[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / CodeGen / RegisterCoalescer.cpp
blob176b2b5375f0779d6e4aeaf7b14d6743104fd7b8
1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
14 //===----------------------------------------------------------------------===//
16 #include "RegisterCoalescer.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 #include <cmath>
42 using namespace llvm;
44 #define DEBUG_TYPE "regalloc"
46 STATISTIC(numJoins , "Number of interval joins performed");
47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
48 STATISTIC(numCommutes , "Number of instruction commuting performed");
49 STATISTIC(numExtends , "Number of copies extended");
50 STATISTIC(NumReMats , "Number of instructions re-materialized");
51 STATISTIC(NumInflated , "Number of register classes inflated");
52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
53 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved");
55 static cl::opt<bool>
56 EnableJoining("join-liveintervals",
57 cl::desc("Coalesce copies (default=true)"),
58 cl::init(true));
60 static cl::opt<bool> UseTerminalRule("terminal-rule",
61 cl::desc("Apply the terminal rule"),
62 cl::init(false), cl::Hidden);
64 /// Temporary flag to test critical edge unsplitting.
65 static cl::opt<bool>
66 EnableJoinSplits("join-splitedges",
67 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
69 /// Temporary flag to test global copy optimization.
70 static cl::opt<cl::boolOrDefault>
71 EnableGlobalCopies("join-globalcopies",
72 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
73 cl::init(cl::BOU_UNSET), cl::Hidden);
75 static cl::opt<bool>
76 VerifyCoalescing("verify-coalescing",
77 cl::desc("Verify machine instrs before and after register coalescing"),
78 cl::Hidden);
80 namespace {
81 class RegisterCoalescer : public MachineFunctionPass,
82 private LiveRangeEdit::Delegate {
83 MachineFunction* MF;
84 MachineRegisterInfo* MRI;
85 const TargetMachine* TM;
86 const TargetRegisterInfo* TRI;
87 const TargetInstrInfo* TII;
88 LiveIntervals *LIS;
89 const MachineLoopInfo* Loops;
90 AliasAnalysis *AA;
91 RegisterClassInfo RegClassInfo;
93 /// A LaneMask to remember on which subregister live ranges we need to call
94 /// shrinkToUses() later.
95 LaneBitmask ShrinkMask;
97 /// True if the main range of the currently coalesced intervals should be
98 /// checked for smaller live intervals.
99 bool ShrinkMainRange;
101 /// \brief True if the coalescer should aggressively coalesce global copies
102 /// in favor of keeping local copies.
103 bool JoinGlobalCopies;
105 /// \brief True if the coalescer should aggressively coalesce fall-thru
106 /// blocks exclusively containing copies.
107 bool JoinSplitEdges;
109 /// Copy instructions yet to be coalesced.
110 SmallVector<MachineInstr*, 8> WorkList;
111 SmallVector<MachineInstr*, 8> LocalWorkList;
113 /// Set of instruction pointers that have been erased, and
114 /// that may be present in WorkList.
115 SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
117 /// Dead instructions that are about to be deleted.
118 SmallVector<MachineInstr*, 8> DeadDefs;
120 /// Virtual registers to be considered for register class inflation.
121 SmallVector<unsigned, 8> InflateRegs;
123 /// Recursively eliminate dead defs in DeadDefs.
124 void eliminateDeadDefs();
126 /// LiveRangeEdit callback for eliminateDeadDefs().
127 void LRE_WillEraseInstruction(MachineInstr *MI) override;
129 /// Coalesce the LocalWorkList.
130 void coalesceLocals();
132 /// Join compatible live intervals
133 void joinAllIntervals();
135 /// Coalesce copies in the specified MBB, putting
136 /// copies that cannot yet be coalesced into WorkList.
137 void copyCoalesceInMBB(MachineBasicBlock *MBB);
139 /// Tries to coalesce all copies in CurrList. Returns true if any progress
140 /// was made.
141 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
143 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
144 /// src/dst of the copy instruction CopyMI. This returns true if the copy
145 /// was successfully coalesced away. If it is not currently possible to
146 /// coalesce this interval, but it may be possible if other things get
147 /// coalesced, then it returns true by reference in 'Again'.
148 bool joinCopy(MachineInstr *TheCopy, bool &Again);
150 /// Attempt to join these two intervals. On failure, this
151 /// returns false. The output "SrcInt" will not have been modified, so we
152 /// can use this information below to update aliases.
153 bool joinIntervals(CoalescerPair &CP);
155 /// Attempt joining two virtual registers. Return true on success.
156 bool joinVirtRegs(CoalescerPair &CP);
158 /// Attempt joining with a reserved physreg.
159 bool joinReservedPhysReg(CoalescerPair &CP);
161 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
162 /// Subranges in @p LI which only partially interfere with the desired
163 /// LaneMask are split as necessary. @p LaneMask are the lanes that
164 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
165 /// lanemasks already adjusted to the coalesced register.
166 /// @returns false if live range conflicts couldn't get resolved.
167 bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
168 LaneBitmask LaneMask, CoalescerPair &CP);
170 /// Join the liveranges of two subregisters. Joins @p RRange into
171 /// @p LRange, @p RRange may be invalid afterwards.
172 /// @returns false if live range conflicts couldn't get resolved.
173 bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
174 LaneBitmask LaneMask, const CoalescerPair &CP);
176 /// We found a non-trivially-coalescable copy. If the source value number is
177 /// defined by a copy from the destination reg see if we can merge these two
178 /// destination reg valno# into a single value number, eliminating a copy.
179 /// This returns true if an interval was modified.
180 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
182 /// Return true if there are definitions of IntB
183 /// other than BValNo val# that can reach uses of AValno val# of IntA.
184 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
185 VNInfo *AValNo, VNInfo *BValNo);
187 /// We found a non-trivially-coalescable copy.
188 /// If the source value number is defined by a commutable instruction and
189 /// its other operand is coalesced to the copy dest register, see if we
190 /// can transform the copy into a noop by commuting the definition.
191 /// This returns true if an interval was modified.
192 bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
194 /// If the source of a copy is defined by a
195 /// trivial computation, replace the copy by rematerialize the definition.
196 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
197 bool &IsDefCopy);
199 /// Return true if a copy involving a physreg should be joined.
200 bool canJoinPhys(const CoalescerPair &CP);
202 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
203 /// number if it is not zero. If DstReg is a physical register and the
204 /// existing subregister number of the def / use being updated is not zero,
205 /// make sure to set it to the correct physical subregister.
206 void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
208 /// Handle copies of undef values.
209 /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
210 bool eliminateUndefCopy(MachineInstr *CopyMI);
212 /// Check whether or not we should apply the terminal rule on the
213 /// destination (Dst) of \p Copy.
214 /// When the terminal rule applies, Copy is not profitable to
215 /// coalesce.
216 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
217 /// at least one interference (Dst, Dst2). If Dst is terminal, the
218 /// terminal rule consists in checking that at least one of
219 /// interfering node, say Dst2, has an affinity of equal or greater
220 /// weight with Src.
221 /// In that case, Dst2 and Dst will not be able to be both coalesced
222 /// with Src. Since Dst2 exposes more coalescing opportunities than
223 /// Dst, we can drop \p Copy.
224 bool applyTerminalRule(const MachineInstr &Copy) const;
226 /// Wrapper method for \see LiveIntervals::shrinkToUses.
227 /// This method does the proper fixing of the live-ranges when the afore
228 /// mentioned method returns true.
229 void shrinkToUses(LiveInterval *LI,
230 SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
231 if (LIS->shrinkToUses(LI, Dead)) {
232 /// Check whether or not \p LI is composed by multiple connected
233 /// components and if that is the case, fix that.
234 SmallVector<LiveInterval*, 8> SplitLIs;
235 LIS->splitSeparateComponents(*LI, SplitLIs);
239 public:
240 static char ID; ///< Class identification, replacement for typeinfo
241 RegisterCoalescer() : MachineFunctionPass(ID) {
242 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
245 void getAnalysisUsage(AnalysisUsage &AU) const override;
247 void releaseMemory() override;
249 /// This is the pass entry point.
250 bool runOnMachineFunction(MachineFunction&) override;
252 /// Implement the dump method.
253 void print(raw_ostream &O, const Module* = nullptr) const override;
255 } // end anonymous namespace
257 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
259 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
260 "Simple Register Coalescing", false, false)
261 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
262 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
263 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
264 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
265 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
266 "Simple Register Coalescing", false, false)
268 char RegisterCoalescer::ID = 0;
270 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
271 unsigned &Src, unsigned &Dst,
272 unsigned &SrcSub, unsigned &DstSub) {
273 if (MI->isCopy()) {
274 Dst = MI->getOperand(0).getReg();
275 DstSub = MI->getOperand(0).getSubReg();
276 Src = MI->getOperand(1).getReg();
277 SrcSub = MI->getOperand(1).getSubReg();
278 } else if (MI->isSubregToReg()) {
279 Dst = MI->getOperand(0).getReg();
280 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
281 MI->getOperand(3).getImm());
282 Src = MI->getOperand(2).getReg();
283 SrcSub = MI->getOperand(2).getSubReg();
284 } else
285 return false;
286 return true;
289 /// Return true if this block should be vacated by the coalescer to eliminate
290 /// branches. The important cases to handle in the coalescer are critical edges
291 /// split during phi elimination which contain only copies. Simple blocks that
292 /// contain non-branches should also be vacated, but this can be handled by an
293 /// earlier pass similar to early if-conversion.
294 static bool isSplitEdge(const MachineBasicBlock *MBB) {
295 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
296 return false;
298 for (const auto &MI : *MBB) {
299 if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
300 return false;
302 return true;
305 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
306 SrcReg = DstReg = 0;
307 SrcIdx = DstIdx = 0;
308 NewRC = nullptr;
309 Flipped = CrossClass = false;
311 unsigned Src, Dst, SrcSub, DstSub;
312 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
313 return false;
314 Partial = SrcSub || DstSub;
316 // If one register is a physreg, it must be Dst.
317 if (TargetRegisterInfo::isPhysicalRegister(Src)) {
318 if (TargetRegisterInfo::isPhysicalRegister(Dst))
319 return false;
320 std::swap(Src, Dst);
321 std::swap(SrcSub, DstSub);
322 Flipped = true;
325 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
327 if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
328 // Eliminate DstSub on a physreg.
329 if (DstSub) {
330 Dst = TRI.getSubReg(Dst, DstSub);
331 if (!Dst) return false;
332 DstSub = 0;
335 // Eliminate SrcSub by picking a corresponding Dst superregister.
336 if (SrcSub) {
337 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
338 if (!Dst) return false;
339 } else if (!MRI.getRegClass(Src)->contains(Dst)) {
340 return false;
342 } else {
343 // Both registers are virtual.
344 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
345 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
347 // Both registers have subreg indices.
348 if (SrcSub && DstSub) {
349 // Copies between different sub-registers are never coalescable.
350 if (Src == Dst && SrcSub != DstSub)
351 return false;
353 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
354 SrcIdx, DstIdx);
355 if (!NewRC)
356 return false;
357 } else if (DstSub) {
358 // SrcReg will be merged with a sub-register of DstReg.
359 SrcIdx = DstSub;
360 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
361 } else if (SrcSub) {
362 // DstReg will be merged with a sub-register of SrcReg.
363 DstIdx = SrcSub;
364 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
365 } else {
366 // This is a straight copy without sub-registers.
367 NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
370 // The combined constraint may be impossible to satisfy.
371 if (!NewRC)
372 return false;
374 // Prefer SrcReg to be a sub-register of DstReg.
375 // FIXME: Coalescer should support subregs symmetrically.
