[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / IR / Function.cpp
blob3a1c7a4ca36162c89a5379a82e14d77eca8b4d69
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/RWMutex.h"
32 #include "llvm/Support/StringPool.h"
33 #include "llvm/Support/Threading.h"
34 using namespace llvm;
36 // Explicit instantiations of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class llvm::SymbolTableListTraits<Argument>;
39 template class llvm::SymbolTableListTraits<BasicBlock>;
41 //===----------------------------------------------------------------------===//
42 // Argument Implementation
43 //===----------------------------------------------------------------------===//
45 void Argument::anchor() { }
47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
48 : Value(Ty, Value::ArgumentVal) {
49 Parent = nullptr;
51 if (Par)
52 Par->getArgumentList().push_back(this);
53 setName(Name);
56 void Argument::setParent(Function *parent) {
57 Parent = parent;
60 /// getArgNo - Return the index of this formal argument in its containing
61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1.
62 unsigned Argument::getArgNo() const {
63 const Function *F = getParent();
64 assert(F && "Argument is not in a function");
66 Function::const_arg_iterator AI = F->arg_begin();
67 unsigned ArgIdx = 0;
68 for (; &*AI != this; ++AI)
69 ++ArgIdx;
71 return ArgIdx;
74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
75 /// it in its containing function. Also returns true if at least one byte is
76 /// known to be dereferenceable and the pointer is in addrspace(0).
77 bool Argument::hasNonNullAttr() const {
78 if (!getType()->isPointerTy()) return false;
79 if (getParent()->getAttributes().
80 hasAttribute(getArgNo()+1, Attribute::NonNull))
81 return true;
82 else if (getDereferenceableBytes() > 0 &&
83 getType()->getPointerAddressSpace() == 0)
84 return true;
85 return false;
88 /// hasByValAttr - Return true if this argument has the byval attribute on it
89 /// in its containing function.
90 bool Argument::hasByValAttr() const {
91 if (!getType()->isPointerTy()) return false;
92 return getParent()->getAttributes().
93 hasAttribute(getArgNo()+1, Attribute::ByVal);
96 /// \brief Return true if this argument has the inalloca attribute on it in
97 /// its containing function.
98 bool Argument::hasInAllocaAttr() const {
99 if (!getType()->isPointerTy()) return false;
100 return getParent()->getAttributes().
101 hasAttribute(getArgNo()+1, Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeSet Attrs = getParent()->getAttributes();
107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo()+1);
117 uint64_t Argument::getDereferenceableBytes() const {
118 assert(getType()->isPointerTy() &&
119 "Only pointers have dereferenceable bytes");
120 return getParent()->getDereferenceableBytes(getArgNo()+1);
123 uint64_t Argument::getDereferenceableOrNullBytes() const {
124 assert(getType()->isPointerTy() &&
125 "Only pointers have dereferenceable bytes");
126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
129 /// hasNestAttr - Return true if this argument has the nest attribute on
130 /// it in its containing function.
131 bool Argument::hasNestAttr() const {
132 if (!getType()->isPointerTy()) return false;
133 return getParent()->getAttributes().
134 hasAttribute(getArgNo()+1, Attribute::Nest);
137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
138 /// it in its containing function.
139 bool Argument::hasNoAliasAttr() const {
140 if (!getType()->isPointerTy()) return false;
141 return getParent()->getAttributes().
142 hasAttribute(getArgNo()+1, Attribute::NoAlias);
145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
146 /// on it in its containing function.
147 bool Argument::hasNoCaptureAttr() const {
148 if (!getType()->isPointerTy()) return false;
149 return getParent()->getAttributes().
150 hasAttribute(getArgNo()+1, Attribute::NoCapture);
153 /// hasSRetAttr - Return true if this argument has the sret attribute on
154 /// it in its containing function.
155 bool Argument::hasStructRetAttr() const {
156 if (!getType()->isPointerTy()) return false;
157 return getParent()->getAttributes().
