[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / CodeGen / MachineBlockPlacement.cpp
blobb12fcf2940ef5f23b8ce5527fe63ecf6605b030c
1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
51 #define DEBUG_TYPE "block-placement"
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56 "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58 "Potential frequency of taking unconditional branches");
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61 cl::desc("Force the alignment of all "
62 "blocks in the function."),
63 cl::init(0), cl::Hidden);
65 // FIXME: Find a good default for this flag and remove the flag.
66 static cl::opt<unsigned> ExitBlockBias(
67 "block-placement-exit-block-bias",
68 cl::desc("Block frequency percentage a loop exit block needs "
69 "over the original exit to be considered the new exit."),
70 cl::init(0), cl::Hidden);
72 static cl::opt<bool> OutlineOptionalBranches(
73 "outline-optional-branches",
74 cl::desc("Put completely optional branches, i.e. branches with a common "
75 "post dominator, out of line."),
76 cl::init(false), cl::Hidden);
78 static cl::opt<unsigned> OutlineOptionalThreshold(
79 "outline-optional-threshold",
80 cl::desc("Don't outline optional branches that are a single block with an "
81 "instruction count below this threshold"),
82 cl::init(4), cl::Hidden);
84 static cl::opt<unsigned> LoopToColdBlockRatio(
85 "loop-to-cold-block-ratio",
86 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
87 "(frequency of block) is greater than this ratio"),
88 cl::init(5), cl::Hidden);
90 static cl::opt<bool>
91 PreciseRotationCost("precise-rotation-cost",
92 cl::desc("Model the cost of loop rotation more "
93 "precisely by using profile data."),
94 cl::init(false), cl::Hidden);
96 static cl::opt<unsigned> MisfetchCost(
97 "misfetch-cost",
98 cl::desc("Cost that models the probablistic risk of an instruction "
99 "misfetch due to a jump comparing to falling through, whose cost "
100 "is zero."),
101 cl::init(1), cl::Hidden);
103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
104 cl::desc("Cost of jump instructions."),
105 cl::init(1), cl::Hidden);
107 namespace {
108 class BlockChain;
109 /// \brief Type for our function-wide basic block -> block chain mapping.
110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
113 namespace {
114 /// \brief A chain of blocks which will be laid out contiguously.
116 /// This is the datastructure representing a chain of consecutive blocks that
117 /// are profitable to layout together in order to maximize fallthrough
118 /// probabilities and code locality. We also can use a block chain to represent
119 /// a sequence of basic blocks which have some external (correctness)
120 /// requirement for sequential layout.
122 /// Chains can be built around a single basic block and can be merged to grow
123 /// them. They participate in a block-to-chain mapping, which is updated
124 /// automatically as chains are merged together.
125 class BlockChain {
126 /// \brief The sequence of blocks belonging to this chain.
128 /// This is the sequence of blocks for a particular chain. These will be laid
129 /// out in-order within the function.
130 SmallVector<MachineBasicBlock *, 4> Blocks;
132 /// \brief A handle to the function-wide basic block to block chain mapping.
134 /// This is retained in each block chain to simplify the computation of child
135 /// block chains for SCC-formation and iteration. We store the edges to child
136 /// basic blocks, and map them back to their associated chains using this
137 /// structure.
138 BlockToChainMapType &BlockToChain;
140 public:
141 /// \brief Construct a new BlockChain.
143 /// This builds a new block chain representing a single basic block in the
144 /// function. It also registers itself as the chain that block participates
145 /// in with the BlockToChain mapping.
146 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
147 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
148 assert(BB && "Cannot create a chain with a null basic block");
149 BlockToChain[BB] = this;
152 /// \brief Iterator over blocks within the chain.
153 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
155 /// \brief Beginning of blocks within the chain.
156 iterator begin() { return Blocks.begin(); }
158 /// \brief End of blocks within the chain.
159 iterator end() { return Blocks.end(); }
161 /// \brief Merge a block chain into this one.
163 /// This routine merges a block chain into this one. It takes care of forming
164 /// a contiguous sequence of basic blocks, updating the edge list, and
165 /// updating the block -> chain mapping. It does not free or tear down the
166 /// old chain, but the old chain's block list is no longer valid.
167 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
168 assert(BB);
169 assert(!Blocks.empty());
171 // Fast path in case we don't have a chain already.
172 if (!Chain) {
173 assert(!BlockToChain[BB]);
174 Blocks.push_back(BB);
175 BlockToChain[BB] = this;
176 return;
179 assert(BB == *Chain->begin());
180 assert(Chain->begin() != Chain->end());
182 // Update the incoming blocks to point to this chain, and add them to the
183 // chain structure.
184 for (MachineBasicBlock *ChainBB : *Chain) {
185 Blocks.push_back(ChainBB);
186 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
187 BlockToChain[ChainBB] = this;
191 #ifndef NDEBUG
192 /// \brief Dump the blocks in this chain.
193 LLVM_DUMP_METHOD void dump() {
194 for (MachineBasicBlock *MBB : *this)
195 MBB->dump();
197 #endif // NDEBUG
199 /// \brief Count of predecessors within the loop currently being processed.
201 /// This count is updated at each loop we process to represent the number of
202 /// in-loop predecessors of this chain.
203 unsigned LoopPredecessors;
207 namespace {
208 class MachineBlockPlacement : public MachineFunctionPass {
209 /// \brief A typedef for a block filter set.
210 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
212 /// \brief A handle to the branch probability pass.
213 const MachineBranchProbabilityInfo *MBPI;
215 /// \brief A handle to the function-wide block frequency pass.
216 const MachineBlockFrequencyInfo *MBFI;
218 /// \brief A handle to the loop info.
219 const MachineLoopInfo *MLI;
221 /// \brief A handle to the target's instruction info.