376 if (DstIdx && !SrcIdx) {
377 std::swap(Src, Dst);
378 std::swap(SrcIdx, DstIdx);
379 Flipped = !Flipped;
382 CrossClass = NewRC != DstRC || NewRC != SrcRC;
384 // Check our invariants
385 assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
386 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
387 "Cannot have a physical SubIdx");
388 SrcReg = Src;
389 DstReg = Dst;
390 return true;
393 bool CoalescerPair::flip() {
394 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
395 return false;
396 std::swap(SrcReg, DstReg);
397 std::swap(SrcIdx, DstIdx);
398 Flipped = !Flipped;
399 return true;
402 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
403 if (!MI)
404 return false;
405 unsigned Src, Dst, SrcSub, DstSub;
406 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
407 return false;
409 // Find the virtual register that is SrcReg.
410 if (Dst == SrcReg) {
411 std::swap(Src, Dst);
412 std::swap(SrcSub, DstSub);
413 } else if (Src != SrcReg) {
414 return false;
417 // Now check that Dst matches DstReg.
418 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
419 if (!TargetRegisterInfo::isPhysicalRegister(Dst))
420 return false;
421 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
422 // DstSub could be set for a physreg from INSERT_SUBREG.
423 if (DstSub)
424 Dst = TRI.getSubReg(Dst, DstSub);
425 // Full copy of Src.
426 if (!SrcSub)
427 return DstReg == Dst;
428 // This is a partial register copy. Check that the parts match.
429 return TRI.getSubReg(DstReg, SrcSub) == Dst;
430 } else {
431 // DstReg is virtual.
432 if (DstReg != Dst)
433 return false;
434 // Registers match, do the subregisters line up?
435 return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
436 TRI.composeSubRegIndices(DstIdx, DstSub);
440 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
441 AU.setPreservesCFG();
442 AU.addRequired<AAResultsWrapperPass>();
443 AU.addRequired<LiveIntervals>();
444 AU.addPreserved<LiveIntervals>();
445 AU.addPreserved<SlotIndexes>();
446 AU.addRequired<MachineLoopInfo>();
447 AU.addPreserved<MachineLoopInfo>();
448 AU.addPreservedID(MachineDominatorsID);
449 MachineFunctionPass::getAnalysisUsage(AU);
452 void RegisterCoalescer::eliminateDeadDefs() {
453 SmallVector<unsigned, 8> NewRegs;
454 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
455 nullptr, this).eliminateDeadDefs(DeadDefs);
458 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
459 // MI may be in WorkList. Make sure we don't visit it.
460 ErasedInstrs.insert(MI);
463 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
464 MachineInstr *CopyMI) {
465 assert(!CP.isPartial() && "This doesn't work for partial copies.");
466 assert(!CP.isPhys() && "This doesn't work for physreg copies.");
468 LiveInterval &IntA =
469 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
470 LiveInterval &IntB =
471 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
472 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
474 // We have a non-trivially-coalescable copy with IntA being the source and
475 // IntB being the dest, thus this defines a value number in IntB. If the
476 // source value number (in IntA) is defined by a copy from B, see if we can
477 // merge these two pieces of B into a single value number, eliminating a copy.
478 // For example:
480 // A3 = B0
481 // ...
482 // B1 = A3 <- this copy
484 // In this case, B0 can be extended to where the B1 copy lives, allowing the
485 // B1 value number to be replaced with B0 (which simplifies the B
486 // liveinterval).
488 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
489 // the example above.
490 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
491 if (BS == IntB.end()) return false;
492 VNInfo *BValNo = BS->valno;
494 // Get the location that B is defined at. Two options: either this value has
495 // an unknown definition point or it is defined at CopyIdx. If unknown, we
496 // can't process it.
497 if (BValNo->def != CopyIdx) return false;
499 // AValNo is the value number in A that defines the copy, A3 in the example.
500 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
501 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
502 // The live segment might not exist after fun with physreg coalescing.
503 if (AS == IntA.end()) return false;
504 VNInfo *AValNo = AS->valno;
506 // If AValNo is defined as a copy from IntB, we can potentially process this.
507 // Get the instruction that defines this value number.
508 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
509 // Don't allow any partial copies, even if isCoalescable() allows them.
510 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
511 return false;
513 // Get the Segment in IntB that this value number starts with.
514 LiveInterval::iterator ValS =
515 IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
516 if (ValS == IntB.end())
517 return false;
519 // Make sure that the end of the live segment is inside the same block as
520 // CopyMI.
521 MachineInstr *ValSEndInst =
522 LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
523 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
524 return false;
526 // Okay, we now know that ValS ends in the same block that the CopyMI
527 // live-range starts. If there are no intervening live segments between them
528 // in IntB, we can merge them.
529 if (ValS+1 != BS) return false;
531 DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
533 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
534 // We are about to delete CopyMI, so need to remove it as the 'instruction
535 // that defines this value #'. Update the valnum with the new defining
536 // instruction #.
537 BValNo->def = FillerStart;
539 // Okay, we can merge them. We need to insert a new liverange:
540 // [ValS.end, BS.begin) of either value number, then we merge the
541 // two value numbers.
542 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
544 // Okay, merge "B1" into the same value number as "B0".
545 if (BValNo != ValS->valno)
546 IntB.MergeValueNumberInto(BValNo, ValS->valno);
548 // Do the same for the subregister segments.
549 for (LiveInterval::SubRange &S : IntB.subranges()) {
550 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
551 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
552 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
553 if (SubBValNo != SubValSNo)
554 S.MergeValueNumberInto(SubBValNo, SubValSNo);
557 DEBUG(dbgs() << " result = " << IntB << '\n');
559 // If the source instruction was killing the source register before the
560 // merge, unset the isKill marker given the live range has been extended.
561 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
562 if (UIdx != -1) {
563 ValSEndInst->getOperand(UIdx).setIsKill(false);
566 // Rewrite the copy. If the copy instruction was killing the destination
567 // register before the merge, find the last use and trim the live range. That
568 // will also add the isKill marker.
569 CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
570 if (AS->end == CopyIdx)
571 shrinkToUses(&IntA);
573 ++numExtends;
574 return true;
577 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
578 LiveInterval &IntB,
579 VNInfo *AValNo,
580 VNInfo *BValNo) {
581 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
582 // the PHI values.
583 if (LIS->hasPHIKill(IntA, AValNo))
584 return true;
586 for (LiveRange::Segment &ASeg : IntA.segments) {
587 if (ASeg.valno != AValNo) continue;
588 LiveInterval::iterator BI =
589 std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
590 if (BI != IntB.begin())
591 --BI;
592 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
593 if (BI->valno == BValNo)
594 continue;
595 if (BI->start <= ASeg.start && BI->end > ASeg.start)
596 return true;
597 if (BI->start > ASeg.start && BI->start < ASeg.end)
598 return true;
601 return false;
604 /// Copy segements with value number @p SrcValNo from liverange @p Src to live
605 /// range @Dst and use value number @p DstValNo there.
606 static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
607 const LiveRange &Src, const VNInfo *SrcValNo)
609 for (const LiveRange::Segment &S : Src.segments) {
610 if (S.valno != SrcValNo)
611 continue;
612 Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
616 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
617 MachineInstr *CopyMI) {
618 assert(!CP.isPhys());
620 LiveInterval &IntA =
621 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
622 LiveInterval &IntB =
623 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
625 // We found a non-trivially-coalescable copy with IntA being the source and
626 // IntB being the dest, thus this defines a value number in IntB. If the
627 // source value number (in IntA) is defined by a commutable instruction and
628 // its other operand is coalesced to the copy dest register, see if we can
629 // transform the copy into a noop by commuting the definition. For example,
631 // A3 = op A2 B0<kill>
632 // ...
633 // B1 = A3 <- this copy
634 // ...
635 // = op A3 <- more uses
637 // ==>
639 // B2 = op B0 A2<kill>
640 // ...
641 // B1 = B2 <- now an identity copy
642 // ...
643 // = op B2 <- more uses
645 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
646 // the example above.
647 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
648 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
649 assert(BValNo != nullptr && BValNo->def == CopyIdx);
651 // AValNo is the value number in A that defines the copy, A3 in the example.
652 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
653 assert(AValNo && !AValNo->isUnused() && "COPY source not live");
654 if (AValNo->isPHIDef())
655 return false;
656 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
657 if (!DefMI)
658 return false;
659 if (!DefMI->isCommutable())
660 return false;
661 // If DefMI is a two-address instruction then commuting it will change the
662 // destination register.
663 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
664 assert(DefIdx != -1);
665 unsigned UseOpIdx;
666 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
667 return false;
669 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
670 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
671 // passed to the method. That _other_ operand is chosen by
672 // the findCommutedOpIndices() method.
674 // That is obviously an area for improvement in case of instructions having
675 // more than 2 operands. For example, if some instruction has 3 commutable
676 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
677 // op#2<->op#3) of commute transformation should be considered/tried here.
678 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
679 if (!TII->findCommutedOpIndices(DefMI, UseOpIdx, NewDstIdx))
680 return false;
682 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
683 unsigned NewReg = NewDstMO.getReg();
684 if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
685 return false;
687 // Make sure there are no other definitions of IntB that would reach the
688 // uses which the new definition can reach.
689 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
690 return false;
692 // If some of the uses of IntA.reg is already coalesced away, return false.
693 // It's not possible to determine whether it's safe to perform the coalescing.
694 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
695 MachineInstr *UseMI = MO.getParent();
696 unsigned OpNo = &MO - &UseMI->getOperand(0);
697 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
698 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
699 if (US == IntA.end() || US->valno != AValNo)
700 continue;
701 // If this use is tied to a def, we can't rewrite the register.
702 if (UseMI->isRegTiedToDefOperand(OpNo))
703 return false;
706 DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
707 << *DefMI);
709 // At this point we have decided that it is legal to do this
710 // transformation. Start by commuting the instruction.
711 MachineBasicBlock *MBB = DefMI->getParent();
712 MachineInstr *NewMI =
713 TII->commuteInstruction(DefMI, false, UseOpIdx, NewDstIdx);
714 if (!NewMI)
715 return false;
716 if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
717 TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
718 !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
719 return false;
720 if (NewMI != DefMI) {
721 LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
722 MachineBasicBlock::iterator Pos = DefMI;
723 MBB->insert(Pos, NewMI);
724 MBB->erase(DefMI);
727 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
728 // A = or A, B
729 // ...
730 // B = A
731 // ...
732 // C = A<kill>
733 // ...
734 // = B
736 // Update uses of IntA of the specific Val# with IntB.
737 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
738 UE = MRI->use_end();
739 UI != UE; /* ++UI is below because of possible MI removal */) {
740 MachineOperand &UseMO = *UI;
741 ++UI;
742 if (UseMO.isUndef())
743 continue;
744 MachineInstr *UseMI = UseMO.getParent();
745 if (UseMI->isDebugValue()) {
746 // FIXME These don't have an instruction index. Not clear we have enough
747 // info to decide whether to do this replacement or not. For now do it.
748 UseMO.setReg(NewReg);
749 continue;
751 SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
752 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
753 assert(US != IntA.end() && "Use must be live");
754 if (US->valno != AValNo)
755 continue;
756 // Kill flags are no longer accurate. They are recomputed after RA.
757 UseMO.setIsKill(false);
758 if (TargetRegisterInfo::isPhysicalRegister(NewReg))
759 UseMO.substPhysReg(NewReg, *TRI);
760 else
761 UseMO.setReg(NewReg);
762 if (UseMI == CopyMI)
763 continue;
764 if (!UseMI->isCopy())
765 continue;
766 if (UseMI->getOperand(0).getReg() != IntB.reg ||
767 UseMI->getOperand(0).getSubReg())
768 continue;
770 // This copy will become a noop. If it's defining a new val#, merge it into
771 // BValNo.
