[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / CodeGen / MachineInstr.cpp
blobe202810bf6e59145dce60fdb5dee66c32248b195
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 using namespace llvm;
47 static cl::opt<bool> PrintWholeRegMask(
48 "print-whole-regmask",
49 cl::desc("Print the full contents of regmask operands in IR dumps"),
50 cl::init(true), cl::Hidden);
52 //===----------------------------------------------------------------------===//
53 // MachineOperand Implementation
54 //===----------------------------------------------------------------------===//
56 void MachineOperand::setReg(unsigned Reg) {
57 if (getReg() == Reg) return; // No change.
59 // Otherwise, we have to change the register. If this operand is embedded
60 // into a machine function, we need to update the old and new register's
61 // use/def lists.
62 if (MachineInstr *MI = getParent())
63 if (MachineBasicBlock *MBB = MI->getParent())
64 if (MachineFunction *MF = MBB->getParent()) {
65 MachineRegisterInfo &MRI = MF->getRegInfo();
66 MRI.removeRegOperandFromUseList(this);
67 SmallContents.RegNo = Reg;
68 MRI.addRegOperandToUseList(this);
69 return;
72 // Otherwise, just change the register, no problem. :)
73 SmallContents.RegNo = Reg;
76 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
77 const TargetRegisterInfo &TRI) {
78 assert(TargetRegisterInfo::isVirtualRegister(Reg));
79 if (SubIdx && getSubReg())
80 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
81 setReg(Reg);
82 if (SubIdx)
83 setSubReg(SubIdx);
86 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
87 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
88 if (getSubReg()) {
89 Reg = TRI.getSubReg(Reg, getSubReg());
90 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
91 // That won't happen in legal code.
92 setSubReg(0);
94 setReg(Reg);
97 /// Change a def to a use, or a use to a def.
98 void MachineOperand::setIsDef(bool Val) {
99 assert(isReg() && "Wrong MachineOperand accessor");
100 assert((!Val || !isDebug()) && "Marking a debug operation as def");
101 if (IsDef == Val)
102 return;
103 // MRI may keep uses and defs in different list positions.
104 if (MachineInstr *MI = getParent())
105 if (MachineBasicBlock *MBB = MI->getParent())
106 if (MachineFunction *MF = MBB->getParent()) {
107 MachineRegisterInfo &MRI = MF->getRegInfo();
108 MRI.removeRegOperandFromUseList(this);
109 IsDef = Val;
110 MRI.addRegOperandToUseList(this);
111 return;
113 IsDef = Val;
116 // If this operand is currently a register operand, and if this is in a
117 // function, deregister the operand from the register's use/def list.
118 void MachineOperand::removeRegFromUses() {
119 if (!isReg() || !isOnRegUseList())
120 return;
122 if (MachineInstr *MI = getParent()) {
123 if (MachineBasicBlock *MBB = MI->getParent()) {
124 if (MachineFunction *MF = MBB->getParent())
125 MF->getRegInfo().removeRegOperandFromUseList(this);
130 /// ChangeToImmediate - Replace this operand with a new immediate operand of
131 /// the specified value. If an operand is known to be an immediate already,
132 /// the setImm method should be used.
133 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
134 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
136 removeRegFromUses();
138 OpKind = MO_Immediate;
139 Contents.ImmVal = ImmVal;
142 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
143 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
145 removeRegFromUses();
147 OpKind = MO_FPImmediate;
148 Contents.CFP = FPImm;
151 void MachineOperand::ChangeToES(const char *SymName, unsigned char TargetFlags) {
152 assert((!isReg() || !isTied()) &&
153 "Cannot change a tied operand into an external symbol");
155 removeRegFromUses();
157 OpKind = MO_ExternalSymbol;
158 Contents.OffsetedInfo.Val.SymbolName = SymName;
159 setOffset(0); // Offset is always 0.
160 setTargetFlags(TargetFlags);
163 void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
164 assert((!isReg() || !isTied()) &&
165 "Cannot change a tied operand into an MCSymbol");
167 removeRegFromUses();
169 OpKind = MO_MCSymbol;
170 Contents.Sym = Sym;
173 /// ChangeToRegister - Replace this operand with a new register operand of
174 /// the specified value. If an operand is known to be an register already,
175 /// the setReg method should be used.
176 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
177 bool isKill, bool isDead, bool isUndef,
178 bool isDebug) {
179 MachineRegisterInfo *RegInfo = nullptr;
180 if (MachineInstr *MI = getParent())
181 if (MachineBasicBlock *MBB = MI->getParent())
182 if (MachineFunction *MF = MBB->getParent())
183 RegInfo = &MF->getRegInfo();
184 // If this operand is already a register operand, remove it from the
185 // register's use/def lists.
186 bool WasReg = isReg();
187 if (RegInfo && WasReg)
188 RegInfo->removeRegOperandFromUseList(this);
190 // Change this to a register and set the reg#.
191 OpKind = MO_Register;
192 SmallContents.RegNo = Reg;
193 SubReg_TargetFlags = 0;
194 IsDef = isDef;
195 IsImp = isImp;
196 IsKill = isKill;
197 IsDead = isDead;
198 IsUndef = isUndef;
199 IsInternalRead = false;
200 IsEarlyClobber = false;
201 IsDebug = isDebug;
202 // Ensure isOnRegUseList() returns false.
203 Contents.Reg.Prev = nullptr;
204 // Preserve the tie when the operand was already a register.
205 if (!WasReg)
206 TiedTo = 0;
208 // If this operand is embedded in a function, add the operand to the
209 // register's use/def list.
210 if (RegInfo)
211 RegInfo->addRegOperandToUseList(this);
214 /// isIdenticalTo - Return true if this operand is identical to the specified
215 /// operand. Note that this should stay in sync with the hash_value overload
216 /// below.
217 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
218 if (getType() != Other.getType() ||
219 getTargetFlags() != Other.getTargetFlags())
220 return false;
222 switch (getType()) {
223 case MachineOperand::MO_Register:
224 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
225 getSubReg() == Other.getSubReg();
226 case MachineOperand::MO_Immediate:
227 return getImm() == Other.getImm();
228 case MachineOperand::MO_CImmediate:
229 return getCImm() == Other.getCImm();
230 case MachineOperand::MO_FPImmediate:
231 return getFPImm() == Other.getFPImm();
232 case MachineOperand::MO_MachineBasicBlock:
233 return getMBB() == Other.getMBB();
234 case MachineOperand::MO_FrameIndex:
235 return getIndex() == Other.getIndex();
236 case MachineOperand::MO_ConstantPoolIndex:
237 case MachineOperand::MO_TargetIndex:
238 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
239 case MachineOperand::MO_JumpTableIndex:
240 return getIndex() == Other.getIndex();
241 case MachineOperand::MO_GlobalAddress:
242 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
243 case MachineOperand::MO_ExternalSymbol:
244 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
245 getOffset() == Other.getOffset();
246 case MachineOperand::MO_BlockAddress:
247 return getBlockAddress() == Other.getBlockAddress() &&
248 getOffset() == Other.getOffset();
249 case MachineOperand::MO_RegisterMask:
250 case MachineOperand::MO_RegisterLiveOut:
251 return getRegMask() == Other.getRegMask();
252 case MachineOperand::MO_MCSymbol:
253 return getMCSymbol() == Other.getMCSymbol();
254 case MachineOperand::MO_CFIIndex:
255 return getCFIIndex() == Other.getCFIIndex();
256 case MachineOperand::MO_Metadata:
257 return getMetadata() == Other.getMetadata();
259 llvm_unreachable("Invalid machine operand type");
262 // Note: this must stay exactly in sync with isIdenticalTo above.
