[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / CodeGen / SpillPlacement.cpp
blobd30cfc27bf4b55b86ba4a0a1d17a6507a2129633
1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the spill code placement analysis.
12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13 // basic blocks are weighted by the block frequency and added to become the node
14 // bias.
16 // Transparent basic blocks have the variable live through, but don't care if it
17 // is spilled or in a register. These blocks become connections in the Hopfield
18 // network, again weighted by block frequency.
20 // The Hopfield network minimizes (possibly locally) its energy function:
22 // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
24 // The energy function represents the expected spill code execution frequency,
25 // or the cost of spilling. This is a Lyapunov function which never increases
26 // when a node is updated. It is guaranteed to converge to a local minimum.
28 //===----------------------------------------------------------------------===//
30 #include "SpillPlacement.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ManagedStatic.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "spillplacement"
45 char SpillPlacement::ID = 0;
46 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
47 "Spill Code Placement Analysis", true, true)
48 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
49 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
50 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
51 "Spill Code Placement Analysis", true, true)
53 char &llvm::SpillPlacementID = SpillPlacement::ID;
55 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
56 AU.setPreservesAll();
57 AU.addRequired<MachineBlockFrequencyInfo>();
58 AU.addRequiredTransitive<EdgeBundles>();
59 AU.addRequiredTransitive<MachineLoopInfo>();
60 MachineFunctionPass::getAnalysisUsage(AU);
63 /// Node - Each edge bundle corresponds to a Hopfield node.
64 ///
65 /// The node contains precomputed frequency data that only depends on the CFG,
66 /// but Bias and Links are computed each time placeSpills is called.
67 ///
68 /// The node Value is positive when the variable should be in a register. The
69 /// value can change when linked nodes change, but convergence is very fast
70 /// because all weights are positive.
71 ///
72 struct SpillPlacement::Node {
73 /// BiasN - Sum of blocks that prefer a spill.
74 BlockFrequency BiasN;
75 /// BiasP - Sum of blocks that prefer a register.
76 BlockFrequency BiasP;
78 /// Value - Output value of this node computed from the Bias and links.
79 /// This is always on of the values {-1, 0, 1}. A positive number means the
80 /// variable should go in a register through this bundle.
81 int Value;
83 typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
85 /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
86 /// bundles. The weights are all positive block frequencies.
87 LinkVector Links;
89 /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
90 BlockFrequency SumLinkWeights;
92 /// preferReg - Return true when this node prefers to be in a register.
93 bool preferReg() const {
94 // Undecided nodes (Value==0) go on the stack.
95 return Value > 0;
98 /// mustSpill - Return True if this node is so biased that it must spill.
99 bool mustSpill() const {
100 // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
101 // BiasN is saturated when MustSpill is set, make sure this still returns
102 // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
103 return BiasN >= BiasP + SumLinkWeights;
106 /// clear - Reset per-query data, but preserve frequencies that only depend on
107 // the CFG.
108 void clear(const BlockFrequency &Threshold) {
109 BiasN = BiasP = Value = 0;
110 SumLinkWeights = Threshold;
111 Links.clear();
114 /// addLink - Add a link to bundle b with weight w.
115 void addLink(unsigned b, BlockFrequency w) {
116 // Update cached sum.
117 SumLinkWeights += w;
119 // There can be multiple links to the same bundle, add them up.
120 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
121 if (I->second == b) {
122 I->first += w;
123 return;
125 // This must be the first link to b.
126 Links.push_back(std::make_pair(w, b));
129 /// addBias - Bias this node.
130 void addBias(BlockFrequency freq, BorderConstraint direction) {
131 switch (direction) {
132 default:
133 break;
134 case PrefReg:
135 BiasP += freq;
136 break;
137 case PrefSpill:
138 BiasN += freq;
139 break;
140 case MustSpill:
141 BiasN = BlockFrequency::getMaxFrequency();
142 break;
146 /// update - Recompute Value from Bias and Links. Return true when node
147 /// preference changes.
