNode->getOpcode() != ARMISD::ADDC)
11054 return SDValue();
11056 // Find the converted UMAAL or quit if it doesn't exist.
11057 SDNode *UmlalNode = nullptr;
11058 SDValue AddHi;
11059 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
11060 UmlalNode = AddcNode->getOperand(0).getNode();
11061 AddHi = AddcNode->getOperand(1);
11062 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
11063 UmlalNode = AddcNode->getOperand(1).getNode();
11064 AddHi = AddcNode->getOperand(0);
11065 } else {
11066 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11069 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11070 // the ADDC as well as Zero.
11071 if (!isNullConstant(UmlalNode->getOperand(3)))
11072 return SDValue();
11074 if ((isNullConstant(AddeNode->getOperand(0)) &&
11075 AddeNode->getOperand(1).getNode() == UmlalNode) ||
11076 (AddeNode->getOperand(0).getNode() == UmlalNode &&
11077 isNullConstant(AddeNode->getOperand(1)))) {
11078 SelectionDAG &DAG = DCI.DAG;
11079 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
11080 UmlalNode->getOperand(2), AddHi };
11081 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
11082 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11084 // Replace the ADDs' nodes uses by the UMAAL node's values.
11085 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
11086 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
11088 // Return original node to notify the driver to stop replacing.
11089 return SDValue(AddeNode, 0);
11091 return SDValue();
11094 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
11095 const ARMSubtarget *Subtarget) {
11096 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11097 return SDValue();
11099 // Check that we have a pair of ADDC and ADDE as operands.
11100 // Both addends of the ADDE must be zero.
11101 SDNode* AddcNode = N->getOperand(2).getNode();
11102 SDNode* AddeNode = N->getOperand(3).getNode();
11103 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
11104 (AddeNode->getOpcode() == ARMISD::ADDE) &&
11105 isNullConstant(AddeNode->getOperand(0)) &&
11106 isNullConstant(AddeNode->getOperand(1)) &&
11107 (AddeNode->getOperand(2).getNode() == AddcNode))
11108 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
11109 DAG.getVTList(MVT::i32, MVT::i32),
11110 {N->getOperand(0), N->getOperand(1),
11111 AddcNode->getOperand(0), AddcNode->getOperand(1)});
11112 else
11113 return SDValue();
11116 static SDValue PerformAddcSubcCombine(SDNode *N,
11117 TargetLowering::DAGCombinerInfo &DCI,
11118 const ARMSubtarget *Subtarget) {
11119 SelectionDAG &DAG(DCI.DAG);
11121 if (N->getOpcode() == ARMISD::SUBC) {
11122 // (SUBC (ADDE 0, 0, C), 1) -> C
11123 SDValue LHS = N->getOperand(0);
11124 SDValue RHS = N->getOperand(1);
11125 if (LHS->getOpcode() == ARMISD::ADDE &&
11126 isNullConstant(LHS->getOperand(0)) &&
11127 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
11128 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
11132 if (Subtarget->isThumb1Only()) {
11133 SDValue RHS = N->getOperand(1);
11134 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11135 int32_t imm = C->getSExtValue();
11136 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
11137 SDLoc DL(N);
11138 RHS = DAG.getConstant(-imm, DL, MVT::i32);
11139 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
11140 : ARMISD::ADDC;
11141 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
11146 return SDValue();
11149 static SDValue PerformAddeSubeCombine(SDNode *N,
11150 TargetLowering::DAGCombinerInfo &DCI,
11151 const ARMSubtarget *Subtarget) {
11152 if (Subtarget->isThumb1Only()) {
11153 SelectionDAG &DAG = DCI.DAG;
11154 SDValue RHS = N->getOperand(1);
11155 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11156 int64_t imm = C->getSExtValue();
11157 if (imm < 0) {
11158 SDLoc DL(N);
11160 // The with-carry-in form matches bitwise not instead of the negation.
11161 // Effectively, the inverse interpretation of the carry flag already
11162 // accounts for part of the negation.
11163 RHS = DAG.getConstant(~imm, DL, MVT::i32);
11165 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
11166 : ARMISD::ADDE;
11167 return DAG.getNode(Opcode, DL, N->getVTList(),
11168 N->getOperand(0), RHS, N->getOperand(2));
11171 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
11172 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
11174 return SDValue();
11177 static SDValue PerformABSCombine(SDNode *N,
11178 TargetLowering::DAGCombinerInfo &DCI,
11179 const ARMSubtarget *Subtarget) {
11180 SDValue res;
11181 SelectionDAG &DAG = DCI.DAG;
11182 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11184 if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
11185 return SDValue();
11187 if (!TLI.expandABS(N, res, DAG))
11188 return SDValue();
11190 return res;
11193 /// PerformADDECombine - Target-specific dag combine transform from
11194 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11195 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11196 static SDValue PerformADDECombine(SDNode *N,
11197 TargetLowering::DAGCombinerInfo &DCI,
11198 const ARMSubtarget *Subtarget) {
11199 // Only ARM and Thumb2 support UMLAL/SMLAL.
11200 if (Subtarget->isThumb1Only())
11201 return PerformAddeSubeCombine(N, DCI, Subtarget);
11203 // Only perform the checks after legalize when the pattern is available.
11204 if (DCI.isBeforeLegalize()) return SDValue();
11206 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
11209 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11210 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11211 /// called with the default operands, and if that fails, with commuted
11212 /// operands.
11213 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
11214 TargetLowering::DAGCombinerInfo &DCI,
11215 const ARMSubtarget *Subtarget){
11216 // Attempt to create vpadd for this add.
11217 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
11218 return Result;
11220 // Attempt to create vpaddl for this add.
11221 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
11222 return Result;
11223 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
11224 Subtarget))
11225 return Result;
11227 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11228 if (N0.getNode()->hasOneUse())
11229 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
11230 return Result;
11231 return SDValue();
11234 bool
11235 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
11236 CombineLevel Level) const {
11237 if (Level == BeforeLegalizeTypes)
11238 return true;
11240 if (N->getOpcode() != ISD::SHL)
11241 return true;
11243 if (Subtarget->isThumb1Only()) {
11244 // Avoid making expensive immediates by commuting shifts. (This logic
11245 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11246 // for free.)
11247 if (N->getOpcode() != ISD::SHL)
11248 return true;
11249 SDValue N1 = N->getOperand(0);
11250 if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
11251 N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
11252 return true;
11253 if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
11254 if (Const->getAPIntValue().ult(256))
11255 return false;
11256 if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
11257 Const->getAPIntValue().sgt(-256))
11258 return false;
11260 return true;
11263 // Turn off commute-with-shift transform after legalization, so it doesn't
11264 // conflict with PerformSHLSimplify. (We could try to detect when
11265 // PerformSHLSimplify would trigger more precisely, but it isn't
11266 // really necessary.)
11267 return false;
11270 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11271 const SDNode *N, CombineLevel Level) const {
11272 if (!Subtarget->isThumb1Only())
11273 return true;
11275 if (Level == BeforeLegalizeTypes)
11276 return true;
11278 return false;
11281 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
11282 if (!Subtarget->hasNEON()) {
11283 if (Subtarget->isThumb1Only())
11284 return VT.getScalarSizeInBits() <= 32;
11285 return true;
11287 return VT.isScalarInteger();
11290 static SDValue PerformSHLSimplify(SDNode *N,
11291 TargetLowering::DAGCombinerInfo &DCI,
11292 const ARMSubtarget *ST) {
11293 // Allow the generic combiner to identify potential bswaps.
11294 if (DCI.isBeforeLegalize())
11295 return SDValue();
11297 // DAG combiner will fold:
11298 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11299 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11300 // Other code patterns that can be also be modified have the following form:
11301 // b + ((a << 1) | 510)
11302 // b + ((a << 1) & 510)
11303 // b + ((a << 1) ^ 510)
11304 // b + ((a << 1) + 510)
11306 // Many instructions can perform the shift for free, but it requires both
11307 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11308 // instruction will needed. So, unfold back to the original pattern if:
11309 // - if c1 and c2 are small enough that they don't require mov imms.
11310 // - the user(s) of the node can perform an shl
11312 // No shifted operands for 16-bit instructions.
11313 if (ST->isThumb() && ST->isThumb1Only())
11314 return SDValue();
11316 // Check that all the users could perform the shl themselves.
11317 for (auto U : N->uses()) {
11318 switch(U->getOpcode()) {
11319 default:
11320 return SDValue();
11321 case ISD::SUB:
11322 case ISD::ADD:
11323 case ISD::AND:
11324 case ISD::OR:
11325 case ISD::XOR:
11326 case ISD::SETCC:
11327 case ARMISD::CMP:
11328 // Check that the user isn't already using a constant because there
11329 // aren't any instructions that support an immediate operand and a
11330 // shifted operand.
11331 if (isa<ConstantSDNode>(U->getOperand(0)) ||
11332 isa<ConstantSDNode>(U->getOperand(1)))
11333 return SDValue();
11335 // Check that it's not already using a shift.
11336 if (U->getOperand(0).getOpcode() == ISD::SHL ||
11337 U->getOperand(1).getOpcode() == ISD::SHL)
11338 return SDValue();
11339 break;
11343 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
11344 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
11345 return SDValue();
11347 if (N->getOperand(0).getOpcode() != ISD::SHL)
11348 return SDValue();
11350 SDValue SHL = N->getOperand(0);
11352 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
11353 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
11354 if (!C1ShlC2 || !C2)
11355 return SDValue();
11357 APInt C2Int = C2->getAPIntValue();
11358 APInt C1Int = C1ShlC2->getAPIntValue();
11360 // Check that performing a lshr will not lose any information.
11361 APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
11362 C2Int.getBitWidth() - C2->getZExtValue());
11363 if ((C1Int & Mask) != C1Int)
11364 return SDValue();
11366 // Shift the first constant.
11367 C1Int.lshrInPlace(C2Int);
11369 // The immediates are encoded as an 8-bit value that can be rotated.
11370 auto LargeImm = [](const APInt &Imm) {
11371 unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
11372 return Imm.getBitWidth() - Zeros > 8;
11375 if (LargeImm(C1Int) || LargeImm(C2Int))
11376 return SDValue();
11378 SelectionDAG &DAG = DCI.DAG;
11379 SDLoc dl(N);
11380 SDValue X = SHL.getOperand(0);
11381 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
11382 DAG.getConstant(C1Int, dl, MVT::i32));
11383 // Shift left to compensate for the lshr of C1Int.
11384 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
11386 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
11387 SHL.dump(); N->dump());
11388 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
11389 return Res;
11393 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11395 static SDValue PerformADDCombine(SDNode *N,
11396 TargetLowering::DAGCombinerInfo &DCI,
11397 const ARMSubtarget *Subtarget) {
11398 SDValue N0 = N->getOperand(0);
11399 SDValue N1 = N->getOperand(1);
11401 // Only works one way, because it needs an immediate operand.
11402 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11403 return Result;
11405 // First try with the default operand order.
11406 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
11407 return Result;
11409 // If that didn't work, try again with the operands commuted.
11410 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
11413 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11415 static SDValue PerformSUBCombine(SDNode *N,
11416 TargetLowering::DAGCombinerInfo &DCI) {
11417 SDValue N0 = N->getOperand(0);
11418 SDValue N1 = N->getOperand(1);
11420 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11421 if (N1.getNode()->hasOneUse())
11422 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
11423 return Result;
11425 return SDValue();
11428 /// PerformVMULCombine
11429 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11430 /// special multiplier accumulator forwarding.
11431 /// vmul d3, d0, d2
11432 /// vmla d3, d1, d2
11433 /// is faster than
11434 /// vadd d3, d0, d1
11435 /// vmul d3, d3, d2
11436 // However, for (A + B) * (A + B),
11437 // vadd d2, d0, d1
11438 // vmul d3, d0, d2
11439 // vmla d3, d1, d2
11440 // is slower than
11441 // vadd d2, d0, d1
11442 // vmul d3, d2, d2
11443 static SDValue PerformVMULCombine(SDNode *N,
11444 TargetLowering::DAGCombinerInfo &DCI,
11445 const ARMSubtarget *Subtarget) {
11446 if (!Subtarget->hasVMLxForwarding())
11447 return SDValue();
11449 SelectionDAG &DAG = DCI.DAG;
11450 SDValue N0 = N->getOperand(0);
11451 SDValue N1 = N->getOperand(1);
11452 unsigned Opcode = N0.getOpcode();
11453 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11454 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
11455 Opcode = N1.getOpcode();
11456 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11457 Opcode != ISD::FADD && Opcode != ISD::FSUB)
11458 return SDValue();
11459 std::swap(N0, N1);
11462 if (N0 == N1)
11463 return SDValue();
11465 EVT VT = N->getValueType(0);
11466 SDLoc DL(N);
11467 SDValue N00 = N0->getOperand(0);
11468 SDValue N01 = N0->getOperand(1);
11469 return DAG.getNode(Opcode, DL, VT,
11470 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
11471 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
11474 static SDValue PerformMULCombine(SDNode *N,
11475 TargetLowering::DAGCombinerInfo &DCI,
11476 const ARMSubtarget *Subtarget) {
11477 SelectionDAG &DAG = DCI.DAG;
11479 if (Subtarget->isThumb1Only())
11480 return SDValue();
11482 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11483 return SDValue();
11485 EVT VT = N->getValueType(0);
11486 if (VT.is64BitVector() || VT.is128BitVector())
11487 return PerformVMULCombine(N, DCI, Subtarget);
11488 if (VT != MVT::i32)
11489 return SDValue();
11491 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11492 if (!C)
11493 return SDValue();
11495 int64_t MulAmt = C->getSExtValue();
11496 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
11498 ShiftAmt = ShiftAmt & (32 - 1);
11499 SDValue V = N->getOperand(0);
11500 SDLoc DL(N);
11502 SDValue Res;
11503 MulAmt >>= ShiftAmt;
11505 if (MulAmt >= 0) {
11506 if (isPowerOf2_32(MulAmt - 1)) {
11507 // (mul x, 2^N + 1) => (add (shl x, N), x)
11508 Res = DAG.getNode(ISD::ADD, DL, VT,
11510 DAG.getNode(ISD::SHL, DL, VT,
11512 DAG.getConstant(Log2_32(MulAmt - 1), DL,
11513 MVT::i32)));
11514 } else if (isPowerOf2_32(MulAmt + 1)) {
11515 // (mul x, 2^N - 1) => (sub (shl x, N), x)
11516 Res = DAG.getNode(ISD::SUB, DL, VT,
11517 DAG.getNode(ISD::SHL, DL, VT,
11519 DAG.getConstant(Log2_32(MulAmt + 1), DL,
11520 MVT::i32)),
11522 } else
11523 return SDValue();
11524 } else {
11525 uint64_t MulAmtAbs = -MulAmt;
11526 if (isPowerOf2_32(MulAmtAbs + 1)) {
11527 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
11528 Res = DAG.getNode(ISD::SUB, DL, VT,
11530 DAG.getNode(ISD::SHL, DL, VT,
11532 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
11533 MVT::i32)));
11534 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
11535 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
11536 Res = DAG.getNode(ISD::ADD, DL, VT,
11538 DAG.getNode(ISD::SHL, DL, VT,
11540 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
11541 MVT::i32)));
11542 Res = DAG.getNode(ISD::SUB, DL, VT,
11543 DAG.getConstant(0, DL, MVT::i32), Res);
11544 } else
11545 return SDValue();
11548 if (ShiftAmt != 0)
11549 Res = DAG.getNode(ISD::SHL, DL, VT,
11550 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
11552 // Do not add new nodes to DAG combiner worklist.
11553 DCI.CombineTo(N, Res, false);
11554 return SDValue();
11557 static SDValue CombineANDShift(SDNode *N,
11558 TargetLowering::DAGCombinerInfo &DCI,
11559 const ARMSubtarget *Subtarget) {
11560 // Allow DAGCombine to pattern-match before we touch the canonical form.
11561 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11562 return SDValue();
11564 if (N->getValueType(0) != MVT::i32)
11565 return SDValue();
11567 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11568 if (!N1C)
11569 return SDValue();
11571 uint32_t C1 = (uint32_t)N1C->getZExtValue();
11572 // Don't transform uxtb/uxth.
11573 if (C1 == 255 || C1 == 65535)
11574 return SDValue();
11576 SDNode *N0 = N->getOperand(0).getNode();
11577 if (!N0->hasOneUse())
11578 return SDValue();
11580 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
11581 return SDValue();
11583 bool LeftShift = N0->getOpcode() == ISD::SHL;
11585 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
11586 if (!N01C)
11587 return SDValue();
11589 uint32_t C2 = (uint32_t)N01C->getZExtValue();
11590 if (!C2 || C2 >= 32)
11591 return SDValue();
11593 // Clear irrelevant bits in the mask.
11594 if (LeftShift)
11595 C1 &= (-1U << C2);
11596 else
11597 C1 &= (-1U >> C2);
11599 SelectionDAG &DAG = DCI.DAG;
11600 SDLoc DL(N);
11602 // We have a pattern of the form "(and (shl x, c2) c1)" or
11603 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11604 // transform to a pair of shifts, to save materializing c1.
11606 // First pattern: right shift, then mask off leading bits.
11607 // FIXME: Use demanded bits?
11608 if (!LeftShift && isMask_32(C1)) {
11609 uint32_t C3 = countLeadingZeros(C1);
11610 if (C2 < C3) {
11611 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11612 DAG.getConstant(C3 - C2, DL, MVT::i32));
11613 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11614 DAG.getConstant(C3, DL, MVT::i32));
11618 // First pattern, reversed: left shift, then mask off trailing bits.
11619 if (LeftShift && isMask_32(~C1)) {
11620 uint32_t C3 = countTrailingZeros(C1);
11621 if (C2 < C3) {
11622 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11623 DAG.getConstant(C3 - C2, DL, MVT::i32));
11624 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11625 DAG.getConstant(C3, DL, MVT::i32));
11629 // Second pattern: left shift, then mask off leading bits.
11630 // FIXME: Use demanded bits?
11631 if (LeftShift && isShiftedMask_32(C1)) {
11632 uint32_t Trailing = countTrailingZeros(C1);
11633 uint32_t C3 = countLeadingZeros(C1);
11634 if (Trailing == C2 && C2 + C3 < 32) {
11635 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11636 DAG.getConstant(C2 + C3, DL, MVT::i32));
11637 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11638 DAG.getConstant(C3, DL, MVT::i32));
11642 // Second pattern, reversed: right shift, then mask off trailing bits.
11643 // FIXME: Handle other patterns of known/demanded bits.
11644 if (!LeftShift && isShiftedMask_32(C1)) {
11645 uint32_t Leading = countLeadingZeros(C1);
11646 uint32_t C3 = countTrailingZeros(C1);
11647 if (Leading == C2 && C2 + C3 < 32) {
11648 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11649 DAG.getConstant(C2 + C3, DL, MVT::i32));
11650 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11651 DAG.getConstant(C3, DL, MVT::i32));
11655 // FIXME: Transform "(and (shl x, c2) c1)" ->
11656 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11657 // c1.
11658 return SDValue();
11661 static SDValue PerformANDCombine(SDNode *N,
11662 TargetLowering::DAGCombinerInfo &DCI,
11663 const ARMSubtarget *Subtarget) {
11664 // Attempt to use immediate-form VBIC
11665 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11666 SDLoc dl(N);
11667 EVT VT = N->getValueType(0);
11668 SelectionDAG &DAG = DCI.DAG;
11670 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11671 return SDValue();
11673 APInt SplatBits, SplatUndef;
11674 unsigned SplatBitSize;
11675 bool HasAnyUndefs;
11676 if (BVN && Subtarget->hasNEON() &&
11677 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11678 if (SplatBitSize <= 64) {
11679 EVT VbicVT;
11680 SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
11681 SplatUndef.getZExtValue(), SplatBitSize,
11682 DAG, dl, VbicVT, VT.is128BitVector(),
11683 OtherModImm);
11684 if (Val.getNode()) {
11685 SDValue Input =
11686 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
11687 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
11688 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
11693 if (!Subtarget->isThumb1Only()) {
11694 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11695 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
11696 return Result;
11698 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11699 return Result;
11702 if (Subtarget->isThumb1Only())
11703 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
11704 return Result;
11706 return SDValue();
11709 // Try combining OR nodes to SMULWB, SMULWT.
11710 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
11711 TargetLowering::DAGCombinerInfo &DCI,
11712 const ARMSubtarget *Subtarget) {
11713 if (!Subtarget->hasV6Ops() ||
11714 (Subtarget->isThumb() &&
11715 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
11716 return SDValue();
11718 SDValue SRL = OR->getOperand(0);
11719 SDValue SHL = OR->getOperand(1);
11721 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
11722 SRL = OR->getOperand(1);
11723 SHL = OR->getOperand(0);
11725 if (!isSRL16(SRL) || !isSHL16(SHL))
11726 return SDValue();
11728 // The first operands to the shifts need to be the two results from the
11729 // same smul_lohi node.
11730 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
11731 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
11732 return SDValue();
11734 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
11735 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
11736 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
11737 return SDValue();
11739 // Now we have:
11740 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11741 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11742 // For SMUWB the 16-bit value will signed extended somehow.