222 const TargetInstrInfo *TII;
224 /// \brief A handle to the target's lowering info.
225 const TargetLoweringBase *TLI;
227 /// \brief A handle to the post dominator tree.
228 MachineDominatorTree *MDT;
230 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
231 /// all terminators of the MachineFunction.
232 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
234 /// \brief Allocator and owner of BlockChain structures.
236 /// We build BlockChains lazily while processing the loop structure of
237 /// a function. To reduce malloc traffic, we allocate them using this
238 /// slab-like allocator, and destroy them after the pass completes. An
239 /// important guarantee is that this allocator produces stable pointers to
240 /// the chains.
241 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
243 /// \brief Function wide BasicBlock to BlockChain mapping.
245 /// This mapping allows efficiently moving from any given basic block to the
246 /// BlockChain it participates in, if any. We use it to, among other things,
247 /// allow implicitly defining edges between chains as the existing edges
248 /// between basic blocks.
249 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
251 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
252 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
253 const BlockFilterSet *BlockFilter = nullptr);
254 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
255 BlockChain &Chain,
256 const BlockFilterSet *BlockFilter);
257 MachineBasicBlock *
258 selectBestCandidateBlock(BlockChain &Chain,
259 SmallVectorImpl<MachineBasicBlock *> &WorkList,
260 const BlockFilterSet *BlockFilter);
261 MachineBasicBlock *
262 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
263 MachineFunction::iterator &PrevUnplacedBlockIt,
264 const BlockFilterSet *BlockFilter);
265 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
266 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
267 const BlockFilterSet *BlockFilter = nullptr);
268 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
269 const BlockFilterSet &LoopBlockSet);
270 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
271 const BlockFilterSet &LoopBlockSet);
272 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
273 void buildLoopChains(MachineFunction &F, MachineLoop &L);
274 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
275 const BlockFilterSet &LoopBlockSet);
276 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
277 const BlockFilterSet &LoopBlockSet);
278 void buildCFGChains(MachineFunction &F);
280 public:
281 static char ID; // Pass identification, replacement for typeid
282 MachineBlockPlacement() : MachineFunctionPass(ID) {
283 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
286 bool runOnMachineFunction(MachineFunction &F) override;
288 void getAnalysisUsage(AnalysisUsage &AU) const override {
289 AU.addRequired<MachineBranchProbabilityInfo>();
290 AU.addRequired<MachineBlockFrequencyInfo>();
291 AU.addRequired<MachineDominatorTree>();
292 AU.addRequired<MachineLoopInfo>();
293 MachineFunctionPass::getAnalysisUsage(AU);
298 char MachineBlockPlacement::ID = 0;
299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
301 "Branch Probability Basic Block Placement", false, false)
302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
307 "Branch Probability Basic Block Placement", false, false)
309 #ifndef NDEBUG
310 /// \brief Helper to print the name of a MBB.
312 /// Only used by debug logging.
313 static std::string getBlockName(MachineBasicBlock *BB) {
314 std::string Result;
315 raw_string_ostream OS(Result);
316 OS << "BB#" << BB->getNumber();
317 OS << " (derived from LLVM BB '" << BB->getName() << "')";
318 OS.flush();
319 return Result;
322 /// \brief Helper to print the number of a MBB.
324 /// Only used by debug logging.
325 static std::string getBlockNum(MachineBasicBlock *BB) {
326 std::string Result;
327 raw_string_ostream OS(Result);
328 OS << "BB#" << BB->getNumber();
329 OS.flush();
330 return Result;
332 #endif
334 /// \brief Mark a chain's successors as having one fewer preds.
336 /// When a chain is being merged into the "placed" chain, this routine will
337 /// quickly walk the successors of each block in the chain and mark them as
338 /// having one fewer active predecessor. It also adds any successors of this
339 /// chain which reach the zero-predecessor state to the worklist passed in.
340 void MachineBlockPlacement::markChainSuccessors(
341 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
342 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
343 const BlockFilterSet *BlockFilter) {
344 // Walk all the blocks in this chain, marking their successors as having
345 // a predecessor placed.
346 for (MachineBasicBlock *MBB : Chain) {
347 // Add any successors for which this is the only un-placed in-loop
348 // predecessor to the worklist as a viable candidate for CFG-neutral
349 // placement. No subsequent placement of this block will violate the CFG
350 // shape, so we get to use heuristics to choose a favorable placement.
351 for (MachineBasicBlock *Succ : MBB->successors()) {
352 if (BlockFilter && !BlockFilter->count(Succ))
353 continue;
354 BlockChain &SuccChain = *BlockToChain[Succ];
355 // Disregard edges within a fixed chain, or edges to the loop header.
356 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
357 continue;
359 // This is a cross-chain edge that is within the loop, so decrement the
360 // loop predecessor count of the destination chain.
361 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
362 BlockWorkList.push_back(*SuccChain.begin());
367 /// \brief Select the best successor for a block.
369 /// This looks across all successors of a particular block and attempts to
370 /// select the "best" one to be the layout successor. It only considers direct
371 /// successors which also pass the block filter. It will attempt to avoid
372 /// breaking CFG structure, but cave and break such structures in the case of
373 /// very hot successor edges.
375 /// \returns The best successor block found, or null if none are viable.
376 MachineBasicBlock *
377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
378 BlockChain &Chain,
379 const BlockFilterSet *BlockFilter) {
380 const BranchProbability HotProb(4, 5); // 80%
382 MachineBasicBlock *BestSucc = nullptr;
383 // FIXME: Due to the performance of the probability and weight routines in
384 // the MBPI analysis, we manually compute probabilities using the edge
385 // weights. This is suboptimal as it means that the somewhat subtle
386 // definition of edge weight semantics is encoded here as well. We should
387 // improve the MBPI interface to efficiently support query patterns such as
388 // this.