263 hash_code llvm::hash_value(const MachineOperand &MO) {
264 switch (MO.getType()) {
265 case MachineOperand::MO_Register:
266 // Register operands don't have target flags.
267 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
268 case MachineOperand::MO_Immediate:
269 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
270 case MachineOperand::MO_CImmediate:
271 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
272 case MachineOperand::MO_FPImmediate:
273 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
274 case MachineOperand::MO_MachineBasicBlock:
275 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
276 case MachineOperand::MO_FrameIndex:
277 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
278 case MachineOperand::MO_ConstantPoolIndex:
279 case MachineOperand::MO_TargetIndex:
280 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
281 MO.getOffset());
282 case MachineOperand::MO_JumpTableIndex:
283 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
284 case MachineOperand::MO_ExternalSymbol:
285 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
286 MO.getSymbolName());
287 case MachineOperand::MO_GlobalAddress:
288 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
289 MO.getOffset());
290 case MachineOperand::MO_BlockAddress:
291 return hash_combine(MO.getType(), MO.getTargetFlags(),
292 MO.getBlockAddress(), MO.getOffset());
293 case MachineOperand::MO_RegisterMask:
294 case MachineOperand::MO_RegisterLiveOut:
295 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
296 case MachineOperand::MO_Metadata:
297 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
298 case MachineOperand::MO_MCSymbol:
299 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
300 case MachineOperand::MO_CFIIndex:
301 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
303 llvm_unreachable("Invalid machine operand type");
306 void MachineOperand::print(raw_ostream &OS,
307 const TargetRegisterInfo *TRI) const {
308 ModuleSlotTracker DummyMST(nullptr);
309 print(OS, DummyMST, TRI);
312 void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
313 const TargetRegisterInfo *TRI) const {
314 switch (getType()) {
315 case MachineOperand::MO_Register:
316 OS << PrintReg(getReg(), TRI, getSubReg());
318 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
319 isInternalRead() || isEarlyClobber() || isTied()) {
320 OS << '<';
321 bool NeedComma = false;
322 if (isDef()) {
323 if (NeedComma) OS << ',';
324 if (isEarlyClobber())
325 OS << "earlyclobber,";
326 if (isImplicit())
327 OS << "imp-";
328 OS << "def";
329 NeedComma = true;
330 // <def,read-undef> only makes sense when getSubReg() is set.
331 // Don't clutter the output otherwise.
332 if (isUndef() && getSubReg())
333 OS << ",read-undef";
334 } else if (isImplicit()) {
335 OS << "imp-use";
336 NeedComma = true;
339 if (isKill()) {
340 if (NeedComma) OS << ',';
341 OS << "kill";
342 NeedComma = true;
344 if (isDead()) {
345 if (NeedComma) OS << ',';
346 OS << "dead";
347 NeedComma = true;
349 if (isUndef() && isUse()) {
350 if (NeedComma) OS << ',';
351 OS << "undef";
352 NeedComma = true;
354 if (isInternalRead()) {
355 if (NeedComma) OS << ',';
356 OS << "internal";
357 NeedComma = true;
359 if (isTied()) {
360 if (NeedComma) OS << ',';
361 OS << "tied";
362 if (TiedTo != 15)
363 OS << unsigned(TiedTo - 1);
365 OS << '>';
367 break;
368 case MachineOperand::MO_Immediate:
369 OS << getImm();
370 break;
371 case MachineOperand::MO_CImmediate:
372 getCImm()->getValue().print(OS, false);
373 break;
374 case MachineOperand::MO_FPImmediate:
375 if (getFPImm()->getType()->isFloatTy())
376 OS << getFPImm()->getValueAPF().convertToFloat();
377 else
378 OS << getFPImm()->getValueAPF().convertToDouble();
379 break;
380 case MachineOperand::MO_MachineBasicBlock:
381 OS << "<BB#" << getMBB()->getNumber() << ">";
382 break;
383 case MachineOperand::MO_FrameIndex:
384 OS << "<fi#" << getIndex() << '>';
385 break;
386 case MachineOperand::MO_ConstantPoolIndex:
387 OS << "<cp#" << getIndex();
388 if (getOffset()) OS << "+" << getOffset();
389 OS << '>';
390 break;
391 case MachineOperand::MO_TargetIndex:
392 OS << "<ti#" << getIndex();
393 if (getOffset()) OS << "+" << getOffset();
394 OS << '>';
395 break;
396 case MachineOperand::MO_JumpTableIndex:
397 OS << "<jt#" << getIndex() << '>';
398 break;
399 case MachineOperand::MO_GlobalAddress:
400 OS << "<ga:";
401 getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
402 if (getOffset()) OS << "+" << getOffset();
403 OS << '>';
404 break;
405 case MachineOperand::MO_ExternalSymbol:
406 OS << "<es:" << getSymbolName();
407 if (getOffset()) OS << "+" << getOffset();
408 OS << '>';
409 break;
410 case MachineOperand::MO_BlockAddress:
411 OS << '<';
412 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false, MST);
413 if (getOffset()) OS << "+" << getOffset();
414 OS << '>';
415 break;
416 case MachineOperand::MO_RegisterMask: {
417 unsigned NumRegsInMask = 0;
418 unsigned NumRegsEmitted = 0;
419 OS << "<regmask";
420 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
421 unsigned MaskWord = i / 32;
422 unsigned MaskBit = i % 32;
423 if (getRegMask()[MaskWord] & (1 << MaskBit)) {
424 if (PrintWholeRegMask || NumRegsEmitted <= 10) {
425 OS << " " << PrintReg(i, TRI);
426 NumRegsEmitted++;
428 NumRegsInMask++;
431 if (NumRegsEmitted != NumRegsInMask)
432 OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
433 OS << ">";
434 break;
436 case MachineOperand::MO_RegisterLiveOut:
437 OS << "<regliveout>";
438 break;
439 case MachineOperand::MO_Metadata:
440 OS << '<';
441 getMetadata()->printAsOperand(OS, MST);
442 OS << '>';
443 break;
444 case MachineOperand::MO_MCSymbol:
445 OS << "<MCSym=" << *getMCSymbol() << '>';
446 break;
447 case MachineOperand::MO_CFIIndex:
448 OS << "<call frame instruction>";
449 break;
452 if (unsigned TF = getTargetFlags())
453 OS << "[TF=" << TF << ']';
456 //===----------------------------------------------------------------------===//
457 // MachineMemOperand Implementation
458 //===----------------------------------------------------------------------===//
460 /// getAddrSpace - Return the LLVM IR address space number that this pointer
461 /// points into.
462 unsigned MachinePointerInfo::getAddrSpace() const {
463 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
464 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
467 /// getConstantPool - Return a MachinePointerInfo record that refers to the
468 /// constant pool.
469 MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
470 return MachinePointerInfo(MF.getPSVManager().getConstantPool());
473 /// getFixedStack - Return a MachinePointerInfo record that refers to the
474 /// the specified FrameIndex.
475 MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
476 int FI, int64_t Offset) {
477 return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
480 MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
481 return MachinePointerInfo(MF.getPSVManager().getJumpTable());
484 MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
485 return MachinePointerInfo(MF.getPSVManager().getGOT());
488 MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
489 int64_t Offset) {
490 return MachinePointerInfo(MF.getPSVManager().getStack(), Offset);
493 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
494 uint64_t s, unsigned int a,
495 const AAMDNodes &AAInfo,
496 const MDNode *Ranges)
497 : PtrInfo(ptrinfo), Size(s),
498 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
499 AAInfo(AAInfo), Ranges(Ranges) {
500 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
501 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
502 "invalid pointer value");
503 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
504 assert((isLoad() || isStore()) && "Not a load/store!");
507 /// Profile - Gather unique data for the object.