158 hasAttribute(getArgNo()+1, Attribute::StructRet);
161 /// hasReturnedAttr - Return true if this argument has the returned attribute on
162 /// it in its containing function.
163 bool Argument::hasReturnedAttr() const {
164 return getParent()->getAttributes().
165 hasAttribute(getArgNo()+1, Attribute::Returned);
168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
169 /// its containing function.
170 bool Argument::hasZExtAttr() const {
171 return getParent()->getAttributes().
172 hasAttribute(getArgNo()+1, Attribute::ZExt);
175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
176 /// containing function.
177 bool Argument::hasSExtAttr() const {
178 return getParent()->getAttributes().
179 hasAttribute(getArgNo()+1, Attribute::SExt);
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
184 bool Argument::onlyReadsMemory() const {
185 return getParent()->getAttributes().
186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187 getParent()->getAttributes().
188 hasAttribute(getArgNo()+1, Attribute::ReadNone);
191 /// addAttr - Add attributes to an argument.
192 void Argument::addAttr(AttributeSet AS) {
193 assert(AS.getNumSlots() <= 1 &&
194 "Trying to add more than one attribute set to an argument!");
195 AttrBuilder B(AS, AS.getSlotIndex(0));
196 getParent()->addAttributes(getArgNo() + 1,
197 AttributeSet::get(Parent->getContext(),
198 getArgNo() + 1, B));
201 /// removeAttr - Remove attributes from an argument.
202 void Argument::removeAttr(AttributeSet AS) {
203 assert(AS.getNumSlots() <= 1 &&
204 "Trying to remove more than one attribute set from an argument!");
205 AttrBuilder B(AS, AS.getSlotIndex(0));
206 getParent()->removeAttributes(getArgNo() + 1,
207 AttributeSet::get(Parent->getContext(),
208 getArgNo() + 1, B));
211 //===----------------------------------------------------------------------===//
212 // Helper Methods in Function
213 //===----------------------------------------------------------------------===//
215 bool Function::isMaterializable() const {
216 return getGlobalObjectSubClassData() & IsMaterializableBit;
219 void Function::setIsMaterializable(bool V) {
220 setGlobalObjectBit(IsMaterializableBit, V);
223 LLVMContext &Function::getContext() const {
224 return getType()->getContext();
227 FunctionType *Function::getFunctionType() const { return Ty; }
229 bool Function::isVarArg() const {
230 return getFunctionType()->isVarArg();
233 Type *Function::getReturnType() const {
234 return getFunctionType()->getReturnType();
237 void Function::removeFromParent() {
238 getParent()->getFunctionList().remove(getIterator());
241 void Function::eraseFromParent() {
242 getParent()->getFunctionList().erase(getIterator());
245 //===----------------------------------------------------------------------===//
246 // Function Implementation
247 //===----------------------------------------------------------------------===//
249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
250 Module *ParentModule)
251 : GlobalObject(Ty, Value::FunctionVal,
252 OperandTraits<Function>::op_begin(this), 0, Linkage, name),
253 Ty(Ty) {
254 assert(FunctionType::isValidReturnType(getReturnType()) &&
255 "invalid return type");
256 setGlobalObjectSubClassData(0);
257 SymTab = new ValueSymbolTable();
259 // If the function has arguments, mark them as lazily built.
260 if (Ty->getNumParams())
261 setValueSubclassData(1); // Set the "has lazy arguments" bit.
263 if (ParentModule)
264 ParentModule->getFunctionList().push_back(this);
266 // Ensure intrinsics have the right parameter attributes.
267 // Note, the IntID field will have been set in Value::setName if this function
268 // name is a valid intrinsic ID.
269 if (IntID)
270 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
273 Function::~Function() {
274 dropAllReferences(); // After this it is safe to delete instructions.
276 // Delete all of the method arguments and unlink from symbol table...