148 bool update(const Node nodes[], const BlockFrequency &Threshold) {
149 // Compute the weighted sum of inputs.
150 BlockFrequency SumN = BiasN;
151 BlockFrequency SumP = BiasP;
152 for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
153 if (nodes[I->second].Value == -1)
154 SumN += I->first;
155 else if (nodes[I->second].Value == 1)
156 SumP += I->first;
159 // Each weighted sum is going to be less than the total frequency of the
160 // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
161 // will add a dead zone around 0 for two reasons:
163 // 1. It avoids arbitrary bias when all links are 0 as is possible during
164 // initial iterations.
165 // 2. It helps tame rounding errors when the links nominally sum to 0.
167 bool Before = preferReg();
168 if (SumN >= SumP + Threshold)
169 Value = -1;
170 else if (SumP >= SumN + Threshold)
171 Value = 1;
172 else
173 Value = 0;
174 return Before != preferReg();
178 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
179 MF = &mf;
180 bundles = &getAnalysis<EdgeBundles>();
181 loops = &getAnalysis<MachineLoopInfo>();
183 assert(!nodes && "Leaking node array");
184 nodes = new Node[bundles->getNumBundles()];
186 // Compute total ingoing and outgoing block frequencies for all bundles.
187 BlockFrequencies.resize(mf.getNumBlockIDs());
188 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
189 setThreshold(MBFI->getEntryFreq());
190 for (auto &I : mf) {
191 unsigned Num = I.getNumber();
192 BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
195 // We never change the function.
196 return false;
199 void SpillPlacement::releaseMemory() {
200 delete[] nodes;
201 nodes = nullptr;
204 /// activate - mark node n as active if it wasn't already.
205 void SpillPlacement::activate(unsigned n) {
206 if (ActiveNodes->test(n))
207 return;
208 ActiveNodes->set(n);
209 nodes[n].clear(Threshold);
211 // Very large bundles usually come from big switches, indirect branches,
212 // landing pads, or loops with many 'continue' statements. It is difficult to
213 // allocate registers when so many different blocks are involved.
215 // Give a small negative bias to large bundles such that a substantial
216 // fraction of the connected blocks need to be interested before we consider
217 // expanding the region through the bundle. This helps compile time by
218 // limiting the number of blocks visited and the number of links in the
219 // Hopfield network.
220 if (bundles->getBlocks(n).size() > 100) {
221 nodes[n].BiasP = 0;
222 nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
226 /// \brief Set the threshold for a given entry frequency.
228 /// Set the threshold relative to \c Entry. Since the threshold is used as a
229 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
230 /// threshold.
231 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
232 // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
233 // it. Divide by 2^13, rounding as appropriate.
234 uint64_t Freq = Entry.getFrequency();
235 uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
236 Threshold = std::max(UINT64_C(1), Scaled);
239 /// addConstraints - Compute node biases and weights from a set of constraints.
240 /// Set a bit in NodeMask for each active node.
241 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
242 for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
243 E = LiveBlocks.end(); I != E; ++I) {
244 BlockFrequency Freq = BlockFrequencies[I->Number];
246 // Live-in to block?
247 if (I->Entry != DontCare) {
248 unsigned ib = bundles->getBundle(I->Number, 0);
249 activate(ib);
250 nodes[ib].addBias(Freq, I->Entry);
253 // Live-out from block?