389 uint32_t BestWeight = 0;
390 uint32_t WeightScale = 0;
391 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
392 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
393 for (MachineBasicBlock *Succ : BB->successors()) {
394 if (BlockFilter && !BlockFilter->count(Succ))
395 continue;
396 BlockChain &SuccChain = *BlockToChain[Succ];
397 if (&SuccChain == &Chain) {
398 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Already merged!\n");
399 continue;
401 if (Succ != *SuccChain.begin()) {
402 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
403 continue;
406 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
407 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
409 // If we outline optional branches, look whether Succ is unavoidable, i.e.
410 // dominates all terminators of the MachineFunction. If it does, other
411 // successors must be optional. Don't do this for cold branches.
412 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
413 UnavoidableBlocks.count(Succ) > 0) {
414 auto HasShortOptionalBranch = [&]() {
415 for (MachineBasicBlock *Pred : Succ->predecessors()) {
416 // Check whether there is an unplaced optional branch.
417 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
418 BlockToChain[Pred] == &Chain)
419 continue;
420 // Check whether the optional branch has exactly one BB.
421 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
422 continue;
423 // Check whether the optional branch is small.
424 if (Pred->size() < OutlineOptionalThreshold)
425 return true;
427 return false;
429 if (!HasShortOptionalBranch())
430 return Succ;
433 // Only consider successors which are either "hot", or wouldn't violate
434 // any CFG constraints.
435 if (SuccChain.LoopPredecessors != 0) {
436 if (SuccProb < HotProb) {
437 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
438 << " (prob) (CFG conflict)\n");
439 continue;
442 // Make sure that a hot successor doesn't have a globally more
443 // important predecessor.
444 BlockFrequency CandidateEdgeFreq =
445 MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
446 bool BadCFGConflict = false;
447 for (MachineBasicBlock *Pred : Succ->predecessors()) {
448 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
449 BlockToChain[Pred] == &Chain)
450 continue;
451 BlockFrequency PredEdgeFreq =
452 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
453 if (PredEdgeFreq >= CandidateEdgeFreq) {
454 BadCFGConflict = true;
455 break;
458 if (BadCFGConflict) {
459 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
460 << " (prob) (non-cold CFG conflict)\n");
461 continue;
465 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
466 << " (prob)"
467 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
468 << "\n");
469 if (BestSucc && BestWeight >= SuccWeight)
470 continue;
471 BestSucc = Succ;
472 BestWeight = SuccWeight;
474 return BestSucc;
477 /// \brief Select the best block from a worklist.
479 /// This looks through the provided worklist as a list of candidate basic
480 /// blocks and select the most profitable one to place. The definition of
481 /// profitable only really makes sense in the context of a loop. This returns
482 /// the most frequently visited block in the worklist, which in the case of
483 /// a loop, is the one most desirable to be physically close to the rest of the
484 /// loop body in order to improve icache behavior.
486 /// \returns The best block found, or null if none are viable.
487 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
488 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
489 const BlockFilterSet *BlockFilter) {
490 // Once we need to walk the worklist looking for a candidate, cleanup the
491 // worklist of already placed entries.
492 // FIXME: If this shows up on profiles, it could be folded (at the cost of
493 // some code complexity) into the loop below.
494 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
495 [&](MachineBasicBlock *BB) {
496 return BlockToChain.lookup(BB) == &Chain;
498 WorkList.end());
500 MachineBasicBlock *BestBlock = nullptr;
501 BlockFrequency BestFreq;
502 for (MachineBasicBlock *MBB : WorkList) {
503 BlockChain &SuccChain = *BlockToChain[MBB];
504 if (&SuccChain == &Chain) {
505 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n");
506 continue;
508 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
510 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
511 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
512 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
513 if (BestBlock && BestFreq >= CandidateFreq)
514 continue;
515 BestBlock = MBB;
516 BestFreq = CandidateFreq;
518 return BestBlock;
521 /// \brief Retrieve the first unplaced basic block.
523 /// This routine is called when we are unable to use the CFG to walk through
524 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
525 /// We walk through the function's blocks in order, starting from the
526 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
527 /// re-scanning the entire sequence on repeated calls to this routine.
528 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
529 MachineFunction &F, const BlockChain &PlacedChain,
530 MachineFunction::iterator &PrevUnplacedBlockIt,
531 const BlockFilterSet *BlockFilter) {
532 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
533 ++I) {
534 if (BlockFilter && !BlockFilter->count(&*I))
535 continue;
536 if (BlockToChain[&*I] != &PlacedChain) {
537 PrevUnplacedBlockIt = I;
538 // Now select the head of the chain to which the unplaced block belongs
539 // as the block to place. This will force the entire chain to be placed,
540 // and satisfies the requirements of merging chains.
541 return *BlockToChain[&*I]->begin();
544 return nullptr;
547 void MachineBlockPlacement::buildChain(
548 MachineBasicBlock *BB, BlockChain &Chain,
549 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
550 const BlockFilterSet *BlockFilter) {
551 assert(BB);
552 assert(BlockToChain[BB] == &Chain);
553 MachineFunction &F = *BB->getParent();
554 MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
556 MachineBasicBlock *LoopHeaderBB = BB;
557 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
558 BB = *std::prev(Chain.end());
559 for (;;) {
560 assert(BB);
561 assert(BlockToChain[BB] == &Chain);
562 assert(*std::prev(Chain.end()) == BB);
564 // Look for the best viable successor if there is one to place immediately
565 // after this block.
566 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
568 // If an immediate successor isn't available, look for the best viable
569 // block among those we've identified as not violating the loop's CFG at
570 // this point. This won't be a fallthrough, but it will increase locality.