277 ArgumentList.clear();
278 delete SymTab;
280 // Remove the function from the on-the-side GC table.
281 clearGC();
283 // FIXME: needed by operator delete
284 setFunctionNumOperands(1);
287 void Function::BuildLazyArguments() const {
288 // Create the arguments vector, all arguments start out unnamed.
289 FunctionType *FT = getFunctionType();
290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
291 assert(!FT->getParamType(i)->isVoidTy() &&
292 "Cannot have void typed arguments!");
293 ArgumentList.push_back(new Argument(FT->getParamType(i)));
296 // Clear the lazy arguments bit.
297 unsigned SDC = getSubclassDataFromValue();
298 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
301 size_t Function::arg_size() const {
302 return getFunctionType()->getNumParams();
304 bool Function::arg_empty() const {
305 return getFunctionType()->getNumParams() == 0;
308 void Function::setParent(Module *parent) {
309 Parent = parent;
312 // dropAllReferences() - This function causes all the subinstructions to "let
313 // go" of all references that they are maintaining. This allows one to
314 // 'delete' a whole class at a time, even though there may be circular
315 // references... first all references are dropped, and all use counts go to
316 // zero. Then everything is deleted for real. Note that no operations are
317 // valid on an object that has "dropped all references", except operator
318 // delete.
320 void Function::dropAllReferences() {
321 setIsMaterializable(false);
323 for (iterator I = begin(), E = end(); I != E; ++I)
324 I->dropAllReferences();
326 // Delete all basic blocks. They are now unused, except possibly by
327 // blockaddresses, but BasicBlock's destructor takes care of those.
328 while (!BasicBlocks.empty())
329 BasicBlocks.begin()->eraseFromParent();
331 // Prefix and prologue data are stored in a side table.
332 setPrefixData(nullptr);
333 setPrologueData(nullptr);
335 // Metadata is stored in a side-table.
336 clearMetadata();
338 setPersonalityFn(nullptr);
341 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
342 AttributeSet PAL = getAttributes();
343 PAL = PAL.addAttribute(getContext(), i, attr);
344 setAttributes(PAL);
347 void Function::addAttributes(unsigned i, AttributeSet attrs) {
348 AttributeSet PAL = getAttributes();
349 PAL = PAL.addAttributes(getContext(), i, attrs);
350 setAttributes(PAL);
353 void Function::removeAttributes(unsigned i, AttributeSet attrs) {
354 AttributeSet PAL = getAttributes();
355 PAL = PAL.removeAttributes(getContext(), i, attrs);
356 setAttributes(PAL);
359 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
360 AttributeSet PAL = getAttributes();
361 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
362 setAttributes(PAL);
365 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
366 AttributeSet PAL = getAttributes();
367 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
368 setAttributes(PAL);
371 // Maintain the GC name for each function in an on-the-side table. This saves
372 // allocating an additional word in Function for programs which do not use GC
373 // (i.e., most programs) at the cost of increased overhead for clients which do
374 // use GC.
375 static DenseMap<const Function*,PooledStringPtr> *GCNames;
376 static StringPool *GCNamePool;
377 static ManagedStatic<sys::SmartRWMutex<true> > GCLock;
379 bool Function::hasGC() const {
380 sys::SmartScopedReader<true> Reader(*GCLock);
381 return GCNames && GCNames->count(this);
384 const char *Function::getGC() const {
385 assert(hasGC() && "Function has no collector");
386 sys::SmartScopedReader<true> Reader(*GCLock);
387 return *(*GCNames)[this];
390 void Function::setGC(const char *Str) {
391 sys::SmartScopedWriter<true> Writer(*GCLock);
392 if (!GCNamePool)
393 GCNamePool = new StringPool();
394 if (!GCNames)
395 GCNames = new DenseMap<const Function*,PooledStringPtr>();
396 (*GCNames)[this] = GCNamePool->intern(Str);
399 void Function::clearGC() {
400 sys::SmartScopedWriter<true> Writer(*GCLock);
401 if (GCNames) {
402 GCNames->erase(this);
403 if (GCNames->empty()) {
404 delete GCNames;
405 GCNames = nullptr;
406 if (GCNamePool->empty()) {
407 delete GCNamePool;
408 GCNamePool = nullptr;
414 /// copyAttributesFrom - copy all additional attributes (those not needed to
415 /// create a Function) from the Function Src to this one.