772 SlotIndex DefIdx = UseIdx.getRegSlot();
773 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
774 if (!DVNI)
775 continue;
776 DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
777 assert(DVNI->def == DefIdx);
778 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
779 for (LiveInterval::SubRange &S : IntB.subranges()) {
780 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
781 if (!SubDVNI)
782 continue;
783 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
784 assert(SubBValNo->def == CopyIdx);
785 S.MergeValueNumberInto(SubDVNI, SubBValNo);
788 ErasedInstrs.insert(UseMI);
789 LIS->RemoveMachineInstrFromMaps(UseMI);
790 UseMI->eraseFromParent();
793 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
794 // is updated.
795 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
796 if (IntB.hasSubRanges()) {
797 if (!IntA.hasSubRanges()) {
798 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
799 IntA.createSubRangeFrom(Allocator, Mask, IntA);
801 SlotIndex AIdx = CopyIdx.getRegSlot(true);
802 for (LiveInterval::SubRange &SA : IntA.subranges()) {
803 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
804 assert(ASubValNo != nullptr);
806 LaneBitmask AMask = SA.LaneMask;
807 for (LiveInterval::SubRange &SB : IntB.subranges()) {
808 LaneBitmask BMask = SB.LaneMask;
809 LaneBitmask Common = BMask & AMask;
810 if (Common == 0)
811 continue;
813 DEBUG( dbgs() << "\t\tCopy_Merge " << PrintLaneMask(BMask)
814 << " into " << PrintLaneMask(Common) << '\n');
815 LaneBitmask BRest = BMask & ~AMask;
816 LiveInterval::SubRange *CommonRange;
817 if (BRest != 0) {
818 SB.LaneMask = BRest;
819 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(BRest)
820 << '\n');
821 // Duplicate SubRange for newly merged common stuff.
822 CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
823 } else {
824 // We van reuse the L SubRange.
825 SB.LaneMask = Common;
826 CommonRange = &SB;
828 LiveRange RangeCopy(SB, Allocator);
830 VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
831 assert(BSubValNo->def == CopyIdx);
832 BSubValNo->def = ASubValNo->def;
833 addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
834 AMask &= ~BMask;
836 if (AMask != 0) {
837 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(AMask) << '\n');
838 LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
839 VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
840 addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
845 BValNo->def = AValNo->def;
846 addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
847 DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
849 LIS->removeVRegDefAt(IntA, AValNo->def);
851 DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
852 ++numCommutes;
853 return true;
856 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
857 /// defining a subregister.
858 static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
859 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
860 "This code cannot handle physreg aliasing");
861 for (const MachineOperand &Op : MI.operands()) {
862 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
863 continue;
864 // Return true if we define the full register or don't care about the value
865 // inside other subregisters.
866 if (Op.getSubReg() == 0 || Op.isUndef())
867 return true;
869 return false;
872 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
873 MachineInstr *CopyMI,
874 bool &IsDefCopy) {
875 IsDefCopy = false;
876 unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
877 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
878 unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
879 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
880 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
881 return false;
883 LiveInterval &SrcInt = LIS->getInterval(SrcReg);
884 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
885 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
886 assert(ValNo && "CopyMI input register not live");
887 if (ValNo->isPHIDef() || ValNo->isUnused())
888 return false;
889 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
890 if (!DefMI)
891 return false;
892 if (DefMI->isCopyLike()) {
893 IsDefCopy = true;
894 return false;
896 if (!TII->isAsCheapAsAMove(DefMI))
897 return false;
898 if (!TII->isTriviallyReMaterializable(DefMI, AA))
899 return false;
900 if (!definesFullReg(*DefMI, SrcReg))
901 return false;
902 bool SawStore = false;
903 if (!DefMI->isSafeToMove(AA, SawStore))
904 return false;
905 const MCInstrDesc &MCID = DefMI->getDesc();
906 if (MCID.getNumDefs() != 1)
907 return false;
908 // Only support subregister destinations when the def is read-undef.
909 MachineOperand &DstOperand = CopyMI->getOperand(0);
910 unsigned CopyDstReg = DstOperand.getReg();
911 if (DstOperand.getSubReg() && !DstOperand.isUndef())
912 return false;
914 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
915 // the register substantially (beyond both source and dest size). This is bad
916 // for performance since it can cascade through a function, introducing many
917 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
918 // around after a few subreg copies).
919 if (SrcIdx && DstIdx)
920 return false;
922 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
923 if (!DefMI->isImplicitDef()) {
924 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
925 unsigned NewDstReg = DstReg;
927 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
928 DefMI->getOperand(0).getSubReg());
929 if (NewDstIdx)
930 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
932 // Finally, make sure that the physical subregister that will be
933 // constructed later is permitted for the instruction.
934 if (!DefRC->contains(NewDstReg))
935 return false;
936 } else {
937 // Theoretically, some stack frame reference could exist. Just make sure
938 // it hasn't actually happened.
939 assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
940 "Only expect to deal with virtual or physical registers");
944 MachineBasicBlock *MBB = CopyMI->getParent();
945 MachineBasicBlock::iterator MII =
946 std::next(MachineBasicBlock::iterator(CopyMI));
947 TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
948 MachineInstr *NewMI = std::prev(MII);
950 // In a situation like the following:
951 // %vreg0:subreg = instr ; DefMI, subreg = DstIdx
952 // %vreg1 = copy %vreg0:subreg ; CopyMI, SrcIdx = 0
953 // instead of widening %vreg1 to the register class of %vreg0 simply do:
954 // %vreg1 = instr
955 const TargetRegisterClass *NewRC = CP.getNewRC();
956 if (DstIdx != 0) {
957 MachineOperand &DefMO = NewMI->getOperand(0);
958 if (DefMO.getSubReg() == DstIdx) {
959 assert(SrcIdx == 0 && CP.isFlipped()
960 && "Shouldn't have SrcIdx+DstIdx at this point");
961 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
962 const TargetRegisterClass *CommonRC =
963 TRI->getCommonSubClass(DefRC, DstRC);
964 if (CommonRC != nullptr) {
965 NewRC = CommonRC;
966 DstIdx = 0;
967 DefMO.setSubReg(0);
972 LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
973 CopyMI->eraseFromParent();
974 ErasedInstrs.insert(CopyMI);
976 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
977 // We need to remember these so we can add intervals once we insert
978 // NewMI into SlotIndexes.
979 SmallVector<unsigned, 4> NewMIImplDefs;
980 for (unsigned i = NewMI->getDesc().getNumOperands(),
981 e = NewMI->getNumOperands(); i != e; ++i) {
982 MachineOperand &MO = NewMI->getOperand(i);
983 if (MO.isReg() && MO.isDef()) {
984 assert(MO.isImplicit() && MO.isDead() &&
985 TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
986 NewMIImplDefs.push_back(MO.getReg());
990 if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
991 unsigned NewIdx = NewMI->getOperand(0).getSubReg();
993 if (DefRC != nullptr) {
994 if (NewIdx)
995 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
996 else
997 NewRC = TRI->getCommonSubClass(NewRC, DefRC);
998 assert(NewRC && "subreg chosen for remat incompatible with instruction");
1000 MRI->setRegClass(DstReg, NewRC);
1002 updateRegDefsUses(DstReg, DstReg, DstIdx);
1003 NewMI->getOperand(0).setSubReg(NewIdx);
1004 } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
1005 // The New instruction may be defining a sub-register of what's actually
1006 // been asked for. If so it must implicitly define the whole thing.
1007 assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
1008 "Only expect virtual or physical registers in remat");
1009 NewMI->getOperand(0).setIsDead(true);
1010 NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
1011 true /*IsDef*/,
1012 true /*IsImp*/,
1013 false /*IsKill*/));
1014 // Record small dead def live-ranges for all the subregisters
1015 // of the destination register.
1016 // Otherwise, variables that live through may miss some
1017 // interferences, thus creating invalid allocation.
1018 // E.g., i386 code:
1019 // vreg1 = somedef ; vreg1 GR8
1020 // vreg2 = remat ; vreg2 GR32
1021 // CL = COPY vreg2.sub_8bit
1022 // = somedef vreg1 ; vreg1 GR8
1023 // =>
1024 // vreg1 = somedef ; vreg1 GR8
1025 // ECX<def, dead> = remat ; CL<imp-def>
1026 // = somedef vreg1 ; vreg1 GR8
1027 // vreg1 will see the inteferences with CL but not with CH since
1028 // no live-ranges would have been created for ECX.
1029 // Fix that!
1030 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1031 for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
1032 Units.isValid(); ++Units)
1033 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1034 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1037 if (NewMI->getOperand(0).getSubReg())
1038 NewMI->getOperand(0).setIsUndef();
1040 // CopyMI may have implicit operands, transfer them over to the newly
1041 // rematerialized instruction. And update implicit def interval valnos.
1042 for (unsigned i = CopyMI->getDesc().getNumOperands(),
1043 e = CopyMI->getNumOperands(); i != e; ++i) {
1044 MachineOperand &MO = CopyMI->getOperand(i);
1045 if (MO.isReg()) {
1046 assert(MO.isImplicit() && "No explicit operands after implict operands.");
1047 // Discard VReg implicit defs.
1048 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1049 NewMI->addOperand(MO);
1054 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1055 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1056 unsigned Reg = NewMIImplDefs[i];
1057 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1058 if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1059 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1062 DEBUG(dbgs() << "Remat: " << *NewMI);
1063 ++NumReMats;
1065 // The source interval can become smaller because we removed a use.
1066 shrinkToUses(&SrcInt, &DeadDefs);
1067 if (!DeadDefs.empty()) {
1068 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1069 // to describe DstReg instead.
1070 for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1071 MachineInstr *UseMI = UseMO.getParent();
1072 if (UseMI->isDebugValue()) {
1073 UseMO.setReg(DstReg);
1074 DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1077 eliminateDeadDefs();
1080 return true;
1083 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1084 // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1085 // local variables. When we have a copy like:
1087 // %vreg1 = COPY %vreg2<undef>
1089 // We delete the copy and remove the corresponding value number from %vreg1.
1090 // Any uses of that value number are marked as <undef>.
1092 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1093 // CoalescerPair may have a new register class with adjusted subreg indices
1094 // at this point.
1095 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1096 isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1098 SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
1099 const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1100 // CopyMI is undef iff SrcReg is not live before the instruction.
1101 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1102 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1103 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1104 if ((SR.LaneMask & SrcMask) == 0)
1105 continue;
1106 if (SR.liveAt(Idx))
1107 return false;
1109 } else if (SrcLI.liveAt(Idx))
1110 return false;
1112 DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1114 // Remove any DstReg segments starting at the instruction.
1115 LiveInterval &DstLI = LIS->getInterval(DstReg);
1116 SlotIndex RegIndex = Idx.getRegSlot();
1117 // Remove value or merge with previous one in case of a subregister def.
1118 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1119 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1120 DstLI.MergeValueNumberInto(VNI, PrevVNI);
1122 // The affected subregister segments can be removed.
1123 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1124 for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1125 if ((SR.LaneMask & DstMask) == 0)
1126 continue;
1128 VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1129 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1130 SR.removeValNo(SVNI);
1132 DstLI.removeEmptySubRanges();
1133 } else
1134 LIS->removeVRegDefAt(DstLI, RegIndex);
1136 // Mark uses as undef.
1137 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1138 if (MO.isDef() /*|| MO.isUndef()*/)
1139 continue;
1140 const MachineInstr &MI = *MO.getParent();
1141 SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
1142 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1143 bool isLive;
1144 if (UseMask != ~0u && DstLI.hasSubRanges()) {
1145 isLive = false;
1146 for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1147 if ((SR.LaneMask & UseMask) == 0)
1148 continue;
1149 if (SR.liveAt(UseIdx)) {
1150 isLive = true;
1151 break;
1154 } else
1155 isLive = DstLI.liveAt(UseIdx);
1156 if (isLive)
1157 continue;
1158 MO.setIsUndef(true);
1159 DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1161 return true;
1164 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1165 unsigned DstReg,
1166 unsigned SubIdx) {
1167 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1168 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1170 SmallPtrSet<MachineInstr*, 8> Visited;
1171 for (MachineRegisterInfo::reg_instr_iterator
1172 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1173 I != E; ) {
1174 MachineInstr *UseMI = &*(I++);
1176 // Each instruction can only be rewritten once because sub-register
1177 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1178 // the UseMI operands removes them from the SrcReg use-def chain, but when
1179 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1180 // operands mentioning the virtual register.