571 if (!BestSucc)
572 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
574 if (!BestSucc) {
575 BestSucc =
576 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
577 if (!BestSucc)
578 break;
580 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
581 "layout successor until the CFG reduces\n");
584 // Place this block, updating the datastructures to reflect its placement.
585 BlockChain &SuccChain = *BlockToChain[BestSucc];
586 // Zero out LoopPredecessors for the successor we're about to merge in case
587 // we selected a successor that didn't fit naturally into the CFG.
588 SuccChain.LoopPredecessors = 0;
589 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
590 << getBlockNum(BestSucc) << "\n");
591 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
592 Chain.merge(BestSucc, &SuccChain);
593 BB = *std::prev(Chain.end());
596 DEBUG(dbgs() << "Finished forming chain for header block "
597 << getBlockNum(*Chain.begin()) << "\n");
600 /// \brief Find the best loop top block for layout.
602 /// Look for a block which is strictly better than the loop header for laying
603 /// out at the top of the loop. This looks for one and only one pattern:
604 /// a latch block with no conditional exit. This block will cause a conditional
605 /// jump around it or will be the bottom of the loop if we lay it out in place,
606 /// but if it it doesn't end up at the bottom of the loop for any reason,
607 /// rotation alone won't fix it. Because such a block will always result in an
608 /// unconditional jump (for the backedge) rotating it in front of the loop
609 /// header is always profitable.
610 MachineBasicBlock *
611 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
612 const BlockFilterSet &LoopBlockSet) {
613 // Check that the header hasn't been fused with a preheader block due to
614 // crazy branches. If it has, we need to start with the header at the top to
615 // prevent pulling the preheader into the loop body.
616 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
617 if (!LoopBlockSet.count(*HeaderChain.begin()))
618 return L.getHeader();
620 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
621 << "\n");
623 BlockFrequency BestPredFreq;
624 MachineBasicBlock *BestPred = nullptr;
625 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
626 if (!LoopBlockSet.count(Pred))
627 continue;
628 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
629 << Pred->succ_size() << " successors, ";
630 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
631 if (Pred->succ_size() > 1)
632 continue;
634 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
635 if (!BestPred || PredFreq > BestPredFreq ||
636 (!(PredFreq < BestPredFreq) &&
637 Pred->isLayoutSuccessor(L.getHeader()))) {
638 BestPred = Pred;
639 BestPredFreq = PredFreq;
643 // If no direct predecessor is fine, just use the loop header.
644 if (!BestPred)
645 return L.getHeader();
647 // Walk backwards through any straight line of predecessors.
648 while (BestPred->pred_size() == 1 &&
649 (*BestPred->pred_begin())->succ_size() == 1 &&
650 *BestPred->pred_begin() != L.getHeader())
651 BestPred = *BestPred->pred_begin();
653 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
654 return BestPred;
657 /// \brief Find the best loop exiting block for layout.
659 /// This routine implements the logic to analyze the loop looking for the best
660 /// block to layout at the top of the loop. Typically this is done to maximize
661 /// fallthrough opportunities.
662 MachineBasicBlock *
663 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
664 const BlockFilterSet &LoopBlockSet) {
665 // We don't want to layout the loop linearly in all cases. If the loop header
666 // is just a normal basic block in the loop, we want to look for what block
667 // within the loop is the best one to layout at the top. However, if the loop
668 // header has be pre-merged into a chain due to predecessors not having
669 // analyzable branches, *and* the predecessor it is merged with is *not* part
670 // of the loop, rotating the header into the middle of the loop will create
671 // a non-contiguous range of blocks which is Very Bad. So start with the
672 // header and only rotate if safe.
673 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
674 if (!LoopBlockSet.count(*HeaderChain.begin()))
675 return nullptr;
677 BlockFrequency BestExitEdgeFreq;
678 unsigned BestExitLoopDepth = 0;
679 MachineBasicBlock *ExitingBB = nullptr;
680 // If there are exits to outer loops, loop rotation can severely limit
681 // fallthrough opportunites unless it selects such an exit. Keep a set of
682 // blocks where rotating to exit with that block will reach an outer loop.
683 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
685 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
686 << "\n");
687 for (MachineBasicBlock *MBB : L.getBlocks()) {
688 BlockChain &Chain = *BlockToChain[MBB];
689 // Ensure that this block is at the end of a chain; otherwise it could be
690 // mid-way through an inner loop or a successor of an unanalyzable branch.
691 if (MBB != *std::prev(Chain.end()))
692 continue;
694 // Now walk the successors. We need to establish whether this has a viable
695 // exiting successor and whether it has a viable non-exiting successor.
696 // We store the old exiting state and restore it if a viable looping
697 // successor isn't found.
698 MachineBasicBlock *OldExitingBB = ExitingBB;
699 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
700 bool HasLoopingSucc = false;
701 // FIXME: Due to the performance of the probability and weight routines in
702 // the MBPI analysis, we use the internal weights and manually compute the
703 // probabilities to avoid quadratic behavior.
704 uint32_t WeightScale = 0;
705 uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale);
706 for (MachineBasicBlock *Succ : MBB->successors()) {
707 if (Succ->isEHPad())
708 continue;
709 if (Succ == MBB)
710 continue;
711 BlockChain &SuccChain = *BlockToChain[Succ];
712 // Don't split chains, either this chain or the successor's chain.
713 if (&Chain == &SuccChain) {
714 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
715 << getBlockName(Succ) << " (chain conflict)\n");
716 continue;
719 uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ);
720 if (LoopBlockSet.count(Succ)) {
721 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
722 << getBlockName(Succ) << " (" << SuccWeight << ")\n");
723 HasLoopingSucc = true;
724 continue;
727 unsigned SuccLoopDepth = 0;
728 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
729 SuccLoopDepth = ExitLoop->getLoopDepth();
730 if (ExitLoop->contains(&L))
731 BlocksExitingToOuterLoop.insert(MBB);
734 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
735 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
736 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
737 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
738 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
739 // Note that we bias this toward an existing layout successor to retain
740 // incoming order in the absence of better information. The exit must have
741 // a frequency higher than the current exit before we consider breaking
742 // the layout.