11743 // For SMULWT only the SRA is required.
11744 // Check both sides of SMUL_LOHI
11745 SDValue OpS16 = SMULLOHI->getOperand(0);
11746 SDValue OpS32 = SMULLOHI->getOperand(1);
11748 SelectionDAG &DAG = DCI.DAG;
11749 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
11750 OpS16 = OpS32;
11751 OpS32 = SMULLOHI->getOperand(0);
11754 SDLoc dl(OR);
11755 unsigned Opcode = 0;
11756 if (isS16(OpS16, DAG))
11757 Opcode = ARMISD::SMULWB;
11758 else if (isSRA16(OpS16)) {
11759 Opcode = ARMISD::SMULWT;
11760 OpS16 = OpS16->getOperand(0);
11762 else
11763 return SDValue();
11765 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
11766 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
11767 return SDValue(OR, 0);
11770 static SDValue PerformORCombineToBFI(SDNode *N,
11771 TargetLowering::DAGCombinerInfo &DCI,
11772 const ARMSubtarget *Subtarget) {
11773 // BFI is only available on V6T2+
11774 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
11775 return SDValue();
11777 EVT VT = N->getValueType(0);
11778 SDValue N0 = N->getOperand(0);
11779 SDValue N1 = N->getOperand(1);
11780 SelectionDAG &DAG = DCI.DAG;
11781 SDLoc DL(N);
11782 // 1) or (and A, mask), val => ARMbfi A, val, mask
11783 // iff (val & mask) == val
11785 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11786 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11787 // && mask == ~mask2
11788 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11789 // && ~mask == mask2
11790 // (i.e., copy a bitfield value into another bitfield of the same width)
11792 if (VT != MVT::i32)
11793 return SDValue();
11795 SDValue N00 = N0.getOperand(0);
11797 // The value and the mask need to be constants so we can verify this is
11798 // actually a bitfield set. If the mask is 0xffff, we can do better
11799 // via a movt instruction, so don't use BFI in that case.
11800 SDValue MaskOp = N0.getOperand(1);
11801 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
11802 if (!MaskC)
11803 return SDValue();
11804 unsigned Mask = MaskC->getZExtValue();
11805 if (Mask == 0xffff)
11806 return SDValue();
11807 SDValue Res;
11808 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11809 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11810 if (N1C) {
11811 unsigned Val = N1C->getZExtValue();
11812 if ((Val & ~Mask) != Val)
11813 return SDValue();
11815 if (ARM::isBitFieldInvertedMask(Mask)) {
11816 Val >>= countTrailingZeros(~Mask);
11818 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
11819 DAG.getConstant(Val, DL, MVT::i32),
11820 DAG.getConstant(Mask, DL, MVT::i32));
11822 DCI.CombineTo(N, Res, false);
11823 // Return value from the original node to inform the combiner than N is
11824 // now dead.
11825 return SDValue(N, 0);
11827 } else if (N1.getOpcode() == ISD::AND) {
11828 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11829 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11830 if (!N11C)
11831 return SDValue();
11832 unsigned Mask2 = N11C->getZExtValue();
11834 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11835 // as is to match.
11836 if (ARM::isBitFieldInvertedMask(Mask) &&
11837 (Mask == ~Mask2)) {
11838 // The pack halfword instruction works better for masks that fit it,
11839 // so use that when it's available.
11840 if (Subtarget->hasDSP() &&
11841 (Mask == 0xffff || Mask == 0xffff0000))
11842 return SDValue();
11843 // 2a
11844 unsigned amt = countTrailingZeros(Mask2);
11845 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
11846 DAG.getConstant(amt, DL, MVT::i32));
11847 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
11848 DAG.getConstant(Mask, DL, MVT::i32));
11849 DCI.CombineTo(N, Res, false);
11850 // Return value from the original node to inform the combiner than N is
11851 // now dead.
11852 return SDValue(N, 0);
11853 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
11854 (~Mask == Mask2)) {
11855 // The pack halfword instruction works better for masks that fit it,
11856 // so use that when it's available.
11857 if (Subtarget->hasDSP() &&
11858 (Mask2 == 0xffff || Mask2 == 0xffff0000))
11859 return SDValue();
11860 // 2b
11861 unsigned lsb = countTrailingZeros(Mask);
11862 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
11863 DAG.getConstant(lsb, DL, MVT::i32));
11864 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
11865 DAG.getConstant(Mask2, DL, MVT::i32));
11866 DCI.CombineTo(N, Res, false);
11867 // Return value from the original node to inform the combiner than N is
11868 // now dead.
11869 return SDValue(N, 0);
11873 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
11874 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
11875 ARM::isBitFieldInvertedMask(~Mask)) {
11876 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11877 // where lsb(mask) == #shamt and masked bits of B are known zero.
11878 SDValue ShAmt = N00.getOperand(1);
11879 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
11880 unsigned LSB = countTrailingZeros(Mask);
11881 if (ShAmtC != LSB)
11882 return SDValue();
11884 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
11885 DAG.getConstant(~Mask, DL, MVT::i32));
11887 DCI.CombineTo(N, Res, false);
11888 // Return value from the original node to inform the combiner than N is
11889 // now dead.
11890 return SDValue(N, 0);
11893 return SDValue();
11896 static bool isValidMVECond(unsigned CC, bool IsFloat) {
11897 switch (CC) {
11898 case ARMCC::EQ:
11899 case ARMCC::NE:
11900 case ARMCC::LE:
11901 case ARMCC::GT:
11902 case ARMCC::GE:
11903 case ARMCC::LT:
11904 return true;
11905 case ARMCC::HS:
11906 case ARMCC::HI:
11907 return !IsFloat;
11908 default:
11909 return false;
11913 static SDValue PerformORCombine_i1(SDNode *N,
11914 TargetLowering::DAGCombinerInfo &DCI,
11915 const ARMSubtarget *Subtarget) {
11916 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
11917 // together with predicates
11918 EVT VT = N->getValueType(0);
11919 SDValue N0 = N->getOperand(0);
11920 SDValue N1 = N->getOperand(1);
11922 ARMCC::CondCodes CondCode0 = ARMCC::AL;
11923 ARMCC::CondCodes CondCode1 = ARMCC::AL;
11924 if (N0->getOpcode() == ARMISD::VCMP)
11925 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
11926 ->getZExtValue();
11927 else if (N0->getOpcode() == ARMISD::VCMPZ)
11928 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
11929 ->getZExtValue();
11930 if (N1->getOpcode() == ARMISD::VCMP)
11931 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
11932 ->getZExtValue();
11933 else if (N1->getOpcode() == ARMISD::VCMPZ)
11934 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
11935 ->getZExtValue();
11937 if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
11938 return SDValue();
11940 unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
11941 unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);
11943 if (!isValidMVECond(Opposite0,
11944 N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
11945 !isValidMVECond(Opposite1,
11946 N1->getOperand(0)->getValueType(0).isFloatingPoint()))
11947 return SDValue();
11949 SmallVector<SDValue, 4> Ops0;
11950 Ops0.push_back(N0->getOperand(0));
11951 if (N0->getOpcode() == ARMISD::VCMP)
11952 Ops0.push_back(N0->getOperand(1));
11953 Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
11954 SmallVector<SDValue, 4> Ops1;
11955 Ops1.push_back(N1->getOperand(0));
11956 if (N1->getOpcode() == ARMISD::VCMP)
11957 Ops1.push_back(N1->getOperand(1));
11958 Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));
11960 SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
11961 SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
11962 SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
11963 return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
11964 DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
11967 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11968 static SDValue PerformORCombine(SDNode *N,
11969 TargetLowering::DAGCombinerInfo &DCI,
11970 const ARMSubtarget *Subtarget) {
11971 // Attempt to use immediate-form VORR
11972 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11973 SDLoc dl(N);
11974 EVT VT = N->getValueType(0);
11975 SelectionDAG &DAG = DCI.DAG;
11977 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11978 return SDValue();
11980 APInt SplatBits, SplatUndef;
11981 unsigned SplatBitSize;
11982 bool HasAnyUndefs;
11983 if (BVN && Subtarget->hasNEON() &&
11984 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11985 if (SplatBitSize <= 64) {
11986 EVT VorrVT;
11987 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
11988 SplatUndef.getZExtValue(), SplatBitSize,
11989 DAG, dl, VorrVT, VT.is128BitVector(),
11990 OtherModImm);
11991 if (Val.getNode()) {
11992 SDValue Input =
11993 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11994 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11995 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
12000 if (!Subtarget->isThumb1Only()) {
12001 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12002 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12003 return Result;
12004 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
12005 return Result;
12008 SDValue N0 = N->getOperand(0);
12009 SDValue N1 = N->getOperand(1);
12011 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12012 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
12013 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12015 // The code below optimizes (or (and X, Y), Z).
12016 // The AND operand needs to have a single user to make these optimizations
12017 // profitable.
12018 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
12019 return SDValue();
12021 APInt SplatUndef;
12022 unsigned SplatBitSize;
12023 bool HasAnyUndefs;
12025 APInt SplatBits0, SplatBits1;
12026 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
12027 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
12028 // Ensure that the second operand of both ands are constants
12029 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
12030 HasAnyUndefs) && !HasAnyUndefs) {
12031 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
12032 HasAnyUndefs) && !HasAnyUndefs) {
12033 // Ensure that the bit width of the constants are the same and that
12034 // the splat arguments are logical inverses as per the pattern we
12035 // are trying to simplify.
12036 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
12037 SplatBits0 == ~SplatBits1) {
12038 // Canonicalize the vector type to make instruction selection
12039 // simpler.
12040 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
12041 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
12042 N0->getOperand(1),
12043 N0->getOperand(0),
12044 N1->getOperand(0));
12045 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12051 if (Subtarget->hasMVEIntegerOps() &&
12052 (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
12053 return PerformORCombine_i1(N, DCI, Subtarget);
12055 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12056 // reasonable.
12057 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
12058 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
12059 return Res;
12062 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12063 return Result;
12065 return SDValue();
12068 static SDValue PerformXORCombine(SDNode *N,
12069 TargetLowering::DAGCombinerInfo &DCI,
12070 const ARMSubtarget *Subtarget) {
12071 EVT VT = N->getValueType(0);
12072 SelectionDAG &DAG = DCI.DAG;
12074 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12075 return SDValue();
12077 if (!Subtarget->isThumb1Only()) {
12078 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12079 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12080 return Result;
12082 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12083 return Result;
12086 return SDValue();
12089 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12090 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12091 // their position in "to" (Rd).
12092 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
12093 assert(N->getOpcode() == ARMISD::BFI);
12095 SDValue From = N->getOperand(1);
12096 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
12097 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
12099 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12100 // #C in the base of the SHR.
12101 if (From->getOpcode() == ISD::SRL &&
12102 isa<ConstantSDNode>(From->getOperand(1))) {
12103 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
12104 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
12105 FromMask <<= Shift.getLimitedValue(31);
12106 From = From->getOperand(0);
12109 return From;
12112 // If A and B contain one contiguous set of bits, does A | B == A . B?
12114 // Neither A nor B must be zero.
12115 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
12116 unsigned LastActiveBitInA = A.countTrailingZeros();
12117 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
12118 return LastActiveBitInA - 1 == FirstActiveBitInB;
12121 static SDValue FindBFIToCombineWith(SDNode *N) {
12122 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12123 // if one exists.
12124 APInt ToMask, FromMask;
12125 SDValue From = ParseBFI(N, ToMask, FromMask);
12126 SDValue To = N->getOperand(0);
12128 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12129 // aren't compatible, but not if they set the same bit in their destination as
12130 // we do (or that of any BFI we're going to combine with).
12131 SDValue V = To;
12132 APInt CombinedToMask = ToMask;
12133 while (V.getOpcode() == ARMISD::BFI) {
12134 APInt NewToMask, NewFromMask;
12135 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
12136 if (NewFrom != From) {
12137 // This BFI has a different base. Keep going.
12138 CombinedToMask |= NewToMask;
12139 V = V.getOperand(0);
12140 continue;
12143 // Do the written bits conflict with any we've seen so far?
12144 if ((NewToMask & CombinedToMask).getBoolValue())
12145 // Conflicting bits - bail out because going further is unsafe.
12146 return SDValue();
12148 // Are the new bits contiguous when combined with the old bits?
12149 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
12150 BitsProperlyConcatenate(FromMask, NewFromMask))
12151 return V;
12152 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
12153 BitsProperlyConcatenate(NewFromMask, FromMask))
12154 return V;
12156 // We've seen a write to some bits, so track it.
12157 CombinedToMask |= NewToMask;
12158 // Keep going...
12159 V = V.getOperand(0);
12162 return SDValue();
12165 static SDValue PerformBFICombine(SDNode *N,
12166 TargetLowering::DAGCombinerInfo &DCI) {
12167 SDValue N1 = N->getOperand(1);
12168 if (N1.getOpcode() == ISD::AND) {
12169 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12170 // the bits being cleared by the AND are not demanded by the BFI.
12171 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12172 if (!N11C)
12173 return SDValue();
12174 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12175 unsigned LSB = countTrailingZeros(~InvMask);
12176 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
12177 assert(Width <
12178 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
12179 "undefined behavior");
12180 unsigned Mask = (1u << Width) - 1;
12181 unsigned Mask2 = N11C->getZExtValue();
12182 if ((Mask & (~Mask2)) == 0)
12183 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
12184 N->getOperand(0), N1.getOperand(0),
12185 N->getOperand(2));
12186 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
12187 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12188 // Keep track of any consecutive bits set that all come from the same base
12189 // value. We can combine these together into a single BFI.
12190 SDValue CombineBFI = FindBFIToCombineWith(N);
12191 if (CombineBFI == SDValue())
12192 return SDValue();
12194 // We've found a BFI.
12195 APInt ToMask1, FromMask1;
12196 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
12198 APInt ToMask2, FromMask2;
12199 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
12200 assert(From1 == From2);
12201 (void)From2;
12203 // First, unlink CombineBFI.
12204 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
12205 // Then create a new BFI, combining the two together.
12206 APInt NewFromMask = FromMask1 | FromMask2;
12207 APInt NewToMask = ToMask1 | ToMask2;
12209 EVT VT = N->getValueType(0);
12210 SDLoc dl(N);
12212 if (NewFromMask[0] == 0)
12213 From1 = DCI.DAG.getNode(
12214 ISD::SRL, dl, VT, From1,
12215 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
12216 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
12217 DCI.DAG.getConstant(~NewToMask, dl, VT));
12219 return SDValue();
12222 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12223 /// ARMISD::VMOVRRD.
12224 static SDValue PerformVMOVRRDCombine(SDNode *N,
12225 TargetLowering::DAGCombinerInfo &DCI,
12226 const ARMSubtarget *Subtarget) {
12227 // vmovrrd(vmovdrr x, y) -> x,y
12228 SDValue InDouble = N->getOperand(0);
12229 if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
12230 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
12232 // vmovrrd(load f64) -> (load i32), (load i32)
12233 SDNode *InNode = InDouble.getNode();
12234 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
12235 InNode->getValueType(0) == MVT::f64 &&
12236 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
12237 !cast<LoadSDNode>(InNode)->isVolatile()) {
12238 // TODO: Should this be done for non-FrameIndex operands?
12239 LoadSDNode *LD = cast<LoadSDNode>(InNode);
12241 SelectionDAG &DAG = DCI.DAG;
12242 SDLoc DL(LD);
12243 SDValue BasePtr = LD->getBasePtr();
12244 SDValue NewLD1 =
12245 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
12246 LD->getAlignment(), LD->getMemOperand()->getFlags());
12248 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12249 DAG.getConstant(4, DL, MVT::i32));
12251 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
12252 LD->getPointerInfo().getWithOffset(4),
12253 std::min(4U, LD->getAlignment()),
12254 LD->getMemOperand()->getFlags());
12256 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
12257 if (DCI.DAG.getDataLayout().isBigEndian())
12258 std::swap (NewLD1, NewLD2);
12259 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
12260 return Result;
12263 return SDValue();
12266 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12267 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
12268 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
12269 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12270 SDValue Op0 = N->getOperand(0);
12271 SDValue Op1 = N->getOperand(1);
12272 if (Op0.getOpcode() == ISD::BITCAST)
12273 Op0 = Op0.getOperand(0);
12274 if (Op1.getOpcode() == ISD::BITCAST)
12275 Op1 = Op1.getOperand(0);
12276 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
12277 Op0.getNode() == Op1.getNode() &&
12278 Op0.getResNo() == 0 && Op1.getResNo() == 1)
12279 return DAG.getNode(ISD::BITCAST, SDLoc(N),
12280 N->getValueType(0), Op0.getOperand(0));
12281 return SDValue();
12284 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12285 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12286 /// i64 vector to have f64 elements, since the value can then be loaded
12287 /// directly into a VFP register.
12288 static bool hasNormalLoadOperand(SDNode *N) {
12289 unsigned NumElts = N->getValueType(0).getVectorNumElements();
12290 for (unsigned i = 0; i < NumElts; ++i) {
12291 SDNode *Elt = N->getOperand(i).getNode();
12292 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
12293 return true;
12295 return false;
12298 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12299 /// ISD::BUILD_VECTOR.
12300 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
12301 TargetLowering::DAGCombinerInfo &DCI,
12302 const ARMSubtarget *Subtarget) {
12303 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12304 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12305 // into a pair of GPRs, which is fine when the value is used as a scalar,
12306 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12307 SelectionDAG &DAG = DCI.DAG;
12308 if (N->getNumOperands() == 2)
12309 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
12310 return RV;
12312 // Load i64 elements as f64 values so that type legalization does not split
12313 // them up into i32 values.
12314 EVT VT = N->getValueType(0);
12315 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
12316 return SDValue();
12317 SDLoc dl(N);
12318 SmallVector<SDValue, 8> Ops;
12319 unsigned NumElts = VT.getVectorNumElements();
12320 for (unsigned i = 0; i < NumElts; ++i) {
12321 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
12322 Ops.push_back(V);
12323 // Make the DAGCombiner fold the bitcast.
12324 DCI.AddToWorklist(V.getNode());
12326 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
12327 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
12328 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12331 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12332 static SDValue
12333 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12334 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12335 // At that time, we may have inserted bitcasts from integer to float.
12336 // If these bitcasts have survived DAGCombine, change the lowering of this
12337 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12338 // force to use floating point types.
12340 // Make sure we can change the type of the vector.
12341 // This is possible iff:
12342 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12343 // 1.1. Vector is used only once.
12344 // 1.2. Use is a bit convert to an integer type.
12345 // 2. The size of its operands are 32-bits (64-bits are not legal).
12346 EVT VT = N->getValueType(0);
12347 EVT EltVT = VT.getVectorElementType();
12349 // Check 1.1. and 2.
12350 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
12351 return SDValue();
12353 // By construction, the input type must be float.
12354 assert(EltVT == MVT::f32 && "Unexpected type!");
12356 // Check 1.2.
12357 SDNode *Use = *N->use_begin();
12358 if (Use->getOpcode() != ISD::BITCAST ||
12359 Use->getValueType(0).isFloatingPoint())
12360 return SDValue();
12362 // Check profitability.
12363 // Model is, if more than half of the relevant operands are bitcast from
12364 // i32, turn the build_vector into a sequence of insert_vector_elt.
12365 // Relevant operands are everything that is not statically
12366 // (i.e., at compile time) bitcasted.
12367 unsigned NumOfBitCastedElts = 0;
12368 unsigned NumElts = VT.getVectorNumElements();
12369 unsigned NumOfRelevantElts = NumElts;
12370 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
12371 SDValue Elt = N->getOperand(Idx);
12372 if (Elt->getOpcode() == ISD::BITCAST) {
12373 // Assume only bit cast to i32 will go away.
12374 if (Elt->getOperand(0).getValueType() == MVT::i32)
12375 ++NumOfBitCastedElts;
12376 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
12377 // Constants are statically casted, thus do not count them as
12378 // relevant operands.
12379 --NumOfRelevantElts;
12382 // Check if more than half of the elements require a non-free bitcast.
12383 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
12384 return SDValue();
12386 SelectionDAG &DAG = DCI.DAG;
12387 // Create the new vector type.
12388 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
12389 // Check if the type is legal.
12390 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12391 if (!TLI.isTypeLegal(VecVT))
12392 return SDValue();
12394 // Combine:
12395 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12396 // => BITCAST INSERT_VECTOR_ELT
12397 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12398 // (BITCAST EN), N.
12399 SDValue Vec = DAG.getUNDEF(VecVT);
12400 SDLoc dl(N);
12401 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
12402 SDValue V = N->getOperand(Idx);
12403 if (V.isUndef())
12404 continue;
12405 if (V.getOpcode() == ISD::BITCAST &&
12406 V->getOperand(0).getValueType() == MVT::i32)
12407 // Fold obvious case.
12408 V = V.getOperand(0);
12409 else {
12410 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
12411 // Make the DAGCombiner fold the bitcasts.
12412 DCI.AddToWorklist(V.getNode());
12414 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
12415 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
12417 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
12418 // Make the DAGCombiner fold the bitcasts.
12419 DCI.AddToWorklist(Vec.getNode());
12420 return Vec;
12423 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12424 /// ISD::INSERT_VECTOR_ELT.