509 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
510 ID.AddInteger(getOffset());
511 ID.AddInteger(Size);
512 ID.AddPointer(getOpaqueValue());
513 ID.AddInteger(Flags);
516 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
517 // The Value and Offset may differ due to CSE. But the flags and size
518 // should be the same.
519 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
520 assert(MMO->getSize() == getSize() && "Size mismatch!");
522 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
523 // Update the alignment value.
524 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
525 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
526 // Also update the base and offset, because the new alignment may
527 // not be applicable with the old ones.
528 PtrInfo = MMO->PtrInfo;
532 /// getAlignment - Return the minimum known alignment in bytes of the
533 /// actual memory reference.
534 uint64_t MachineMemOperand::getAlignment() const {
535 return MinAlign(getBaseAlignment(), getOffset());
538 void MachineMemOperand::print(raw_ostream &OS) const {
539 ModuleSlotTracker DummyMST(nullptr);
540 print(OS, DummyMST);
542 void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST) const {
543 assert((isLoad() || isStore()) &&
544 "SV has to be a load, store or both.");
546 if (isVolatile())
547 OS << "Volatile ";
549 if (isLoad())
550 OS << "LD";
551 if (isStore())
552 OS << "ST";
553 OS << getSize();
555 // Print the address information.
556 OS << "[";
557 if (const Value *V = getValue())
558 V->printAsOperand(OS, /*PrintType=*/false, MST);
559 else if (const PseudoSourceValue *PSV = getPseudoValue())
560 PSV->printCustom(OS);
561 else
562 OS << "<unknown>";
564 unsigned AS = getAddrSpace();
565 if (AS != 0)
566 OS << "(addrspace=" << AS << ')';
568 // If the alignment of the memory reference itself differs from the alignment
569 // of the base pointer, print the base alignment explicitly, next to the base
570 // pointer.
571 if (getBaseAlignment() != getAlignment())
572 OS << "(align=" << getBaseAlignment() << ")";
574 if (getOffset() != 0)
575 OS << "+" << getOffset();
576 OS << "]";
578 // Print the alignment of the reference.
579 if (getBaseAlignment() != getAlignment() || getBaseAlignment() != getSize())
580 OS << "(align=" << getAlignment() << ")";
582 // Print TBAA info.
583 if (const MDNode *TBAAInfo = getAAInfo().TBAA) {
584 OS << "(tbaa=";
585 if (TBAAInfo->getNumOperands() > 0)
586 TBAAInfo->getOperand(0)->printAsOperand(OS, MST);
587 else
588 OS << "<unknown>";
589 OS << ")";
592 // Print AA scope info.
593 if (const MDNode *ScopeInfo = getAAInfo().Scope) {
594 OS << "(alias.scope=";
595 if (ScopeInfo->getNumOperands() > 0)
596 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
597 ScopeInfo->getOperand(i)->printAsOperand(OS, MST);
598 if (i != ie-1)
599 OS << ",";
601 else
602 OS << "<unknown>";
603 OS << ")";
606 // Print AA noalias scope info.
607 if (const MDNode *NoAliasInfo = getAAInfo().NoAlias) {
608 OS << "(noalias=";
609 if (NoAliasInfo->getNumOperands() > 0)
610 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
611 NoAliasInfo->getOperand(i)->printAsOperand(OS, MST);
612 if (i != ie-1)
613 OS << ",";
615 else
616 OS << "<unknown>";
617 OS << ")";
620 // Print nontemporal info.
621 if (isNonTemporal())
622 OS << "(nontemporal)";
624 if (isInvariant())
625 OS << "(invariant)";
628 //===----------------------------------------------------------------------===//
629 // MachineInstr Implementation
630 //===----------------------------------------------------------------------===//
632 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
633 if (MCID->ImplicitDefs)
634 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
635 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
636 if (MCID->ImplicitUses)
637 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
638 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
641 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
642 /// implicit operands. It reserves space for the number of operands specified by
643 /// the MCInstrDesc.
644 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
645 DebugLoc dl, bool NoImp)
646 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
647 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
648 debugLoc(std::move(dl)) {
649 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
651 // Reserve space for the expected number of operands.
652 if (unsigned NumOps = MCID->getNumOperands() +
653 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
654 CapOperands = OperandCapacity::get(NumOps);
655 Operands = MF.allocateOperandArray(CapOperands);
658 if (!NoImp)
659 addImplicitDefUseOperands(MF);
662 /// MachineInstr ctor - Copies MachineInstr arg exactly
664 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
665 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
666 Flags(0), AsmPrinterFlags(0),
667 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
668 debugLoc(MI.getDebugLoc()) {
669 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
671 CapOperands = OperandCapacity::get(MI.getNumOperands());
672 Operands = MF.allocateOperandArray(CapOperands);
674 // Copy operands.
675 for (const MachineOperand &MO : MI.operands())
676 addOperand(MF, MO);
678 // Copy all the sensible flags.
679 setFlags(MI.Flags);
682 /// getRegInfo - If this instruction is embedded into a MachineFunction,
683 /// return the MachineRegisterInfo object for the current function, otherwise
684 /// return null.
685 MachineRegisterInfo *MachineInstr::getRegInfo() {
686 if (MachineBasicBlock *MBB = getParent())
687 return &MBB->getParent()->getRegInfo();
688 return nullptr;
691 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
692 /// this instruction from their respective use lists. This requires that the
693 /// operands already be on their use lists.
694 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
695 for (MachineOperand &MO : operands())
696 if (MO.isReg())
697 MRI.removeRegOperandFromUseList(&MO);
700 /// AddRegOperandsToUseLists - Add all of the register operands in
701 /// this instruction from their respective use lists. This requires that the
702 /// operands not be on their use lists yet.
703 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
704 for (MachineOperand &MO : operands())
705 if (MO.isReg())
706 MRI.addRegOperandToUseList(&MO);
709 void MachineInstr::addOperand(const MachineOperand &Op) {
710 MachineBasicBlock *MBB = getParent();
711 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
712 MachineFunction *MF = MBB->getParent();
713 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
714 addOperand(*MF, Op);
717 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
718 /// ranges. If MRI is non-null also update use-def chains.
719 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
720 unsigned NumOps, MachineRegisterInfo *MRI) {
721 if (MRI)
722 return MRI->moveOperands(Dst, Src, NumOps);
724 // MachineOperand is a trivially copyable type so we can just use memmove.
725 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
728 /// addOperand - Add the specified operand to the instruction. If it is an
729 /// implicit operand, it is added to the end of the operand list. If it is
730 /// an explicit operand it is added at the end of the explicit operand list
731 /// (before the first implicit operand).
732 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
733 assert(MCID && "Cannot add operands before providing an instr descriptor");
735 // Check if we're adding one of our existing operands.
736 if (&Op >= Operands && &Op < Operands + NumOperands) {
737 // This is unusual: MI->addOperand(MI->getOperand(i)).
738 // If adding Op requires reallocating or moving existing operands around,
739 // the Op reference could go stale. Support it by copying Op.
740 MachineOperand CopyOp(Op);
741 return addOperand(MF, CopyOp);
744 // Find the insert location for the new operand. Implicit registers go at
745 // the end, everything else goes before the implicit regs.
747 // FIXME: Allow mixed explicit and implicit operands on inline asm.
748 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
749 // implicit-defs, but they must not be moved around. See the FIXME in
750 // InstrEmitter.cpp.
751 unsigned OpNo = getNumOperands();
752 bool isImpReg = Op.isReg() && Op.isImplicit();
753 if (!isImpReg && !isInlineAsm()) {
754 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
755 --OpNo;
756 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
760 #ifndef NDEBUG
761 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
762 // OpNo now points as the desired insertion point. Unless this is a variadic
763 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
764 // RegMask operands go between the explicit and implicit operands.