1181 if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1182 continue;
1184 SmallVector<unsigned,8> Ops;
1185 bool Reads, Writes;
1186 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1188 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1189 // because SrcReg is a sub-register.
1190 if (DstInt && !Reads && SubIdx)
1191 Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
1193 // Replace SrcReg with DstReg in all UseMI operands.
1194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1195 MachineOperand &MO = UseMI->getOperand(Ops[i]);
1197 // Adjust <undef> flags in case of sub-register joins. We don't want to
1198 // turn a full def into a read-modify-write sub-register def and vice
1199 // versa.
1200 if (SubIdx && MO.isDef())
1201 MO.setIsUndef(!Reads);
1203 // A subreg use of a partially undef (super) register may be a complete
1204 // undef use now and then has to be marked that way.
1205 if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1206 if (!DstInt->hasSubRanges()) {
1207 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1208 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1209 DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1211 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubIdx);
1212 bool IsUndef = true;
1213 SlotIndex MIIdx = UseMI->isDebugValue()
1214 ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
1215 : LIS->getInstructionIndex(UseMI);
1216 SlotIndex UseIdx = MIIdx.getRegSlot(true);
1217 for (LiveInterval::SubRange &S : DstInt->subranges()) {
1218 if ((S.LaneMask & Mask) == 0)
1219 continue;
1220 if (S.liveAt(UseIdx)) {
1221 IsUndef = false;
1222 break;
1225 if (IsUndef) {
1226 MO.setIsUndef(true);
1227 // We found out some subregister use is actually reading an undefined
1228 // value. In some cases the whole vreg has become undefined at this
1229 // point so we have to potentially shrink the main range if the
1230 // use was ending a live segment there.
1231 LiveQueryResult Q = DstInt->Query(MIIdx);
1232 if (Q.valueOut() == nullptr)
1233 ShrinkMainRange = true;
1237 if (DstIsPhys)
1238 MO.substPhysReg(DstReg, *TRI);
1239 else
1240 MO.substVirtReg(DstReg, SubIdx, *TRI);
1243 DEBUG({
1244 dbgs() << "\t\tupdated: ";
1245 if (!UseMI->isDebugValue())
1246 dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
1247 dbgs() << *UseMI;
1252 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1253 // Always join simple intervals that are defined by a single copy from a
1254 // reserved register. This doesn't increase register pressure, so it is
1255 // always beneficial.
1256 if (!MRI->isReserved(CP.getDstReg())) {
1257 DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1258 return false;
1261 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1262 if (JoinVInt.containsOneValue())
1263 return true;
1265 DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1266 return false;
1269 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1271 Again = false;
1272 DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1274 CoalescerPair CP(*TRI);
1275 if (!CP.setRegisters(CopyMI)) {
1276 DEBUG(dbgs() << "\tNot coalescable.\n");
1277 return false;
1280 if (CP.getNewRC()) {
1281 auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1282 auto DstRC = MRI->getRegClass(CP.getDstReg());
1283 unsigned SrcIdx = CP.getSrcIdx();
1284 unsigned DstIdx = CP.getDstIdx();
1285 if (CP.isFlipped()) {
1286 std::swap(SrcIdx, DstIdx);
1287 std::swap(SrcRC, DstRC);
1289 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1290 CP.getNewRC())) {
1291 DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1292 return false;
1296 // Dead code elimination. This really should be handled by MachineDCE, but
1297 // sometimes dead copies slip through, and we can't generate invalid live
1298 // ranges.
1299 if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1300 DEBUG(dbgs() << "\tCopy is dead.\n");
1301 DeadDefs.push_back(CopyMI);
1302 eliminateDeadDefs();
1303 return true;
1306 // Eliminate undefs.
1307 if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1308 LIS->RemoveMachineInstrFromMaps(CopyMI);
1309 CopyMI->eraseFromParent();
1310 return false; // Not coalescable.
1313 // Coalesced copies are normally removed immediately, but transformations
1314 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1315 // When that happens, just join the values and remove the copy.
1316 if (CP.getSrcReg() == CP.getDstReg()) {
1317 LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1318 DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1319 const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
1320 LiveQueryResult LRQ = LI.Query(CopyIdx);
1321 if (VNInfo *DefVNI = LRQ.valueDefined()) {
1322 VNInfo *ReadVNI = LRQ.valueIn();
1323 assert(ReadVNI && "No value before copy and no <undef> flag.");
1324 assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1325 LI.MergeValueNumberInto(DefVNI, ReadVNI);
1327 // Process subregister liveranges.
1328 for (LiveInterval::SubRange &S : LI.subranges()) {
1329 LiveQueryResult SLRQ = S.Query(CopyIdx);
1330 if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1331 VNInfo *SReadVNI = SLRQ.valueIn();
1332 S.MergeValueNumberInto(SDefVNI, SReadVNI);
1335 DEBUG(dbgs() << "\tMerged values: " << LI << '\n');
1337 LIS->RemoveMachineInstrFromMaps(CopyMI);
1338 CopyMI->eraseFromParent();
1339 return true;
1342 // Enforce policies.
1343 if (CP.isPhys()) {
1344 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1345 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1346 << '\n');
1347 if (!canJoinPhys(CP)) {
1348 // Before giving up coalescing, if definition of source is defined by
1349 // trivial computation, try rematerializing it.
1350 bool IsDefCopy;
1351 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1352 return true;
1353 if (IsDefCopy)
1354 Again = true; // May be possible to coalesce later.
1355 return false;
1357 } else {
1358 // When possible, let DstReg be the larger interval.
1359 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1360 LIS->getInterval(CP.getDstReg()).size())
1361 CP.flip();
1363 DEBUG({
1364 dbgs() << "\tConsidering merging to "
1365 << TRI->getRegClassName(CP.getNewRC()) << " with ";
1366 if (CP.getDstIdx() && CP.getSrcIdx())
1367 dbgs() << PrintReg(CP.getDstReg()) << " in "
1368 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1369 << PrintReg(CP.getSrcReg()) << " in "
1370 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1371 else
1372 dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1373 << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1377 ShrinkMask = 0;
1378 ShrinkMainRange = false;
1380 // Okay, attempt to join these two intervals. On failure, this returns false.
1381 // Otherwise, if one of the intervals being joined is a physreg, this method
1382 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1383 // been modified, so we can use this information below to update aliases.
1384 if (!joinIntervals(CP)) {
1385 // Coalescing failed.
1387 // If definition of source is defined by trivial computation, try
1388 // rematerializing it.
1389 bool IsDefCopy;
1390 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1391 return true;
1393 // If we can eliminate the copy without merging the live segments, do so
1394 // now.
1395 if (!CP.isPartial() && !CP.isPhys()) {
1396 if (adjustCopiesBackFrom(CP, CopyMI) ||
1397 removeCopyByCommutingDef(CP, CopyMI)) {
1398 LIS->RemoveMachineInstrFromMaps(CopyMI);
1399 CopyMI->eraseFromParent();
1400 DEBUG(dbgs() << "\tTrivial!\n");
1401 return true;
1405 // Otherwise, we are unable to join the intervals.
1406 DEBUG(dbgs() << "\tInterference!\n");
1407 Again = true; // May be possible to coalesce later.
1408 return false;
1411 // Coalescing to a virtual register that is of a sub-register class of the
1412 // other. Make sure the resulting register is set to the right register class.
1413 if (CP.isCrossClass()) {
1414 ++numCrossRCs;
1415 MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1418 // Removing sub-register copies can ease the register class constraints.
1419 // Make sure we attempt to inflate the register class of DstReg.
1420 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1421 InflateRegs.push_back(CP.getDstReg());
1423 // CopyMI has been erased by joinIntervals at this point. Remove it from
1424 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1425 // to the work list. This keeps ErasedInstrs from growing needlessly.
1426 ErasedInstrs.erase(CopyMI);
1428 // Rewrite all SrcReg operands to DstReg.
1429 // Also update DstReg operands to include DstIdx if it is set.
1430 if (CP.getDstIdx())
1431 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1432 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1434 // Shrink subregister ranges if necessary.
1435 if (ShrinkMask != 0) {
1436 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1437 for (LiveInterval::SubRange &S : LI.subranges()) {
1438 if ((S.LaneMask & ShrinkMask) == 0)
1439 continue;
1440 DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1441 << ")\n");
1442 LIS->shrinkToUses(S, LI.reg);
1444 LI.removeEmptySubRanges();
1446 if (ShrinkMainRange) {
1447 LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1448 shrinkToUses(&LI);
1451 // SrcReg is guaranteed to be the register whose live interval that is
1452 // being merged.
1453 LIS->removeInterval(CP.getSrcReg());
1455 // Update regalloc hint.
1456 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1458 DEBUG({
1459 dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1460 << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1461 dbgs() << "\tResult = ";
1462 if (CP.isPhys())
1463 dbgs() << PrintReg(CP.getDstReg(), TRI);
1464 else
1465 dbgs() << LIS->getInterval(CP.getDstReg());
1466 dbgs() << '\n';
1469 ++numJoins;
1470 return true;
1473 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1474 unsigned DstReg = CP.getDstReg();
1475 assert(CP.isPhys() && "Must be a physreg copy");
1476 assert(MRI->isReserved(DstReg) && "Not a reserved register");
1477 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1478 DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1480 assert(RHS.containsOneValue() && "Invalid join with reserved register");
1482 // Optimization for reserved registers like ESP. We can only merge with a
1483 // reserved physreg if RHS has a single value that is a copy of DstReg.
1484 // The live range of the reserved register will look like a set of dead defs
1485 // - we don't properly track the live range of reserved registers.
1487 // Deny any overlapping intervals. This depends on all the reserved
1488 // register live ranges to look like dead defs.
1489 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1490 if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1491 DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1492 return false;
1495 // Skip any value computations, we are not adding new values to the
1496 // reserved register. Also skip merging the live ranges, the reserved
1497 // register live range doesn't need to be accurate as long as all the
1498 // defs are there.
1500 // Delete the identity copy.
1501 MachineInstr *CopyMI;
1502 if (CP.isFlipped()) {
1503 CopyMI = MRI->getVRegDef(RHS.reg);
1504 } else {
1505 if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1506 DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1507 return false;
1510 MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1511 CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1512 const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1513 const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
1515 // We checked above that there are no interfering defs of the physical
1516 // register. However, for this case, where we intent to move up the def of
1517 // the physical register, we also need to check for interfering uses.
1518 SlotIndexes *Indexes = LIS->getSlotIndexes();
1519 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1520 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1521 MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1522 if (MI->readsRegister(DstReg, TRI)) {
1523 DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1524 return false;
1527 // We must also check for clobbers caused by regmasks.
1528 for (const auto &MO : MI->operands()) {
1529 if (MO.isRegMask() && MO.clobbersPhysReg(DstReg)) {
1530 DEBUG(dbgs() << "\t\tInterference (regmask clobber): " << *MI);
1531 return false;
1536 // We're going to remove the copy which defines a physical reserved
1537 // register, so remove its valno, etc.
1538 DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1539 << CopyRegIdx << "\n");
1541 LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1542 // Create a new dead def at the new def location.
1543 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1544 LiveRange &LR = LIS->getRegUnit(*UI);
1545 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1549 LIS->RemoveMachineInstrFromMaps(CopyMI);
1550 CopyMI->eraseFromParent();
1552 // We don't track kills for reserved registers.