12425 static SDValue PerformInsertEltCombine(SDNode *N,
12426 TargetLowering::DAGCombinerInfo &DCI) {
12427 // Bitcast an i64 load inserted into a vector to f64.
12428 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12429 EVT VT = N->getValueType(0);
12430 SDNode *Elt = N->getOperand(1).getNode();
12431 if (VT.getVectorElementType() != MVT::i64 ||
12432 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
12433 return SDValue();
12435 SelectionDAG &DAG = DCI.DAG;
12436 SDLoc dl(N);
12437 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12438 VT.getVectorNumElements());
12439 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
12440 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
12441 // Make the DAGCombiner fold the bitcasts.
12442 DCI.AddToWorklist(Vec.getNode());
12443 DCI.AddToWorklist(V.getNode());
12444 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
12445 Vec, V, N->getOperand(2));
12446 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
12449 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
12450 /// ISD::VECTOR_SHUFFLE.
12451 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
12452 // The LLVM shufflevector instruction does not require the shuffle mask
12453 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
12454 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
12455 // operands do not match the mask length, they are extended by concatenating
12456 // them with undef vectors. That is probably the right thing for other
12457 // targets, but for NEON it is better to concatenate two double-register
12458 // size vector operands into a single quad-register size vector. Do that
12459 // transformation here:
12460 // shuffle(concat(v1, undef), concat(v2, undef)) ->
12461 // shuffle(concat(v1, v2), undef)
12462 SDValue Op0 = N->getOperand(0);
12463 SDValue Op1 = N->getOperand(1);
12464 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
12465 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
12466 Op0.getNumOperands() != 2 ||
12467 Op1.getNumOperands() != 2)
12468 return SDValue();
12469 SDValue Concat0Op1 = Op0.getOperand(1);
12470 SDValue Concat1Op1 = Op1.getOperand(1);
12471 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
12472 return SDValue();
12473 // Skip the transformation if any of the types are illegal.
12474 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12475 EVT VT = N->getValueType(0);
12476 if (!TLI.isTypeLegal(VT) ||
12477 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
12478 !TLI.isTypeLegal(Concat1Op1.getValueType()))
12479 return SDValue();
12481 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
12482 Op0.getOperand(0), Op1.getOperand(0));
12483 // Translate the shuffle mask.
12484 SmallVector<int, 16> NewMask;
12485 unsigned NumElts = VT.getVectorNumElements();
12486 unsigned HalfElts = NumElts/2;
12487 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
12488 for (unsigned n = 0; n < NumElts; ++n) {
12489 int MaskElt = SVN->getMaskElt(n);
12490 int NewElt = -1;
12491 if (MaskElt < (int)HalfElts)
12492 NewElt = MaskElt;
12493 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
12494 NewElt = HalfElts + MaskElt - NumElts;
12495 NewMask.push_back(NewElt);
12497 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
12498 DAG.getUNDEF(VT), NewMask);
12501 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
12502 /// NEON load/store intrinsics, and generic vector load/stores, to merge
12503 /// base address updates.
12504 /// For generic load/stores, the memory type is assumed to be a vector.
12505 /// The caller is assumed to have checked legality.
12506 static SDValue CombineBaseUpdate(SDNode *N,
12507 TargetLowering::DAGCombinerInfo &DCI) {
12508 SelectionDAG &DAG = DCI.DAG;
12509 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
12510 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
12511 const bool isStore = N->getOpcode() == ISD::STORE;
12512 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
12513 SDValue Addr = N->getOperand(AddrOpIdx);
12514 MemSDNode *MemN = cast<MemSDNode>(N);
12515 SDLoc dl(N);
12517 // Search for a use of the address operand that is an increment.
12518 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
12519 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
12520 SDNode *User = *UI;
12521 if (User->getOpcode() != ISD::ADD ||
12522 UI.getUse().getResNo() != Addr.getResNo())
12523 continue;
12525 // Check that the add is independent of the load/store. Otherwise, folding
12526 // it would create a cycle. We can avoid searching through Addr as it's a
12527 // predecessor to both.
12528 SmallPtrSet<const SDNode *, 32> Visited;
12529 SmallVector<const SDNode *, 16> Worklist;
12530 Visited.insert(Addr.getNode());
12531 Worklist.push_back(N);
12532 Worklist.push_back(User);
12533 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
12534 SDNode::hasPredecessorHelper(User, Visited, Worklist))
12535 continue;
12537 // Find the new opcode for the updating load/store.
12538 bool isLoadOp = true;
12539 bool isLaneOp = false;
12540 unsigned NewOpc = 0;
12541 unsigned NumVecs = 0;
12542 if (isIntrinsic) {
12543 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
12544 switch (IntNo) {
12545 default: llvm_unreachable("unexpected intrinsic for Neon base update");
12546 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
12547 NumVecs = 1; break;
12548 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
12549 NumVecs = 2; break;
12550 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
12551 NumVecs = 3; break;
12552 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
12553 NumVecs = 4; break;
12554 case Intrinsic::arm_neon_vld2dup:
12555 case Intrinsic::arm_neon_vld3dup:
12556 case Intrinsic::arm_neon_vld4dup:
12557 // TODO: Support updating VLDxDUP nodes. For now, we just skip
12558 // combining base updates for such intrinsics.
12559 continue;
12560 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
12561 NumVecs = 2; isLaneOp = true; break;
12562 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
12563 NumVecs = 3; isLaneOp = true; break;
12564 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
12565 NumVecs = 4; isLaneOp = true; break;
12566 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
12567 NumVecs = 1; isLoadOp = false; break;
12568 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
12569 NumVecs = 2; isLoadOp = false; break;
12570 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
12571 NumVecs = 3; isLoadOp = false; break;
12572 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
12573 NumVecs = 4; isLoadOp = false; break;
12574 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
12575 NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
12576 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
12577 NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
12578 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
12579 NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
12581 } else {
12582 isLaneOp = true;
12583 switch (N->getOpcode()) {
12584 default: llvm_unreachable("unexpected opcode for Neon base update");
12585 case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
12586 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
12587 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
12588 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
12589 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
12590 NumVecs = 1; isLaneOp = false; break;
12591 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
12592 NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
12596 // Find the size of memory referenced by the load/store.
12597 EVT VecTy;
12598 if (isLoadOp) {
12599 VecTy = N->getValueType(0);
12600 } else if (isIntrinsic) {
12601 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
12602 } else {
12603 assert(isStore && "Node has to be a load, a store, or an intrinsic!");
12604 VecTy = N->getOperand(1).getValueType();
12607 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
12608 if (isLaneOp)
12609 NumBytes /= VecTy.getVectorNumElements();
12611 // If the increment is a constant, it must match the memory ref size.
12612 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
12613 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
12614 if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
12615 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
12616 // separate instructions that make it harder to use a non-constant update.
12617 continue;
12620 // OK, we found an ADD we can fold into the base update.
12621 // Now, create a _UPD node, taking care of not breaking alignment.
12623 EVT AlignedVecTy = VecTy;
12624 unsigned Alignment = MemN->getAlignment();
12626 // If this is a less-than-standard-aligned load/store, change the type to
12627 // match the standard alignment.
12628 // The alignment is overlooked when selecting _UPD variants; and it's
12629 // easier to introduce bitcasts here than fix that.
12630 // There are 3 ways to get to this base-update combine:
12631 // - intrinsics: they are assumed to be properly aligned (to the standard
12632 // alignment of the memory type), so we don't need to do anything.
12633 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12634 // intrinsics, so, likewise, there's nothing to do.
12635 // - generic load/store instructions: the alignment is specified as an
12636 // explicit operand, rather than implicitly as the standard alignment
12637 // of the memory type (like the intrisics). We need to change the
12638 // memory type to match the explicit alignment. That way, we don't
12639 // generate non-standard-aligned ARMISD::VLDx nodes.
12640 if (isa<LSBaseSDNode>(N)) {
12641 if (Alignment == 0)
12642 Alignment = 1;
12643 if (Alignment < VecTy.getScalarSizeInBits() / 8) {
12644 MVT EltTy = MVT::getIntegerVT(Alignment * 8);
12645 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
12646 assert(!isLaneOp && "Unexpected generic load/store lane.");
12647 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
12648 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
12650 // Don't set an explicit alignment on regular load/stores that we want
12651 // to transform to VLD/VST 1_UPD nodes.
12652 // This matches the behavior of regular load/stores, which only get an
12653 // explicit alignment if the MMO alignment is larger than the standard
12654 // alignment of the memory type.
12655 // Intrinsics, however, always get an explicit alignment, set to the
12656 // alignment of the MMO.
12657 Alignment = 1;
12660 // Create the new updating load/store node.
12661 // First, create an SDVTList for the new updating node's results.
12662 EVT Tys[6];
12663 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
12664 unsigned n;
12665 for (n = 0; n < NumResultVecs; ++n)
12666 Tys[n] = AlignedVecTy;
12667 Tys[n++] = MVT::i32;
12668 Tys[n] = MVT::Other;
12669 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
12671 // Then, gather the new node's operands.
12672 SmallVector<SDValue, 8> Ops;
12673 Ops.push_back(N->getOperand(0)); // incoming chain
12674 Ops.push_back(N->getOperand(AddrOpIdx));
12675 Ops.push_back(Inc);
12677 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
12678 // Try to match the intrinsic's signature
12679 Ops.push_back(StN->getValue());
12680 } else {
12681 // Loads (and of course intrinsics) match the intrinsics' signature,
12682 // so just add all but the alignment operand.
12683 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
12684 Ops.push_back(N->getOperand(i));
12687 // For all node types, the alignment operand is always the last one.
12688 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
12690 // If this is a non-standard-aligned STORE, the penultimate operand is the
12691 // stored value. Bitcast it to the aligned type.
12692 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
12693 SDValue &StVal = Ops[Ops.size()-2];
12694 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
12697 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
12698 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
12699 MemN->getMemOperand());
12701 // Update the uses.
12702 SmallVector<SDValue, 5> NewResults;
12703 for (unsigned i = 0; i < NumResultVecs; ++i)
12704 NewResults.push_back(SDValue(UpdN.getNode(), i));
12706 // If this is an non-standard-aligned LOAD, the first result is the loaded
12707 // value. Bitcast it to the expected result type.
12708 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
12709 SDValue &LdVal = NewResults[0];
12710 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
12713 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
12714 DCI.CombineTo(N, NewResults);
12715 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
12717 break;
12719 return SDValue();
12722 static SDValue PerformVLDCombine(SDNode *N,
12723 TargetLowering::DAGCombinerInfo &DCI) {
12724 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12725 return SDValue();
12727 return CombineBaseUpdate(N, DCI);
12730 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12731 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12732 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
12733 /// return true.
12734 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12735 SelectionDAG &DAG = DCI.DAG;
12736 EVT VT = N->getValueType(0);
12737 // vldN-dup instructions only support 64-bit vectors for N > 1.
12738 if (!VT.is64BitVector())
12739 return false;
12741 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12742 SDNode *VLD = N->getOperand(0).getNode();
12743 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
12744 return false;
12745 unsigned NumVecs = 0;
12746 unsigned NewOpc = 0;
12747 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
12748 if (IntNo == Intrinsic::arm_neon_vld2lane) {
12749 NumVecs = 2;
12750 NewOpc = ARMISD::VLD2DUP;
12751 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
12752 NumVecs = 3;
12753 NewOpc = ARMISD::VLD3DUP;
12754 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
12755 NumVecs = 4;
12756 NewOpc = ARMISD::VLD4DUP;
12757 } else {
12758 return false;
12761 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12762 // numbers match the load.
12763 unsigned VLDLaneNo =
12764 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
12765 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12766 UI != UE; ++UI) {
12767 // Ignore uses of the chain result.
12768 if (UI.getUse().getResNo() == NumVecs)
12769 continue;
12770 SDNode *User = *UI;
12771 if (User->getOpcode() != ARMISD::VDUPLANE ||
12772 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
12773 return false;
12776 // Create the vldN-dup node.
12777 EVT Tys[5];
12778 unsigned n;
12779 for (n = 0; n < NumVecs; ++n)
12780 Tys[n] = VT;
12781 Tys[n] = MVT::Other;
12782 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
12783 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
12784 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
12785 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
12786 Ops, VLDMemInt->getMemoryVT(),
12787 VLDMemInt->getMemOperand());
12789 // Update the uses.
12790 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12791 UI != UE; ++UI) {
12792 unsigned ResNo = UI.getUse().getResNo();
12793 // Ignore uses of the chain result.
12794 if (ResNo == NumVecs)
12795 continue;
12796 SDNode *User = *UI;
12797 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
12800 // Now the vldN-lane intrinsic is dead except for its chain result.
12801 // Update uses of the chain.
12802 std::vector<SDValue> VLDDupResults;
12803 for (unsigned n = 0; n < NumVecs; ++n)
12804 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
12805 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
12806 DCI.CombineTo(VLD, VLDDupResults);
12808 return true;
12811 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12812 /// ARMISD::VDUPLANE.
12813 static SDValue PerformVDUPLANECombine(SDNode *N,
12814 TargetLowering::DAGCombinerInfo &DCI) {
12815 SDValue Op = N->getOperand(0);
12817 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12818 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12819 if (CombineVLDDUP(N, DCI))
12820 return SDValue(N, 0);
12822 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12823 // redundant. Ignore bit_converts for now; element sizes are checked below.
12824 while (Op.getOpcode() == ISD::BITCAST)
12825 Op = Op.getOperand(0);
12826 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
12827 return SDValue();
12829 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12830 unsigned EltSize = Op.getScalarValueSizeInBits();
12831 // The canonical VMOV for a zero vector uses a 32-bit element size.
12832 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12833 unsigned EltBits;
12834 if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
12835 EltSize = 8;
12836 EVT VT = N->getValueType(0);
12837 if (EltSize > VT.getScalarSizeInBits())
12838 return SDValue();
12840 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
12843 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12844 static SDValue PerformVDUPCombine(SDNode *N,
12845 TargetLowering::DAGCombinerInfo &DCI,
12846 const ARMSubtarget *Subtarget) {
12847 SelectionDAG &DAG = DCI.DAG;
12848 SDValue Op = N->getOperand(0);
12850 if (!Subtarget->hasNEON())
12851 return SDValue();
12853 // Match VDUP(LOAD) -> VLD1DUP.
12854 // We match this pattern here rather than waiting for isel because the
12855 // transform is only legal for unindexed loads.
12856 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
12857 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
12858 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
12859 SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
12860 DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
12861 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
12862 SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
12863 Ops, LD->getMemoryVT(),
12864 LD->getMemOperand());
12865 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
12866 return VLDDup;
12869 return SDValue();
12872 static SDValue PerformLOADCombine(SDNode *N,
12873 TargetLowering::DAGCombinerInfo &DCI) {
12874 EVT VT = N->getValueType(0);
12876 // If this is a legal vector load, try to combine it into a VLD1_UPD.
12877 if (ISD::isNormalLoad(N) && VT.isVector() &&
12878 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12879 return CombineBaseUpdate(N, DCI);
12881 return SDValue();
12884 /// PerformSTORECombine - Target-specific dag combine xforms for
12885 /// ISD::STORE.
12886 static SDValue PerformSTORECombine(SDNode *N,
12887 TargetLowering::DAGCombinerInfo &DCI) {
12888 StoreSDNode *St = cast<StoreSDNode>(N);
12889 if (St->isVolatile())
12890 return SDValue();
12892 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
12893 // pack all of the elements in one place. Next, store to memory in fewer
12894 // chunks.
12895 SDValue StVal = St->getValue();
12896 EVT VT = StVal.getValueType();
12897 if (St->isTruncatingStore() && VT.isVector()) {
12898 SelectionDAG &DAG = DCI.DAG;
12899 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12900 EVT StVT = St->getMemoryVT();
12901 unsigned NumElems = VT.getVectorNumElements();
12902 assert(StVT != VT && "Cannot truncate to the same type");
12903 unsigned FromEltSz = VT.getScalarSizeInBits();
12904 unsigned ToEltSz = StVT.getScalarSizeInBits();
12906 // From, To sizes and ElemCount must be pow of two
12907 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
12909 // We are going to use the original vector elt for storing.
12910 // Accumulated smaller vector elements must be a multiple of the store size.
12911 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
12913 unsigned SizeRatio = FromEltSz / ToEltSz;
12914 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
12916 // Create a type on which we perform the shuffle.
12917 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
12918 NumElems*SizeRatio);
12919 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
12921 SDLoc DL(St);
12922 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
12923 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
12924 for (unsigned i = 0; i < NumElems; ++i)
12925 ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
12926 ? (i + 1) * SizeRatio - 1
12927 : i * SizeRatio;
12929 // Can't shuffle using an illegal type.
12930 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
12932 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
12933 DAG.getUNDEF(WideVec.getValueType()),
12934 ShuffleVec);
12935 // At this point all of the data is stored at the bottom of the
12936 // register. We now need to save it to mem.
12938 // Find the largest store unit
12939 MVT StoreType = MVT::i8;
12940 for (MVT Tp : MVT::integer_valuetypes()) {
12941 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
12942 StoreType = Tp;
12944 // Didn't find a legal store type.
12945 if (!TLI.isTypeLegal(StoreType))
12946 return SDValue();
12948 // Bitcast the original vector into a vector of store-size units
12949 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12950 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12951 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12952 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
12953 SmallVector<SDValue, 8> Chains;
12954 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
12955 TLI.getPointerTy(DAG.getDataLayout()));
12956 SDValue BasePtr = St->getBasePtr();
12958 // Perform one or more big stores into memory.
12959 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
12960 for (unsigned I = 0; I < E; I++) {
12961 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
12962 StoreType, ShuffWide,
12963 DAG.getIntPtrConstant(I, DL));
12964 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
12965 St->getPointerInfo(), St->getAlignment(),
12966 St->getMemOperand()->getFlags());
12967 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
12968 Increment);
12969 Chains.push_back(Ch);
12971 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
12974 if (!ISD::isNormalStore(St))
12975 return SDValue();
12977 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12978 // ARM stores of arguments in the same cache line.
12979 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
12980 StVal.getNode()->hasOneUse()) {
12981 SelectionDAG &DAG = DCI.DAG;
12982 bool isBigEndian = DAG.getDataLayout().isBigEndian();
12983 SDLoc DL(St);
12984 SDValue BasePtr = St->getBasePtr();
12985 SDValue NewST1 = DAG.getStore(
12986 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
12987 BasePtr, St->getPointerInfo(), St->getAlignment(),
12988 St->getMemOperand()->getFlags());
12990 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12991 DAG.getConstant(4, DL, MVT::i32));
12992 return DAG.getStore(NewST1.getValue(0), DL,
12993 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12994 OffsetPtr, St->getPointerInfo(),
12995 std::min(4U, St->getAlignment() / 2),
12996 St->getMemOperand()->getFlags());
12999 if (StVal.getValueType() == MVT::i64 &&
13000 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13002 // Bitcast an i64 store extracted from a vector to f64.
13003 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13004 SelectionDAG &DAG = DCI.DAG;
13005 SDLoc dl(StVal);
13006 SDValue IntVec = StVal.getOperand(0);
13007 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13008 IntVec.getValueType().getVectorNumElements());
13009 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
13010 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
13011 Vec, StVal.getOperand(1));
13012 dl = SDLoc(N);
13013 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
13014 // Make the DAGCombiner fold the bitcasts.
13015 DCI.AddToWorklist(Vec.getNode());
13016 DCI.AddToWorklist(ExtElt.getNode());
13017 DCI.AddToWorklist(V.getNode());
13018 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
13019 St->getPointerInfo(), St->getAlignment(),
13020 St->getMemOperand()->getFlags(), St->getAAInfo());
13023 // If this is a legal vector store, try to combine it into a VST1_UPD.
13024 if (ISD::isNormalStore(N) && VT.isVector() &&
13025 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13026 return CombineBaseUpdate(N, DCI);
13028 return SDValue();
13031 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13032 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13033 /// when the VMUL has a constant operand that is a power of 2.
13035 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13036 /// vmul.f32 d16, d17, d16
13037 /// vcvt.s32.f32 d16, d16
13038 /// becomes:
13039 /// vcvt.s32.f32 d16, d16, #3
13040 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
13041 const ARMSubtarget *Subtarget) {
13042 if (!Subtarget->hasNEON())
13043 return SDValue();
13045 SDValue Op = N->getOperand(0);
13046 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
13047 Op.getOpcode() != ISD::FMUL)
13048 return SDValue();
13050 SDValue ConstVec = Op->getOperand(1);
13051 if (!isa<BuildVectorSDNode>(ConstVec))
13052 return SDValue();
13054 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
13055 uint32_t FloatBits = FloatTy.getSizeInBits();
13056 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
13057 uint32_t IntBits = IntTy.getSizeInBits();
13058 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13059 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13060 // These instructions only exist converting from f32 to i32. We can handle
13061 // smaller integers by generating an extra truncate, but larger ones would
13062 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13063 // these intructions only support v2i32/v4i32 types.