765 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
766 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
767 "Trying to add an operand to a machine instr that is already done!");
768 #endif
770 MachineRegisterInfo *MRI = getRegInfo();
772 // Determine if the Operands array needs to be reallocated.
773 // Save the old capacity and operand array.
774 OperandCapacity OldCap = CapOperands;
775 MachineOperand *OldOperands = Operands;
776 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
777 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
778 Operands = MF.allocateOperandArray(CapOperands);
779 // Move the operands before the insertion point.
780 if (OpNo)
781 moveOperands(Operands, OldOperands, OpNo, MRI);
784 // Move the operands following the insertion point.
785 if (OpNo != NumOperands)
786 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
787 MRI);
788 ++NumOperands;
790 // Deallocate the old operand array.
791 if (OldOperands != Operands && OldOperands)
792 MF.deallocateOperandArray(OldCap, OldOperands);
794 // Copy Op into place. It still needs to be inserted into the MRI use lists.
795 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
796 NewMO->ParentMI = this;
798 // When adding a register operand, tell MRI about it.
799 if (NewMO->isReg()) {
800 // Ensure isOnRegUseList() returns false, regardless of Op's status.
801 NewMO->Contents.Reg.Prev = nullptr;
802 // Ignore existing ties. This is not a property that can be copied.
803 NewMO->TiedTo = 0;
804 // Add the new operand to MRI, but only for instructions in an MBB.
805 if (MRI)
806 MRI->addRegOperandToUseList(NewMO);
807 // The MCID operand information isn't accurate until we start adding
808 // explicit operands. The implicit operands are added first, then the
809 // explicits are inserted before them.
810 if (!isImpReg) {
811 // Tie uses to defs as indicated in MCInstrDesc.
812 if (NewMO->isUse()) {
813 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
814 if (DefIdx != -1)
815 tieOperands(DefIdx, OpNo);
817 // If the register operand is flagged as early, mark the operand as such.
818 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
819 NewMO->setIsEarlyClobber(true);
824 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
825 /// fewer operand than it started with.
827 void MachineInstr::RemoveOperand(unsigned OpNo) {
828 assert(OpNo < getNumOperands() && "Invalid operand number");
829 untieRegOperand(OpNo);
831 #ifndef NDEBUG
832 // Moving tied operands would break the ties.
833 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
834 if (Operands[i].isReg())
835 assert(!Operands[i].isTied() && "Cannot move tied operands");
836 #endif
838 MachineRegisterInfo *MRI = getRegInfo();
839 if (MRI && Operands[OpNo].isReg())
840 MRI->removeRegOperandFromUseList(Operands + OpNo);
842 // Don't call the MachineOperand destructor. A lot of this code depends on
843 // MachineOperand having a trivial destructor anyway, and adding a call here
844 // wouldn't make it 'destructor-correct'.
846 if (unsigned N = NumOperands - 1 - OpNo)
847 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
848 --NumOperands;
851 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
852 /// This function should be used only occasionally. The setMemRefs function
853 /// is the primary method for setting up a MachineInstr's MemRefs list.
854 void MachineInstr::addMemOperand(MachineFunction &MF,
855 MachineMemOperand *MO) {
856 mmo_iterator OldMemRefs = MemRefs;
857 unsigned OldNumMemRefs = NumMemRefs;
859 unsigned NewNum = NumMemRefs + 1;
860 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
862 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
863 NewMemRefs[NewNum - 1] = MO;
864 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
867 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
868 assert(!isBundledWithPred() && "Must be called on bundle header");
869 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
870 if (MII->getDesc().getFlags() & Mask) {
871 if (Type == AnyInBundle)
872 return true;
873 } else {
874 if (Type == AllInBundle && !MII->isBundle())
875 return false;
877 // This was the last instruction in the bundle.
878 if (!MII->isBundledWithSucc())
879 return Type == AllInBundle;
883 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
884 MICheckType Check) const {
885 // If opcodes or number of operands are not the same then the two
886 // instructions are obviously not identical.
887 if (Other->getOpcode() != getOpcode() ||
888 Other->getNumOperands() != getNumOperands())
889 return false;
891 if (isBundle()) {
892 // Both instructions are bundles, compare MIs inside the bundle.
893 MachineBasicBlock::const_instr_iterator I1 = getIterator();
894 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
895 MachineBasicBlock::const_instr_iterator I2 = Other->getIterator();
896 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
897 while (++I1 != E1 && I1->isInsideBundle()) {
898 ++I2;
899 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(&*I2, Check))
900 return false;
904 // Check operands to make sure they match.
905 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
906 const MachineOperand &MO = getOperand(i);
907 const MachineOperand &OMO = Other->getOperand(i);
908 if (!MO.isReg()) {
909 if (!MO.isIdenticalTo(OMO))
910 return false;
911 continue;
914 // Clients may or may not want to ignore defs when testing for equality.
915 // For example, machine CSE pass only cares about finding common
916 // subexpressions, so it's safe to ignore virtual register defs.
917 if (MO.isDef()) {
918 if (Check == IgnoreDefs)
919 continue;
920 else if (Check == IgnoreVRegDefs) {
921 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
922 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
923 if (MO.getReg() != OMO.getReg())
924 return false;
925 } else {
926 if (!MO.isIdenticalTo(OMO))
927 return false;
928 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
929 return false;
931 } else {
932 if (!MO.isIdenticalTo(OMO))
933 return false;
934 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
935 return false;
938 // If DebugLoc does not match then two dbg.values are not identical.
939 if (isDebugValue())
940 if (getDebugLoc() && Other->getDebugLoc() &&
941 getDebugLoc() != Other->getDebugLoc())
942 return false;
943 return true;
946 MachineInstr *MachineInstr::removeFromParent() {
947 assert(getParent() && "Not embedded in a basic block!");
948 return getParent()->remove(this);
951 MachineInstr *MachineInstr::removeFromBundle() {
952 assert(getParent() && "Not embedded in a basic block!");
953 return getParent()->remove_instr(this);
956 void MachineInstr::eraseFromParent() {
957 assert(getParent() && "Not embedded in a basic block!");
958 getParent()->erase(this);
961 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
962 assert(getParent() && "Not embedded in a basic block!");
963 MachineBasicBlock *MBB = getParent();
964 MachineFunction *MF = MBB->getParent();
965 assert(MF && "Not embedded in a function!");
967 MachineInstr *MI = (MachineInstr *)this;
968 MachineRegisterInfo &MRI = MF->getRegInfo();
970 for (const MachineOperand &MO : MI->operands()) {
971 if (!MO.isReg() || !MO.isDef())
972 continue;
973 unsigned Reg = MO.getReg();
974 if (!TargetRegisterInfo::isVirtualRegister(Reg))
975 continue;
976 MRI.markUsesInDebugValueAsUndef(Reg);
978 MI->eraseFromParent();
981 void MachineInstr::eraseFromBundle() {
982 assert(getParent() && "Not embedded in a basic block!");
983 getParent()->erase_instr(this);
986 /// getNumExplicitOperands - Returns the number of non-implicit operands.