254 if (I->Exit != DontCare) {
255 unsigned ob = bundles->getBundle(I->Number, 1);
256 activate(ob);
257 nodes[ob].addBias(Freq, I->Exit);
262 /// addPrefSpill - Same as addConstraints(PrefSpill)
263 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
264 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
265 I != E; ++I) {
266 BlockFrequency Freq = BlockFrequencies[*I];
267 if (Strong)
268 Freq += Freq;
269 unsigned ib = bundles->getBundle(*I, 0);
270 unsigned ob = bundles->getBundle(*I, 1);
271 activate(ib);
272 activate(ob);
273 nodes[ib].addBias(Freq, PrefSpill);
274 nodes[ob].addBias(Freq, PrefSpill);
278 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
279 for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
280 ++I) {
281 unsigned Number = *I;
282 unsigned ib = bundles->getBundle(Number, 0);
283 unsigned ob = bundles->getBundle(Number, 1);
285 // Ignore self-loops.
286 if (ib == ob)
287 continue;
288 activate(ib);
289 activate(ob);
290 if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
291 Linked.push_back(ib);
292 if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
293 Linked.push_back(ob);
294 BlockFrequency Freq = BlockFrequencies[Number];
295 nodes[ib].addLink(ob, Freq);
296 nodes[ob].addLink(ib, Freq);
300 bool SpillPlacement::scanActiveBundles() {
301 Linked.clear();
302 RecentPositive.clear();
303 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
304 nodes[n].update(nodes, Threshold);
305 // A node that must spill, or a node without any links is not going to
306 // change its value ever again, so exclude it from iterations.
307 if (nodes[n].mustSpill())
308 continue;
309 if (!nodes[n].Links.empty())
310 Linked.push_back(n);
311 if (nodes[n].preferReg())
312 RecentPositive.push_back(n);
314 return !RecentPositive.empty();
317 /// iterate - Repeatedly update the Hopfield nodes until stability or the
318 /// maximum number of iterations is reached.
319 /// @param Linked - Numbers of linked nodes that need updating.
320 void SpillPlacement::iterate() {
321 // First update the recently positive nodes. They have likely received new
322 // negative bias that will turn them off.
323 while (!RecentPositive.empty())
324 nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
326 if (Linked.empty())
327 return;
329 // Run up to 10 iterations. The edge bundle numbering is closely related to
330 // basic block numbering, so there is a strong tendency towards chains of
331 // linked nodes with sequential numbers. By scanning the linked nodes
332 // backwards and forwards, we make it very likely that a single node can
333 // affect the entire network in a single iteration. That means very fast
334 // convergence, usually in a single iteration.
335 for (unsigned iteration = 0; iteration != 10; ++iteration) {
336 // Scan backwards, skipping the last node when iteration is not zero. When
337 // iteration is not zero, the last node was just updated.
338 bool Changed = false;
339 for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
340 iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
341 E = Linked.rend(); I != E; ++I) {
342 unsigned n = *I;
343 if (nodes[n].update(nodes, Threshold)) {
344 Changed = true;
345 if (nodes[n].preferReg())
346 RecentPositive.push_back(n);
349 if (!Changed || !RecentPositive.empty())
350 return;
352 // Scan forwards, skipping the first node which was just updated.
353 Changed = false;
354 for (SmallVectorImpl<unsigned>::const_iterator I =
355 std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
356 unsigned n = *I;
357 if (nodes[n].update(nodes, Threshold)) {
358 Changed = true;
359 if (nodes[n].preferReg())
360 RecentPositive.push_back(n);
363 if (!Changed || !RecentPositive.empty())
364 return;
368 void SpillPlacement::prepare(BitVector &RegBundles) {
369 Linked.clear();
370 RecentPositive.clear();
371 // Reuse RegBundles as our ActiveNodes vector.
372 ActiveNodes = &RegBundles;
373 ActiveNodes->clear();
374 ActiveNodes->resize(bundles->getNumBundles());
377 bool
378 SpillPlacement::finish() {
379 assert(ActiveNodes && "Call prepare() first");
381 // Write preferences back to ActiveNodes.
382 bool Perfect = true;
383 for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
384 if (!nodes[n].preferReg()) {
385 ActiveNodes->reset(n);
386 Perfect = false;
388 ActiveNodes = nullptr;
389 return Perfect;