13064 return SDValue();
13067 BitVector UndefElements;
13068 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13069 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13070 if (C == -1 || C == 0 || C > 32)
13071 return SDValue();
13073 SDLoc dl(N);
13074 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
13075 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
13076 Intrinsic::arm_neon_vcvtfp2fxu;
13077 SDValue FixConv = DAG.getNode(
13078 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13079 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
13080 DAG.getConstant(C, dl, MVT::i32));
13082 if (IntBits < FloatBits)
13083 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
13085 return FixConv;
13088 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13089 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13090 /// when the VDIV has a constant operand that is a power of 2.
13092 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13093 /// vcvt.f32.s32 d16, d16
13094 /// vdiv.f32 d16, d17, d16
13095 /// becomes:
13096 /// vcvt.f32.s32 d16, d16, #3
13097 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
13098 const ARMSubtarget *Subtarget) {
13099 if (!Subtarget->hasNEON())
13100 return SDValue();
13102 SDValue Op = N->getOperand(0);
13103 unsigned OpOpcode = Op.getNode()->getOpcode();
13104 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
13105 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
13106 return SDValue();
13108 SDValue ConstVec = N->getOperand(1);
13109 if (!isa<BuildVectorSDNode>(ConstVec))
13110 return SDValue();
13112 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
13113 uint32_t FloatBits = FloatTy.getSizeInBits();
13114 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
13115 uint32_t IntBits = IntTy.getSizeInBits();
13116 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13117 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13118 // These instructions only exist converting from i32 to f32. We can handle
13119 // smaller integers by generating an extra extend, but larger ones would
13120 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13121 // these intructions only support v2i32/v4i32 types.
13122 return SDValue();
13125 BitVector UndefElements;
13126 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13127 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13128 if (C == -1 || C == 0 || C > 32)
13129 return SDValue();
13131 SDLoc dl(N);
13132 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
13133 SDValue ConvInput = Op.getOperand(0);
13134 if (IntBits < FloatBits)
13135 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
13136 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13137 ConvInput);
13139 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
13140 Intrinsic::arm_neon_vcvtfxu2fp;
13141 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
13142 Op.getValueType(),
13143 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
13144 ConvInput, DAG.getConstant(C, dl, MVT::i32));
13147 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13148 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
13149 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13150 switch (IntNo) {
13151 default:
13152 // Don't do anything for most intrinsics.
13153 break;
13155 // Vector shifts: check for immediate versions and lower them.
13156 // Note: This is done during DAG combining instead of DAG legalizing because
13157 // the build_vectors for 64-bit vector element shift counts are generally
13158 // not legal, and it is hard to see their values after they get legalized to
13159 // loads from a constant pool.
13160 case Intrinsic::arm_neon_vshifts:
13161 case Intrinsic::arm_neon_vshiftu:
13162 case Intrinsic::arm_neon_vrshifts:
13163 case Intrinsic::arm_neon_vrshiftu:
13164 case Intrinsic::arm_neon_vrshiftn:
13165 case Intrinsic::arm_neon_vqshifts:
13166 case Intrinsic::arm_neon_vqshiftu:
13167 case Intrinsic::arm_neon_vqshiftsu:
13168 case Intrinsic::arm_neon_vqshiftns:
13169 case Intrinsic::arm_neon_vqshiftnu:
13170 case Intrinsic::arm_neon_vqshiftnsu:
13171 case Intrinsic::arm_neon_vqrshiftns:
13172 case Intrinsic::arm_neon_vqrshiftnu:
13173 case Intrinsic::arm_neon_vqrshiftnsu: {
13174 EVT VT = N->getOperand(1).getValueType();
13175 int64_t Cnt;
13176 unsigned VShiftOpc = 0;
13178 switch (IntNo) {
13179 case Intrinsic::arm_neon_vshifts:
13180 case Intrinsic::arm_neon_vshiftu:
13181 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
13182 VShiftOpc = ARMISD::VSHLIMM;
13183 break;
13185 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
13186 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
13187 : ARMISD::VSHRuIMM);
13188 break;
13190 return SDValue();
13192 case Intrinsic::arm_neon_vrshifts:
13193 case Intrinsic::arm_neon_vrshiftu:
13194 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
13195 break;
13196 return SDValue();
13198 case Intrinsic::arm_neon_vqshifts:
13199 case Intrinsic::arm_neon_vqshiftu:
13200 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13201 break;
13202 return SDValue();
13204 case Intrinsic::arm_neon_vqshiftsu:
13205 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13206 break;
13207 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13209 case Intrinsic::arm_neon_vrshiftn:
13210 case Intrinsic::arm_neon_vqshiftns:
13211 case Intrinsic::arm_neon_vqshiftnu:
13212 case Intrinsic::arm_neon_vqshiftnsu:
13213 case Intrinsic::arm_neon_vqrshiftns:
13214 case Intrinsic::arm_neon_vqrshiftnu:
13215 case Intrinsic::arm_neon_vqrshiftnsu:
13216 // Narrowing shifts require an immediate right shift.
13217 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
13218 break;
13219 llvm_unreachable("invalid shift count for narrowing vector shift "
13220 "intrinsic");
13222 default:
13223 llvm_unreachable("unhandled vector shift");
13226 switch (IntNo) {
13227 case Intrinsic::arm_neon_vshifts:
13228 case Intrinsic::arm_neon_vshiftu:
13229 // Opcode already set above.
13230 break;
13231 case Intrinsic::arm_neon_vrshifts:
13232 VShiftOpc = ARMISD::VRSHRsIMM;
13233 break;
13234 case Intrinsic::arm_neon_vrshiftu:
13235 VShiftOpc = ARMISD::VRSHRuIMM;
13236 break;
13237 case Intrinsic::arm_neon_vrshiftn:
13238 VShiftOpc = ARMISD::VRSHRNIMM;
13239 break;
13240 case Intrinsic::arm_neon_vqshifts:
13241 VShiftOpc = ARMISD::VQSHLsIMM;
13242 break;
13243 case Intrinsic::arm_neon_vqshiftu:
13244 VShiftOpc = ARMISD::VQSHLuIMM;
13245 break;
13246 case Intrinsic::arm_neon_vqshiftsu:
13247 VShiftOpc = ARMISD::VQSHLsuIMM;
13248 break;
13249 case Intrinsic::arm_neon_vqshiftns:
13250 VShiftOpc = ARMISD::VQSHRNsIMM;
13251 break;
13252 case Intrinsic::arm_neon_vqshiftnu:
13253 VShiftOpc = ARMISD::VQSHRNuIMM;
13254 break;
13255 case Intrinsic::arm_neon_vqshiftnsu:
13256 VShiftOpc = ARMISD::VQSHRNsuIMM;
13257 break;
13258 case Intrinsic::arm_neon_vqrshiftns:
13259 VShiftOpc = ARMISD::VQRSHRNsIMM;
13260 break;
13261 case Intrinsic::arm_neon_vqrshiftnu:
13262 VShiftOpc = ARMISD::VQRSHRNuIMM;
13263 break;
13264 case Intrinsic::arm_neon_vqrshiftnsu:
13265 VShiftOpc = ARMISD::VQRSHRNsuIMM;
13266 break;
13269 SDLoc dl(N);
13270 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13271 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
13274 case Intrinsic::arm_neon_vshiftins: {
13275 EVT VT = N->getOperand(1).getValueType();
13276 int64_t Cnt;
13277 unsigned VShiftOpc = 0;
13279 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
13280 VShiftOpc = ARMISD::VSLIIMM;
13281 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
13282 VShiftOpc = ARMISD::VSRIIMM;
13283 else {
13284 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13287 SDLoc dl(N);
13288 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13289 N->getOperand(1), N->getOperand(2),
13290 DAG.getConstant(Cnt, dl, MVT::i32));
13293 case Intrinsic::arm_neon_vqrshifts:
13294 case Intrinsic::arm_neon_vqrshiftu:
13295 // No immediate versions of these to check for.
13296 break;
13299 return SDValue();
13302 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13303 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13304 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13305 /// vector element shift counts are generally not legal, and it is hard to see
13306 /// their values after they get legalized to loads from a constant pool.
13307 static SDValue PerformShiftCombine(SDNode *N,
13308 TargetLowering::DAGCombinerInfo &DCI,
13309 const ARMSubtarget *ST) {
13310 SelectionDAG &DAG = DCI.DAG;
13311 EVT VT = N->getValueType(0);
13312 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
13313 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13314 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13315 SDValue N1 = N->getOperand(1);
13316 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
13317 SDValue N0 = N->getOperand(0);
13318 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
13319 DAG.MaskedValueIsZero(N0.getOperand(0),
13320 APInt::getHighBitsSet(32, 16)))
13321 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
13325 if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
13326 N->getOperand(0)->getOpcode() == ISD::AND &&
13327 N->getOperand(0)->hasOneUse()) {
13328 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13329 return SDValue();
13330 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13331 // usually show up because instcombine prefers to canonicalize it to
13332 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13333 // out of GEP lowering in some cases.
13334 SDValue N0 = N->getOperand(0);
13335 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
13336 if (!ShiftAmtNode)
13337 return SDValue();
13338 uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
13339 ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13340 if (!AndMaskNode)
13341 return SDValue();
13342 uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
13343 // Don't transform uxtb/uxth.
13344 if (AndMask == 255 || AndMask == 65535)
13345 return SDValue();
13346 if (isMask_32(AndMask)) {
13347 uint32_t MaskedBits = countLeadingZeros(AndMask);
13348 if (MaskedBits > ShiftAmt) {
13349 SDLoc DL(N);
13350 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13351 DAG.getConstant(MaskedBits, DL, MVT::i32));
13352 return DAG.getNode(
13353 ISD::SRL, DL, MVT::i32, SHL,
13354 DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
13359 // Nothing to be done for scalar shifts.
13360 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13361 if (!VT.isVector() || !TLI.isTypeLegal(VT))
13362 return SDValue();
13363 if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
13364 return SDValue();
13366 int64_t Cnt;
13368 switch (N->getOpcode()) {
13369 default: llvm_unreachable("unexpected shift opcode");
13371 case ISD::SHL:
13372 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
13373 SDLoc dl(N);
13374 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
13375 DAG.getConstant(Cnt, dl, MVT::i32));
13377 break;
13379 case ISD::SRA:
13380 case ISD::SRL:
13381 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
13382 unsigned VShiftOpc =
13383 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
13384 SDLoc dl(N);
13385 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
13386 DAG.getConstant(Cnt, dl, MVT::i32));
13389 return SDValue();
13392 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
13393 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
13394 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
13395 const ARMSubtarget *ST) {
13396 SDValue N0 = N->getOperand(0);
13398 // Check for sign- and zero-extensions of vector extract operations of 8-
13399 // and 16-bit vector elements. NEON supports these directly. They are
13400 // handled during DAG combining because type legalization will promote them
13401 // to 32-bit types and it is messy to recognize the operations after that.
13402 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13403 SDValue Vec = N0.getOperand(0);
13404 SDValue Lane = N0.getOperand(1);
13405 EVT VT = N->getValueType(0);
13406 EVT EltVT = N0.getValueType();
13407 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13409 if (VT == MVT::i32 &&
13410 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
13411 TLI.isTypeLegal(Vec.getValueType()) &&
13412 isa<ConstantSDNode>(Lane)) {
13414 unsigned Opc = 0;
13415 switch (N->getOpcode()) {
13416 default: llvm_unreachable("unexpected opcode");
13417 case ISD::SIGN_EXTEND:
13418 Opc = ARMISD::VGETLANEs;
13419 break;
13420 case ISD::ZERO_EXTEND:
13421 case ISD::ANY_EXTEND:
13422 Opc = ARMISD::VGETLANEu;
13423 break;
13425 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
13429 return SDValue();
13432 static const APInt *isPowerOf2Constant(SDValue V) {
13433 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
13434 if (!C)
13435 return nullptr;
13436 const APInt *CV = &C->getAPIntValue();
13437 return CV->isPowerOf2() ? CV : nullptr;
13440 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
13441 // If we have a CMOV, OR and AND combination such as:
13442 // if (x & CN)
13443 // y |= CM;
13445 // And:
13446 // * CN is a single bit;
13447 // * All bits covered by CM are known zero in y
13449 // Then we can convert this into a sequence of BFI instructions. This will
13450 // always be a win if CM is a single bit, will always be no worse than the
13451 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
13452 // three bits (due to the extra IT instruction).
13454 SDValue Op0 = CMOV->getOperand(0);
13455 SDValue Op1 = CMOV->getOperand(1);
13456 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
13457 auto CC = CCNode->getAPIntValue().getLimitedValue();
13458 SDValue CmpZ = CMOV->getOperand(4);
13460 // The compare must be against zero.
13461 if (!isNullConstant(CmpZ->getOperand(1)))
13462 return SDValue();
13464 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
13465 SDValue And = CmpZ->getOperand(0);
13466 if (And->getOpcode() != ISD::AND)
13467 return SDValue();
13468 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
13469 if (!AndC)
13470 return SDValue();
13471 SDValue X = And->getOperand(0);
13473 if (CC == ARMCC::EQ) {
13474 // We're performing an "equal to zero" compare. Swap the operands so we
13475 // canonicalize on a "not equal to zero" compare.
13476 std::swap(Op0, Op1);
13477 } else {
13478 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
13481 if (Op1->getOpcode() != ISD::OR)
13482 return SDValue();
13484 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
13485 if (!OrC)
13486 return SDValue();
13487 SDValue Y = Op1->getOperand(0);
13489 if (Op0 != Y)
13490 return SDValue();
13492 // Now, is it profitable to continue?
13493 APInt OrCI = OrC->getAPIntValue();
13494 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
13495 if (OrCI.countPopulation() > Heuristic)
13496 return SDValue();
13498 // Lastly, can we determine that the bits defined by OrCI
13499 // are zero in Y?
13500 KnownBits Known = DAG.computeKnownBits(Y);
13501 if ((OrCI & Known.Zero) != OrCI)
13502 return SDValue();
13504 // OK, we can do the combine.
13505 SDValue V = Y;
13506 SDLoc dl(X);
13507 EVT VT = X.getValueType();
13508 unsigned BitInX = AndC->logBase2();
13510 if (BitInX != 0) {
13511 // We must shift X first.
13512 X = DAG.getNode(ISD::SRL, dl, VT, X,
13513 DAG.getConstant(BitInX, dl, VT));
13516 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
13517 BitInY < NumActiveBits; ++BitInY) {
13518 if (OrCI[BitInY] == 0)
13519 continue;
13520 APInt Mask(VT.getSizeInBits(), 0);
13521 Mask.setBit(BitInY);
13522 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
13523 // Confusingly, the operand is an *inverted* mask.
13524 DAG.getConstant(~Mask, dl, VT));
13527 return V;
13530 // Given N, the value controlling the conditional branch, search for the loop
13531 // intrinsic, returning it, along with how the value is used. We need to handle
13532 // patterns such as the following:
13533 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
13534 // (brcond (setcc (loop.decrement), 0, eq), exit)
13535 // (brcond (setcc (loop.decrement), 0, ne), header)
13536 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
13537 bool &Negate) {
13538 switch (N->getOpcode()) {
13539 default:
13540 break;
13541 case ISD::XOR: {
13542 if (!isa<ConstantSDNode>(N.getOperand(1)))
13543 return SDValue();
13544 if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
13545 return SDValue();
13546 Negate = !Negate;
13547 return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
13549 case ISD::SETCC: {
13550 auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
13551 if (!Const)
13552 return SDValue();
13553 if (Const->isNullValue())
13554 Imm = 0;
13555 else if (Const->isOne())
13556 Imm = 1;
13557 else
13558 return SDValue();
13559 CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
13560 return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
13562 case ISD::INTRINSIC_W_CHAIN: {
13563 unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
13564 if (IntOp != Intrinsic::test_set_loop_iterations &&
13565 IntOp != Intrinsic::loop_decrement_reg)
13566 return SDValue();
13567 return N;
13570 return SDValue();
13573 static SDValue PerformHWLoopCombine(SDNode *N,
13574 TargetLowering::DAGCombinerInfo &DCI,
13575 const ARMSubtarget *ST) {
13577 // The hwloop intrinsics that we're interested are used for control-flow,
13578 // either for entering or exiting the loop:
13579 // - test.set.loop.iterations will test whether its operand is zero. If it
13580 // is zero, the proceeding branch should not enter the loop.
13581 // - loop.decrement.reg also tests whether its operand is zero. If it is
13582 // zero, the proceeding branch should not branch back to the beginning of
13583 // the loop.
13584 // So here, we need to check that how the brcond is using the result of each
13585 // of the intrinsics to ensure that we're branching to the right place at the
13586 // right time.
13588 ISD::CondCode CC;
13589 SDValue Cond;
13590 int Imm = 1;
13591 bool Negate = false;
13592 SDValue Chain = N->getOperand(0);
13593 SDValue Dest;
13595 if (N->getOpcode() == ISD::BRCOND) {
13596 CC = ISD::SETEQ;
13597 Cond = N->getOperand(1);
13598 Dest = N->getOperand(2);
13599 } else {
13600 assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
13601 CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13602 Cond = N->getOperand(2);
13603 Dest = N->getOperand(4);
13604 if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
13605 if (!Const->isOne() && !Const->isNullValue())
13606 return SDValue();
13607 Imm = Const->getZExtValue();
13608 } else
13609 return SDValue();
13612 SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
13613 if (!Int)
13614 return SDValue();
13616 if (Negate)
13617 CC = ISD::getSetCCInverse(CC, true);
13619 auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
13620 return (CC == ISD::SETEQ && Imm == 0) ||
13621 (CC == ISD::SETNE && Imm == 1) ||
13622 (CC == ISD::SETLT && Imm == 1) ||
13623 (CC == ISD::SETULT && Imm == 1);
13626 auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
13627 return (CC == ISD::SETEQ && Imm == 1) ||
13628 (CC == ISD::SETNE && Imm == 0) ||
13629 (CC == ISD::SETGT && Imm == 0) ||
13630 (CC == ISD::SETUGT && Imm == 0) ||
13631 (CC == ISD::SETGE && Imm == 1) ||
13632 (CC == ISD::SETUGE && Imm == 1);
13635 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
13636 "unsupported condition");
13638 SDLoc dl(Int);
13639 SelectionDAG &DAG = DCI.DAG;
13640 SDValue Elements = Int.getOperand(2);
13641 unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
13642 assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
13643 && "expected single br user");
13644 SDNode *Br = *N->use_begin();
13645 SDValue OtherTarget = Br->getOperand(1);
13647 // Update the unconditional branch to branch to the given Dest.
13648 auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
13649 SDValue NewBrOps[] = { Br->getOperand(0), Dest };
13650 SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
13651 DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
13654 if (IntOp == Intrinsic::test_set_loop_iterations) {
13655 SDValue Res;
13656 // We expect this 'instruction' to branch when the counter is zero.
13657 if (IsTrueIfZero(CC, Imm)) {
13658 SDValue Ops[] = { Chain, Elements, Dest };
13659 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
13660 } else {
13661 // The logic is the reverse of what we need for WLS, so find the other
13662 // basic block target: the target of the proceeding br.
13663 UpdateUncondBr(Br, Dest, DAG);
13665 SDValue Ops[] = { Chain, Elements, OtherTarget };
13666 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
13668 DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
13669 return Res;
13670 } else {
13671 SDValue Size = DAG.getTargetConstant(
13672 cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
13673 SDValue Args[] = { Int.getOperand(0), Elements, Size, };
13674 SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
13675 DAG.getVTList(MVT::i32, MVT::Other), Args);
13676 DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
13678 // We expect this instruction to branch when the count is not zero.
13679 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
13681 // Update the unconditional branch to target the loop preheader if we've
13682 // found the condition has been reversed.
13683 if (Target == OtherTarget)
13684 UpdateUncondBr(Br, Dest, DAG);
13686 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13687 SDValue(LoopDec.getNode(), 1), Chain);
13689 SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
13690 return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
13692 return SDValue();
13695 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
13696 SDValue
13697 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
13698 SDValue Cmp = N->getOperand(4);
13699 if (Cmp.getOpcode() != ARMISD::CMPZ)
13700 // Only looking at NE cases.
13701 return SDValue();
13703 EVT VT = N->getValueType(0);
13704 SDLoc dl(N);
13705 SDValue LHS = Cmp.getOperand(0);
13706 SDValue RHS = Cmp.getOperand(1);
13707 SDValue Chain = N->getOperand(0);
13708 SDValue BB = N->getOperand(1);
13709 SDValue ARMcc = N->getOperand(2);
13710 ARMCC::CondCodes CC =
13711 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13713 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13714 // -> (brcond Chain BB CC CPSR Cmp)
13715 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
13716 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
13717 LHS->getOperand(0)->hasOneUse()) {
13718 auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
13719 auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
13720 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13721 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13722 if ((LHS00C && LHS00C->getZExtValue() == 0) &&
13723 (LHS01C && LHS01C->getZExtValue() == 1) &&
13724 (LHS1C && LHS1C->getZExtValue() == 1) &&
13725 (RHSC && RHSC->getZExtValue() == 0)) {
13726 return DAG.getNode(
13727 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
13728 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
13732 return SDValue();
13735 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13736 SDValue
13737 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
13738 SDValue Cmp = N->getOperand(4);
13739 if (Cmp.getOpcode() != ARMISD::CMPZ)
13740 // Only looking at EQ and NE cases.