1553 MRI->clearKillFlags(CP.getSrcReg());
1555 return true;
1558 //===----------------------------------------------------------------------===//
1559 // Interference checking and interval joining
1560 //===----------------------------------------------------------------------===//
1562 // In the easiest case, the two live ranges being joined are disjoint, and
1563 // there is no interference to consider. It is quite common, though, to have
1564 // overlapping live ranges, and we need to check if the interference can be
1565 // resolved.
1567 // The live range of a single SSA value forms a sub-tree of the dominator tree.
1568 // This means that two SSA values overlap if and only if the def of one value
1569 // is contained in the live range of the other value. As a special case, the
1570 // overlapping values can be defined at the same index.
1572 // The interference from an overlapping def can be resolved in these cases:
1574 // 1. Coalescable copies. The value is defined by a copy that would become an
1575 // identity copy after joining SrcReg and DstReg. The copy instruction will
1576 // be removed, and the value will be merged with the source value.
1578 // There can be several copies back and forth, causing many values to be
1579 // merged into one. We compute a list of ultimate values in the joined live
1580 // range as well as a mappings from the old value numbers.
1582 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1583 // predecessors have a live out value. It doesn't cause real interference,
1584 // and can be merged into the value it overlaps. Like a coalescable copy, it
1585 // can be erased after joining.
1587 // 3. Copy of external value. The overlapping def may be a copy of a value that
1588 // is already in the other register. This is like a coalescable copy, but
1589 // the live range of the source register must be trimmed after erasing the
1590 // copy instruction:
1592 // %src = COPY %ext
1593 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
1595 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
1596 // defining one lane at a time:
1598 // %dst:ssub0<def,read-undef> = FOO
1599 // %src = BAR
1600 // %dst:ssub1<def> = COPY %src
1602 // The live range of %src overlaps the %dst value defined by FOO, but
1603 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1604 // which was undef anyway.
1606 // The value mapping is more complicated in this case. The final live range
1607 // will have different value numbers for both FOO and BAR, but there is no
1608 // simple mapping from old to new values. It may even be necessary to add
1609 // new PHI values.
1611 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1612 // is live, but never read. This can happen because we don't compute
1613 // individual live ranges per lane.
1615 // %dst<def> = FOO
1616 // %src = BAR
1617 // %dst:ssub1<def> = COPY %src
1619 // This kind of interference is only resolved locally. If the clobbered
1620 // lane value escapes the block, the join is aborted.
1622 namespace {
1623 /// Track information about values in a single virtual register about to be
1624 /// joined. Objects of this class are always created in pairs - one for each
1625 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
1626 /// pair)
1627 class JoinVals {
1628 /// Live range we work on.
1629 LiveRange &LR;
1630 /// (Main) register we work on.
1631 const unsigned Reg;
1633 /// Reg (and therefore the values in this liverange) will end up as
1634 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1635 /// CP.SrcIdx.
1636 const unsigned SubIdx;
1637 /// The LaneMask that this liverange will occupy the coalesced register. May
1638 /// be smaller than the lanemask produced by SubIdx when merging subranges.
1639 const LaneBitmask LaneMask;
1641 /// This is true when joining sub register ranges, false when joining main
1642 /// ranges.
1643 const bool SubRangeJoin;
1644 /// Whether the current LiveInterval tracks subregister liveness.
1645 const bool TrackSubRegLiveness;
1647 /// Values that will be present in the final live range.
1648 SmallVectorImpl<VNInfo*> &NewVNInfo;
1650 const CoalescerPair &CP;
1651 LiveIntervals *LIS;
1652 SlotIndexes *Indexes;
1653 const TargetRegisterInfo *TRI;
1655 /// Value number assignments. Maps value numbers in LI to entries in
1656 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1657 SmallVector<int, 8> Assignments;
1659 /// Conflict resolution for overlapping values.
1660 enum ConflictResolution {
1661 /// No overlap, simply keep this value.
1662 CR_Keep,
1664 /// Merge this value into OtherVNI and erase the defining instruction.
1665 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1666 /// values.
1667 CR_Erase,
1669 /// Merge this value into OtherVNI but keep the defining instruction.
1670 /// This is for the special case where OtherVNI is defined by the same
1671 /// instruction.
1672 CR_Merge,
1674 /// Keep this value, and have it replace OtherVNI where possible. This
1675 /// complicates value mapping since OtherVNI maps to two different values
1676 /// before and after this def.
1677 /// Used when clobbering undefined or dead lanes.
1678 CR_Replace,
1680 /// Unresolved conflict. Visit later when all values have been mapped.
1681 CR_Unresolved,
1683 /// Unresolvable conflict. Abort the join.
1684 CR_Impossible
1687 /// Per-value info for LI. The lane bit masks are all relative to the final
1688 /// joined register, so they can be compared directly between SrcReg and
1689 /// DstReg.
1690 struct Val {
1691 ConflictResolution Resolution;
1693 /// Lanes written by this def, 0 for unanalyzed values.
1694 LaneBitmask WriteLanes;
1696 /// Lanes with defined values in this register. Other lanes are undef and
1697 /// safe to clobber.
1698 LaneBitmask ValidLanes;
1700 /// Value in LI being redefined by this def.
1701 VNInfo *RedefVNI;
1703 /// Value in the other live range that overlaps this def, if any.
1704 VNInfo *OtherVNI;
1706 /// Is this value an IMPLICIT_DEF that can be erased?
1708 /// IMPLICIT_DEF values should only exist at the end of a basic block that
1709 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1710 /// safely erased if they are overlapping a live value in the other live
1711 /// interval.
1713 /// Weird control flow graphs and incomplete PHI handling in
1714 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1715 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1716 /// normal values.
1717 bool ErasableImplicitDef;
1719 /// True when the live range of this value will be pruned because of an
1720 /// overlapping CR_Replace value in the other live range.
1721 bool Pruned;
1723 /// True once Pruned above has been computed.
1724 bool PrunedComputed;
1726 Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1727 RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1728 Pruned(false), PrunedComputed(false) {}
1730 bool isAnalyzed() const { return WriteLanes != 0; }
1733 /// One entry per value number in LI.
1734 SmallVector<Val, 8> Vals;
1736 /// Compute the bitmask of lanes actually written by DefMI.
1737 /// Set Redef if there are any partial register definitions that depend on the
1738 /// previous value of the register.
1739 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1741 /// Find the ultimate value that VNI was copied from.
1742 std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1744 bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1746 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1747 /// Return a conflict resolution when possible, but leave the hard cases as
1748 /// CR_Unresolved.
1749 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1750 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1751 /// The recursion always goes upwards in the dominator tree, making loops
1752 /// impossible.
1753 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1755 /// Compute the value assignment for ValNo in RI.
1756 /// This may be called recursively by analyzeValue(), but never for a ValNo on
1757 /// the stack.
1758 void computeAssignment(unsigned ValNo, JoinVals &Other);
1760 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1761 /// the extent of the tainted lanes in the block.
1763 /// Multiple values in Other.LR can be affected since partial redefinitions
1764 /// can preserve previously tainted lanes.
1766 /// 1 %dst = VLOAD <-- Define all lanes in %dst
1767 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
1768 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
1769 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1771 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1772 /// entry to TaintedVals.
1774 /// Returns false if the tainted lanes extend beyond the basic block.
1775 bool taintExtent(unsigned, LaneBitmask, JoinVals&,
1776 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> >&);
1778 /// Return true if MI uses any of the given Lanes from Reg.
1779 /// This does not include partial redefinitions of Reg.
1780 bool usesLanes(const MachineInstr *MI, unsigned, unsigned, LaneBitmask) const;
1782 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1783 /// be pruned:
1785 /// %dst = COPY %src
1786 /// %src = COPY %dst <-- This value to be pruned.
1787 /// %dst = COPY %src <-- This value is a copy of a pruned value.
1788 bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1790 public:
1791 JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
1792 SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1793 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1794 bool TrackSubRegLiveness)
1795 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1796 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1797 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1798 TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1801 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1802 /// Returns false if any conflicts were impossible to resolve.
1803 bool mapValues(JoinVals &Other);
1805 /// Try to resolve conflicts that require all values to be mapped.
1806 /// Returns false if any conflicts were impossible to resolve.
1807 bool resolveConflicts(JoinVals &Other);
1809 /// Prune the live range of values in Other.LR where they would conflict with
1810 /// CR_Replace values in LR. Collect end points for restoring the live range
1811 /// after joining.
1812 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1813 bool changeInstrs);
1815 /// Removes subranges starting at copies that get removed. This sometimes
1816 /// happens when undefined subranges are copied around. These ranges contain
1817 /// no useful information and can be removed.
1818 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
1820 /// Erase any machine instructions that have been coalesced away.
1821 /// Add erased instructions to ErasedInstrs.
1822 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1823 /// the erased instrs.
1824 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1825 SmallVectorImpl<unsigned> &ShrinkRegs);
1827 /// Remove liverange defs at places where implicit defs will be removed.
1828 void removeImplicitDefs();
1830 /// Get the value assignments suitable for passing to LiveInterval::join.
1831 const int *getAssignments() const { return Assignments.data(); }
1833 } // end anonymous namespace
1835 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1836 const {
1837 LaneBitmask L = 0;
1838 for (const MachineOperand &MO : DefMI->operands()) {
1839 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
1840 continue;
1841 L |= TRI->getSubRegIndexLaneMask(
1842 TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
1843 if (MO.readsReg())
1844 Redef = true;
1846 return L;
1849 std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1850 const VNInfo *VNI) const {
1851 unsigned Reg = this->Reg;
1853 while (!VNI->isPHIDef()) {
1854 SlotIndex Def = VNI->def;
1855 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1856 assert(MI && "No defining instruction");
1857 if (!MI->isFullCopy())
1858 return std::make_pair(VNI, Reg);
1859 unsigned SrcReg = MI->getOperand(1).getReg();
1860 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1861 return std::make_pair(VNI, Reg);
1863 const LiveInterval &LI = LIS->getInterval(SrcReg);
1864 const VNInfo *ValueIn;
1865 // No subrange involved.
1866 if (!SubRangeJoin || !LI.hasSubRanges()) {
1867 LiveQueryResult LRQ = LI.Query(Def);
1868 ValueIn = LRQ.valueIn();
1869 } else {
1870 // Query subranges. Pick the first matching one.
1871 ValueIn = nullptr;
1872 for (const LiveInterval::SubRange &S : LI.subranges()) {
1873 // Transform lanemask to a mask in the joined live interval.
1874 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1875 if ((SMask & LaneMask) == 0)
1876 continue;
1877 LiveQueryResult LRQ = S.Query(Def);
1878 ValueIn = LRQ.valueIn();
1879 break;
1882 if (ValueIn == nullptr)
1883 break;
1884 VNI = ValueIn;
1885 Reg = SrcReg;
1887 return std::make_pair(VNI, Reg);
1890 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1891 const JoinVals &Other) const {
1892 const VNInfo *Orig0;
1893 unsigned Reg0;
1894 std::tie(Orig0, Reg0) = followCopyChain(Value0);
1895 if (Orig0 == Value1)
1896 return true;
1898 const VNInfo *Orig1;
1899 unsigned Reg1;
1900 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1902 // The values are equal if they are defined at the same place and use the
1903 // same register. Note that we cannot compare VNInfos directly as some of
1904 // them might be from a copy created in mergeSubRangeInto() while the other
1905 // is from the original LiveInterval.
1906 return Orig0->def == Orig1->def && Reg0 == Reg1;
1909 JoinVals::ConflictResolution
1910 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1911 Val &V = Vals[ValNo];
1912 assert(!V.isAnalyzed() && "Value has already been analyzed!");
1913 VNInfo *VNI = LR.getValNumInfo(ValNo);
1914 if (VNI->isUnused()) {
1915 V.WriteLanes = ~0u;
1916 return CR_Keep;
1919 // Get the instruction defining this value, compute the lanes written.