416 void Function::copyAttributesFrom(const GlobalValue *Src) {
417 assert(isa<Function>(Src) && "Expected a Function!");
418 GlobalObject::copyAttributesFrom(Src);
419 const Function *SrcF = cast<Function>(Src);
420 setCallingConv(SrcF->getCallingConv());
421 setAttributes(SrcF->getAttributes());
422 if (SrcF->hasGC())
423 setGC(SrcF->getGC());
424 else
425 clearGC();
426 if (SrcF->hasPrefixData())
427 setPrefixData(SrcF->getPrefixData());
428 else
429 setPrefixData(nullptr);
430 if (SrcF->hasPrologueData())
431 setPrologueData(SrcF->getPrologueData());
432 else
433 setPrologueData(nullptr);
434 if (SrcF->hasPersonalityFn())
435 setPersonalityFn(SrcF->getPersonalityFn());
436 else
437 setPersonalityFn(nullptr);
440 /// \brief This does the actual lookup of an intrinsic ID which
441 /// matches the given function name.
442 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
443 unsigned Len = ValName->getKeyLength();
444 const char *Name = ValName->getKeyData();
446 #define GET_FUNCTION_RECOGNIZER
447 #include "llvm/IR/Intrinsics.gen"
448 #undef GET_FUNCTION_RECOGNIZER
450 return Intrinsic::not_intrinsic;
453 void Function::recalculateIntrinsicID() {
454 const ValueName *ValName = this->getValueName();
455 if (!ValName || !isIntrinsic()) {
456 IntID = Intrinsic::not_intrinsic;
457 return;
459 IntID = lookupIntrinsicID(ValName);
462 /// Returns a stable mangling for the type specified for use in the name
463 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
464 /// of named types is simply their name. Manglings for unnamed types consist
465 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
466 /// combined with the mangling of their component types. A vararg function
467 /// type will have a suffix of 'vararg'. Since function types can contain
468 /// other function types, we close a function type mangling with suffix 'f'
469 /// which can't be confused with it's prefix. This ensures we don't have
470 /// collisions between two unrelated function types. Otherwise, you might
471 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
472 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
473 /// cases) fall back to the MVT codepath, where they could be mangled to
474 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
475 /// everything.
476 static std::string getMangledTypeStr(Type* Ty) {
477 std::string Result;
478 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
479 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
480 getMangledTypeStr(PTyp->getElementType());
481 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
482 Result += "a" + llvm::utostr(ATyp->getNumElements()) +
483 getMangledTypeStr(ATyp->getElementType());
484 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
485 assert(!STyp->isLiteral() && "TODO: implement literal types");
486 Result += STyp->getName();
487 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
488 Result += "f_" + getMangledTypeStr(FT->getReturnType());
489 for (size_t i = 0; i < FT->getNumParams(); i++)
490 Result += getMangledTypeStr(FT->getParamType(i));
491 if (FT->isVarArg())
492 Result += "vararg";
493 // Ensure nested function types are distinguishable.