743 BranchProbability Bias(100 - ExitBlockBias, 100);
744 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
745 ExitEdgeFreq > BestExitEdgeFreq ||
746 (MBB->isLayoutSuccessor(Succ) &&
747 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
748 BestExitEdgeFreq = ExitEdgeFreq;
749 ExitingBB = MBB;
753 if (!HasLoopingSucc) {
754 // Restore the old exiting state, no viable looping successor was found.
755 ExitingBB = OldExitingBB;
756 BestExitEdgeFreq = OldBestExitEdgeFreq;
757 continue;
760 // Without a candidate exiting block or with only a single block in the
761 // loop, just use the loop header to layout the loop.
762 if (!ExitingBB || L.getNumBlocks() == 1)
763 return nullptr;
765 // Also, if we have exit blocks which lead to outer loops but didn't select
766 // one of them as the exiting block we are rotating toward, disable loop
767 // rotation altogether.
768 if (!BlocksExitingToOuterLoop.empty() &&
769 !BlocksExitingToOuterLoop.count(ExitingBB))
770 return nullptr;
772 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
773 return ExitingBB;
776 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
778 /// Once we have built a chain, try to rotate it to line up the hot exit block
779 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
780 /// branches. For example, if the loop has fallthrough into its header and out
781 /// of its bottom already, don't rotate it.
782 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
783 MachineBasicBlock *ExitingBB,
784 const BlockFilterSet &LoopBlockSet) {
785 if (!ExitingBB)
786 return;
788 MachineBasicBlock *Top = *LoopChain.begin();
789 bool ViableTopFallthrough = false;
790 for (MachineBasicBlock *Pred : Top->predecessors()) {
791 BlockChain *PredChain = BlockToChain[Pred];
792 if (!LoopBlockSet.count(Pred) &&
793 (!PredChain || Pred == *std::prev(PredChain->end()))) {
794 ViableTopFallthrough = true;
795 break;
799 // If the header has viable fallthrough, check whether the current loop
800 // bottom is a viable exiting block. If so, bail out as rotating will
801 // introduce an unnecessary branch.
802 if (ViableTopFallthrough) {
803 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
804 for (MachineBasicBlock *Succ : Bottom->successors()) {
805 BlockChain *SuccChain = BlockToChain[Succ];
806 if (!LoopBlockSet.count(Succ) &&
807 (!SuccChain || Succ == *SuccChain->begin()))
808 return;
812 BlockChain::iterator ExitIt =
813 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
814 if (ExitIt == LoopChain.end())
815 return;
817 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
820 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
822 /// With profile data, we can determine the cost in terms of missed fall through
823 /// opportunities when rotating a loop chain and select the best rotation.
824 /// Basically, there are three kinds of cost to consider for each rotation:
825 /// 1. The possibly missed fall through edge (if it exists) from BB out of
826 /// the loop to the loop header.
827 /// 2. The possibly missed fall through edges (if they exist) from the loop
828 /// exits to BB out of the loop.
829 /// 3. The missed fall through edge (if it exists) from the last BB to the
830 /// first BB in the loop chain.
831 /// Therefore, the cost for a given rotation is the sum of costs listed above.
832 /// We select the best rotation with the smallest cost.
833 void MachineBlockPlacement::rotateLoopWithProfile(
834 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
835 auto HeaderBB = L.getHeader();
836 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
837 auto RotationPos = LoopChain.end();
839 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
841 // A utility lambda that scales up a block frequency by dividing it by a
842 // branch probability which is the reciprocal of the scale.
843 auto ScaleBlockFrequency = [](BlockFrequency Freq,
844 unsigned Scale) -> BlockFrequency {
845 if (Scale == 0)
846 return 0;
847 // Use operator / between BlockFrequency and BranchProbability to implement
848 // saturating multiplication.
849 return Freq / BranchProbability(1, Scale);
852 // Compute the cost of the missed fall-through edge to the loop header if the
853 // chain head is not the loop header. As we only consider natural loops with
854 // single header, this computation can be done only once.
855 BlockFrequency HeaderFallThroughCost(0);
856 for (auto *Pred : HeaderBB->predecessors()) {
857 BlockChain *PredChain = BlockToChain[Pred];
858 if (!LoopBlockSet.count(Pred) &&
859 (!PredChain || Pred == *std::prev(PredChain->end()))) {
860 auto EdgeFreq =
861 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
862 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
863 // If the predecessor has only an unconditional jump to the header, we
864 // need to consider the cost of this jump.
865 if (Pred->succ_size() == 1)
866 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
867 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
871 // Here we collect all exit blocks in the loop, and for each exit we find out
872 // its hottest exit edge. For each loop rotation, we define the loop exit cost
873 // as the sum of frequencies of exit edges we collect here, excluding the exit
874 // edge from the tail of the loop chain.
875 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
876 for (auto BB : LoopChain) {
877 uint32_t LargestExitEdgeWeight = 0;
878 for (auto *Succ : BB->successors()) {
879 BlockChain *SuccChain = BlockToChain[Succ];
880 if (!LoopBlockSet.count(Succ) &&
881 (!SuccChain || Succ == *SuccChain->begin())) {
882 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
883 LargestExitEdgeWeight = std::max(LargestExitEdgeWeight, SuccWeight);
886 if (LargestExitEdgeWeight > 0) {
887 uint32_t WeightScale = 0;
888 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
889 auto ExitFreq =
890 MBFI->getBlockFreq(BB) *
891 BranchProbability(LargestExitEdgeWeight / WeightScale, SumWeight);
892 ExitsWithFreq.emplace_back(BB, ExitFreq);
896 // In this loop we iterate every block in the loop chain and calculate the
897 // cost assuming the block is the head of the loop chain. When the loop ends,
898 // we should have found the best candidate as the loop chain's head.