1920 const MachineInstr *DefMI = nullptr;
1921 if (VNI->isPHIDef()) {
1922 // Conservatively assume that all lanes in a PHI are valid.
1923 LaneBitmask Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1924 V.ValidLanes = V.WriteLanes = Lanes;
1925 } else {
1926 DefMI = Indexes->getInstructionFromIndex(VNI->def);
1927 assert(DefMI != nullptr);
1928 if (SubRangeJoin) {
1929 // We don't care about the lanes when joining subregister ranges.
1930 V.WriteLanes = V.ValidLanes = 1;
1931 if (DefMI->isImplicitDef()) {
1932 V.ValidLanes = 0;
1933 V.ErasableImplicitDef = true;
1935 } else {
1936 bool Redef = false;
1937 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1939 // If this is a read-modify-write instruction, there may be more valid
1940 // lanes than the ones written by this instruction.
1941 // This only covers partial redef operands. DefMI may have normal use
1942 // operands reading the register. They don't contribute valid lanes.
1944 // This adds ssub1 to the set of valid lanes in %src:
1946 // %src:ssub1<def> = FOO
1948 // This leaves only ssub1 valid, making any other lanes undef:
1950 // %src:ssub1<def,read-undef> = FOO %src:ssub2
1952 // The <read-undef> flag on the def operand means that old lane values are
1953 // not important.
1954 if (Redef) {
1955 V.RedefVNI = LR.Query(VNI->def).valueIn();
1956 assert((TrackSubRegLiveness || V.RedefVNI) &&
1957 "Instruction is reading nonexistent value");
1958 if (V.RedefVNI != nullptr) {
1959 computeAssignment(V.RedefVNI->id, Other);
1960 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1964 // An IMPLICIT_DEF writes undef values.
1965 if (DefMI->isImplicitDef()) {
1966 // We normally expect IMPLICIT_DEF values to be live only until the end
1967 // of their block. If the value is really live longer and gets pruned in
1968 // another block, this flag is cleared again.
1969 V.ErasableImplicitDef = true;
1970 V.ValidLanes &= ~V.WriteLanes;
1975 // Find the value in Other that overlaps VNI->def, if any.
1976 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
1978 // It is possible that both values are defined by the same instruction, or
1979 // the values are PHIs defined in the same block. When that happens, the two
1980 // values should be merged into one, but not into any preceding value.
1981 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1982 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1983 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1985 // One value stays, the other is merged. Keep the earlier one, or the first
1986 // one we see.
1987 if (OtherVNI->def < VNI->def)
1988 Other.computeAssignment(OtherVNI->id, *this);
1989 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1990 // This is an early-clobber def overlapping a live-in value in the other
1991 // register. Not mergeable.
1992 V.OtherVNI = OtherLRQ.valueIn();
1993 return CR_Impossible;
1995 V.OtherVNI = OtherVNI;
1996 Val &OtherV = Other.Vals[OtherVNI->id];
1997 // Keep this value, check for conflicts when analyzing OtherVNI.
1998 if (!OtherV.isAnalyzed())
1999 return CR_Keep;
2000 // Both sides have been analyzed now.
2001 // Allow overlapping PHI values. Any real interference would show up in a
2002 // predecessor, the PHI itself can't introduce any conflicts.
2003 if (VNI->isPHIDef())
2004 return CR_Merge;
2005 if (V.ValidLanes & OtherV.ValidLanes)
2006 // Overlapping lanes can't be resolved.
2007 return CR_Impossible;
2008 else
2009 return CR_Merge;
2012 // No simultaneous def. Is Other live at the def?
2013 V.OtherVNI = OtherLRQ.valueIn();
2014 if (!V.OtherVNI)
2015 // No overlap, no conflict.
2016 return CR_Keep;
2018 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2020 // We have overlapping values, or possibly a kill of Other.
2021 // Recursively compute assignments up the dominator tree.
2022 Other.computeAssignment(V.OtherVNI->id, *this);
2023 Val &OtherV = Other.Vals[V.OtherVNI->id];
2025 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2026 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2027 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2028 // technically.
2030 // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2031 // to erase the IMPLICIT_DEF instruction.
2032 if (OtherV.ErasableImplicitDef && DefMI &&
2033 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2034 DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2035 << " extends into BB#" << DefMI->getParent()->getNumber()
2036 << ", keeping it.\n");
2037 OtherV.ErasableImplicitDef = false;
2040 // Allow overlapping PHI values. Any real interference would show up in a
2041 // predecessor, the PHI itself can't introduce any conflicts.
2042 if (VNI->isPHIDef())
2043 return CR_Replace;
2045 // Check for simple erasable conflicts.
2046 if (DefMI->isImplicitDef()) {
2047 // We need the def for the subregister if there is nothing else live at the
2048 // subrange at this point.
2049 if (TrackSubRegLiveness
2050 && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2051 return CR_Replace;
2052 return CR_Erase;
2055 // Include the non-conflict where DefMI is a coalescable copy that kills
2056 // OtherVNI. We still want the copy erased and value numbers merged.
2057 if (CP.isCoalescable(DefMI)) {
2058 // Some of the lanes copied from OtherVNI may be undef, making them undef
2059 // here too.
2060 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2061 return CR_Erase;
2064 // This may not be a real conflict if DefMI simply kills Other and defines
2065 // VNI.
2066 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2067 return CR_Keep;
2069 // Handle the case where VNI and OtherVNI can be proven to be identical:
2071 // %other = COPY %ext
2072 // %this = COPY %ext <-- Erase this copy
2074 if (DefMI->isFullCopy() && !CP.isPartial()
2075 && valuesIdentical(VNI, V.OtherVNI, Other))
2076 return CR_Erase;
2078 // If the lanes written by this instruction were all undef in OtherVNI, it is
2079 // still safe to join the live ranges. This can't be done with a simple value
2080 // mapping, though - OtherVNI will map to multiple values:
2082 // 1 %dst:ssub0 = FOO <-- OtherVNI
2083 // 2 %src = BAR <-- VNI
2084 // 3 %dst:ssub1 = COPY %src<kill> <-- Eliminate this copy.
2085 // 4 BAZ %dst<kill>
2086 // 5 QUUX %src<kill>
2088 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2089 // handles this complex value mapping.
2090 if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2091 return CR_Replace;
2093 // If the other live range is killed by DefMI and the live ranges are still
2094 // overlapping, it must be because we're looking at an early clobber def:
2096 // %dst<def,early-clobber> = ASM %src<kill>
2098 // In this case, it is illegal to merge the two live ranges since the early
2099 // clobber def would clobber %src before it was read.
2100 if (OtherLRQ.isKill()) {
2101 // This case where the def doesn't overlap the kill is handled above.
2102 assert(VNI->def.isEarlyClobber() &&
2103 "Only early clobber defs can overlap a kill");
2104 return CR_Impossible;
2107 // VNI is clobbering live lanes in OtherVNI, but there is still the
2108 // possibility that no instructions actually read the clobbered lanes.
2109 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2110 // Otherwise Other.RI wouldn't be live here.
2111 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2112 return CR_Impossible;
2114 // We need to verify that no instructions are reading the clobbered lanes. To
2115 // save compile time, we'll only check that locally. Don't allow the tainted
2116 // value to escape the basic block.
2117 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2118 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2119 return CR_Impossible;
2121 // There are still some things that could go wrong besides clobbered lanes
2122 // being read, for example OtherVNI may be only partially redefined in MBB,
2123 // and some clobbered lanes could escape the block. Save this analysis for
2124 // resolveConflicts() when all values have been mapped. We need to know
2125 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2126 // that now - the recursive analyzeValue() calls must go upwards in the
2127 // dominator tree.
2128 return CR_Unresolved;
2131 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2132 Val &V = Vals[ValNo];
2133 if (V.isAnalyzed()) {
2134 // Recursion should always move up the dominator tree, so ValNo is not
2135 // supposed to reappear before it has been assigned.
2136 assert(Assignments[ValNo] != -1 && "Bad recursion?");
2137 return;
2139 switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2140 case CR_Erase:
2141 case CR_Merge:
2142 // Merge this ValNo into OtherVNI.
2143 assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2144 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2145 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2146 DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2147 << LR.getValNumInfo(ValNo)->def << " into "
2148 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2149 << V.OtherVNI->def << " --> @"
2150 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2151 break;
2152 case CR_Replace:
2153 case CR_Unresolved: {
2154 // The other value is going to be pruned if this join is successful.
2155 assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2156 Val &OtherV = Other.Vals[V.OtherVNI->id];
2157 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2158 // its lanes.
2159 if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2160 OtherV.ErasableImplicitDef = false;
2161 OtherV.Pruned = true;
2163 // Fall through.
2164 default:
2165 // This value number needs to go in the final joined live range.
2166 Assignments[ValNo] = NewVNInfo.size();
2167 NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2168 break;
2172 bool JoinVals::mapValues(JoinVals &Other) {
2173 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2174 computeAssignment(i, Other);
2175 if (Vals[i].Resolution == CR_Impossible) {
2176 DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2177 << '@' << LR.getValNumInfo(i)->def << '\n');
2178 return false;
2181 return true;
2184 bool JoinVals::
2185 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2186 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask> > &TaintExtent) {
2187 VNInfo *VNI = LR.getValNumInfo(ValNo);
2188 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2189 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2191 // Scan Other.LR from VNI.def to MBBEnd.
2192 LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2193 assert(OtherI != Other.LR.end() && "No conflict?");
2194 do {
2195 // OtherI is pointing to a tainted value. Abort the join if the tainted
2196 // lanes escape the block.
2197 SlotIndex End = OtherI->end;
2198 if (End >= MBBEnd) {
2199 DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2200 << OtherI->valno->id << '@' << OtherI->start << '\n');
2201 return false;
2203 DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2204 << OtherI->valno->id << '@' << OtherI->start
2205 << " to " << End << '\n');
2206 // A dead def is not a problem.
2207 if (End.isDead())
2208 break;
2209 TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2211 // Check for another def in the MBB.
2212 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2213 break;
2215 // Lanes written by the new def are no longer tainted.
2216 const Val &OV = Other.Vals[OtherI->valno->id];
2217 TaintedLanes &= ~OV.WriteLanes;
2218 if (!OV.RedefVNI)
2219 break;
2220 } while (TaintedLanes);
2221 return true;
2224 bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
2225 LaneBitmask Lanes) const {
2226 if (MI->isDebugValue())
2227 return false;
2228 for (const MachineOperand &MO : MI->operands()) {
2229 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2230 continue;
2231 if (!MO.readsReg())
2232 continue;
2233 if (Lanes & TRI->getSubRegIndexLaneMask(
2234 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())))
2235 return true;
2237 return false;
2240 bool JoinVals::resolveConflicts(JoinVals &Other) {
2241 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2242 Val &V = Vals[i];
2243 assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2244 if (V.Resolution != CR_Unresolved)
2245 continue;
2246 DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2247 << '@' << LR.getValNumInfo(i)->def << '\n');
2248 if (SubRangeJoin)
2249 return false;
2251 ++NumLaneConflicts;
2252 assert(V.OtherVNI && "Inconsistent conflict resolution.");
2253 VNInfo *VNI = LR.getValNumInfo(i);
2254 const Val &OtherV = Other.Vals[V.OtherVNI->id];
2256 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2257 // join, those lanes will be tainted with a wrong value. Get the extent of
2258 // the tainted lanes.
2259 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2260 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2261 if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2262 // Tainted lanes would extend beyond the basic block.