494 Result += "f";
495 } else if (Ty)
496 Result += EVT::getEVT(Ty).getEVTString();
497 return Result;
500 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
501 assert(id < num_intrinsics && "Invalid intrinsic ID!");
502 static const char * const Table[] = {
503 "not_intrinsic",
504 #define GET_INTRINSIC_NAME_TABLE
505 #include "llvm/IR/Intrinsics.gen"
506 #undef GET_INTRINSIC_NAME_TABLE
508 if (Tys.empty())
509 return Table[id];
510 std::string Result(Table[id]);
511 for (unsigned i = 0; i < Tys.size(); ++i) {
512 Result += "." + getMangledTypeStr(Tys[i]);
514 return Result;
518 /// IIT_Info - These are enumerators that describe the entries returned by the
519 /// getIntrinsicInfoTableEntries function.
521 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
522 enum IIT_Info {
523 // Common values should be encoded with 0-15.
524 IIT_Done = 0,
525 IIT_I1 = 1,
526 IIT_I8 = 2,
527 IIT_I16 = 3,
528 IIT_I32 = 4,
529 IIT_I64 = 5,
530 IIT_F16 = 6,
531 IIT_F32 = 7,
532 IIT_F64 = 8,
533 IIT_V2 = 9,
534 IIT_V4 = 10,
535 IIT_V8 = 11,
536 IIT_V16 = 12,
537 IIT_V32 = 13,
538 IIT_PTR = 14,
539 IIT_ARG = 15,
541 // Values from 16+ are only encodable with the inefficient encoding.
542 IIT_V64 = 16,
543 IIT_MMX = 17,
544 IIT_TOKEN = 18,
545 IIT_METADATA = 19,
546 IIT_EMPTYSTRUCT = 20,
547 IIT_STRUCT2 = 21,
548 IIT_STRUCT3 = 22,
549 IIT_STRUCT4 = 23,
550 IIT_STRUCT5 = 24,
551 IIT_EXTEND_ARG = 25,
552 IIT_TRUNC_ARG = 26,
553 IIT_ANYPTR = 27,
554 IIT_V1 = 28,
555 IIT_VARARG = 29,
556 IIT_HALF_VEC_ARG = 30,
557 IIT_SAME_VEC_WIDTH_ARG = 31,
558 IIT_PTR_TO_ARG = 32,
559 IIT_VEC_OF_PTRS_TO_ELT = 33,
560 IIT_I128 = 34
564 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
565 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
566 IIT_Info Info = IIT_Info(Infos[NextElt++]);
567 unsigned StructElts = 2;
568 using namespace Intrinsic;
570 switch (Info) {
571 case IIT_Done:
572 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
573 return;
574 case IIT_VARARG:
575 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
576 return;
577 case IIT_MMX:
578 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
579 return;
580 case IIT_TOKEN:
581 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
582 return;
583 case IIT_METADATA:
584 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
585 return;
586 case IIT_F16:
587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
588 return;
589 case IIT_F32:
590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
591 return;
592 case IIT_F64:
593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
594 return;
595 case IIT_I1:
596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
597 return;
598 case IIT_I8:
599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
600 return;
601 case IIT_I16:
602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
603 return;
604 case IIT_I32:
605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
606 return;
607 case IIT_I64:
608 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
609 return;
610 case IIT_I128:
611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
612 return;
613 case IIT_V1:
614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
615 DecodeIITType(NextElt, Infos, OutputTable);
616 return;
617 case IIT_V2:
618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
619 DecodeIITType(NextElt, Infos, OutputTable);
620 return;
621 case IIT_V4:
622 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
623 DecodeIITType(NextElt, Infos, OutputTable);
624 return;
625 case IIT_V8:
626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
627 DecodeIITType(NextElt, Infos, OutputTable);
628 return;
629 case IIT_V16:
630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
631 DecodeIITType(NextElt, Infos, OutputTable);
632 return;
633 case IIT_V32:
634 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
635 DecodeIITType(NextElt, Infos, OutputTable);
636 return;
637 case IIT_V64:
638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
639 DecodeIITType(NextElt, Infos, OutputTable);
640 return;
641 case IIT_PTR:
642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
643 DecodeIITType(NextElt, Infos, OutputTable);
644 return;
645 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