13741 return SDValue();
13743 EVT VT = N->getValueType(0);
13744 SDLoc dl(N);
13745 SDValue LHS = Cmp.getOperand(0);
13746 SDValue RHS = Cmp.getOperand(1);
13747 SDValue FalseVal = N->getOperand(0);
13748 SDValue TrueVal = N->getOperand(1);
13749 SDValue ARMcc = N->getOperand(2);
13750 ARMCC::CondCodes CC =
13751 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13753 // BFI is only available on V6T2+.
13754 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
13755 SDValue R = PerformCMOVToBFICombine(N, DAG);
13756 if (R)
13757 return R;
13760 // Simplify
13761 // mov r1, r0
13762 // cmp r1, x
13763 // mov r0, y
13764 // moveq r0, x
13765 // to
13766 // cmp r0, x
13767 // movne r0, y
13769 // mov r1, r0
13770 // cmp r1, x
13771 // mov r0, x
13772 // movne r0, y
13773 // to
13774 // cmp r0, x
13775 // movne r0, y
13776 /// FIXME: Turn this into a target neutral optimization?
13777 SDValue Res;
13778 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
13779 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
13780 N->getOperand(3), Cmp);
13781 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
13782 SDValue ARMcc;
13783 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
13784 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
13785 N->getOperand(3), NewCmp);
13788 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13789 // -> (cmov F T CC CPSR Cmp)
13790 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
13791 auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
13792 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13793 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13794 if ((LHS0C && LHS0C->getZExtValue() == 0) &&
13795 (LHS1C && LHS1C->getZExtValue() == 1) &&
13796 (RHSC && RHSC->getZExtValue() == 0)) {
13797 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
13798 LHS->getOperand(2), LHS->getOperand(3),
13799 LHS->getOperand(4));
13803 if (!VT.isInteger())
13804 return SDValue();
13806 // Materialize a boolean comparison for integers so we can avoid branching.
13807 if (isNullConstant(FalseVal)) {
13808 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
13809 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
13810 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13811 // right 5 bits will make that 32 be 1, otherwise it will be 0.
13812 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13813 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13814 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
13815 DAG.getConstant(5, dl, MVT::i32));
13816 } else {
13817 // CMOV 0, 1, ==, (CMPZ x, y) ->
13818 // (ADDCARRY (SUB x, y), t:0, t:1)
13819 // where t = (SUBCARRY 0, (SUB x, y), 0)
13821 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13822 // x != y. In other words, a carry C == 1 when x == y, C == 0
13823 // otherwise.
13824 // The final ADDCARRY computes
13825 // x - y + (0 - (x - y)) + C == C
13826 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13827 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13828 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
13829 // ISD::SUBCARRY returns a borrow but we want the carry here
13830 // actually.
13831 SDValue Carry =
13832 DAG.getNode(ISD::SUB, dl, MVT::i32,
13833 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
13834 Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
13836 } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
13837 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
13838 // This seems pointless but will allow us to combine it further below.
13839 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13840 SDValue Sub =
13841 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13842 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13843 Sub.getValue(1), SDValue());
13844 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
13845 N->getOperand(3), CPSRGlue.getValue(1));
13846 FalseVal = Sub;
13848 } else if (isNullConstant(TrueVal)) {
13849 if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
13850 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
13851 // This seems pointless but will allow us to combine it further below
13852 // Note that we change == for != as this is the dual for the case above.
13853 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13854 SDValue Sub =
13855 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13856 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13857 Sub.getValue(1), SDValue());
13858 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
13859 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
13860 N->getOperand(3), CPSRGlue.getValue(1));
13861 FalseVal = Sub;
13865 // On Thumb1, the DAG above may be further combined if z is a power of 2
13866 // (z == 2 ^ K).
13867 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13868 // t1 = (USUBO (SUB x, y), 1)
13869 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13870 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13872 // This also handles the special case of comparing against zero; it's
13873 // essentially, the same pattern, except there's no SUBS:
13874 // CMOV x, z, !=, (CMPZ x, 0) ->
13875 // t1 = (USUBO x, 1)
13876 // t2 = (SUBCARRY x, t1:0, t1:1)
13877 // Result = if K != 0 then (SHL t2:0, K) else t2:0
13878 const APInt *TrueConst;
13879 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
13880 ((FalseVal.getOpcode() == ARMISD::SUBS &&
13881 FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
13882 (FalseVal == LHS && isNullConstant(RHS))) &&
13883 (TrueConst = isPowerOf2Constant(TrueVal))) {
13884 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13885 unsigned ShiftAmount = TrueConst->logBase2();
13886 if (ShiftAmount)
13887 TrueVal = DAG.getConstant(1, dl, VT);
13888 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
13889 Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
13891 if (ShiftAmount)
13892 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
13893 DAG.getConstant(ShiftAmount, dl, MVT::i32));
13896 if (Res.getNode()) {
13897 KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
13898 // Capture demanded bits information that would be otherwise lost.
13899 if (Known.Zero == 0xfffffffe)
13900 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13901 DAG.getValueType(MVT::i1));
13902 else if (Known.Zero == 0xffffff00)
13903 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13904 DAG.getValueType(MVT::i8));
13905 else if (Known.Zero == 0xffff0000)
13906 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13907 DAG.getValueType(MVT::i16));
13910 return Res;
13913 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
13914 DAGCombinerInfo &DCI) const {
13915 switch (N->getOpcode()) {
13916 default: break;
13917 case ISD::ABS: return PerformABSCombine(N, DCI, Subtarget);
13918 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
13919 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
13920 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
13921 case ISD::SUB: return PerformSUBCombine(N, DCI);
13922 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
13923 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
13924 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
13925 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
13926 case ISD::BRCOND:
13927 case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
13928 case ARMISD::ADDC:
13929 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
13930 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
13931 case ARMISD::BFI: return PerformBFICombine(N, DCI);
13932 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
13933 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
13934 case ISD::STORE: return PerformSTORECombine(N, DCI);
13935 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
13936 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
13937 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
13938 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
13939 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
13940 case ISD::FP_TO_SINT:
13941 case ISD::FP_TO_UINT:
13942 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
13943 case ISD::FDIV:
13944 return PerformVDIVCombine(N, DCI.DAG, Subtarget);
13945 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
13946 case ISD::SHL:
13947 case ISD::SRA:
13948 case ISD::SRL:
13949 return PerformShiftCombine(N, DCI, Subtarget);
13950 case ISD::SIGN_EXTEND:
13951 case ISD::ZERO_EXTEND:
13952 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
13953 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
13954 case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
13955 case ISD::LOAD: return PerformLOADCombine(N, DCI);
13956 case ARMISD::VLD1DUP:
13957 case ARMISD::VLD2DUP:
13958 case ARMISD::VLD3DUP:
13959 case ARMISD::VLD4DUP:
13960 return PerformVLDCombine(N, DCI);
13961 case ARMISD::BUILD_VECTOR:
13962 return PerformARMBUILD_VECTORCombine(N, DCI);
13963 case ARMISD::SMULWB: {
13964 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13965 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13966 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13967 return SDValue();
13968 break;
13970 case ARMISD::SMULWT: {
13971 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13972 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13973 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13974 return SDValue();
13975 break;
13977 case ARMISD::SMLALBB: {
13978 unsigned BitWidth = N->getValueType(0).getSizeInBits();
13979 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13980 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13981 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13982 return SDValue();
13983 break;
13985 case ARMISD::SMLALBT: {
13986 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
13987 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
13988 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
13989 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13990 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
13991 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
13992 return SDValue();
13993 break;
13995 case ARMISD::SMLALTB: {
13996 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
13997 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13998 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
13999 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
14000 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
14001 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
14002 return SDValue();
14003 break;
14005 case ARMISD::SMLALTT: {
14006 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14007 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
14008 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14009 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14010 return SDValue();
14011 break;
14013 case ISD::INTRINSIC_VOID:
14014 case ISD::INTRINSIC_W_CHAIN:
14015 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14016 case Intrinsic::arm_neon_vld1:
14017 case Intrinsic::arm_neon_vld1x2:
14018 case Intrinsic::arm_neon_vld1x3:
14019 case Intrinsic::arm_neon_vld1x4:
14020 case Intrinsic::arm_neon_vld2:
14021 case Intrinsic::arm_neon_vld3:
14022 case Intrinsic::arm_neon_vld4:
14023 case Intrinsic::arm_neon_vld2lane:
14024 case Intrinsic::arm_neon_vld3lane:
14025 case Intrinsic::arm_neon_vld4lane:
14026 case Intrinsic::arm_neon_vld2dup:
14027 case Intrinsic::arm_neon_vld3dup:
14028 case Intrinsic::arm_neon_vld4dup:
14029 case Intrinsic::arm_neon_vst1:
14030 case Intrinsic::arm_neon_vst1x2:
14031 case Intrinsic::arm_neon_vst1x3:
14032 case Intrinsic::arm_neon_vst1x4:
14033 case Intrinsic::arm_neon_vst2:
14034 case Intrinsic::arm_neon_vst3:
14035 case Intrinsic::arm_neon_vst4:
14036 case Intrinsic::arm_neon_vst2lane:
14037 case Intrinsic::arm_neon_vst3lane:
14038 case Intrinsic::arm_neon_vst4lane:
14039 return PerformVLDCombine(N, DCI);
14040 default: break;
14042 break;
14044 return SDValue();
14047 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
14048 EVT VT) const {
14049 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
14052 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
14053 unsigned Alignment,
14054 MachineMemOperand::Flags,
14055 bool *Fast) const {
14056 // Depends what it gets converted into if the type is weird.
14057 if (!VT.isSimple())
14058 return false;
14060 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
14061 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
14062 auto Ty = VT.getSimpleVT().SimpleTy;
14064 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
14065 // Unaligned access can use (for example) LRDB, LRDH, LDR
14066 if (AllowsUnaligned) {
14067 if (Fast)
14068 *Fast = Subtarget->hasV7Ops();
14069 return true;
14073 if (Ty == MVT::f64 || Ty == MVT::v2f64) {
14074 // For any little-endian targets with neon, we can support unaligned ld/st
14075 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14076 // A big-endian target may also explicitly support unaligned accesses
14077 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
14078 if (Fast)
14079 *Fast = true;
14080 return true;
14084 if (!Subtarget->hasMVEIntegerOps())
14085 return false;
14087 // These are for predicates
14088 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
14089 if (Fast)
14090 *Fast = true;
14091 return true;
14094 // These are for truncated stores/narrowing loads. They are fine so long as
14095 // the alignment is at least the size of the item being loaded
14096 if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
14097 Alignment >= VT.getScalarSizeInBits() / 8) {
14098 if (Fast)
14099 *Fast = true;
14100 return true;
14103 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14104 // VSTRW.U32 all store the vector register in exactly the same format, and
14105 // differ only in the range of their immediate offset field and the required
14106 // alignment. So there is always a store that can be used, regardless of
14107 // actual type.
14109 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14110 // VREV64.8) pair and get the same effect. This will likely be better than
14111 // aligning the vector through the stack.
14112 if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
14113 Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
14114 Ty == MVT::v2f64) {
14115 if (Fast)
14116 *Fast = true;
14117 return true;
14120 return false;
14123 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
14124 unsigned AlignCheck) {
14125 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
14126 (DstAlign == 0 || DstAlign % AlignCheck == 0));
14129 EVT ARMTargetLowering::getOptimalMemOpType(
14130 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14131 bool ZeroMemset, bool MemcpyStrSrc,
14132 const AttributeList &FuncAttributes) const {
14133 // See if we can use NEON instructions for this...
14134 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
14135 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14136 bool Fast;
14137 if (Size >= 16 &&
14138 (memOpAlign(SrcAlign, DstAlign, 16) ||
14139 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
14140 MachineMemOperand::MONone, &Fast) &&
14141 Fast))) {
14142 return MVT::v2f64;
14143 } else if (Size >= 8 &&
14144 (memOpAlign(SrcAlign, DstAlign, 8) ||
14145 (allowsMisalignedMemoryAccesses(
14146 MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
14147 Fast))) {
14148 return MVT::f64;
14152 // Let the target-independent logic figure it out.
14153 return MVT::Other;
14156 // 64-bit integers are split into their high and low parts and held in two
14157 // different registers, so the trunc is free since the low register can just
14158 // be used.
14159 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
14160 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
14161 return false;
14162 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
14163 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
14164 return (SrcBits == 64 && DestBits == 32);
14167 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
14168 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
14169 !DstVT.isInteger())
14170 return false;
14171 unsigned SrcBits = SrcVT.getSizeInBits();
14172 unsigned DestBits = DstVT.getSizeInBits();
14173 return (SrcBits == 64 && DestBits == 32);
14176 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14177 if (Val.getOpcode() != ISD::LOAD)
14178 return false;
14180 EVT VT1 = Val.getValueType();
14181 if (!VT1.isSimple() || !VT1.isInteger() ||
14182 !VT2.isSimple() || !VT2.isInteger())
14183 return false;
14185 switch (VT1.getSimpleVT().SimpleTy) {
14186 default: break;
14187 case MVT::i1:
14188 case MVT::i8:
14189 case MVT::i16:
14190 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14191 return true;
14194 return false;
14197 bool ARMTargetLowering::isFNegFree(EVT VT) const {
14198 if (!VT.isSimple())
14199 return false;
14201 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14202 // negate values directly (fneg is free). So, we don't want to let the DAG
14203 // combiner rewrite fneg into xors and some other instructions. For f16 and
14204 // FullFP16 argument passing, some bitcast nodes may be introduced,
14205 // triggering this DAG combine rewrite, so we are avoiding that with this.
14206 switch (VT.getSimpleVT().SimpleTy) {
14207 default: break;
14208 case MVT::f16:
14209 return Subtarget->hasFullFP16();
14212 return false;
14215 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14216 /// of the vector elements.
14217 static bool areExtractExts(Value *Ext1, Value *Ext2) {
14218 auto areExtDoubled = [](Instruction *Ext) {
14219 return Ext->getType()->getScalarSizeInBits() ==
14220 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
14223 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
14224 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
14225 !areExtDoubled(cast<Instruction>(Ext1)) ||
14226 !areExtDoubled(cast<Instruction>(Ext2)))
14227 return false;
14229 return true;
14232 /// Check if sinking \p I's operands to I's basic block is profitable, because
14233 /// the operands can be folded into a target instruction, e.g.
14234 /// sext/zext can be folded into vsubl.
14235 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
14236 SmallVectorImpl<Use *> &Ops) const {
14237 if (!Subtarget->hasNEON() || !I->getType()->isVectorTy())
14238 return false;
14240 switch (I->getOpcode()) {
14241 case Instruction::Sub:
14242 case Instruction::Add: {
14243 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
14244 return false;
14245 Ops.push_back(&I->getOperandUse(0));
14246 Ops.push_back(&I->getOperandUse(1));
14247 return true;
14249 default:
14250 return false;
14252 return false;
14255 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
14256 EVT VT = ExtVal.getValueType();
14258 if (!isTypeLegal(VT))
14259 return false;
14261 // Don't create a loadext if we can fold the extension into a wide/long
14262 // instruction.
14263 // If there's more than one user instruction, the loadext is desirable no
14264 // matter what. There can be two uses by the same instruction.
14265 if (ExtVal->use_empty() ||
14266 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
14267 return true;
14269 SDNode *U = *ExtVal->use_begin();
14270 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
14271 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
14272 return false;
14274 return true;
14277 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
14278 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14279 return false;
14281 if (!isTypeLegal(EVT::getEVT(Ty1)))
14282 return false;
14284 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
14286 // Assuming the caller doesn't have a zeroext or signext return parameter,
14287 // truncation all the way down to i1 is valid.
14288 return true;
14291 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
14292 const AddrMode &AM, Type *Ty,
14293 unsigned AS) const {
14294 if (isLegalAddressingMode(DL, AM, Ty, AS)) {
14295 if (Subtarget->hasFPAO())
14296 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
14297 return 0;
14299 return -1;
14302 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
14303 if (V < 0)
14304 return false;
14306 unsigned Scale = 1;
14307 switch (VT.getSimpleVT().SimpleTy) {
14308 case MVT::i1:
14309 case MVT::i8:
14310 // Scale == 1;
14311 break;
14312 case MVT::i16:
14313 // Scale == 2;
14314 Scale = 2;
14315 break;
14316 default:
14317 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
14318 // Scale == 4;
14319 Scale = 4;
14320 break;
14323 if ((V & (Scale - 1)) != 0)
14324 return false;
14325 return isUInt<5>(V / Scale);
14328 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
14329 const ARMSubtarget *Subtarget) {
14330 if (!VT.isInteger() && !VT.isFloatingPoint())
14331 return false;
14332 if (VT.isVector() && Subtarget->hasNEON())
14333 return false;
14334 if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
14335 !Subtarget->hasMVEFloatOps())
14336 return false;
14338 bool IsNeg = false;
14339 if (V < 0) {
14340 IsNeg = true;
14341 V = -V;
14344 unsigned NumBytes = std::max(VT.getSizeInBits() / 8, 1U);
14346 // MVE: size * imm7
14347 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
14348 switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
14349 case MVT::i32:
14350 case MVT::f32:
14351 return isShiftedUInt<7,2>(V);
14352 case MVT::i16:
14353 case MVT::f16:
14354 return isShiftedUInt<7,1>(V);
14355 case MVT::i8:
14356 return isUInt<7>(V);
14357 default:
14358 return false;
14362 // half VLDR: 2 * imm8
14363 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
14364 return isShiftedUInt<8, 1>(V);
14365 // VLDR and LDRD: 4 * imm8
14366 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
14367 return isShiftedUInt<8, 2>(V);
14369 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
14370 // + imm12 or - imm8
14371 if (IsNeg)
14372 return isUInt<8>(V);
14373 return isUInt<12>(V);
14376 return false;
14379 /// isLegalAddressImmediate - Return true if the integer value can be used
14380 /// as the offset of the target addressing mode for load / store of the
14381 /// given type.
14382 static bool isLegalAddressImmediate(int64_t V, EVT VT,
14383 const ARMSubtarget *Subtarget) {
14384 if (V == 0)
14385 return true;
14387 if (!VT.isSimple())
14388 return false;
14390 if (Subtarget->isThumb1Only())
14391 return isLegalT1AddressImmediate(V, VT);
14392 else if (Subtarget->isThumb2())
14393 return isLegalT2AddressImmediate(V, VT, Subtarget);
14395 // ARM mode.
14396 if (V < 0)
14397 V = - V;
14398 switch (VT.getSimpleVT().SimpleTy) {
14399 default: return false;
14400 case MVT::i1:
14401 case MVT::i8:
14402 case MVT::i32:
14403 // +- imm12
14404 return isUInt<12>(V);
14405 case MVT::i16:
14406 // +- imm8
14407 return isUInt<8>(V);
14408 case MVT::f32:
14409 case MVT::f64:
14410 if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
14411 return false;
14412 return isShiftedUInt<8, 2>(V);
14416 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
14417 EVT VT) const {
14418 int Scale = AM.Scale;
14419 if (Scale < 0)
14420 return false;
14422 switch (VT.getSimpleVT().SimpleTy) {
14423 default: return false;
14424 case MVT::i1:
14425 case MVT::i8:
14426 case MVT::i16:
14427 case MVT::i32:
14428 if (Scale == 1)
14429 return true;
14430 // r + r << imm
14431 Scale = Scale & ~1;
14432 return Scale == 2 || Scale == 4 || Scale == 8;
14433 case MVT::i64:
14434 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
14435 // version in Thumb mode.
14436 // r + r
14437 if (Scale == 1)
14438 return true;
14439 // r * 2 (this can be lowered to r + r).
14440 if (!AM.HasBaseReg && Scale == 2)
14441 return true;
14442 return false;
14443 case MVT::isVoid:
14444 // Note, we allow "void" uses (basically, uses that aren't loads or
14445 // stores), because arm allows folding a scale into many arithmetic
14446 // operations. This should be made more precise and revisited later.
14448 // Allow r << imm, but the imm has to be a multiple of two.
14449 if (Scale & 1) return false;
14450 return isPowerOf2_32(Scale);
14454 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
14455 EVT VT) const {
14456 const int Scale = AM.Scale;
14458 // Negative scales are not supported in Thumb1.
14459 if (Scale < 0)
14460 return false;
14462 // Thumb1 addressing modes do not support register scaling excepting the
14463 // following cases:
14464 // 1. Scale == 1 means no scaling.
14465 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
14466 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
14469 /// isLegalAddressingMode - Return true if the addressing mode represented
14470 /// by AM is legal for this target, for a load/store of the specified type.
14471 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14472 const AddrMode &AM, Type *Ty,
14473 unsigned AS, Instruction *I) const {
14474 EVT VT = getValueType(DL, Ty, true);
14475 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
14476 return false;
14478 // Can never fold addr of global into load/store.
14479 if (AM.BaseGV)
14480 return false;
14482 switch (AM.Scale) {
14483 case 0: // no scale reg, must be "r+i" or "r", or "i".
14484 break;
14485 default:
14486 // ARM doesn't support any R+R*scale+imm addr modes.