988 unsigned MachineInstr::getNumExplicitOperands() const {
989 unsigned NumOperands = MCID->getNumOperands();
990 if (!MCID->isVariadic())
991 return NumOperands;
993 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
994 const MachineOperand &MO = getOperand(i);
995 if (!MO.isReg() || !MO.isImplicit())
996 NumOperands++;
998 return NumOperands;
1001 void MachineInstr::bundleWithPred() {
1002 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
1003 setFlag(BundledPred);
1004 MachineBasicBlock::instr_iterator Pred = getIterator();
1005 --Pred;
1006 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1007 Pred->setFlag(BundledSucc);
1010 void MachineInstr::bundleWithSucc() {
1011 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
1012 setFlag(BundledSucc);
1013 MachineBasicBlock::instr_iterator Succ = getIterator();
1014 ++Succ;
1015 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
1016 Succ->setFlag(BundledPred);
1019 void MachineInstr::unbundleFromPred() {
1020 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
1021 clearFlag(BundledPred);
1022 MachineBasicBlock::instr_iterator Pred = getIterator();
1023 --Pred;
1024 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
1025 Pred->clearFlag(BundledSucc);
1028 void MachineInstr::unbundleFromSucc() {
1029 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
1030 clearFlag(BundledSucc);
1031 MachineBasicBlock::instr_iterator Succ = getIterator();
1032 ++Succ;
1033 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
1034 Succ->clearFlag(BundledPred);
1037 bool MachineInstr::isStackAligningInlineAsm() const {
1038 if (isInlineAsm()) {
1039 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1040 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1041 return true;
1043 return false;
1046 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
1047 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
1048 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1049 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
1052 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
1053 unsigned *GroupNo) const {
1054 assert(isInlineAsm() && "Expected an inline asm instruction");
1055 assert(OpIdx < getNumOperands() && "OpIdx out of range");
1057 // Ignore queries about the initial operands.
1058 if (OpIdx < InlineAsm::MIOp_FirstOperand)
1059 return -1;
1061 unsigned Group = 0;
1062 unsigned NumOps;
1063 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1064 i += NumOps) {
1065 const MachineOperand &FlagMO = getOperand(i);
1066 // If we reach the implicit register operands, stop looking.
1067 if (!FlagMO.isImm())
1068 return -1;
1069 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1070 if (i + NumOps > OpIdx) {
1071 if (GroupNo)
1072 *GroupNo = Group;
1073 return i;
1075 ++Group;
1077 return -1;
1080 const TargetRegisterClass*
1081 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1082 const TargetInstrInfo *TII,
1083 const TargetRegisterInfo *TRI) const {
1084 assert(getParent() && "Can't have an MBB reference here!");
1085 assert(getParent()->getParent() && "Can't have an MF reference here!");
1086 const MachineFunction &MF = *getParent()->getParent();
1088 // Most opcodes have fixed constraints in their MCInstrDesc.
1089 if (!isInlineAsm())
1090 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1092 if (!getOperand(OpIdx).isReg())
1093 return nullptr;
1095 // For tied uses on inline asm, get the constraint from the def.
1096 unsigned DefIdx;
1097 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1098 OpIdx = DefIdx;
1100 // Inline asm stores register class constraints in the flag word.
1101 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1102 if (FlagIdx < 0)
1103 return nullptr;
1105 unsigned Flag = getOperand(FlagIdx).getImm();
1106 unsigned RCID;
1107 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1108 return TRI->getRegClass(RCID);
1110 // Assume that all registers in a memory operand are pointers.
1111 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1112 return TRI->getPointerRegClass(MF);
1114 return nullptr;
1117 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1118 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1119 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1120 // Check every operands inside the bundle if we have
1121 // been asked to.
1122 if (ExploreBundle)
1123 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1124 ++OpndIt)
1125 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1126 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1127 else
1128 // Otherwise, just check the current operands.
1129 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
1130 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
1131 return CurRC;
1134 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1135 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1136 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1137 assert(CurRC && "Invalid initial register class");
1138 // Check if Reg is constrained by some of its use/def from MI.
1139 const MachineOperand &MO = getOperand(OpIdx);
1140 if (!MO.isReg() || MO.getReg() != Reg)
1141 return CurRC;
1142 // If yes, accumulate the constraints through the operand.
1143 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1146 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1147 unsigned OpIdx, const TargetRegisterClass *CurRC,
1148 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1149 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1150 const MachineOperand &MO = getOperand(OpIdx);
1151 assert(MO.isReg() &&
1152 "Cannot get register constraints for non-register operand");
1153 assert(CurRC && "Invalid initial register class");
1154 if (unsigned SubIdx = MO.getSubReg()) {
1155 if (OpRC)
1156 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1157 else
1158 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1159 } else if (OpRC)
1160 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1161 return CurRC;
1164 /// Return the number of instructions inside the MI bundle, not counting the
1165 /// header instruction.
1166 unsigned MachineInstr::getBundleSize() const {
1167 MachineBasicBlock::const_instr_iterator I = getIterator();
1168 unsigned Size = 0;
1169 while (I->isBundledWithSucc())
1170 ++Size, ++I;
1171 return Size;
1174 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1175 /// the specific register or -1 if it is not found. It further tightens
1176 /// the search criteria to a use that kills the register if isKill is true.
1177 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1178 const TargetRegisterInfo *TRI) const {
1179 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1180 const MachineOperand &MO = getOperand(i);
1181 if (!MO.isReg() || !MO.isUse())
1182 continue;
1183 unsigned MOReg = MO.getReg();
1184 if (!MOReg)
1185 continue;
1186 if (MOReg == Reg ||
1187 (TRI &&
1188 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1189 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1190 TRI->isSubRegister(MOReg, Reg)))
1191 if (!isKill || MO.isKill())
1192 return i;
1194 return -1;
1197 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1198 /// indicating if this instruction reads or writes Reg. This also considers
1199 /// partial defines.
1200 std::pair<bool,bool>
1201 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1202 SmallVectorImpl<unsigned> *Ops) const {
1203 bool PartDef = false; // Partial redefine.
1204 bool FullDef = false; // Full define.
1205 bool Use = false;
1207 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1208 const MachineOperand &MO = getOperand(i);
1209 if (!MO.isReg() || MO.getReg() != Reg)
1210 continue;
1211 if (Ops)
1212 Ops->push_back(i);
1213 if (MO.isUse())
1214 Use |= !MO.isUndef();
1215 else if (MO.getSubReg() && !MO.isUndef())
1216 // A partial <def,undef> doesn't count as reading the register.
1217 PartDef = true;
1218 else
1219 FullDef = true;
1221 // A partial redefine uses Reg unless there is also a full define.
1222 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1225 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1226 /// the specified register or -1 if it is not found. If isDead is true, defs
1227 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1228 /// also checks if there is a def of a super-register.
1230 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1231 const TargetRegisterInfo *TRI) const {
1232 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1233 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1234 const MachineOperand &MO = getOperand(i);
1235 // Accept regmask operands when Overlap is set.
1236 // Ignore them when looking for a specific def operand (Overlap == false).
1237 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1238 return i;
1239 if (!MO.isReg() || !MO.isDef())
1240 continue;
1241 unsigned MOReg = MO.getReg();
1242 bool Found = (MOReg == Reg);
1243 if (!Found && TRI && isPhys &&
1244 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1245 if (Overlap)
1246 Found = TRI->regsOverlap(MOReg, Reg);
1247 else
1248 Found = TRI->isSubRegister(MOReg, Reg);
1250 if (Found && (!isDead || MO.isDead()))
1251 return i;
1253 return -1;
1256 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1257 /// operand list that is used to represent the predicate. It returns -1 if
1258 /// none is found.
1259 int MachineInstr::findFirstPredOperandIdx() const {
1260 // Don't call MCID.findFirstPredOperandIdx() because this variant
1261 // is sometimes called on an instruction that's not yet complete, and
1262 // so the number of operands is less than the MCID indicates. In
1263 // particular, the PTX target does this.
1264 const MCInstrDesc &MCID = getDesc();
1265 if (MCID.isPredicable()) {
1266 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1267 if (MCID.OpInfo[i].isPredicate())
1268 return i;
1271 return -1;
1274 // MachineOperand::TiedTo is 4 bits wide.