646 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
647 Infos[NextElt++]));
648 DecodeIITType(NextElt, Infos, OutputTable);
649 return;
651 case IIT_ARG: {
652 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
654 return;
656 case IIT_EXTEND_ARG: {
657 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
658 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
659 ArgInfo));
660 return;
662 case IIT_TRUNC_ARG: {
663 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
665 ArgInfo));
666 return;
668 case IIT_HALF_VEC_ARG: {
669 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
671 ArgInfo));
672 return;
674 case IIT_SAME_VEC_WIDTH_ARG: {
675 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
677 ArgInfo));
678 return;
680 case IIT_PTR_TO_ARG: {
681 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
683 ArgInfo));
684 return;
686 case IIT_VEC_OF_PTRS_TO_ELT: {
687 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
689 ArgInfo));
690 return;
692 case IIT_EMPTYSTRUCT:
693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
694 return;
695 case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
696 case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
697 case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
698 case IIT_STRUCT2: {
699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
701 for (unsigned i = 0; i != StructElts; ++i)
702 DecodeIITType(NextElt, Infos, OutputTable);
703 return;
706 llvm_unreachable("unhandled");
710 #define GET_INTRINSIC_GENERATOR_GLOBAL
711 #include "llvm/IR/Intrinsics.gen"
712 #undef GET_INTRINSIC_GENERATOR_GLOBAL
714 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
715 SmallVectorImpl<IITDescriptor> &T){
716 // Check to see if the intrinsic's type was expressible by the table.
717 unsigned TableVal = IIT_Table[id-1];
719 // Decode the TableVal into an array of IITValues.
720 SmallVector<unsigned char, 8> IITValues;
721 ArrayRef<unsigned char> IITEntries;
722 unsigned NextElt = 0;
723 if ((TableVal >> 31) != 0) {
724 // This is an offset into the IIT_LongEncodingTable.
725 IITEntries = IIT_LongEncodingTable;
727 // Strip sentinel bit.
728 NextElt = (TableVal << 1) >> 1;
729 } else {
730 // Decode the TableVal into an array of IITValues. If the entry was encoded
731 // into a single word in the table itself, decode it now.
732 do {
733 IITValues.push_back(TableVal & 0xF);
734 TableVal >>= 4;
735 } while (TableVal);
737 IITEntries = IITValues;
738 NextElt = 0;
741 // Okay, decode the table into the output vector of IITDescriptors.
742 DecodeIITType(NextElt, IITEntries, T);
743 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
744 DecodeIITType(NextElt, IITEntries, T);
748 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
749 ArrayRef<Type*> Tys, LLVMContext &Context) {
750 using namespace Intrinsic;
751 IITDescriptor D = Infos.front();
752 Infos = Infos.slice(1);
754 switch (D.Kind) {
755 case IITDescriptor::Void: return Type::getVoidTy(Context);
756 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
757 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
758 case IITDescriptor::Token: return Type::getTokenTy(Context);
759 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
760 case IITDescriptor::Half: return Type::getHalfTy(Context);
761 case IITDescriptor::Float: return Type::getFloatTy(Context);
762 case IITDescriptor::Double: return Type::getDoubleTy(Context);
764 case IITDescriptor::Integer:
765 return IntegerType::get(Context, D.Integer_Width);
766 case IITDescriptor::Vector:
767 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
768 case IITDescriptor::Pointer:
769 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
770 D.Pointer_AddressSpace);
771 case IITDescriptor::Struct: {
772 Type *Elts[5];
773 assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
774 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
775 Elts[i] = DecodeFixedType(Infos, Tys, Context);
776 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
779 case IITDescriptor::Argument:
780 return Tys[D.getArgumentNumber()];
781 case IITDescriptor::ExtendArgument: {
782 Type *Ty = Tys[D.getArgumentNumber()];
783 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
784 return VectorType::getExtendedElementVectorType(VTy);