2263 return false;
2265 assert(!TaintExtent.empty() && "There should be at least one conflict.");
2267 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2268 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2269 MachineBasicBlock::iterator MI = MBB->begin();
2270 if (!VNI->isPHIDef()) {
2271 MI = Indexes->getInstructionFromIndex(VNI->def);
2272 // No need to check the instruction defining VNI for reads.
2273 ++MI;
2275 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2276 "Interference ends on VNI->def. Should have been handled earlier");
2277 MachineInstr *LastMI =
2278 Indexes->getInstructionFromIndex(TaintExtent.front().first);
2279 assert(LastMI && "Range must end at a proper instruction");
2280 unsigned TaintNum = 0;
2281 for(;;) {
2282 assert(MI != MBB->end() && "Bad LastMI");
2283 if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2284 DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2285 return false;
2287 // LastMI is the last instruction to use the current value.
2288 if (&*MI == LastMI) {
2289 if (++TaintNum == TaintExtent.size())
2290 break;
2291 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2292 assert(LastMI && "Range must end at a proper instruction");
2293 TaintedLanes = TaintExtent[TaintNum].second;
2295 ++MI;
2298 // The tainted lanes are unused.
2299 V.Resolution = CR_Replace;
2300 ++NumLaneResolves;
2302 return true;
2305 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2306 Val &V = Vals[ValNo];
2307 if (V.Pruned || V.PrunedComputed)
2308 return V.Pruned;
2310 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2311 return V.Pruned;
2313 // Follow copies up the dominator tree and check if any intermediate value
2314 // has been pruned.
2315 V.PrunedComputed = true;
2316 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2317 return V.Pruned;
2320 void JoinVals::pruneValues(JoinVals &Other,
2321 SmallVectorImpl<SlotIndex> &EndPoints,
2322 bool changeInstrs) {
2323 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2324 SlotIndex Def = LR.getValNumInfo(i)->def;
2325 switch (Vals[i].Resolution) {
2326 case CR_Keep:
2327 break;
2328 case CR_Replace: {
2329 // This value takes precedence over the value in Other.LR.
2330 LIS->pruneValue(Other.LR, Def, &EndPoints);
2331 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2332 // instructions are only inserted to provide a live-out value for PHI
2333 // predecessors, so the instruction should simply go away once its value
2334 // has been replaced.
2335 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2336 bool EraseImpDef = OtherV.ErasableImplicitDef &&
2337 OtherV.Resolution == CR_Keep;
2338 if (!Def.isBlock()) {
2339 if (changeInstrs) {
2340 // Remove <def,read-undef> flags. This def is now a partial redef.
2341 // Also remove <def,dead> flags since the joined live range will
2342 // continue past this instruction.
2343 for (MachineOperand &MO :
2344 Indexes->getInstructionFromIndex(Def)->operands()) {
2345 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
2346 MO.setIsUndef(EraseImpDef);
2347 MO.setIsDead(false);
2351 // This value will reach instructions below, but we need to make sure
2352 // the live range also reaches the instruction at Def.
2353 if (!EraseImpDef)
2354 EndPoints.push_back(Def);
2356 DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2357 << ": " << Other.LR << '\n');
2358 break;
2360 case CR_Erase:
2361 case CR_Merge:
2362 if (isPrunedValue(i, Other)) {
2363 // This value is ultimately a copy of a pruned value in LR or Other.LR.
2364 // We can no longer trust the value mapping computed by
2365 // computeAssignment(), the value that was originally copied could have
2366 // been replaced.
2367 LIS->pruneValue(LR, Def, &EndPoints);
2368 DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2369 << Def << ": " << LR << '\n');
2371 break;
2372 case CR_Unresolved:
2373 case CR_Impossible:
2374 llvm_unreachable("Unresolved conflicts");
2379 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask)
2381 // Look for values being erased.
2382 bool DidPrune = false;
2383 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2384 if (Vals[i].Resolution != CR_Erase)
2385 continue;
2387 // Check subranges at the point where the copy will be removed.
2388 SlotIndex Def = LR.getValNumInfo(i)->def;
2389 for (LiveInterval::SubRange &S : LI.subranges()) {
2390 LiveQueryResult Q = S.Query(Def);
2392 // If a subrange starts at the copy then an undefined value has been
2393 // copied and we must remove that subrange value as well.
2394 VNInfo *ValueOut = Q.valueOutOrDead();
2395 if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2396 DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
2397 << " at " << Def << "\n");
2398 LIS->pruneValue(S, Def, nullptr);
2399 DidPrune = true;
2400 // Mark value number as unused.
2401 ValueOut->markUnused();
2402 continue;
2404 // If a subrange ends at the copy, then a value was copied but only
2405 // partially used later. Shrink the subregister range appropriately.
2406 if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2407 DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask)
2408 << " at " << Def << "\n");
2409 ShrinkMask |= S.LaneMask;
2413 if (DidPrune)
2414 LI.removeEmptySubRanges();
2417 void JoinVals::removeImplicitDefs() {
2418 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2419 Val &V = Vals[i];
2420 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2421 continue;
2423 VNInfo *VNI = LR.getValNumInfo(i);
2424 VNI->markUnused();
2425 LR.removeValNo(VNI);
2429 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2430 SmallVectorImpl<unsigned> &ShrinkRegs) {
2431 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2432 // Get the def location before markUnused() below invalidates it.
2433 SlotIndex Def = LR.getValNumInfo(i)->def;
2434 switch (Vals[i].Resolution) {
2435 case CR_Keep: {
2436 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2437 // longer. The IMPLICIT_DEF instructions are only inserted by
2438 // PHIElimination to guarantee that all PHI predecessors have a value.
2439 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2440 break;
2441 // Remove value number i from LR.
2442 VNInfo *VNI = LR.getValNumInfo(i);
2443 LR.removeValNo(VNI);
2444 // Note that this VNInfo is reused and still referenced in NewVNInfo,
2445 // make it appear like an unused value number.
2446 VNI->markUnused();
2447 DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2448 // FALL THROUGH.
2451 case CR_Erase: {
2452 MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2453 assert(MI && "No instruction to erase");
2454 if (MI->isCopy()) {
2455 unsigned Reg = MI->getOperand(1).getReg();
2456 if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2457 Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2458 ShrinkRegs.push_back(Reg);
2460 ErasedInstrs.insert(MI);
2461 DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2462 LIS->RemoveMachineInstrFromMaps(MI);
2463 MI->eraseFromParent();
2464 break;
2466 default:
2467 break;
2472 bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2473 LaneBitmask LaneMask,
2474 const CoalescerPair &CP) {
2475 SmallVector<VNInfo*, 16> NewVNInfo;
2476 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2477 NewVNInfo, CP, LIS, TRI, true, true);
2478 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2479 NewVNInfo, CP, LIS, TRI, true, true);
2481 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2482 // We should be able to resolve all conflicts here as we could successfully do
2483 // it on the mainrange already. There is however a problem when multiple
2484 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2485 // interferences.
2486 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2487 DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2488 return false;
2490 if (!LHSVals.resolveConflicts(RHSVals) ||
2491 !RHSVals.resolveConflicts(LHSVals)) {
2492 DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2493 return false;
2496 // The merging algorithm in LiveInterval::join() can't handle conflicting
2497 // value mappings, so we need to remove any live ranges that overlap a
2498 // CR_Replace resolution. Collect a set of end points that can be used to
2499 // restore the live range after joining.
2500 SmallVector<SlotIndex, 8> EndPoints;
2501 LHSVals.pruneValues(RHSVals, EndPoints, false);
2502 RHSVals.pruneValues(LHSVals, EndPoints, false);
2504 LHSVals.removeImplicitDefs();
2505 RHSVals.removeImplicitDefs();
2507 LRange.verify();
2508 RRange.verify();
2510 // Join RRange into LHS.
2511 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2512 NewVNInfo);
2514 DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2515 if (EndPoints.empty())
2516 return true;
2518 // Recompute the parts of the live range we had to remove because of
2519 // CR_Replace conflicts.
2520 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2521 << " points: " << LRange << '\n');
2522 LIS->extendToIndices(LRange, EndPoints);
2523 return true;
2526 bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2527 const LiveRange &ToMerge,
2528 LaneBitmask LaneMask,
2529 CoalescerPair &CP) {
2530 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2531 for (LiveInterval::SubRange &R : LI.subranges()) {
2532 LaneBitmask RMask = R.LaneMask;
2533 // LaneMask of subregisters common to subrange R and ToMerge.
2534 LaneBitmask Common = RMask & LaneMask;
2535 // There is nothing to do without common subregs.
2536 if (Common == 0)
2537 continue;
2539 DEBUG(dbgs() << "\t\tCopy+Merge " << PrintLaneMask(RMask) << " into "
2540 << PrintLaneMask(Common) << '\n');
2541 // LaneMask of subregisters contained in the R range but not in ToMerge,
2542 // they have to split into their own subrange.
2543 LaneBitmask LRest = RMask & ~LaneMask;
2544 LiveInterval::SubRange *CommonRange;
2545 if (LRest != 0) {
2546 R.LaneMask = LRest;
2547 DEBUG(dbgs() << "\t\tReduce Lane to " << PrintLaneMask(LRest) << '\n');
2548 // Duplicate SubRange for newly merged common stuff.
2549 CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2550 } else {
2551 // Reuse the existing range.
2552 R.LaneMask = Common;
2553 CommonRange = &R;
2555 LiveRange RangeCopy(ToMerge, Allocator);
2556 if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP))
2557 return false;
2558 LaneMask &= ~RMask;
2561 if (LaneMask != 0) {
2562 DEBUG(dbgs() << "\t\tNew Lane " << PrintLaneMask(LaneMask) << '\n');
2563 LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2565 return true;
2568 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2569 SmallVector<VNInfo*, 16> NewVNInfo;
2570 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2571 LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2572 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2573 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2574 TRI, false, TrackSubRegLiveness);
2575 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2576 TRI, false, TrackSubRegLiveness);
2578 DEBUG(dbgs() << "\t\tRHS = " << RHS
2579 << "\n\t\tLHS = " << LHS
2580 << '\n');
2582 // First compute NewVNInfo and the simple value mappings.
2583 // Detect impossible conflicts early.
2584 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2585 return false;
2587 // Some conflicts can only be resolved after all values have been mapped.
2588 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2589 return false;
2591 // All clear, the live ranges can be merged.
2592 if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2593 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2595 // Transform lanemasks from the LHS to masks in the coalesced register and
2596 // create initial subranges if necessary.
2597 unsigned DstIdx = CP.getDstIdx();
2598 if (!LHS.hasSubRanges()) {
2599 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2600 : TRI->getSubRegIndexLaneMask(DstIdx);
2601 // LHS must support subregs or we wouldn't be in this codepath.
2602 assert(Mask != 0);
2603 LHS.createSubRangeFrom(Allocator, Mask, LHS);
2604 } else if (DstIdx != 0) {
2605 // Transform LHS lanemasks to new register class if necessary.
2606 for (LiveInterval::SubRange &R : LHS.subranges()) {
2607 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2608 R.LaneMask = Mask;
2611 DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2612 << ' ' << LHS << '\n');
2614 // Determine lanemasks of RHS in the coalesced register and merge subranges.
2615 unsigned SrcIdx = CP.getSrcIdx();
2616 bool Abort = false;
2617 if (!RHS.hasSubRanges()) {
2618 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2619 : TRI->getSubRegIndexLaneMask(SrcIdx);
2620 if (!mergeSubRangeInto(LHS, RHS, Mask, CP))
2621 Abort = true;
2622 } else {
2623 // Pair up subranges and merge.