14487 if (AM.BaseOffs)
14488 return false;
14490 if (!VT.isSimple())
14491 return false;
14493 if (Subtarget->isThumb1Only())
14494 return isLegalT1ScaledAddressingMode(AM, VT);
14496 if (Subtarget->isThumb2())
14497 return isLegalT2ScaledAddressingMode(AM, VT);
14499 int Scale = AM.Scale;
14500 switch (VT.getSimpleVT().SimpleTy) {
14501 default: return false;
14502 case MVT::i1:
14503 case MVT::i8:
14504 case MVT::i32:
14505 if (Scale < 0) Scale = -Scale;
14506 if (Scale == 1)
14507 return true;
14508 // r + r << imm
14509 return isPowerOf2_32(Scale & ~1);
14510 case MVT::i16:
14511 case MVT::i64:
14512 // r +/- r
14513 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
14514 return true;
14515 // r * 2 (this can be lowered to r + r).
14516 if (!AM.HasBaseReg && Scale == 2)
14517 return true;
14518 return false;
14520 case MVT::isVoid:
14521 // Note, we allow "void" uses (basically, uses that aren't loads or
14522 // stores), because arm allows folding a scale into many arithmetic
14523 // operations. This should be made more precise and revisited later.
14525 // Allow r << imm, but the imm has to be a multiple of two.
14526 if (Scale & 1) return false;
14527 return isPowerOf2_32(Scale);
14530 return true;
14533 /// isLegalICmpImmediate - Return true if the specified immediate is legal
14534 /// icmp immediate, that is the target has icmp instructions which can compare
14535 /// a register against the immediate without having to materialize the
14536 /// immediate into a register.
14537 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14538 // Thumb2 and ARM modes can use cmn for negative immediates.
14539 if (!Subtarget->isThumb())
14540 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
14541 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
14542 if (Subtarget->isThumb2())
14543 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
14544 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
14545 // Thumb1 doesn't have cmn, and only 8-bit immediates.
14546 return Imm >= 0 && Imm <= 255;
14549 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
14550 /// *or sub* immediate, that is the target has add or sub instructions which can
14551 /// add a register with the immediate without having to materialize the
14552 /// immediate into a register.
14553 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14554 // Same encoding for add/sub, just flip the sign.
14555 int64_t AbsImm = std::abs(Imm);
14556 if (!Subtarget->isThumb())
14557 return ARM_AM::getSOImmVal(AbsImm) != -1;
14558 if (Subtarget->isThumb2())
14559 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
14560 // Thumb1 only has 8-bit unsigned immediate.
14561 return AbsImm >= 0 && AbsImm <= 255;
14564 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
14565 bool isSEXTLoad, SDValue &Base,
14566 SDValue &Offset, bool &isInc,
14567 SelectionDAG &DAG) {
14568 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
14569 return false;
14571 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
14572 // AddressingMode 3
14573 Base = Ptr->getOperand(0);
14574 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14575 int RHSC = (int)RHS->getZExtValue();
14576 if (RHSC < 0 && RHSC > -256) {
14577 assert(Ptr->getOpcode() == ISD::ADD);
14578 isInc = false;
14579 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14580 return true;
14583 isInc = (Ptr->getOpcode() == ISD::ADD);
14584 Offset = Ptr->getOperand(1);
14585 return true;
14586 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
14587 // AddressingMode 2
14588 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14589 int RHSC = (int)RHS->getZExtValue();
14590 if (RHSC < 0 && RHSC > -0x1000) {
14591 assert(Ptr->getOpcode() == ISD::ADD);
14592 isInc = false;
14593 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14594 Base = Ptr->getOperand(0);
14595 return true;
14599 if (Ptr->getOpcode() == ISD::ADD) {
14600 isInc = true;
14601 ARM_AM::ShiftOpc ShOpcVal=
14602 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
14603 if (ShOpcVal != ARM_AM::no_shift) {
14604 Base = Ptr->getOperand(1);
14605 Offset = Ptr->getOperand(0);
14606 } else {
14607 Base = Ptr->getOperand(0);
14608 Offset = Ptr->getOperand(1);
14610 return true;
14613 isInc = (Ptr->getOpcode() == ISD::ADD);
14614 Base = Ptr->getOperand(0);
14615 Offset = Ptr->getOperand(1);
14616 return true;
14619 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
14620 return false;
14623 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
14624 bool isSEXTLoad, SDValue &Base,
14625 SDValue &Offset, bool &isInc,
14626 SelectionDAG &DAG) {
14627 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
14628 return false;
14630 Base = Ptr->getOperand(0);
14631 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
14632 int RHSC = (int)RHS->getZExtValue();
14633 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
14634 assert(Ptr->getOpcode() == ISD::ADD);
14635 isInc = false;
14636 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14637 return true;
14638 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
14639 isInc = Ptr->getOpcode() == ISD::ADD;
14640 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
14641 return true;
14645 return false;
14648 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, unsigned Align,
14649 bool isSEXTLoad, bool isLE, SDValue &Base,
14650 SDValue &Offset, bool &isInc,
14651 SelectionDAG &DAG) {
14652 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
14653 return false;
14654 if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
14655 return false;
14657 ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
14658 int RHSC = (int)RHS->getZExtValue();
14660 auto IsInRange = [&](int RHSC, int Limit, int Scale) {
14661 if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
14662 assert(Ptr->getOpcode() == ISD::ADD);
14663 isInc = false;
14664 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
14665 return true;
14666 } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
14667 isInc = Ptr->getOpcode() == ISD::ADD;
14668 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
14669 return true;
14671 return false;
14674 // Try to find a matching instruction based on s/zext, Alignment, Offset and
14675 // (in BE) type.
14676 Base = Ptr->getOperand(0);
14677 if (VT == MVT::v4i16) {
14678 if (Align >= 2 && IsInRange(RHSC, 0x80, 2))
14679 return true;
14680 } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
14681 if (IsInRange(RHSC, 0x80, 1))
14682 return true;
14683 } else if (Align >= 4 && (isLE || VT == MVT::v4i32 || VT == MVT::v4f32) &&
14684 IsInRange(RHSC, 0x80, 4))
14685 return true;
14686 else if (Align >= 2 && (isLE || VT == MVT::v8i16 || VT == MVT::v8f16) &&
14687 IsInRange(RHSC, 0x80, 2))
14688 return true;
14689 else if ((isLE || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
14690 return true;
14691 return false;
14694 /// getPreIndexedAddressParts - returns true by value, base pointer and
14695 /// offset pointer and addressing mode by reference if the node's address
14696 /// can be legally represented as pre-indexed load / store address.
14697 bool
14698 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
14699 SDValue &Offset,
14700 ISD::MemIndexedMode &AM,
14701 SelectionDAG &DAG) const {
14702 if (Subtarget->isThumb1Only())
14703 return false;
14705 EVT VT;
14706 SDValue Ptr;
14707 unsigned Align;
14708 bool isSEXTLoad = false;
14709 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
14710 Ptr = LD->getBasePtr();
14711 VT = LD->getMemoryVT();
14712 Align = LD->getAlignment();
14713 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
14714 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
14715 Ptr = ST->getBasePtr();
14716 VT = ST->getMemoryVT();
14717 Align = ST->getAlignment();
14718 } else
14719 return false;
14721 bool isInc;
14722 bool isLegal = false;
14723 if (VT.isVector())
14724 isLegal = Subtarget->hasMVEIntegerOps() &&
14725 getMVEIndexedAddressParts(Ptr.getNode(), VT, Align, isSEXTLoad,
14726 Subtarget->isLittle(), Base, Offset,
14727 isInc, DAG);
14728 else {
14729 if (Subtarget->isThumb2())
14730 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
14731 Offset, isInc, DAG);
14732 else
14733 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
14734 Offset, isInc, DAG);
14736 if (!isLegal)
14737 return false;
14739 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
14740 return true;
14743 /// getPostIndexedAddressParts - returns true by value, base pointer and
14744 /// offset pointer and addressing mode by reference if this node can be
14745 /// combined with a load / store to form a post-indexed load / store.
14746 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
14747 SDValue &Base,
14748 SDValue &Offset,
14749 ISD::MemIndexedMode &AM,
14750 SelectionDAG &DAG) const {
14751 EVT VT;
14752 SDValue Ptr;
14753 unsigned Align;
14754 bool isSEXTLoad = false, isNonExt;
14755 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
14756 VT = LD->getMemoryVT();
14757 Ptr = LD->getBasePtr();
14758 Align = LD->getAlignment();
14759 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
14760 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
14761 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
14762 VT = ST->getMemoryVT();
14763 Ptr = ST->getBasePtr();
14764 Align = ST->getAlignment();
14765 isNonExt = !ST->isTruncatingStore();
14766 } else
14767 return false;
14769 if (Subtarget->isThumb1Only()) {
14770 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14771 // must be non-extending/truncating, i32, with an offset of 4.
14772 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
14773 if (Op->getOpcode() != ISD::ADD || !isNonExt)
14774 return false;
14775 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
14776 if (!RHS || RHS->getZExtValue() != 4)
14777 return false;
14779 Offset = Op->getOperand(1);
14780 Base = Op->getOperand(0);
14781 AM = ISD::POST_INC;
14782 return true;
14785 bool isInc;
14786 bool isLegal = false;
14787 if (VT.isVector())
14788 isLegal = Subtarget->hasMVEIntegerOps() &&
14789 getMVEIndexedAddressParts(Op, VT, Align, isSEXTLoad,
14790 Subtarget->isLittle(), Base, Offset,
14791 isInc, DAG);
14792 else {
14793 if (Subtarget->isThumb2())
14794 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14795 isInc, DAG);
14796 else
14797 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14798 isInc, DAG);
14800 if (!isLegal)
14801 return false;
14803 if (Ptr != Base) {
14804 // Swap base ptr and offset to catch more post-index load / store when
14805 // it's legal. In Thumb2 mode, offset must be an immediate.
14806 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
14807 !Subtarget->isThumb2())
14808 std::swap(Base, Offset);
14810 // Post-indexed load / store update the base pointer.
14811 if (Ptr != Base)
14812 return false;
14815 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
14816 return true;
14819 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14820 KnownBits &Known,
14821 const APInt &DemandedElts,
14822 const SelectionDAG &DAG,
14823 unsigned Depth) const {
14824 unsigned BitWidth = Known.getBitWidth();
14825 Known.resetAll();
14826 switch (Op.getOpcode()) {
14827 default: break;
14828 case ARMISD::ADDC:
14829 case ARMISD::ADDE:
14830 case ARMISD::SUBC:
14831 case ARMISD::SUBE:
14832 // Special cases when we convert a carry to a boolean.
14833 if (Op.getResNo() == 0) {
14834 SDValue LHS = Op.getOperand(0);
14835 SDValue RHS = Op.getOperand(1);
14836 // (ADDE 0, 0, C) will give us a single bit.
14837 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
14838 isNullConstant(RHS)) {
14839 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14840 return;
14843 break;
14844 case ARMISD::CMOV: {
14845 // Bits are known zero/one if known on the LHS and RHS.
14846 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
14847 if (Known.isUnknown())
14848 return;
14850 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
14851 Known.Zero &= KnownRHS.Zero;
14852 Known.One &= KnownRHS.One;
14853 return;
14855 case ISD::INTRINSIC_W_CHAIN: {
14856 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
14857 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
14858 switch (IntID) {
14859 default: return;
14860 case Intrinsic::arm_ldaex:
14861 case Intrinsic::arm_ldrex: {
14862 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
14863 unsigned MemBits = VT.getScalarSizeInBits();
14864 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
14865 return;
14869 case ARMISD::BFI: {
14870 // Conservatively, we can recurse down the first operand
14871 // and just mask out all affected bits.
14872 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
14874 // The operand to BFI is already a mask suitable for removing the bits it
14875 // sets.
14876 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
14877 const APInt &Mask = CI->getAPIntValue();
14878 Known.Zero &= Mask;
14879 Known.One &= Mask;
14880 return;
14882 case ARMISD::VGETLANEs:
14883 case ARMISD::VGETLANEu: {
14884 const SDValue &SrcSV = Op.getOperand(0);
14885 EVT VecVT = SrcSV.getValueType();
14886 assert(VecVT.isVector() && "VGETLANE expected a vector type");
14887 const unsigned NumSrcElts = VecVT.getVectorNumElements();
14888 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
14889 assert(Pos->getAPIntValue().ult(NumSrcElts) &&
14890 "VGETLANE index out of bounds");
14891 unsigned Idx = Pos->getZExtValue();
14892 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
14893 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
14895 EVT VT = Op.getValueType();
14896 const unsigned DstSz = VT.getScalarSizeInBits();
14897 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
14898 (void)SrcSz;
14899 assert(SrcSz == Known.getBitWidth());
14900 assert(DstSz > SrcSz);
14901 if (Op.getOpcode() == ARMISD::VGETLANEs)
14902 Known = Known.sext(DstSz);
14903 else {
14904 Known = Known.zext(DstSz, true /* extended bits are known zero */);
14906 assert(DstSz == Known.getBitWidth());
14907 break;
14912 bool
14913 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
14914 const APInt &DemandedAPInt,
14915 TargetLoweringOpt &TLO) const {
14916 // Delay optimization, so we don't have to deal with illegal types, or block
14917 // optimizations.
14918 if (!TLO.LegalOps)
14919 return false;
14921 // Only optimize AND for now.
14922 if (Op.getOpcode() != ISD::AND)
14923 return false;
14925 EVT VT = Op.getValueType();
14927 // Ignore vectors.
14928 if (VT.isVector())
14929 return false;
14931 assert(VT == MVT::i32 && "Unexpected integer type");
14933 // Make sure the RHS really is a constant.
14934 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
14935 if (!C)
14936 return false;
14938 unsigned Mask = C->getZExtValue();
14940 unsigned Demanded = DemandedAPInt.getZExtValue();
14941 unsigned ShrunkMask = Mask & Demanded;
14942 unsigned ExpandedMask = Mask | ~Demanded;
14944 // If the mask is all zeros, let the target-independent code replace the
14945 // result with zero.
14946 if (ShrunkMask == 0)
14947 return false;
14949 // If the mask is all ones, erase the AND. (Currently, the target-independent
14950 // code won't do this, so we have to do it explicitly to avoid an infinite
14951 // loop in obscure cases.)
14952 if (ExpandedMask == ~0U)
14953 return TLO.CombineTo(Op, Op.getOperand(0));
14955 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
14956 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
14958 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
14959 if (NewMask == Mask)
14960 return true;
14961 SDLoc DL(Op);
14962 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
14963 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
14964 return TLO.CombineTo(Op, NewOp);
14967 // Prefer uxtb mask.
14968 if (IsLegalMask(0xFF))
14969 return UseMask(0xFF);
14971 // Prefer uxth mask.
14972 if (IsLegalMask(0xFFFF))
14973 return UseMask(0xFFFF);
14975 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14976 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14977 if (ShrunkMask < 256)
14978 return UseMask(ShrunkMask);
14980 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14981 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14982 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
14983 return UseMask(ExpandedMask);
14985 // Potential improvements:
14987 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14988 // We could try to prefer Thumb1 immediates which can be lowered to a
14989 // two-instruction sequence.
14990 // We could try to recognize more legal ARM/Thumb2 immediates here.
14992 return false;
14996 //===----------------------------------------------------------------------===//
14997 // ARM Inline Assembly Support
14998 //===----------------------------------------------------------------------===//
15000 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
15001 // Looking for "rev" which is V6+.
15002 if (!Subtarget->hasV6Ops())
15003 return false;
15005 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15006 std::string AsmStr = IA->getAsmString();
15007 SmallVector<StringRef, 4> AsmPieces;
15008 SplitString(AsmStr, AsmPieces, ";\n");
15010 switch (AsmPieces.size()) {
15011 default: return false;
15012 case 1:
15013 AsmStr = AsmPieces[0];
15014 AsmPieces.clear();
15015 SplitString(AsmStr, AsmPieces, " \t,");
15017 // rev $0, $1
15018 if (AsmPieces.size() == 3 &&
15019 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
15020 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
15021 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15022 if (Ty && Ty->getBitWidth() == 32)
15023 return IntrinsicLowering::LowerToByteSwap(CI);
15025 break;
15028 return false;
15031 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
15032 // At this point, we have to lower this constraint to something else, so we
15033 // lower it to an "r" or "w". However, by doing this we will force the result
15034 // to be in register, while the X constraint is much more permissive.
15036 // Although we are correct (we are free to emit anything, without
15037 // constraints), we might break use cases that would expect us to be more
15038 // efficient and emit something else.
15039 if (!Subtarget->hasVFP2Base())
15040 return "r";
15041 if (ConstraintVT.isFloatingPoint())
15042 return "w";
15043 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
15044 (ConstraintVT.getSizeInBits() == 64 ||
15045 ConstraintVT.getSizeInBits() == 128))
15046 return "w";
15048 return "r";
15051 /// getConstraintType - Given a constraint letter, return the type of
15052 /// constraint it is for this target.
15053 ARMTargetLowering::ConstraintType
15054 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
15055 unsigned S = Constraint.size();
15056 if (S == 1) {
15057 switch (Constraint[0]) {
15058 default: break;
15059 case 'l': return C_RegisterClass;
15060 case 'w': return C_RegisterClass;
15061 case 'h': return C_RegisterClass;
15062 case 'x': return C_RegisterClass;
15063 case 't': return C_RegisterClass;
15064 case 'j': return C_Immediate; // Constant for movw.
15065 // An address with a single base register. Due to the way we
15066 // currently handle addresses it is the same as an 'r' memory constraint.
15067 case 'Q': return C_Memory;
15069 } else if (S == 2) {
15070 switch (Constraint[0]) {
15071 default: break;
15072 case 'T': return C_RegisterClass;
15073 // All 'U+' constraints are addresses.
15074 case 'U': return C_Memory;
15077 return TargetLowering::getConstraintType(Constraint);
15080 /// Examine constraint type and operand type and determine a weight value.
15081 /// This object must already have been set up with the operand type
15082 /// and the current alternative constraint selected.
15083 TargetLowering::ConstraintWeight
15084 ARMTargetLowering::getSingleConstraintMatchWeight(
15085 AsmOperandInfo &info, const char *constraint) const {
15086 ConstraintWeight weight = CW_Invalid;
15087 Value *CallOperandVal = info.CallOperandVal;
15088 // If we don't have a value, we can't do a match,
15089 // but allow it at the lowest weight.
15090 if (!CallOperandVal)
15091 return CW_Default;
15092 Type *type = CallOperandVal->getType();
15093 // Look at the constraint type.
15094 switch (*constraint) {
15095 default:
15096 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15097 break;
15098 case 'l':
15099 if (type->isIntegerTy()) {
15100 if (Subtarget->isThumb())
15101 weight = CW_SpecificReg;
15102 else
15103 weight = CW_Register;
15105 break;
15106 case 'w':
15107 if (type->isFloatingPointTy())
15108 weight = CW_Register;
15109 break;
15111 return weight;
15114 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
15116 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
15117 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
15118 switch (Constraint.size()) {
15119 case 1:
15120 // GCC ARM Constraint Letters
15121 switch (Constraint[0]) {
15122 case 'l': // Low regs or general regs.
15123 if (Subtarget->isThumb())
15124 return RCPair(0U, &ARM::tGPRRegClass);
15125 return RCPair(0U, &ARM::GPRRegClass);
15126 case 'h': // High regs or no regs.
15127 if (Subtarget->isThumb())
15128 return RCPair(0U, &ARM::hGPRRegClass);
15129 break;
15130 case 'r':
15131 if (Subtarget->isThumb1Only())
15132 return RCPair(0U, &ARM::tGPRRegClass);
15133 return RCPair(0U, &ARM::GPRRegClass);
15134 case 'w':
15135 if (VT == MVT::Other)
15136 break;
15137 if (VT == MVT::f32)
15138 return RCPair(0U, &ARM::SPRRegClass);
15139 if (VT.getSizeInBits() == 64)
15140 return RCPair(0U, &ARM::DPRRegClass);
15141 if (VT.getSizeInBits() == 128)
15142 return RCPair(0U, &ARM::QPRRegClass);
15143 break;
15144 case 'x':
15145 if (VT == MVT::Other)
15146 break;
15147 if (VT == MVT::f32)
15148 return RCPair(0U, &ARM::SPR_8RegClass);
15149 if (VT.getSizeInBits() == 64)
15150 return RCPair(0U, &ARM::DPR_8RegClass);
15151 if (VT.getSizeInBits() == 128)
15152 return RCPair(0U, &ARM::QPR_8RegClass);
15153 break;
15154 case 't':
15155 if (VT == MVT::Other)
15156 break;
15157 if (VT == MVT::f32 || VT == MVT::i32)
15158 return RCPair(0U, &ARM::SPRRegClass);
15159 if (VT.getSizeInBits() == 64)
15160 return RCPair(0U, &ARM::DPR_VFP2RegClass);
15161 if (VT.getSizeInBits() == 128)
15162 return RCPair(0U, &ARM::QPR_VFP2RegClass);
15163 break;
15165 break;
15167 case 2:
15168 if (Constraint[0] == 'T') {
15169 switch (Constraint[1]) {
15170 default:
15171 break;
15172 case 'e':
15173 return RCPair(0U, &ARM::tGPREvenRegClass);
15174 case 'o':
15175 return RCPair(0U, &ARM::tGPROddRegClass);
15178 break;
15180 default:
15181 break;
15184 if (StringRef("{cc}").equals_lower(Constraint))
15185 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
15187 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15190 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15191 /// vector. If it is invalid, don't add anything to Ops.