786 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
788 case IITDescriptor::TruncArgument: {
789 Type *Ty = Tys[D.getArgumentNumber()];
790 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
791 return VectorType::getTruncatedElementVectorType(VTy);
793 IntegerType *ITy = cast<IntegerType>(Ty);
794 assert(ITy->getBitWidth() % 2 == 0);
795 return IntegerType::get(Context, ITy->getBitWidth() / 2);
797 case IITDescriptor::HalfVecArgument:
798 return VectorType::getHalfElementsVectorType(cast<VectorType>(
799 Tys[D.getArgumentNumber()]));
800 case IITDescriptor::SameVecWidthArgument: {
801 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
802 Type *Ty = Tys[D.getArgumentNumber()];
803 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
804 return VectorType::get(EltTy, VTy->getNumElements());
806 llvm_unreachable("unhandled");
808 case IITDescriptor::PtrToArgument: {
809 Type *Ty = Tys[D.getArgumentNumber()];
810 return PointerType::getUnqual(Ty);
812 case IITDescriptor::VecOfPtrsToElt: {
813 Type *Ty = Tys[D.getArgumentNumber()];
814 VectorType *VTy = dyn_cast<VectorType>(Ty);
815 if (!VTy)
816 llvm_unreachable("Expected an argument of Vector Type");
817 Type *EltTy = VTy->getVectorElementType();
818 return VectorType::get(PointerType::getUnqual(EltTy),
819 VTy->getNumElements());
822 llvm_unreachable("unhandled");
827 FunctionType *Intrinsic::getType(LLVMContext &Context,
828 ID id, ArrayRef<Type*> Tys) {
829 SmallVector<IITDescriptor, 8> Table;
830 getIntrinsicInfoTableEntries(id, Table);
832 ArrayRef<IITDescriptor> TableRef = Table;
833 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
835 SmallVector<Type*, 8> ArgTys;
836 while (!TableRef.empty())
837 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
839 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
840 // If we see void type as the type of the last argument, it is vararg intrinsic
841 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
842 ArgTys.pop_back();
843 return FunctionType::get(ResultTy, ArgTys, true);
845 return FunctionType::get(ResultTy, ArgTys, false);
848 bool Intrinsic::isOverloaded(ID id) {
849 #define GET_INTRINSIC_OVERLOAD_TABLE
850 #include "llvm/IR/Intrinsics.gen"
851 #undef GET_INTRINSIC_OVERLOAD_TABLE
854 bool Intrinsic::isLeaf(ID id) {
855 switch (id) {
856 default:
857 return true;
859 case Intrinsic::experimental_gc_statepoint:
860 case Intrinsic::experimental_patchpoint_void:
861 case Intrinsic::experimental_patchpoint_i64:
862 return false;
866 /// This defines the "Intrinsic::getAttributes(ID id)" method.
867 #define GET_INTRINSIC_ATTRIBUTES
868 #include "llvm/IR/Intrinsics.gen"
869 #undef GET_INTRINSIC_ATTRIBUTES
871 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
872 // There can never be multiple globals with the same name of different types,
873 // because intrinsics must be a specific type.
874 return
875 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
876 getType(M->getContext(), id, Tys)));
879 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
880 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
881 #include "llvm/IR/Intrinsics.gen"
882 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
884 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
885 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
886 #include "llvm/IR/Intrinsics.gen"
887 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
889 /// hasAddressTaken - returns true if there are any uses of this function
890 /// other than direct calls or invokes to it.
891 bool Function::hasAddressTaken(const User* *PutOffender) const {
892 for (const Use &U : uses()) {
893 const User *FU = U.getUser();
894 if (isa<BlockAddress>(FU))
895 continue;
896 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU))
897 return PutOffender ? (*PutOffender = FU, true) : true;
898 ImmutableCallSite CS(cast<Instruction>(FU));
899 if (!CS.isCallee(&U))
900 return PutOffender ? (*PutOffender = FU, true) : true;
902 return false;
905 bool Function::isDefTriviallyDead() const {
906 // Check the linkage
907 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
908 !hasAvailableExternallyLinkage())
909 return false;
911 // Check if the function is used by anything other than a blockaddress.