2624 for (LiveInterval::SubRange &R : RHS.subranges()) {
2625 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2626 if (!mergeSubRangeInto(LHS, R, Mask, CP)) {
2627 Abort = true;
2628 break;
2632 if (Abort) {
2633 // This shouldn't have happened :-(
2634 // However we are aware of at least one existing problem where we
2635 // can't merge subranges when multiple ranges end up in the
2636 // "overflow bit" 32. As a workaround we drop all subregister ranges
2637 // which means we loose some precision but are back to a well defined
2638 // state.
2639 assert(TargetRegisterInfo::isImpreciseLaneMask(
2640 CP.getNewRC()->getLaneMask())
2641 && "SubRange merge should only fail when merging into bit 32.");
2642 DEBUG(dbgs() << "\tSubrange join aborted!\n");
2643 LHS.clearSubRanges();
2644 RHS.clearSubRanges();
2645 } else {
2646 DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2648 LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2649 RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2653 // The merging algorithm in LiveInterval::join() can't handle conflicting
2654 // value mappings, so we need to remove any live ranges that overlap a
2655 // CR_Replace resolution. Collect a set of end points that can be used to
2656 // restore the live range after joining.
2657 SmallVector<SlotIndex, 8> EndPoints;
2658 LHSVals.pruneValues(RHSVals, EndPoints, true);
2659 RHSVals.pruneValues(LHSVals, EndPoints, true);
2661 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2662 // registers to require trimming.
2663 SmallVector<unsigned, 8> ShrinkRegs;
2664 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2665 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2666 while (!ShrinkRegs.empty())
2667 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2669 // Join RHS into LHS.
2670 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2672 // Kill flags are going to be wrong if the live ranges were overlapping.
2673 // Eventually, we should simply clear all kill flags when computing live
2674 // ranges. They are reinserted after register allocation.
2675 MRI->clearKillFlags(LHS.reg);
2676 MRI->clearKillFlags(RHS.reg);
2678 if (!EndPoints.empty()) {
2679 // Recompute the parts of the live range we had to remove because of
2680 // CR_Replace conflicts.
2681 DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2682 << " points: " << LHS << '\n');
2683 LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2686 return true;
2689 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2690 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2693 namespace {
2694 /// Information concerning MBB coalescing priority.
2695 struct MBBPriorityInfo {
2696 MachineBasicBlock *MBB;
2697 unsigned Depth;
2698 bool IsSplit;
2700 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2701 : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2705 /// C-style comparator that sorts first based on the loop depth of the basic
2706 /// block (the unsigned), and then on the MBB number.
2708 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
2709 static int compareMBBPriority(const MBBPriorityInfo *LHS,
2710 const MBBPriorityInfo *RHS) {
2711 // Deeper loops first
2712 if (LHS->Depth != RHS->Depth)
2713 return LHS->Depth > RHS->Depth ? -1 : 1;
2715 // Try to unsplit critical edges next.
2716 if (LHS->IsSplit != RHS->IsSplit)
2717 return LHS->IsSplit ? -1 : 1;
2719 // Prefer blocks that are more connected in the CFG. This takes care of
2720 // the most difficult copies first while intervals are short.
2721 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2722 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2723 if (cl != cr)
2724 return cl > cr ? -1 : 1;
2726 // As a last resort, sort by block number.
2727 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2730 /// \returns true if the given copy uses or defines a local live range.
2731 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2732 if (!Copy->isCopy())
2733 return false;
2735 if (Copy->getOperand(1).isUndef())
2736 return false;
2738 unsigned SrcReg = Copy->getOperand(1).getReg();
2739 unsigned DstReg = Copy->getOperand(0).getReg();
2740 if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2741 || TargetRegisterInfo::isPhysicalRegister(DstReg))
2742 return false;
2744 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2745 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2748 bool RegisterCoalescer::
2749 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2750 bool Progress = false;
2751 for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2752 if (!CurrList[i])
2753 continue;
2754 // Skip instruction pointers that have already been erased, for example by
2755 // dead code elimination.
2756 if (ErasedInstrs.erase(CurrList[i])) {
2757 CurrList[i] = nullptr;
2758 continue;
2760 bool Again = false;
2761 bool Success = joinCopy(CurrList[i], Again);
2762 Progress |= Success;
2763 if (Success || !Again)
2764 CurrList[i] = nullptr;
2766 return Progress;
2769 /// Check if DstReg is a terminal node.
2770 /// I.e., it does not have any affinity other than \p Copy.
2771 static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2772 const MachineRegisterInfo *MRI) {
2773 assert(Copy.isCopyLike());
2774 // Check if the destination of this copy as any other affinity.
2775 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2776 if (&MI != &Copy && MI.isCopyLike())
2777 return false;
2778 return true;
2781 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2782 assert(Copy.isCopyLike());
2783 if (!UseTerminalRule)
2784 return false;
2785 unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2786 isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2787 // Check if the destination of this copy has any other affinity.
2788 if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2789 // If SrcReg is a physical register, the copy won't be coalesced.
2790 // Ignoring it may have other side effect (like missing
2791 // rematerialization). So keep it.
2792 TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2793 !isTerminalReg(DstReg, Copy, MRI))
2794 return false;
2796 // DstReg is a terminal node. Check if it interferes with any other
2797 // copy involving SrcReg.
2798 const MachineBasicBlock *OrigBB = Copy.getParent();
2799 const LiveInterval &DstLI = LIS->getInterval(DstReg);
2800 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2801 // Technically we should check if the weight of the new copy is
2802 // interesting compared to the other one and update the weight
2803 // of the copies accordingly. However, this would only work if
2804 // we would gather all the copies first then coalesce, whereas
2805 // right now we interleave both actions.
2806 // For now, just consider the copies that are in the same block.
2807 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2808 continue;
2809 unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2810 isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2811 OtherSubReg);
2812 if (OtherReg == SrcReg)
2813 OtherReg = OtherSrcReg;
2814 // Check if OtherReg is a non-terminal.
2815 if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2816 isTerminalReg(OtherReg, MI, MRI))
2817 continue;
2818 // Check that OtherReg interfere with DstReg.
2819 if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2820 DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2821 return true;
2824 return false;
2827 void
2828 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2829 DEBUG(dbgs() << MBB->getName() << ":\n");
2831 // Collect all copy-like instructions in MBB. Don't start coalescing anything
2832 // yet, it might invalidate the iterator.
2833 const unsigned PrevSize = WorkList.size();
2834 if (JoinGlobalCopies) {
2835 SmallVector<MachineInstr*, 2> LocalTerminals;
2836 SmallVector<MachineInstr*, 2> GlobalTerminals;
2837 // Coalesce copies bottom-up to coalesce local defs before local uses. They
2838 // are not inherently easier to resolve, but slightly preferable until we
2839 // have local live range splitting. In particular this is required by
2840 // cmp+jmp macro fusion.
2841 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2842 MII != E; ++MII) {
2843 if (!MII->isCopyLike())
2844 continue;
2845 bool ApplyTerminalRule = applyTerminalRule(*MII);
2846 if (isLocalCopy(&(*MII), LIS)) {
2847 if (ApplyTerminalRule)
2848 LocalTerminals.push_back(&(*MII));
2849 else
2850 LocalWorkList.push_back(&(*MII));
2851 } else {
2852 if (ApplyTerminalRule)
2853 GlobalTerminals.push_back(&(*MII));
2854 else
2855 WorkList.push_back(&(*MII));
2858 // Append the copies evicted by the terminal rule at the end of the list.
2859 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2860 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2862 else {
2863 SmallVector<MachineInstr*, 2> Terminals;
2864 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2865 MII != E; ++MII)
2866 if (MII->isCopyLike()) {
2867 if (applyTerminalRule(*MII))
2868 Terminals.push_back(&(*MII));
2869 else
2870 WorkList.push_back(MII);
2872 // Append the copies evicted by the terminal rule at the end of the list.
2873 WorkList.append(Terminals.begin(), Terminals.end());
2875 // Try coalescing the collected copies immediately, and remove the nulls.
2876 // This prevents the WorkList from getting too large since most copies are
2877 // joinable on the first attempt.
2878 MutableArrayRef<MachineInstr*>
2879 CurrList(WorkList.begin() + PrevSize, WorkList.end());
2880 if (copyCoalesceWorkList(CurrList))
2881 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2882 (MachineInstr*)nullptr), WorkList.end());
2885 void RegisterCoalescer::coalesceLocals() {
2886 copyCoalesceWorkList(LocalWorkList);
2887 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2888 if (LocalWorkList[j])
2889 WorkList.push_back(LocalWorkList[j]);
2891 LocalWorkList.clear();
2894 void RegisterCoalescer::joinAllIntervals() {
2895 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2896 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2898 std::vector<MBBPriorityInfo> MBBs;
2899 MBBs.reserve(MF->size());
2900 for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2901 MachineBasicBlock *MBB = &*I;
2902 MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2903 JoinSplitEdges && isSplitEdge(MBB)));
2905 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2907 // Coalesce intervals in MBB priority order.
2908 unsigned CurrDepth = UINT_MAX;
2909 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2910 // Try coalescing the collected local copies for deeper loops.
2911 if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2912 coalesceLocals();
2913 CurrDepth = MBBs[i].Depth;
2915 copyCoalesceInMBB(MBBs[i].MBB);
2917 coalesceLocals();
2919 // Joining intervals can allow other intervals to be joined. Iteratively join
2920 // until we make no progress.
2921 while (copyCoalesceWorkList(WorkList))
2922 /* empty */ ;
2925 void RegisterCoalescer::releaseMemory() {
2926 ErasedInstrs.clear();
2927 WorkList.clear();
2928 DeadDefs.clear();
2929 InflateRegs.clear();
2932 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2933 MF = &fn;
2934 MRI = &fn.getRegInfo();
2935 TM = &fn.getTarget();
2936 const TargetSubtargetInfo &STI = fn.getSubtarget();
2937 TRI = STI.getRegisterInfo();
2938 TII = STI.getInstrInfo();
2939 LIS = &getAnalysis<LiveIntervals>();
2940 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2941 Loops = &getAnalysis<MachineLoopInfo>();
2942 if (EnableGlobalCopies == cl::BOU_UNSET)
2943 JoinGlobalCopies = STI.enableJoinGlobalCopies();
2944 else
2945 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2947 // The MachineScheduler does not currently require JoinSplitEdges. This will
2948 // either be enabled unconditionally or replaced by a more general live range
2949 // splitting optimization.
2950 JoinSplitEdges = EnableJoinSplits;
2952 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2953 << "********** Function: " << MF->getName() << '\n');
2955 if (VerifyCoalescing)
2956 MF->verify(this, "Before register coalescing");
2958 RegClassInfo.runOnMachineFunction(fn);
2960 // Join (coalesce) intervals if requested.
2961 if (EnableJoining)
2962 joinAllIntervals();
2964 // After deleting a lot of copies, register classes may be less constrained.
2965 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2966 // DPR inflation.
2967 array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2968 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2969 InflateRegs.end());
2970 DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2971 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2972 unsigned Reg = InflateRegs[i];
2973 if (MRI->reg_nodbg_empty(Reg))
2974 continue;
2975 if (MRI->recomputeRegClass(Reg)) {
2976 DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2977 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
2978 ++NumInflated;
2980 LiveInterval &LI = LIS->getInterval(Reg);
2981 if (LI.hasSubRanges()) {
2982 // If the inflated register class does not support subregisters anymore
2983 // remove the subranges.
2984 if (!MRI->shouldTrackSubRegLiveness(Reg)) {
2985 LI.clearSubRanges();
2986 } else {
2987 #ifndef NDEBUG
2988 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2989 // If subranges are still supported, then the same subregs
2990 // should still be supported.
2991 for (LiveInterval::SubRange &S : LI.subranges()) {
2992 assert((S.LaneMask & ~MaxMask) == 0);
2994 #endif
3000 DEBUG(dump());
3001 if (VerifyCoalescing)
3002 MF->verify(this, "After register coalescing");
3003 return true;
3006 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3007 LIS->print(O, m);