1275 const unsigned TiedMax = 15;
1277 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1279 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1280 /// field. TiedTo can have these values:
1282 /// 0: Operand is not tied to anything.
1283 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1284 /// TiedMax: Tied to an operand >= TiedMax-1.
1286 /// The tied def must be one of the first TiedMax operands on a normal
1287 /// instruction. INLINEASM instructions allow more tied defs.
1289 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1290 MachineOperand &DefMO = getOperand(DefIdx);
1291 MachineOperand &UseMO = getOperand(UseIdx);
1292 assert(DefMO.isDef() && "DefIdx must be a def operand");
1293 assert(UseMO.isUse() && "UseIdx must be a use operand");
1294 assert(!DefMO.isTied() && "Def is already tied to another use");
1295 assert(!UseMO.isTied() && "Use is already tied to another def");
1297 if (DefIdx < TiedMax)
1298 UseMO.TiedTo = DefIdx + 1;
1299 else {
1300 // Inline asm can use the group descriptors to find tied operands, but on
1301 // normal instruction, the tied def must be within the first TiedMax
1302 // operands.
1303 assert(isInlineAsm() && "DefIdx out of range");
1304 UseMO.TiedTo = TiedMax;
1307 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1308 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1311 /// Given the index of a tied register operand, find the operand it is tied to.
1312 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1313 /// which must exist.
1314 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1315 const MachineOperand &MO = getOperand(OpIdx);
1316 assert(MO.isTied() && "Operand isn't tied");
1318 // Normally TiedTo is in range.
1319 if (MO.TiedTo < TiedMax)
1320 return MO.TiedTo - 1;
1322 // Uses on normal instructions can be out of range.
1323 if (!isInlineAsm()) {
1324 // Normal tied defs must be in the 0..TiedMax-1 range.
1325 if (MO.isUse())
1326 return TiedMax - 1;
1327 // MO is a def. Search for the tied use.
1328 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1329 const MachineOperand &UseMO = getOperand(i);
1330 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1331 return i;
1333 llvm_unreachable("Can't find tied use");
1336 // Now deal with inline asm by parsing the operand group descriptor flags.
1337 // Find the beginning of each operand group.
1338 SmallVector<unsigned, 8> GroupIdx;
1339 unsigned OpIdxGroup = ~0u;
1340 unsigned NumOps;
1341 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1342 i += NumOps) {
1343 const MachineOperand &FlagMO = getOperand(i);
1344 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1345 unsigned CurGroup = GroupIdx.size();
1346 GroupIdx.push_back(i);
1347 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1348 // OpIdx belongs to this operand group.
1349 if (OpIdx > i && OpIdx < i + NumOps)
1350 OpIdxGroup = CurGroup;
1351 unsigned TiedGroup;
1352 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1353 continue;
1354 // Operands in this group are tied to operands in TiedGroup which must be
1355 // earlier. Find the number of operands between the two groups.
1356 unsigned Delta = i - GroupIdx[TiedGroup];
1358 // OpIdx is a use tied to TiedGroup.
1359 if (OpIdxGroup == CurGroup)
1360 return OpIdx - Delta;
1362 // OpIdx is a def tied to this use group.
1363 if (OpIdxGroup == TiedGroup)
1364 return OpIdx + Delta;
1366 llvm_unreachable("Invalid tied operand on inline asm");
1369 /// clearKillInfo - Clears kill flags on all operands.
1371 void MachineInstr::clearKillInfo() {
1372 for (MachineOperand &MO : operands()) {
1373 if (MO.isReg() && MO.isUse())
1374 MO.setIsKill(false);
1378 void MachineInstr::substituteRegister(unsigned FromReg,
1379 unsigned ToReg,
1380 unsigned SubIdx,
1381 const TargetRegisterInfo &RegInfo) {
1382 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1383 if (SubIdx)
1384 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1385 for (MachineOperand &MO : operands()) {
1386 if (!MO.isReg() || MO.getReg() != FromReg)
1387 continue;
1388 MO.substPhysReg(ToReg, RegInfo);
1390 } else {
1391 for (MachineOperand &MO : operands()) {
1392 if (!MO.isReg() || MO.getReg() != FromReg)
1393 continue;
1394 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1399 /// isSafeToMove - Return true if it is safe to move this instruction. If
1400 /// SawStore is set to true, it means that there is a store (or call) between
1401 /// the instruction's location and its intended destination.
1402 bool MachineInstr::isSafeToMove(AliasAnalysis *AA, bool &SawStore) const {
1403 // Ignore stuff that we obviously can't move.
1405 // Treat volatile loads as stores. This is not strictly necessary for
1406 // volatiles, but it is required for atomic loads. It is not allowed to move
1407 // a load across an atomic load with Ordering > Monotonic.
1408 if (mayStore() || isCall() ||
1409 (mayLoad() && hasOrderedMemoryRef())) {
1410 SawStore = true;
1411 return false;
1414 if (isPosition() || isDebugValue() || isTerminator() ||
1415 hasUnmodeledSideEffects())
1416 return false;
1418 // See if this instruction does a load. If so, we have to guarantee that the
1419 // loaded value doesn't change between the load and the its intended
1420 // destination. The check for isInvariantLoad gives the targe the chance to
1421 // classify the load as always returning a constant, e.g. a constant pool
1422 // load.
1423 if (mayLoad() && !isInvariantLoad(AA))
1424 // Otherwise, this is a real load. If there is a store between the load and
1425 // end of block, we can't move it.
1426 return !SawStore;
1428 return true;
1431 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1432 /// or volatile memory reference, or if the information describing the memory
1433 /// reference is not available. Return false if it is known to have no ordered
1434 /// memory references.
1435 bool MachineInstr::hasOrderedMemoryRef() const {
1436 // An instruction known never to access memory won't have a volatile access.
1437 if (!mayStore() &&
1438 !mayLoad() &&
1439 !isCall() &&
1440 !hasUnmodeledSideEffects())
1441 return false;
1443 // Otherwise, if the instruction has no memory reference information,
1444 // conservatively assume it wasn't preserved.
1445 if (memoperands_empty())
1446 return true;
1448 // Check the memory reference information for ordered references.
1449 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1450 if (!(*I)->isUnordered())
1451 return true;
1453 return false;
1456 /// isInvariantLoad - Return true if this instruction is loading from a
1457 /// location whose value is invariant across the function. For example,
1458 /// loading a value from the constant pool or from the argument area
1459 /// of a function if it does not change. This should only return true of
1460 /// *all* loads the instruction does are invariant (if it does multiple loads).
1461 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1462 // If the instruction doesn't load at all, it isn't an invariant load.
1463 if (!mayLoad())
1464 return false;
1466 // If the instruction has lost its memoperands, conservatively assume that
1467 // it may not be an invariant load.
1468 if (memoperands_empty())
1469 return false;
1471 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1473 for (mmo_iterator I = memoperands_begin(),
1474 E = memoperands_end(); I != E; ++I) {
1475 if ((*I)->isVolatile()) return false;
1476 if ((*I)->isStore()) return false;
1477 if ((*I)->isInvariant()) return true;
1480 // A load from a constant PseudoSourceValue is invariant.
1481 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1482 if (PSV->isConstant(MFI))
1483 continue;
1485 if (const Value *V = (*I)->getValue()) {
1486 // If we have an AliasAnalysis, ask it whether the memory is constant.
1487 if (AA &&
1488 AA->pointsToConstantMemory(
1489 MemoryLocation(V, (*I)->getSize(), (*I)->getAAInfo())))
1490 continue;
1493 // Otherwise assume conservatively.
1494 return false;
1497 // Everything checks out.