899 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
900 EndIter = LoopChain.end();
901 Iter != EndIter; Iter++, TailIter++) {
902 // TailIter is used to track the tail of the loop chain if the block we are
903 // checking (pointed by Iter) is the head of the chain.
904 if (TailIter == LoopChain.end())
905 TailIter = LoopChain.begin();
907 auto TailBB = *TailIter;
909 // Calculate the cost by putting this BB to the top.
910 BlockFrequency Cost = 0;
912 // If the current BB is the loop header, we need to take into account the
913 // cost of the missed fall through edge from outside of the loop to the
914 // header.
915 if (Iter != HeaderIter)
916 Cost += HeaderFallThroughCost;
918 // Collect the loop exit cost by summing up frequencies of all exit edges
919 // except the one from the chain tail.
920 for (auto &ExitWithFreq : ExitsWithFreq)
921 if (TailBB != ExitWithFreq.first)
922 Cost += ExitWithFreq.second;
924 // The cost of breaking the once fall-through edge from the tail to the top
925 // of the loop chain. Here we need to consider three cases:
926 // 1. If the tail node has only one successor, then we will get an
927 // additional jmp instruction. So the cost here is (MisfetchCost +
928 // JumpInstCost) * tail node frequency.
929 // 2. If the tail node has two successors, then we may still get an
930 // additional jmp instruction if the layout successor after the loop
931 // chain is not its CFG successor. Note that the more frequently executed
932 // jmp instruction will be put ahead of the other one. Assume the
933 // frequency of those two branches are x and y, where x is the frequency
934 // of the edge to the chain head, then the cost will be
935 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
936 // 3. If the tail node has more than two successors (this rarely happens),
937 // we won't consider any additional cost.
938 if (TailBB->isSuccessor(*Iter)) {
939 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
940 if (TailBB->succ_size() == 1)
941 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
942 MisfetchCost + JumpInstCost);
943 else if (TailBB->succ_size() == 2) {
944 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
945 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
946 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
947 ? TailBBFreq * TailToHeadProb.getCompl()
948 : TailToHeadFreq;
949 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
950 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
954 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
955 << " to the top: " << Cost.getFrequency() << "\n");
957 if (Cost < SmallestRotationCost) {
958 SmallestRotationCost = Cost;
959 RotationPos = Iter;
963 if (RotationPos != LoopChain.end()) {
964 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
965 << " to the top\n");
966 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
970 /// \brief Collect blocks in the given loop that are to be placed.
972 /// When profile data is available, exclude cold blocks from the returned set;
973 /// otherwise, collect all blocks in the loop.
974 MachineBlockPlacement::BlockFilterSet
975 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
976 BlockFilterSet LoopBlockSet;
978 // Filter cold blocks off from LoopBlockSet when profile data is available.
979 // Collect the sum of frequencies of incoming edges to the loop header from
980 // outside. If we treat the loop as a super block, this is the frequency of
981 // the loop. Then for each block in the loop, we calculate the ratio between
982 // its frequency and the frequency of the loop block. When it is too small,
983 // don't add it to the loop chain. If there are outer loops, then this block
984 // will be merged into the first outer loop chain for which this block is not
985 // cold anymore. This needs precise profile data and we only do this when
986 // profile data is available.
987 if (F.getFunction()->getEntryCount()) {
988 BlockFrequency LoopFreq(0);
989 for (auto LoopPred : L.getHeader()->predecessors())
990 if (!L.contains(LoopPred))
991 LoopFreq += MBFI->getBlockFreq(LoopPred) *
992 MBPI->getEdgeProbability(LoopPred, L.getHeader());
994 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
995 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
996 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
997 continue;
998 LoopBlockSet.insert(LoopBB);
1000 } else
1001 LoopBlockSet.insert(L.block_begin(), L.block_end());
1003 return LoopBlockSet;
1006 /// \brief Forms basic block chains from the natural loop structures.
1008 /// These chains are designed to preserve the existing *structure* of the code
1009 /// as much as possible. We can then stitch the chains together in a way which
1010 /// both preserves the topological structure and minimizes taken conditional
1011 /// branches.
1012 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1013 MachineLoop &L) {
1014 // First recurse through any nested loops, building chains for those inner
1015 // loops.
1016 for (MachineLoop *InnerLoop : L)
1017 buildLoopChains(F, *InnerLoop);
1019 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1020 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1022 // Check if we have profile data for this function. If yes, we will rotate
1023 // this loop by modeling costs more precisely which requires the profile data
1024 // for better layout.
1025 bool RotateLoopWithProfile =
1026 PreciseRotationCost && F.getFunction()->getEntryCount();
1028 // First check to see if there is an obviously preferable top block for the
1029 // loop. This will default to the header, but may end up as one of the
1030 // predecessors to the header if there is one which will result in strictly
1031 // fewer branches in the loop body.
1032 // When we use profile data to rotate the loop, this is unnecessary.
1033 MachineBasicBlock *LoopTop =
1034 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1036 // If we selected just the header for the loop top, look for a potentially
1037 // profitable exit block in the event that rotating the loop can eliminate
1038 // branches by placing an exit edge at the bottom.
1039 MachineBasicBlock *ExitingBB = nullptr;
1040 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1041 ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1043 BlockChain &LoopChain = *BlockToChain[LoopTop];
1045 // FIXME: This is a really lame way of walking the chains in the loop: we
1046 // walk the blocks, and use a set to prevent visiting a particular chain
1047 // twice.