912 for (const User *U : users())
913 if (!isa<BlockAddress>(U))
914 return false;
916 return true;
919 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
920 /// setjmp or other function that gcc recognizes as "returning twice".
921 bool Function::callsFunctionThatReturnsTwice() const {
922 for (const_inst_iterator
923 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
924 ImmutableCallSite CS(&*I);
925 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
926 return true;
929 return false;
932 static Constant *
933 getFunctionData(const Function *F,
934 const LLVMContextImpl::FunctionDataMapTy &Map) {
935 const auto &Entry = Map.find(F);
936 assert(Entry != Map.end());
937 return cast<Constant>(Entry->second->getReturnValue());
940 /// setFunctionData - Set "Map[F] = Data". Return an updated SubclassData value
941 /// in which Bit is low iff Data is null.
942 static unsigned setFunctionData(Function *F,
943 LLVMContextImpl::FunctionDataMapTy &Map,
944 Constant *Data, unsigned SCData, unsigned Bit) {
945 ReturnInst *&Holder = Map[F];
946 if (Data) {
947 if (Holder)
948 Holder->setOperand(0, Data);
949 else
950 Holder = ReturnInst::Create(F->getContext(), Data);
951 return SCData | (1 << Bit);
952 } else {
953 delete Holder;
954 Map.erase(F);
955 return SCData & ~(1 << Bit);
959 Constant *Function::getPrefixData() const {
960 assert(hasPrefixData());
961 return getFunctionData(this, getContext().pImpl->PrefixDataMap);
964 void Function::setPrefixData(Constant *PrefixData) {
965 if (!PrefixData && !hasPrefixData())
966 return;
968 unsigned SCData = getSubclassDataFromValue();
969 SCData = setFunctionData(this, getContext().pImpl->PrefixDataMap, PrefixData,
970 SCData, /*Bit=*/1);
971 setValueSubclassData(SCData);
974 Constant *Function::getPrologueData() const {
975 assert(hasPrologueData());
976 return getFunctionData(this, getContext().pImpl->PrologueDataMap);
979 void Function::setPrologueData(Constant *PrologueData) {
980 if (!PrologueData && !hasPrologueData())
981 return;
983 unsigned SCData = getSubclassDataFromValue();
984 SCData = setFunctionData(this, getContext().pImpl->PrologueDataMap,
985 PrologueData, SCData, /*Bit=*/2);
986 setValueSubclassData(SCData);
989 void Function::setEntryCount(uint64_t Count) {
990 MDBuilder MDB(getContext());
991 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
994 Optional<uint64_t> Function::getEntryCount() const {
995 MDNode *MD = getMetadata(LLVMContext::MD_prof);
996 if (MD && MD->getOperand(0))
997 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
998 if (MDS->getString().equals("function_entry_count")) {
999 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1000 return CI->getValue().getZExtValue();
1002 return None;
1005 void Function::setPersonalityFn(Constant *C) {
1006 if (!C) {
1007 if (hasPersonalityFn()) {
1008 // Note, the num operands is used to compute the offset of the operand, so
1009 // the order here matters. Clearing the operand then clearing the num
1010 // operands ensures we have the correct offset to the operand.
1011 Op<0>().set(nullptr);
1012 setFunctionNumOperands(0);
1014 } else {
1015 // Note, the num operands is used to compute the offset of the operand, so
1016 // the order here matters. We need to set num operands to 1 first so that
1017 // we get the correct offset to the first operand when we set it.
1018 if (!hasPersonalityFn())
1019 setFunctionNumOperands(1);
1020 Op<0>().set(C);