1498 return true;
1501 /// isConstantValuePHI - If the specified instruction is a PHI that always
1502 /// merges together the same virtual register, return the register, otherwise
1503 /// return 0.
1504 unsigned MachineInstr::isConstantValuePHI() const {
1505 if (!isPHI())
1506 return 0;
1507 assert(getNumOperands() >= 3 &&
1508 "It's illegal to have a PHI without source operands");
1510 unsigned Reg = getOperand(1).getReg();
1511 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1512 if (getOperand(i).getReg() != Reg)
1513 return 0;
1514 return Reg;
1517 bool MachineInstr::hasUnmodeledSideEffects() const {
1518 if (hasProperty(MCID::UnmodeledSideEffects))
1519 return true;
1520 if (isInlineAsm()) {
1521 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1522 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1523 return true;
1526 return false;
1529 bool MachineInstr::isLoadFoldBarrier() const {
1530 return mayStore() || isCall() || hasUnmodeledSideEffects();
1533 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1535 bool MachineInstr::allDefsAreDead() const {
1536 for (const MachineOperand &MO : operands()) {
1537 if (!MO.isReg() || MO.isUse())
1538 continue;
1539 if (!MO.isDead())
1540 return false;
1542 return true;
1545 /// copyImplicitOps - Copy implicit register operands from specified
1546 /// instruction to this instruction.
1547 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1548 const MachineInstr *MI) {
1549 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1550 i != e; ++i) {
1551 const MachineOperand &MO = MI->getOperand(i);
1552 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1553 addOperand(MF, MO);
1557 void MachineInstr::dump() const {
1558 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1559 dbgs() << " " << *this;
1560 #endif
1563 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1564 const Module *M = nullptr;
1565 if (const MachineBasicBlock *MBB = getParent())
1566 if (const MachineFunction *MF = MBB->getParent())
1567 M = MF->getFunction()->getParent();
1569 ModuleSlotTracker MST(M);
1570 print(OS, MST, SkipOpers);
1573 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1574 bool SkipOpers) const {
1575 // We can be a bit tidier if we know the MachineFunction.
1576 const MachineFunction *MF = nullptr;
1577 const TargetRegisterInfo *TRI = nullptr;
1578 const MachineRegisterInfo *MRI = nullptr;
1579 const TargetInstrInfo *TII = nullptr;
1580 if (const MachineBasicBlock *MBB = getParent()) {
1581 MF = MBB->getParent();
1582 if (MF) {
1583 MRI = &MF->getRegInfo();
1584 TRI = MF->getSubtarget().getRegisterInfo();
1585 TII = MF->getSubtarget().getInstrInfo();
1589 // Save a list of virtual registers.
1590 SmallVector<unsigned, 8> VirtRegs;
1592 // Print explicitly defined operands on the left of an assignment syntax.
1593 unsigned StartOp = 0, e = getNumOperands();
1594 for (; StartOp < e && getOperand(StartOp).isReg() &&
1595 getOperand(StartOp).isDef() &&
1596 !getOperand(StartOp).isImplicit();
1597 ++StartOp) {
1598 if (StartOp != 0) OS << ", ";
1599 getOperand(StartOp).print(OS, MST, TRI);
1600 unsigned Reg = getOperand(StartOp).getReg();
1601 if (TargetRegisterInfo::isVirtualRegister(Reg))
1602 VirtRegs.push_back(Reg);
1605 if (StartOp != 0)
1606 OS << " = ";
1608 // Print the opcode name.
1609 if (TII)
1610 OS << TII->getName(getOpcode());
1611 else
1612 OS << "UNKNOWN";
1614 if (SkipOpers)
1615 return;
1617 // Print the rest of the operands.
1618 bool OmittedAnyCallClobbers = false;
1619 bool FirstOp = true;
1620 unsigned AsmDescOp = ~0u;
1621 unsigned AsmOpCount = 0;
1623 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1624 // Print asm string.
1625 OS << " ";
1626 getOperand(InlineAsm::MIOp_AsmString).print(OS, MST, TRI);
1628 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1629 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1630 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1631 OS << " [sideeffect]";
1632 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1633 OS << " [mayload]";
1634 if (ExtraInfo & InlineAsm::Extra_MayStore)
1635 OS << " [maystore]";
1636 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1637 OS << " [alignstack]";
1638 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1639 OS << " [attdialect]";
1640 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1641 OS << " [inteldialect]";
1643 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1644 FirstOp = false;
1647 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1648 const MachineOperand &MO = getOperand(i);
1650 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1651 VirtRegs.push_back(MO.getReg());
1653 // Omit call-clobbered registers which aren't used anywhere. This makes
1654 // call instructions much less noisy on targets where calls clobber lots
1655 // of registers. Don't rely on MO.isDead() because we may be called before
1656 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1657 if (MRI && isCall() &&
1658 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1659 unsigned Reg = MO.getReg();
1660 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1661 if (MRI->use_empty(Reg)) {
1662 bool HasAliasLive = false;
1663 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1664 unsigned AliasReg = *AI;
1665 if (!MRI->use_empty(AliasReg)) {
1666 HasAliasLive = true;
1667 break;
1670 if (!HasAliasLive) {
1671 OmittedAnyCallClobbers = true;
1672 continue;
1678 if (FirstOp) FirstOp = false; else OS << ",";
1679 OS << " ";
1680 if (i < getDesc().NumOperands) {
1681 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1682 if (MCOI.isPredicate())
1683 OS << "pred:";
1684 if (MCOI.isOptionalDef())
1685 OS << "opt:";
1687 if (isDebugValue() && MO.isMetadata()) {
1688 // Pretty print DBG_VALUE instructions.
1689 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1690 if (DIV && !DIV->getName().empty())
1691 OS << "!\"" << DIV->getName() << '\"';
1692 else
1693 MO.print(OS, MST, TRI);
1694 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1695 OS << TRI->getSubRegIndexName(MO.getImm());
1696 } else if (i == AsmDescOp && MO.isImm()) {
1697 // Pretty print the inline asm operand descriptor.
1698 OS << '$' << AsmOpCount++;
1699 unsigned Flag = MO.getImm();
1700 switch (InlineAsm::getKind(Flag)) {
1701 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1702 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1703 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1704 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1705 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1706 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1707 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1710 unsigned RCID = 0;
1711 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1712 if (TRI) {
1713 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1714 } else
1715 OS << ":RC" << RCID;
1718 unsigned TiedTo = 0;
1719 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1720 OS << " tiedto:$" << TiedTo;
1722 OS << ']';
1724 // Compute the index of the next operand descriptor.
1725 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1726 } else
1727 MO.print(OS, MST, TRI);
1730 // Briefly indicate whether any call clobbers were omitted.
1731 if (OmittedAnyCallClobbers) {
1732 if (!FirstOp) OS << ",";
1733 OS << " ...";
1736 bool HaveSemi = false;
1737 const unsigned PrintableFlags = FrameSetup | FrameDestroy;
1738 if (Flags & PrintableFlags) {
1739 if (!HaveSemi) OS << ";"; HaveSemi = true;
1740 OS << " flags: ";
1742 if (Flags & FrameSetup)
1743 OS << "FrameSetup";
1745 if (Flags & FrameDestroy)
1746 OS << "FrameDestroy";
1749 if (!memoperands_empty()) {
1750 if (!HaveSemi) OS << ";"; HaveSemi = true;
1752 OS << " mem:";
1753 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1754 i != e; ++i) {
1755 (*i)->print(OS, MST);
1756 if (std::next(i) != e)
1757 OS << " ";
1761 // Print the regclass of any virtual registers encountered.