1048 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1049 assert(LoopChain.LoopPredecessors == 0);
1050 UpdatedPreds.insert(&LoopChain);
1052 for (MachineBasicBlock *LoopBB : LoopBlockSet) {
1053 BlockChain &Chain = *BlockToChain[LoopBB];
1054 if (!UpdatedPreds.insert(&Chain).second)
1055 continue;
1057 assert(Chain.LoopPredecessors == 0);
1058 for (MachineBasicBlock *ChainBB : Chain) {
1059 assert(BlockToChain[ChainBB] == &Chain);
1060 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1061 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
1062 continue;
1063 ++Chain.LoopPredecessors;
1067 if (Chain.LoopPredecessors == 0)
1068 BlockWorkList.push_back(*Chain.begin());
1071 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
1073 if (RotateLoopWithProfile)
1074 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1075 else
1076 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1078 DEBUG({
1079 // Crash at the end so we get all of the debugging output first.
1080 bool BadLoop = false;
1081 if (LoopChain.LoopPredecessors) {
1082 BadLoop = true;
1083 dbgs() << "Loop chain contains a block without its preds placed!\n"
1084 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1085 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1087 for (MachineBasicBlock *ChainBB : LoopChain) {
1088 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
1089 if (!LoopBlockSet.erase(ChainBB)) {
1090 // We don't mark the loop as bad here because there are real situations
1091 // where this can occur. For example, with an unanalyzable fallthrough
1092 // from a loop block to a non-loop block or vice versa.
1093 dbgs() << "Loop chain contains a block not contained by the loop!\n"
1094 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1095 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1096 << " Bad block: " << getBlockName(ChainBB) << "\n";
1100 if (!LoopBlockSet.empty()) {
1101 BadLoop = true;
1102 for (MachineBasicBlock *LoopBB : LoopBlockSet)
1103 dbgs() << "Loop contains blocks never placed into a chain!\n"
1104 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1105 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1106 << " Bad block: " << getBlockName(LoopBB) << "\n";
1108 assert(!BadLoop && "Detected problems with the placement of this loop.");
1112 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1113 // Ensure that every BB in the function has an associated chain to simplify
1114 // the assumptions of the remaining algorithm.
1115 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1116 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1117 MachineBasicBlock *BB = &*FI;
1118 BlockChain *Chain =
1119 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1120 // Also, merge any blocks which we cannot reason about and must preserve
1121 // the exact fallthrough behavior for.
1122 for (;;) {
1123 Cond.clear();
1124 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1125 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1126 break;
1128 MachineFunction::iterator NextFI = std::next(FI);
1129 MachineBasicBlock *NextBB = &*NextFI;
1130 // Ensure that the layout successor is a viable block, as we know that
1131 // fallthrough is a possibility.
1132 assert(NextFI != FE && "Can't fallthrough past the last block.");
1133 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1134 << getBlockName(BB) << " -> " << getBlockName(NextBB)
1135 << "\n");
1136 Chain->merge(NextBB, nullptr);
1137 FI = NextFI;
1138 BB = NextBB;
1142 if (OutlineOptionalBranches) {
1143 // Find the nearest common dominator of all of F's terminators.
1144 MachineBasicBlock *Terminator = nullptr;
1145 for (MachineBasicBlock &MBB : F) {
1146 if (MBB.succ_size() == 0) {
1147 if (Terminator == nullptr)
1148 Terminator = &MBB;
1149 else
1150 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1154 // MBBs dominating this common dominator are unavoidable.
1155 UnavoidableBlocks.clear();
1156 for (MachineBasicBlock &MBB : F) {
1157 if (MDT->dominates(&MBB, Terminator)) {
1158 UnavoidableBlocks.insert(&MBB);
1163 // Build any loop-based chains.
1164 for (MachineLoop *L : *MLI)
1165 buildLoopChains(F, *L);
1167 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1169 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1170 for (MachineBasicBlock &MBB : F) {
1171 BlockChain &Chain = *BlockToChain[&MBB];
1172 if (!UpdatedPreds.insert(&Chain).second)
1173 continue;
1175 assert(Chain.LoopPredecessors == 0);
1176 for (MachineBasicBlock *ChainBB : Chain) {
1177 assert(BlockToChain[ChainBB] == &Chain);
1178 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1179 if (BlockToChain[Pred] == &Chain)
1180 continue;
1181 ++Chain.LoopPredecessors;
1185 if (Chain.LoopPredecessors == 0)
1186 BlockWorkList.push_back(*Chain.begin());
1189 BlockChain &FunctionChain = *BlockToChain[&F.front()];
1190 buildChain(&F.front(), FunctionChain, BlockWorkList);
1192 #ifndef NDEBUG
1193 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1194 #endif
1195 DEBUG({
1196 // Crash at the end so we get all of the debugging output first.
1197 bool BadFunc = false;
1198 FunctionBlockSetType FunctionBlockSet;
1199 for (MachineBasicBlock &MBB : F)
1200 FunctionBlockSet.insert(&MBB);
1202 for (MachineBasicBlock *ChainBB : FunctionChain)
1203 if (!FunctionBlockSet.erase(ChainBB)) {
1204 BadFunc = true;
1205 dbgs() << "Function chain contains a block not in the function!\n"
1206 << " Bad block: " << getBlockName(ChainBB) << "\n";
1209 if (!FunctionBlockSet.empty()) {
1210 BadFunc = true;
1211 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1212 dbgs() << "Function contains blocks never placed into a chain!\n"
1213 << " Bad block: " << getBlockName(RemainingBB) << "\n";
1215 assert(!BadFunc && "Detected problems with the block placement.");
1218 // Splice the blocks into place.