15192 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15193 std::string &Constraint,
15194 std::vector<SDValue>&Ops,
15195 SelectionDAG &DAG) const {
15196 SDValue Result;
15198 // Currently only support length 1 constraints.
15199 if (Constraint.length() != 1) return;
15201 char ConstraintLetter = Constraint[0];
15202 switch (ConstraintLetter) {
15203 default: break;
15204 case 'j':
15205 case 'I': case 'J': case 'K': case 'L':
15206 case 'M': case 'N': case 'O':
15207 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
15208 if (!C)
15209 return;
15211 int64_t CVal64 = C->getSExtValue();
15212 int CVal = (int) CVal64;
15213 // None of these constraints allow values larger than 32 bits. Check
15214 // that the value fits in an int.
15215 if (CVal != CVal64)
15216 return;
15218 switch (ConstraintLetter) {
15219 case 'j':
15220 // Constant suitable for movw, must be between 0 and
15221 // 65535.
15222 if (Subtarget->hasV6T2Ops())
15223 if (CVal >= 0 && CVal <= 65535)
15224 break;
15225 return;
15226 case 'I':
15227 if (Subtarget->isThumb1Only()) {
15228 // This must be a constant between 0 and 255, for ADD
15229 // immediates.
15230 if (CVal >= 0 && CVal <= 255)
15231 break;
15232 } else if (Subtarget->isThumb2()) {
15233 // A constant that can be used as an immediate value in a
15234 // data-processing instruction.
15235 if (ARM_AM::getT2SOImmVal(CVal) != -1)
15236 break;
15237 } else {
15238 // A constant that can be used as an immediate value in a
15239 // data-processing instruction.
15240 if (ARM_AM::getSOImmVal(CVal) != -1)
15241 break;
15243 return;
15245 case 'J':
15246 if (Subtarget->isThumb1Only()) {
15247 // This must be a constant between -255 and -1, for negated ADD
15248 // immediates. This can be used in GCC with an "n" modifier that
15249 // prints the negated value, for use with SUB instructions. It is
15250 // not useful otherwise but is implemented for compatibility.
15251 if (CVal >= -255 && CVal <= -1)
15252 break;
15253 } else {
15254 // This must be a constant between -4095 and 4095. It is not clear
15255 // what this constraint is intended for. Implemented for
15256 // compatibility with GCC.
15257 if (CVal >= -4095 && CVal <= 4095)
15258 break;
15260 return;
15262 case 'K':
15263 if (Subtarget->isThumb1Only()) {
15264 // A 32-bit value where only one byte has a nonzero value. Exclude
15265 // zero to match GCC. This constraint is used by GCC internally for
15266 // constants that can be loaded with a move/shift combination.
15267 // It is not useful otherwise but is implemented for compatibility.
15268 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
15269 break;
15270 } else if (Subtarget->isThumb2()) {
15271 // A constant whose bitwise inverse can be used as an immediate
15272 // value in a data-processing instruction. This can be used in GCC
15273 // with a "B" modifier that prints the inverted value, for use with
15274 // BIC and MVN instructions. It is not useful otherwise but is
15275 // implemented for compatibility.
15276 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
15277 break;
15278 } else {
15279 // A constant whose bitwise inverse can be used as an immediate
15280 // value in a data-processing instruction. This can be used in GCC
15281 // with a "B" modifier that prints the inverted value, for use with
15282 // BIC and MVN instructions. It is not useful otherwise but is
15283 // implemented for compatibility.
15284 if (ARM_AM::getSOImmVal(~CVal) != -1)
15285 break;
15287 return;
15289 case 'L':
15290 if (Subtarget->isThumb1Only()) {
15291 // This must be a constant between -7 and 7,
15292 // for 3-operand ADD/SUB immediate instructions.
15293 if (CVal >= -7 && CVal < 7)
15294 break;
15295 } else if (Subtarget->isThumb2()) {
15296 // A constant whose negation can be used as an immediate value in a
15297 // data-processing instruction. This can be used in GCC with an "n"
15298 // modifier that prints the negated value, for use with SUB
15299 // instructions. It is not useful otherwise but is implemented for
15300 // compatibility.
15301 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
15302 break;
15303 } else {
15304 // A constant whose negation can be used as an immediate value in a
15305 // data-processing instruction. This can be used in GCC with an "n"
15306 // modifier that prints the negated value, for use with SUB
15307 // instructions. It is not useful otherwise but is implemented for
15308 // compatibility.
15309 if (ARM_AM::getSOImmVal(-CVal) != -1)
15310 break;
15312 return;
15314 case 'M':
15315 if (Subtarget->isThumb1Only()) {
15316 // This must be a multiple of 4 between 0 and 1020, for
15317 // ADD sp + immediate.
15318 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
15319 break;
15320 } else {
15321 // A power of two or a constant between 0 and 32. This is used in
15322 // GCC for the shift amount on shifted register operands, but it is
15323 // useful in general for any shift amounts.
15324 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
15325 break;
15327 return;
15329 case 'N':
15330 if (Subtarget->isThumb()) { // FIXME thumb2
15331 // This must be a constant between 0 and 31, for shift amounts.
15332 if (CVal >= 0 && CVal <= 31)
15333 break;
15335 return;
15337 case 'O':
15338 if (Subtarget->isThumb()) { // FIXME thumb2
15339 // This must be a multiple of 4 between -508 and 508, for
15340 // ADD/SUB sp = sp + immediate.
15341 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
15342 break;
15344 return;
15346 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
15347 break;
15350 if (Result.getNode()) {
15351 Ops.push_back(Result);
15352 return;
15354 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15357 static RTLIB::Libcall getDivRemLibcall(
15358 const SDNode *N, MVT::SimpleValueType SVT) {
15359 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
15360 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
15361 "Unhandled Opcode in getDivRemLibcall");
15362 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
15363 N->getOpcode() == ISD::SREM;
15364 RTLIB::Libcall LC;
15365 switch (SVT) {
15366 default: llvm_unreachable("Unexpected request for libcall!");
15367 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
15368 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
15369 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
15370 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
15372 return LC;
15375 static TargetLowering::ArgListTy getDivRemArgList(
15376 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
15377 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
15378 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
15379 "Unhandled Opcode in getDivRemArgList");
15380 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
15381 N->getOpcode() == ISD::SREM;
15382 TargetLowering::ArgListTy Args;
15383 TargetLowering::ArgListEntry Entry;
15384 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
15385 EVT ArgVT = N->getOperand(i).getValueType();
15386 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
15387 Entry.Node = N->getOperand(i);
15388 Entry.Ty = ArgTy;
15389 Entry.IsSExt = isSigned;
15390 Entry.IsZExt = !isSigned;
15391 Args.push_back(Entry);
15393 if (Subtarget->isTargetWindows() && Args.size() >= 2)
15394 std::swap(Args[0], Args[1]);
15395 return Args;
15398 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
15399 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
15400 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
15401 Subtarget->isTargetWindows()) &&
15402 "Register-based DivRem lowering only");
15403 unsigned Opcode = Op->getOpcode();
15404 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
15405 "Invalid opcode for Div/Rem lowering");
15406 bool isSigned = (Opcode == ISD::SDIVREM);
15407 EVT VT = Op->getValueType(0);
15408 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
15409 SDLoc dl(Op);
15411 // If the target has hardware divide, use divide + multiply + subtract:
15412 // div = a / b
15413 // rem = a - b * div
15414 // return {div, rem}
15415 // This should be lowered into UDIV/SDIV + MLS later on.
15416 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
15417 : Subtarget->hasDivideInARMMode();
15418 if (hasDivide && Op->getValueType(0).isSimple() &&
15419 Op->getSimpleValueType(0) == MVT::i32) {
15420 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
15421 const SDValue Dividend = Op->getOperand(0);
15422 const SDValue Divisor = Op->getOperand(1);
15423 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
15424 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
15425 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
15427 SDValue Values[2] = {Div, Rem};
15428 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
15431 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
15432 VT.getSimpleVT().SimpleTy);
15433 SDValue InChain = DAG.getEntryNode();
15435 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
15436 DAG.getContext(),
15437 Subtarget);
15439 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15440 getPointerTy(DAG.getDataLayout()));
15442 Type *RetTy = StructType::get(Ty, Ty);
15444 if (Subtarget->isTargetWindows())
15445 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
15447 TargetLowering::CallLoweringInfo CLI(DAG);
15448 CLI.setDebugLoc(dl).setChain(InChain)
15449 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
15450 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
15452 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
15453 return CallInfo.first;
15456 // Lowers REM using divmod helpers
15457 // see RTABI section 4.2/4.3
15458 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
15459 // Build return types (div and rem)
15460 std::vector<Type*> RetTyParams;
15461 Type *RetTyElement;
15463 switch (N->getValueType(0).getSimpleVT().SimpleTy) {
15464 default: llvm_unreachable("Unexpected request for libcall!");
15465 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
15466 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
15467 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
15468 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
15471 RetTyParams.push_back(RetTyElement);
15472 RetTyParams.push_back(RetTyElement);
15473 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
15474 Type *RetTy = StructType::get(*DAG.getContext(), ret);
15476 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
15477 SimpleTy);
15478 SDValue InChain = DAG.getEntryNode();
15479 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
15480 Subtarget);
15481 bool isSigned = N->getOpcode() == ISD::SREM;
15482 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
15483 getPointerTy(DAG.getDataLayout()));
15485 if (Subtarget->isTargetWindows())
15486 InChain = WinDBZCheckDenominator(DAG, N, InChain);
15488 // Lower call
15489 CallLoweringInfo CLI(DAG);
15490 CLI.setChain(InChain)
15491 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
15492 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
15493 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
15495 // Return second (rem) result operand (first contains div)
15496 SDNode *ResNode = CallResult.first.getNode();
15497 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
15498 return ResNode->getOperand(1);
15501 SDValue
15502 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
15503 assert(Subtarget->isTargetWindows() && "unsupported target platform");
15504 SDLoc DL(Op);
15506 // Get the inputs.
15507 SDValue Chain = Op.getOperand(0);
15508 SDValue Size = Op.getOperand(1);
15510 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
15511 "no-stack-arg-probe")) {
15512 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
15513 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
15514 Chain = SP.getValue(1);
15515 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
15516 if (Align)
15517 SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
15518 DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
15519 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
15520 SDValue Ops[2] = { SP, Chain };
15521 return DAG.getMergeValues(Ops, DL);
15524 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
15525 DAG.getConstant(2, DL, MVT::i32));
15527 SDValue Flag;
15528 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
15529 Flag = Chain.getValue(1);
15531 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
15532 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
15534 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
15535 Chain = NewSP.getValue(1);
15537 SDValue Ops[2] = { NewSP, Chain };
15538 return DAG.getMergeValues(Ops, DL);
15541 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
15542 SDValue SrcVal = Op.getOperand(0);
15543 const unsigned DstSz = Op.getValueType().getSizeInBits();
15544 const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
15545 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
15546 "Unexpected type for custom-lowering FP_EXTEND");
15548 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
15549 "With both FP DP and 16, any FP conversion is legal!");
15551 assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
15552 "With FP16, 16 to 32 conversion is legal!");
15554 // Either we are converting from 16 -> 64, without FP16 and/or
15555 // FP.double-precision or without Armv8-fp. So we must do it in two
15556 // steps.
15557 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
15558 // without FP16. So we must do a function call.
15559 SDLoc Loc(Op);
15560 RTLIB::Libcall LC;
15561 if (SrcSz == 16) {
15562 // Instruction from 16 -> 32
15563 if (Subtarget->hasFP16())
15564 SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, SrcVal);
15565 // Lib call from 16 -> 32
15566 else {
15567 LC = RTLIB::getFPEXT(MVT::f16, MVT::f32);
15568 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15569 "Unexpected type for custom-lowering FP_EXTEND");
15570 SrcVal =
15571 makeLibCall(DAG, LC, MVT::f32, SrcVal, /*isSigned*/ false, Loc).first;
15575 if (DstSz != 64)
15576 return SrcVal;
15577 // For sure now SrcVal is 32 bits
15578 if (Subtarget->hasFP64()) // Instruction from 32 -> 64
15579 return DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f64, SrcVal);
15581 LC = RTLIB::getFPEXT(MVT::f32, MVT::f64);
15582 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15583 "Unexpected type for custom-lowering FP_EXTEND");
15584 return makeLibCall(DAG, LC, MVT::f64, SrcVal, /*isSigned*/ false, Loc).first;
15587 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
15588 SDValue SrcVal = Op.getOperand(0);
15589 EVT SrcVT = SrcVal.getValueType();
15590 EVT DstVT = Op.getValueType();
15591 const unsigned DstSz = Op.getValueType().getSizeInBits();
15592 const unsigned SrcSz = SrcVT.getSizeInBits();
15593 (void)DstSz;
15594 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
15595 "Unexpected type for custom-lowering FP_ROUND");
15597 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
15598 "With both FP DP and 16, any FP conversion is legal!");
15600 SDLoc Loc(Op);
15602 // Instruction from 32 -> 16 if hasFP16 is valid
15603 if (SrcSz == 32 && Subtarget->hasFP16())
15604 return Op;
15606 // Lib call from 32 -> 16 / 64 -> [32, 16]
15607 RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
15608 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
15609 "Unexpected type for custom-lowering FP_ROUND");
15610 return makeLibCall(DAG, LC, DstVT, SrcVal, /*isSigned*/ false, Loc).first;
15613 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
15614 SelectionDAG &DAG) const {
15615 assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
15616 MVT HalfT = MVT::i32;
15617 SDLoc dl(N);
15618 SDValue Hi, Lo, Tmp;
15620 if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
15621 !isOperationLegalOrCustom(ISD::UADDO, HalfT))
15622 return ;
15624 unsigned OpTypeBits = HalfT.getScalarSizeInBits();
15625 SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
15627 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
15628 DAG.getConstant(0, dl, HalfT));
15629 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
15630 DAG.getConstant(1, dl, HalfT));
15632 Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
15633 DAG.getConstant(OpTypeBits - 1, dl,
15634 getShiftAmountTy(HalfT, DAG.getDataLayout())));
15635 Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
15636 Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
15637 SDValue(Lo.getNode(), 1));
15638 Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
15639 Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
15641 Results.push_back(Lo);
15642 Results.push_back(Hi);
15645 bool
15646 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
15647 // The ARM target isn't yet aware of offsets.
15648 return false;
15651 bool ARM::isBitFieldInvertedMask(unsigned v) {
15652 if (v == 0xffffffff)
15653 return false;
15655 // there can be 1's on either or both "outsides", all the "inside"
15656 // bits must be 0's
15657 return isShiftedMask_32(~v);
15660 /// isFPImmLegal - Returns true if the target can instruction select the
15661 /// specified FP immediate natively. If false, the legalizer will
15662 /// materialize the FP immediate as a load from a constant pool.
15663 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15664 bool ForCodeSize) const {
15665 if (!Subtarget->hasVFP3Base())
15666 return false;
15667 if (VT == MVT::f16 && Subtarget->hasFullFP16())
15668 return ARM_AM::getFP16Imm(Imm) != -1;
15669 if (VT == MVT::f32)
15670 return ARM_AM::getFP32Imm(Imm) != -1;
15671 if (VT == MVT::f64 && Subtarget->hasFP64())
15672 return ARM_AM::getFP64Imm(Imm) != -1;
15673 return false;
15676 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
15677 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
15678 /// specified in the intrinsic calls.
15679 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
15680 const CallInst &I,
15681 MachineFunction &MF,
15682 unsigned Intrinsic) const {
15683 switch (Intrinsic) {
15684 case Intrinsic::arm_neon_vld1:
15685 case Intrinsic::arm_neon_vld2:
15686 case Intrinsic::arm_neon_vld3:
15687 case Intrinsic::arm_neon_vld4:
15688 case Intrinsic::arm_neon_vld2lane:
15689 case Intrinsic::arm_neon_vld3lane:
15690 case Intrinsic::arm_neon_vld4lane:
15691 case Intrinsic::arm_neon_vld2dup:
15692 case Intrinsic::arm_neon_vld3dup:
15693 case Intrinsic::arm_neon_vld4dup: {
15694 Info.opc = ISD::INTRINSIC_W_CHAIN;
15695 // Conservatively set memVT to the entire set of vectors loaded.
15696 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15697 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
15698 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15699 Info.ptrVal = I.getArgOperand(0);
15700 Info.offset = 0;
15701 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
15702 Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
15703 // volatile loads with NEON intrinsics not supported
15704 Info.flags = MachineMemOperand::MOLoad;
15705 return true;
15707 case Intrinsic::arm_neon_vld1x2:
15708 case Intrinsic::arm_neon_vld1x3:
15709 case Intrinsic::arm_neon_vld1x4: {
15710 Info.opc = ISD::INTRINSIC_W_CHAIN;
15711 // Conservatively set memVT to the entire set of vectors loaded.
15712 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15713 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
15714 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15715 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
15716 Info.offset = 0;
15717 Info.align.reset();
15718 // volatile loads with NEON intrinsics not supported
15719 Info.flags = MachineMemOperand::MOLoad;
15720 return true;
15722 case Intrinsic::arm_neon_vst1:
15723 case Intrinsic::arm_neon_vst2:
15724 case Intrinsic::arm_neon_vst3:
15725 case Intrinsic::arm_neon_vst4:
15726 case Intrinsic::arm_neon_vst2lane:
15727 case Intrinsic::arm_neon_vst3lane:
15728 case Intrinsic::arm_neon_vst4lane: {
15729 Info.opc = ISD::INTRINSIC_VOID;
15730 // Conservatively set memVT to the entire set of vectors stored.
15731 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15732 unsigned NumElts = 0;
15733 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
15734 Type *ArgTy = I.getArgOperand(ArgI)->getType();
15735 if (!ArgTy->isVectorTy())
15736 break;
15737 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
15739 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15740 Info.ptrVal = I.getArgOperand(0);
15741 Info.offset = 0;
15742 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
15743 Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
15744 // volatile stores with NEON intrinsics not supported
15745 Info.flags = MachineMemOperand::MOStore;
15746 return true;
15748 case Intrinsic::arm_neon_vst1x2:
15749 case Intrinsic::arm_neon_vst1x3:
15750 case Intrinsic::arm_neon_vst1x4: {
15751 Info.opc = ISD::INTRINSIC_VOID;
15752 // Conservatively set memVT to the entire set of vectors stored.
15753 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15754 unsigned NumElts = 0;
15755 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
15756 Type *ArgTy = I.getArgOperand(ArgI)->getType();
15757 if (!ArgTy->isVectorTy())
15758 break;
15759 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
15761 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
15762 Info.ptrVal = I.getArgOperand(0);
15763 Info.offset = 0;
15764 Info.align.reset();
15765 // volatile stores with NEON intrinsics not supported
15766 Info.flags = MachineMemOperand::MOStore;
15767 return true;
15769 case Intrinsic::arm_ldaex:
15770 case Intrinsic::arm_ldrex: {
15771 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15772 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
15773 Info.opc = ISD::INTRINSIC_W_CHAIN;
15774 Info.memVT = MVT::getVT(PtrTy->getElementType());
15775 Info.ptrVal = I.getArgOperand(0);
15776 Info.offset = 0;
15777 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
15778 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15779 return true;
15781 case Intrinsic::arm_stlex:
15782 case Intrinsic::arm_strex: {
15783 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15784 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
15785 Info.opc = ISD::INTRINSIC_W_CHAIN;
15786 Info.memVT = MVT::getVT(PtrTy->getElementType());
15787 Info.ptrVal = I.getArgOperand(1);
15788 Info.offset = 0;
15789 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
15790 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15791 return true;
15793 case Intrinsic::arm_stlexd:
15794 case Intrinsic::arm_strexd:
15795 Info.opc = ISD::INTRINSIC_W_CHAIN;
15796 Info.memVT = MVT::i64;
15797 Info.ptrVal = I.getArgOperand(2);
15798 Info.offset = 0;
15799 Info.align = Align(8);
15800 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15801 return true;
15803 case Intrinsic::arm_ldaexd:
15804 case Intrinsic::arm_ldrexd:
15805 Info.opc = ISD::INTRINSIC_W_CHAIN;
15806 Info.memVT = MVT::i64;
15807 Info.ptrVal = I.getArgOperand(0);
15808 Info.offset = 0;
15809 Info.align = Align(8);
15810 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15811 return true;
15813 default:
15814 break;
15817 return false;
15820 /// Returns true if it is beneficial to convert a load of a constant
15821 /// to just the constant itself.
15822 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15823 Type *Ty) const {
15824 assert(Ty->isIntegerTy());
15826 unsigned Bits = Ty->getPrimitiveSizeInBits();
15827 if (Bits == 0 || Bits > 32)
15828 return false;
15829 return true;
15832 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
15833 unsigned Index) const {
15834 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
15835 return false;
15837 return (Index == 0 || Index == ResVT.getVectorNumElements());
15840 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
15841 ARM_MB::MemBOpt Domain) const {
15842 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15844 // First, if the target has no DMB, see what fallback we can use.
15845 if (!Subtarget->hasDataBarrier()) {
15846 // Some ARMv6 cpus can support data barriers with an mcr instruction.