1762 if (MRI && !VirtRegs.empty()) {
1763 if (!HaveSemi) OS << ";"; HaveSemi = true;
1764 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1765 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1766 OS << " " << TRI->getRegClassName(RC)
1767 << ':' << PrintReg(VirtRegs[i]);
1768 for (unsigned j = i+1; j != VirtRegs.size();) {
1769 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1770 ++j;
1771 continue;
1773 if (VirtRegs[i] != VirtRegs[j])
1774 OS << "," << PrintReg(VirtRegs[j]);
1775 VirtRegs.erase(VirtRegs.begin()+j);
1780 // Print debug location information.
1781 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1782 if (!HaveSemi) OS << ";";
1783 auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1784 OS << " line no:" << DV->getLine();
1785 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1786 DebugLoc InlinedAtDL(InlinedAt);
1787 if (InlinedAtDL && MF) {
1788 OS << " inlined @[ ";
1789 InlinedAtDL.print(OS);
1790 OS << " ]";
1793 if (isIndirectDebugValue())
1794 OS << " indirect";
1795 } else if (debugLoc && MF) {
1796 if (!HaveSemi) OS << ";";
1797 OS << " dbg:";
1798 debugLoc.print(OS);
1801 OS << '\n';
1804 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1805 const TargetRegisterInfo *RegInfo,
1806 bool AddIfNotFound) {
1807 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1808 bool hasAliases = isPhysReg &&
1809 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1810 bool Found = false;
1811 SmallVector<unsigned,4> DeadOps;
1812 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1813 MachineOperand &MO = getOperand(i);
1814 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1815 continue;
1816 unsigned Reg = MO.getReg();
1817 if (!Reg)
1818 continue;
1820 if (Reg == IncomingReg) {
1821 if (!Found) {
1822 if (MO.isKill())
1823 // The register is already marked kill.
1824 return true;
1825 if (isPhysReg && isRegTiedToDefOperand(i))
1826 // Two-address uses of physregs must not be marked kill.
1827 return true;
1828 MO.setIsKill();
1829 Found = true;
1831 } else if (hasAliases && MO.isKill() &&
1832 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1833 // A super-register kill already exists.
1834 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1835 return true;
1836 if (RegInfo->isSubRegister(IncomingReg, Reg))
1837 DeadOps.push_back(i);
1841 // Trim unneeded kill operands.
1842 while (!DeadOps.empty()) {
1843 unsigned OpIdx = DeadOps.back();
1844 if (getOperand(OpIdx).isImplicit())
1845 RemoveOperand(OpIdx);
1846 else
1847 getOperand(OpIdx).setIsKill(false);
1848 DeadOps.pop_back();
1851 // If not found, this means an alias of one of the operands is killed. Add a
1852 // new implicit operand if required.
1853 if (!Found && AddIfNotFound) {
1854 addOperand(MachineOperand::CreateReg(IncomingReg,
1855 false /*IsDef*/,
1856 true /*IsImp*/,
1857 true /*IsKill*/));
1858 return true;
1860 return Found;
1863 void MachineInstr::clearRegisterKills(unsigned Reg,
1864 const TargetRegisterInfo *RegInfo) {
1865 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1866 RegInfo = nullptr;
1867 for (MachineOperand &MO : operands()) {
1868 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1869 continue;
1870 unsigned OpReg = MO.getReg();
1871 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1872 MO.setIsKill(false);
1876 bool MachineInstr::addRegisterDead(unsigned Reg,
1877 const TargetRegisterInfo *RegInfo,
1878 bool AddIfNotFound) {
1879 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1880 bool hasAliases = isPhysReg &&
1881 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1882 bool Found = false;
1883 SmallVector<unsigned,4> DeadOps;
1884 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1885 MachineOperand &MO = getOperand(i);
1886 if (!MO.isReg() || !MO.isDef())
1887 continue;
1888 unsigned MOReg = MO.getReg();
1889 if (!MOReg)
1890 continue;
1892 if (MOReg == Reg) {
1893 MO.setIsDead();
1894 Found = true;
1895 } else if (hasAliases && MO.isDead() &&
1896 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1897 // There exists a super-register that's marked dead.
1898 if (RegInfo->isSuperRegister(Reg, MOReg))
1899 return true;
1900 if (RegInfo->isSubRegister(Reg, MOReg))
1901 DeadOps.push_back(i);
1905 // Trim unneeded dead operands.
1906 while (!DeadOps.empty()) {
1907 unsigned OpIdx = DeadOps.back();
1908 if (getOperand(OpIdx).isImplicit())
1909 RemoveOperand(OpIdx);
1910 else
1911 getOperand(OpIdx).setIsDead(false);
1912 DeadOps.pop_back();
1915 // If not found, this means an alias of one of the operands is dead. Add a
1916 // new implicit operand if required.
1917 if (Found || !AddIfNotFound)
1918 return Found;
1920 addOperand(MachineOperand::CreateReg(Reg,
1921 true /*IsDef*/,
1922 true /*IsImp*/,
1923 false /*IsKill*/,
1924 true /*IsDead*/));
1925 return true;
1928 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1929 for (MachineOperand &MO : operands()) {
1930 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1931 continue;
1932 MO.setIsDead(false);
1936 void MachineInstr::setRegisterDefReadUndef(unsigned Reg, bool IsUndef) {
1937 for (MachineOperand &MO : operands()) {
1938 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1939 continue;
1940 MO.setIsUndef(IsUndef);
1944 void MachineInstr::addRegisterDefined(unsigned Reg,
1945 const TargetRegisterInfo *RegInfo) {
1946 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1947 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1948 if (MO)
1949 return;
1950 } else {
1951 for (const MachineOperand &MO : operands()) {
1952 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1953 MO.getSubReg() == 0)
1954 return;
1957 addOperand(MachineOperand::CreateReg(Reg,
1958 true /*IsDef*/,
1959 true /*IsImp*/));
1962 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1963 const TargetRegisterInfo &TRI) {
1964 bool HasRegMask = false;
1965 for (MachineOperand &MO : operands()) {
1966 if (MO.isRegMask()) {
1967 HasRegMask = true;
1968 continue;
1970 if (!MO.isReg() || !MO.isDef()) continue;
1971 unsigned Reg = MO.getReg();
1972 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1973 // If there are no uses, including partial uses, the def is dead.
1974 if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
1975 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1976 MO.setIsDead();
1979 // This is a call with a register mask operand.
1980 // Mask clobbers are always dead, so add defs for the non-dead defines.
1981 if (HasRegMask)
1982 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1983 I != E; ++I)
1984 addRegisterDefined(*I, &TRI);
1987 unsigned
1988 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1989 // Build up a buffer of hash code components.
1990 SmallVector<size_t, 8> HashComponents;
1991 HashComponents.reserve(MI->getNumOperands() + 1);
1992 HashComponents.push_back(MI->getOpcode());
1993 for (const MachineOperand &MO : MI->operands()) {
1994 if (MO.isReg() && MO.isDef() &&
1995 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1996 continue; // Skip virtual register defs.
1998 HashComponents.push_back(hash_value(MO));
2000 return hash_combine_range(HashComponents.begin(), HashComponents.end());
2003 void MachineInstr::emitError(StringRef Msg) const {
2004 // Find the source location cookie.
2005 unsigned LocCookie = 0;
2006 const MDNode *LocMD = nullptr;
2007 for (unsigned i = getNumOperands(); i != 0; --i) {
2008 if (getOperand(i-1).isMetadata() &&
2009 (LocMD = getOperand(i-1).getMetadata()) &&
2010 LocMD->getNumOperands() != 0) {
2011 if (const ConstantInt *CI =
2012 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2013 LocCookie = CI->getZExtValue();
2014 break;
2019 if (const MachineBasicBlock *MBB = getParent())
2020 if (const MachineFunction *MF = MBB->getParent())
2021 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2022 report_fatal_error(Msg);