15847 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15848 // here.
15849 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
15850 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
15851 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
15852 Builder.getInt32(0), Builder.getInt32(7),
15853 Builder.getInt32(10), Builder.getInt32(5)};
15854 return Builder.CreateCall(MCR, args);
15855 } else {
15856 // Instead of using barriers, atomic accesses on these subtargets use
15857 // libcalls.
15858 llvm_unreachable("makeDMB on a target so old that it has no barriers");
15860 } else {
15861 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
15862 // Only a full system barrier exists in the M-class architectures.
15863 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
15864 Constant *CDomain = Builder.getInt32(Domain);
15865 return Builder.CreateCall(DMB, CDomain);
15869 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15870 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
15871 Instruction *Inst,
15872 AtomicOrdering Ord) const {
15873 switch (Ord) {
15874 case AtomicOrdering::NotAtomic:
15875 case AtomicOrdering::Unordered:
15876 llvm_unreachable("Invalid fence: unordered/non-atomic");
15877 case AtomicOrdering::Monotonic:
15878 case AtomicOrdering::Acquire:
15879 return nullptr; // Nothing to do
15880 case AtomicOrdering::SequentiallyConsistent:
15881 if (!Inst->hasAtomicStore())
15882 return nullptr; // Nothing to do
15883 LLVM_FALLTHROUGH;
15884 case AtomicOrdering::Release:
15885 case AtomicOrdering::AcquireRelease:
15886 if (Subtarget->preferISHSTBarriers())
15887 return makeDMB(Builder, ARM_MB::ISHST);
15888 // FIXME: add a comment with a link to documentation justifying this.
15889 else
15890 return makeDMB(Builder, ARM_MB::ISH);
15892 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15895 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
15896 Instruction *Inst,
15897 AtomicOrdering Ord) const {
15898 switch (Ord) {
15899 case AtomicOrdering::NotAtomic:
15900 case AtomicOrdering::Unordered:
15901 llvm_unreachable("Invalid fence: unordered/not-atomic");
15902 case AtomicOrdering::Monotonic:
15903 case AtomicOrdering::Release:
15904 return nullptr; // Nothing to do
15905 case AtomicOrdering::Acquire:
15906 case AtomicOrdering::AcquireRelease:
15907 case AtomicOrdering::SequentiallyConsistent:
15908 return makeDMB(Builder, ARM_MB::ISH);
15910 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15913 // Loads and stores less than 64-bits are already atomic; ones above that
15914 // are doomed anyway, so defer to the default libcall and blame the OS when
15915 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15916 // anything for those.
15917 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
15918 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
15919 return (Size == 64) && !Subtarget->isMClass();
15922 // Loads and stores less than 64-bits are already atomic; ones above that
15923 // are doomed anyway, so defer to the default libcall and blame the OS when
15924 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15925 // anything for those.
15926 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15927 // guarantee, see DDI0406C ARM architecture reference manual,
15928 // sections A8.8.72-74 LDRD)
15929 TargetLowering::AtomicExpansionKind
15930 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
15931 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
15932 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
15933 : AtomicExpansionKind::None;
15936 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15937 // and up to 64 bits on the non-M profiles
15938 TargetLowering::AtomicExpansionKind
15939 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
15940 if (AI->isFloatingPointOperation())
15941 return AtomicExpansionKind::CmpXChg;
15943 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
15944 bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15945 return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
15946 ? AtomicExpansionKind::LLSC
15947 : AtomicExpansionKind::None;
15950 TargetLowering::AtomicExpansionKind
15951 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
15952 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15953 // implement cmpxchg without spilling. If the address being exchanged is also
15954 // on the stack and close enough to the spill slot, this can lead to a
15955 // situation where the monitor always gets cleared and the atomic operation
15956 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15957 bool HasAtomicCmpXchg =
15958 !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15959 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
15960 return AtomicExpansionKind::LLSC;
15961 return AtomicExpansionKind::None;
15964 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15965 const Instruction *I) const {
15966 return InsertFencesForAtomic;
15969 // This has so far only been implemented for MachO.
15970 bool ARMTargetLowering::useLoadStackGuardNode() const {
15971 return Subtarget->isTargetMachO();
15974 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
15975 if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
15976 return TargetLowering::insertSSPDeclarations(M);
15978 // MSVC CRT has a global variable holding security cookie.
15979 M.getOrInsertGlobal("__security_cookie",
15980 Type::getInt8PtrTy(M.getContext()));
15982 // MSVC CRT has a function to validate security cookie.
15983 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
15984 "__security_check_cookie", Type::getVoidTy(M.getContext()),
15985 Type::getInt8PtrTy(M.getContext()));
15986 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
15987 F->addAttribute(1, Attribute::AttrKind::InReg);
15990 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
15991 // MSVC CRT has a global variable holding security cookie.
15992 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
15993 return M.getGlobalVariable("__security_cookie");
15994 return TargetLowering::getSDagStackGuard(M);
15997 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
15998 // MSVC CRT has a function to validate security cookie.
15999 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16000 return M.getFunction("__security_check_cookie");
16001 return TargetLowering::getSSPStackGuardCheck(M);
16004 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
16005 unsigned &Cost) const {
16006 // If we do not have NEON, vector types are not natively supported.
16007 if (!Subtarget->hasNEON())
16008 return false;
16010 // Floating point values and vector values map to the same register file.
16011 // Therefore, although we could do a store extract of a vector type, this is
16012 // better to leave at float as we have more freedom in the addressing mode for
16013 // those.
16014 if (VectorTy->isFPOrFPVectorTy())
16015 return false;
16017 // If the index is unknown at compile time, this is very expensive to lower
16018 // and it is not possible to combine the store with the extract.
16019 if (!isa<ConstantInt>(Idx))
16020 return false;
16022 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
16023 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
16024 // We can do a store + vector extract on any vector that fits perfectly in a D
16025 // or Q register.
16026 if (BitWidth == 64 || BitWidth == 128) {
16027 Cost = 0;
16028 return true;
16030 return false;
16033 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16034 return Subtarget->hasV6T2Ops();
16037 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16038 return Subtarget->hasV6T2Ops();
16041 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
16042 return !Subtarget->hasMinSize();
16045 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
16046 AtomicOrdering Ord) const {
16047 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16048 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
16049 bool IsAcquire = isAcquireOrStronger(Ord);
16051 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16052 // intrinsic must return {i32, i32} and we have to recombine them into a
16053 // single i64 here.
16054 if (ValTy->getPrimitiveSizeInBits() == 64) {
16055 Intrinsic::ID Int =
16056 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
16057 Function *Ldrex = Intrinsic::getDeclaration(M, Int);
16059 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16060 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
16062 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
16063 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
16064 if (!Subtarget->isLittle())
16065 std::swap (Lo, Hi);
16066 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
16067 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
16068 return Builder.CreateOr(
16069 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
16072 Type *Tys[] = { Addr->getType() };
16073 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
16074 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
16076 return Builder.CreateTruncOrBitCast(
16077 Builder.CreateCall(Ldrex, Addr),
16078 cast<PointerType>(Addr->getType())->getElementType());
16081 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16082 IRBuilder<> &Builder) const {
16083 if (!Subtarget->hasV7Ops())
16084 return;
16085 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16086 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
16089 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
16090 Value *Addr,
16091 AtomicOrdering Ord) const {
16092 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16093 bool IsRelease = isReleaseOrStronger(Ord);
16095 // Since the intrinsics must have legal type, the i64 intrinsics take two
16096 // parameters: "i32, i32". We must marshal Val into the appropriate form
16097 // before the call.
16098 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
16099 Intrinsic::ID Int =
16100 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
16101 Function *Strex = Intrinsic::getDeclaration(M, Int);
16102 Type *Int32Ty = Type::getInt32Ty(M->getContext());
16104 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
16105 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
16106 if (!Subtarget->isLittle())
16107 std::swap(Lo, Hi);
16108 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16109 return Builder.CreateCall(Strex, {Lo, Hi, Addr});
16112 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
16113 Type *Tys[] = { Addr->getType() };
16114 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
16116 return Builder.CreateCall(
16117 Strex, {Builder.CreateZExtOrBitCast(
16118 Val, Strex->getFunctionType()->getParamType(0)),
16119 Addr});
16123 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16124 return Subtarget->isMClass();
16127 /// A helper function for determining the number of interleaved accesses we
16128 /// will generate when lowering accesses of the given type.
16129 unsigned
16130 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
16131 const DataLayout &DL) const {
16132 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
16135 bool ARMTargetLowering::isLegalInterleavedAccessType(
16136 VectorType *VecTy, const DataLayout &DL) const {
16138 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
16139 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
16141 // Ensure the vector doesn't have f16 elements. Even though we could do an
16142 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16143 // f32.
16144 if (VecTy->getElementType()->isHalfTy())
16145 return false;
16147 // Ensure the number of vector elements is greater than 1.
16148 if (VecTy->getNumElements() < 2)
16149 return false;
16151 // Ensure the element type is legal.
16152 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
16153 return false;
16155 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16156 // 128 will be split into multiple interleaved accesses.
16157 return VecSize == 64 || VecSize % 128 == 0;
16160 /// Lower an interleaved load into a vldN intrinsic.
16162 /// E.g. Lower an interleaved load (Factor = 2):
16163 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
16164 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
16165 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
16167 /// Into:
16168 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
16169 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
16170 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
16171 bool ARMTargetLowering::lowerInterleavedLoad(
16172 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
16173 ArrayRef<unsigned> Indices, unsigned Factor) const {
16174 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
16175 "Invalid interleave factor");
16176 assert(!Shuffles.empty() && "Empty shufflevector input");
16177 assert(Shuffles.size() == Indices.size() &&
16178 "Unmatched number of shufflevectors and indices");
16180 VectorType *VecTy = Shuffles[0]->getType();
16181 Type *EltTy = VecTy->getVectorElementType();
16183 const DataLayout &DL = LI->getModule()->getDataLayout();
16185 // Skip if we do not have NEON and skip illegal vector types. We can
16186 // "legalize" wide vector types into multiple interleaved accesses as long as
16187 // the vector types are divisible by 128.
16188 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
16189 return false;
16191 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
16193 // A pointer vector can not be the return type of the ldN intrinsics. Need to
16194 // load integer vectors first and then convert to pointer vectors.
16195 if (EltTy->isPointerTy())
16196 VecTy =
16197 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
16199 IRBuilder<> Builder(LI);
16201 // The base address of the load.
16202 Value *BaseAddr = LI->getPointerOperand();
16204 if (NumLoads > 1) {
16205 // If we're going to generate more than one load, reset the sub-vector type
16206 // to something legal.
16207 VecTy = VectorType::get(VecTy->getVectorElementType(),
16208 VecTy->getVectorNumElements() / NumLoads);
16210 // We will compute the pointer operand of each load from the original base
16211 // address using GEPs. Cast the base address to a pointer to the scalar
16212 // element type.
16213 BaseAddr = Builder.CreateBitCast(
16214 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
16215 LI->getPointerAddressSpace()));
16218 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
16220 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
16221 Type *Tys[] = {VecTy, Int8Ptr};
16222 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
16223 Intrinsic::arm_neon_vld3,
16224 Intrinsic::arm_neon_vld4};
16225 Function *VldnFunc =
16226 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
16228 // Holds sub-vectors extracted from the load intrinsic return values. The
16229 // sub-vectors are associated with the shufflevector instructions they will
16230 // replace.
16231 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
16233 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
16234 // If we're generating more than one load, compute the base address of
16235 // subsequent loads as an offset from the previous.
16236 if (LoadCount > 0)
16237 BaseAddr =
16238 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
16239 VecTy->getVectorNumElements() * Factor);
16241 SmallVector<Value *, 2> Ops;
16242 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
16243 Ops.push_back(Builder.getInt32(LI->getAlignment()));
16245 CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
16247 // Replace uses of each shufflevector with the corresponding vector loaded
16248 // by ldN.
16249 for (unsigned i = 0; i < Shuffles.size(); i++) {
16250 ShuffleVectorInst *SV = Shuffles[i];
16251 unsigned Index = Indices[i];
16253 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
16255 // Convert the integer vector to pointer vector if the element is pointer.
16256 if (EltTy->isPointerTy())
16257 SubVec = Builder.CreateIntToPtr(
16258 SubVec, VectorType::get(SV->getType()->getVectorElementType(),
16259 VecTy->getVectorNumElements()));
16261 SubVecs[SV].push_back(SubVec);
16265 // Replace uses of the shufflevector instructions with the sub-vectors
16266 // returned by the load intrinsic. If a shufflevector instruction is
16267 // associated with more than one sub-vector, those sub-vectors will be
16268 // concatenated into a single wide vector.
16269 for (ShuffleVectorInst *SVI : Shuffles) {
16270 auto &SubVec = SubVecs[SVI];
16271 auto *WideVec =
16272 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
16273 SVI->replaceAllUsesWith(WideVec);
16276 return true;
16279 /// Lower an interleaved store into a vstN intrinsic.
16281 /// E.g. Lower an interleaved store (Factor = 3):
16282 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
16283 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
16284 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
16286 /// Into:
16287 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
16288 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
16289 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
16290 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16292 /// Note that the new shufflevectors will be removed and we'll only generate one
16293 /// vst3 instruction in CodeGen.
16295 /// Example for a more general valid mask (Factor 3). Lower:
16296 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
16297 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
16298 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
16300 /// Into:
16301 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
16302 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
16303 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
16304 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
16305 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
16306 ShuffleVectorInst *SVI,
16307 unsigned Factor) const {
16308 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
16309 "Invalid interleave factor");
16311 VectorType *VecTy = SVI->getType();
16312 assert(VecTy->getVectorNumElements() % Factor == 0 &&
16313 "Invalid interleaved store");
16315 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
16316 Type *EltTy = VecTy->getVectorElementType();
16317 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
16319 const DataLayout &DL = SI->getModule()->getDataLayout();
16321 // Skip if we do not have NEON and skip illegal vector types. We can
16322 // "legalize" wide vector types into multiple interleaved accesses as long as
16323 // the vector types are divisible by 128.
16324 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
16325 return false;
16327 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
16329 Value *Op0 = SVI->getOperand(0);
16330 Value *Op1 = SVI->getOperand(1);
16331 IRBuilder<> Builder(SI);
16333 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
16334 // vectors to integer vectors.
16335 if (EltTy->isPointerTy()) {
16336 Type *IntTy = DL.getIntPtrType(EltTy);
16338 // Convert to the corresponding integer vector.
16339 Type *IntVecTy =
16340 VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
16341 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
16342 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
16344 SubVecTy = VectorType::get(IntTy, LaneLen);
16347 // The base address of the store.
16348 Value *BaseAddr = SI->getPointerOperand();
16350 if (NumStores > 1) {
16351 // If we're going to generate more than one store, reset the lane length
16352 // and sub-vector type to something legal.
16353 LaneLen /= NumStores;
16354 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
16356 // We will compute the pointer operand of each store from the original base
16357 // address using GEPs. Cast the base address to a pointer to the scalar
16358 // element type.
16359 BaseAddr = Builder.CreateBitCast(
16360 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
16361 SI->getPointerAddressSpace()));
16364 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
16366 auto Mask = SVI->getShuffleMask();
16368 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
16369 Type *Tys[] = {Int8Ptr, SubVecTy};
16370 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
16371 Intrinsic::arm_neon_vst3,
16372 Intrinsic::arm_neon_vst4};
16374 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
16375 // If we generating more than one store, we compute the base address of
16376 // subsequent stores as an offset from the previous.
16377 if (StoreCount > 0)
16378 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
16379 BaseAddr, LaneLen * Factor);
16381 SmallVector<Value *, 6> Ops;
16382 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
16384 Function *VstNFunc =
16385 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
16387 // Split the shufflevector operands into sub vectors for the new vstN call.
16388 for (unsigned i = 0; i < Factor; i++) {
16389 unsigned IdxI = StoreCount * LaneLen * Factor + i;
16390 if (Mask[IdxI] >= 0) {
16391 Ops.push_back(Builder.CreateShuffleVector(
16392 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
16393 } else {
16394 unsigned StartMask = 0;
16395 for (unsigned j = 1; j < LaneLen; j++) {
16396 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
16397 if (Mask[IdxJ * Factor + IdxI] >= 0) {
16398 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
16399 break;
16402 // Note: If all elements in a chunk are undefs, StartMask=0!
16403 // Note: Filling undef gaps with random elements is ok, since
16404 // those elements were being written anyway (with undefs).
16405 // In the case of all undefs we're defaulting to using elems from 0
16406 // Note: StartMask cannot be negative, it's checked in
16407 // isReInterleaveMask
16408 Ops.push_back(Builder.CreateShuffleVector(
16409 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
16413 Ops.push_back(Builder.getInt32(SI->getAlignment()));
16414 Builder.CreateCall(VstNFunc, Ops);
16416 return true;
16419 enum HABaseType {
16420 HA_UNKNOWN = 0,
16421 HA_FLOAT,
16422 HA_DOUBLE,
16423 HA_VECT64,
16424 HA_VECT128
16427 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
16428 uint64_t &Members) {
16429 if (auto *ST = dyn_cast<StructType>(Ty)) {
16430 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
16431 uint64_t SubMembers = 0;
16432 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
16433 return false;
16434 Members += SubMembers;
16436 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
16437 uint64_t SubMembers = 0;
16438 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
16439 return false;
16440 Members += SubMembers * AT->getNumElements();
16441 } else if (Ty->isFloatTy()) {
16442 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
16443 return false;
16444 Members = 1;
16445 Base = HA_FLOAT;
16446 } else if (Ty->isDoubleTy()) {
16447 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
16448 return false;
16449 Members = 1;
16450 Base = HA_DOUBLE;
16451 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
16452 Members = 1;
16453 switch (Base) {
16454 case HA_FLOAT:
16455 case HA_DOUBLE:
16456 return false;
16457 case HA_VECT64:
16458 return VT->getBitWidth() == 64;
16459 case HA_VECT128:
16460 return VT->getBitWidth() == 128;
16461 case HA_UNKNOWN:
16462 switch (VT->getBitWidth()) {
16463 case 64:
16464 Base = HA_VECT64;
16465 return true;
16466 case 128:
16467 Base = HA_VECT128;
16468 return true;
16469 default:
16470 return false;
16475 return (Members > 0 && Members <= 4);
16478 /// Return the correct alignment for the current calling convention.
16479 unsigned
16480 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
16481 DataLayout DL) const {
16482 if (!ArgTy->isVectorTy())
16483 return DL.getABITypeAlignment(ArgTy);
16485 // Avoid over-aligning vector parameters. It would require realigning the
16486 // stack and waste space for no real benefit.
16487 return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
16490 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
16491 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
16492 /// passing according to AAPCS rules.
16493 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
16494 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
16495 if (getEffectiveCallingConv(CallConv, isVarArg) !=
16496 CallingConv::ARM_AAPCS_VFP)
16497 return false;
16499 HABaseType Base = HA_UNKNOWN;
16500 uint64_t Members = 0;
16501 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
16502 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
16504 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
16505 return IsHA || IsIntArray;
16508 unsigned ARMTargetLowering::getExceptionPointerRegister(
16509 const Constant *PersonalityFn) const {
16510 // Platforms which do not use SjLj EH may return values in these registers
16511 // via the personality function.
16512 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
16515 unsigned ARMTargetLowering::getExceptionSelectorRegister(
16516 const Constant *PersonalityFn) const {
16517 // Platforms which do not use SjLj EH may return values in these registers
16518 // via the personality function.
16519 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
16522 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
16523 // Update IsSplitCSR in ARMFunctionInfo.
16524 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
16525 AFI->setIsSplitCSR(true);
16528 void ARMTargetLowering::insertCopiesSplitCSR(
16529 MachineBasicBlock *Entry,
16530 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
16531 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
16532 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
16533 if (!IStart)
16534 return;
16536 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
16537 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
16538 MachineBasicBlock::iterator MBBI = Entry->begin();
16539 for (const MCPhysReg *I = IStart; *I; ++I) {
16540 const TargetRegisterClass *RC = nullptr;
16541 if (ARM::GPRRegClass.contains(*I))
16542 RC = &ARM::GPRRegClass;
16543 else if (ARM::DPRRegClass.contains(*I))
16544 RC = &ARM::DPRRegClass;
16545 else
16546 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
16548 unsigned NewVR = MRI->createVirtualRegister(RC);
16549 // Create copy from CSR to a virtual register.
16550 // FIXME: this currently does not emit CFI pseudo-instructions, it works
16551 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
16552 // nounwind. If we want to generalize this later, we may need to emit
16553 // CFI pseudo-instructions.
16554 assert(Entry->getParent()->getFunction().hasFnAttribute(
16555 Attribute::NoUnwind) &&
16556 "Function should be nounwind in insertCopiesSplitCSR!");
16557 Entry->addLiveIn(*I);
16558 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
16559 .addReg(*I);
16561 // Insert the copy-back instructions right before the terminator.
16562 for (auto *Exit : Exits)
16563 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
16564 TII->get(TargetOpcode::COPY), *I)
16565 .addReg(NewVR);
16569 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
16570 MF.getFrameInfo().computeMaxCallFrameSize(MF);
16571 TargetLoweringBase::finalizeLowering(MF);