1219 MachineFunction::iterator InsertPos = F.begin();
1220 for (MachineBasicBlock *ChainBB : FunctionChain) {
1221 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1222 : " ... ")
1223 << getBlockName(ChainBB) << "\n");
1224 if (InsertPos != MachineFunction::iterator(ChainBB))
1225 F.splice(InsertPos, ChainBB);
1226 else
1227 ++InsertPos;
1229 // Update the terminator of the previous block.
1230 if (ChainBB == *FunctionChain.begin())
1231 continue;
1232 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1234 // FIXME: It would be awesome of updateTerminator would just return rather
1235 // than assert when the branch cannot be analyzed in order to remove this
1236 // boiler plate.
1237 Cond.clear();
1238 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1239 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1240 // The "PrevBB" is not yet updated to reflect current code layout, so,
1241 // o. it may fall-through to a block without explict "goto" instruction
1242 // before layout, and no longer fall-through it after layout; or
1243 // o. just opposite.
1245 // AnalyzeBranch() may return erroneous value for FBB when these two
1246 // situations take place. For the first scenario FBB is mistakenly set
1247 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1248 // is mistakenly pointing to "*BI".
1250 bool needUpdateBr = true;
1251 if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1252 PrevBB->updateTerminator();
1253 needUpdateBr = false;
1254 Cond.clear();
1255 TBB = FBB = nullptr;
1256 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1257 // FIXME: This should never take place.
1258 TBB = FBB = nullptr;
1262 // If PrevBB has a two-way branch, try to re-order the branches
1263 // such that we branch to the successor with higher weight first.
1264 if (TBB && !Cond.empty() && FBB &&
1265 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1266 !TII->ReverseBranchCondition(Cond)) {
1267 DEBUG(dbgs() << "Reverse order of the two branches: "
1268 << getBlockName(PrevBB) << "\n");
1269 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1270 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1271 DebugLoc dl; // FIXME: this is nowhere
1272 TII->RemoveBranch(*PrevBB);
1273 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1274 needUpdateBr = true;
1276 if (needUpdateBr)
1277 PrevBB->updateTerminator();
1281 // Fixup the last block.
1282 Cond.clear();
1283 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1284 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1285 F.back().updateTerminator();
1287 // Walk through the backedges of the function now that we have fully laid out
1288 // the basic blocks and align the destination of each backedge. We don't rely
1289 // exclusively on the loop info here so that we can align backedges in
1290 // unnatural CFGs and backedges that were introduced purely because of the
1291 // loop rotations done during this layout pass.
1292 // FIXME: Use Function::optForSize().
1293 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1294 return;
1295 if (FunctionChain.begin() == FunctionChain.end())
1296 return; // Empty chain.
1298 const BranchProbability ColdProb(1, 5); // 20%
1299 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1300 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1301 for (MachineBasicBlock *ChainBB : FunctionChain) {
1302 if (ChainBB == *FunctionChain.begin())
1303 continue;
1305 // Don't align non-looping basic blocks. These are unlikely to execute
1306 // enough times to matter in practice. Note that we'll still handle
1307 // unnatural CFGs inside of a natural outer loop (the common case) and
1308 // rotated loops.
1309 MachineLoop *L = MLI->getLoopFor(ChainBB);
1310 if (!L)
1311 continue;
1313 unsigned Align = TLI->getPrefLoopAlignment(L);
1314 if (!Align)
1315 continue; // Don't care about loop alignment.
1317 // If the block is cold relative to the function entry don't waste space
1318 // aligning it.
1319 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1320 if (Freq < WeightedEntryFreq)
1321 continue;
1323 // If the block is cold relative to its loop header, don't align it
1324 // regardless of what edges into the block exist.
1325 MachineBasicBlock *LoopHeader = L->getHeader();
1326 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1327 if (Freq < (LoopHeaderFreq * ColdProb))
1328 continue;
1330 // Check for the existence of a non-layout predecessor which would benefit
1331 // from aligning this block.
1332 MachineBasicBlock *LayoutPred =
1333 &*std::prev(MachineFunction::iterator(ChainBB));
1335 // Force alignment if all the predecessors are jumps. We already checked
1336 // that the block isn't cold above.
1337 if (!LayoutPred->isSuccessor(ChainBB)) {
1338 ChainBB->setAlignment(Align);
1339 continue;
1342 // Align this block if the layout predecessor's edge into this block is
1343 // cold relative to the block. When this is true, other predecessors make up
1344 // all of the hot entries into the block and thus alignment is likely to be
1345 // important.
1346 BranchProbability LayoutProb =
1347 MBPI->getEdgeProbability(LayoutPred, ChainBB);
1348 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1349 if (LayoutEdgeFreq <= (Freq * ColdProb))
1350 ChainBB->setAlignment(Align);
1354 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1355 // Check for single-block functions and skip them.
1356 if (std::next(F.begin()) == F.end())
1357 return false;
1359 if (skipOptnoneFunction(*F.getFunction()))
1360 return false;
1362 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1363 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1364 MLI = &getAnalysis<MachineLoopInfo>();
1365 TII = F.getSubtarget().getInstrInfo();
1366 TLI = F.getSubtarget().getTargetLowering();
1367 MDT = &getAnalysis<MachineDominatorTree>();
1368 assert(BlockToChain.empty());
1370 buildCFGChains(F);
1372 BlockToChain.clear();
1373 ChainAllocator.DestroyAll();
1375 if (AlignAllBlock)
1376 // Align all of the blocks in the function to a specific alignment.
1377 for (MachineBasicBlock &MBB : F)
1378 MBB.setAlignment(AlignAllBlock);
1380 // We always return true as we have no way to track whether the final order
1381 // differs from the original order.
1382 return true;
1385 namespace {
1386 /// \brief A pass to compute block placement statistics.
1388 /// A separate pass to compute interesting statistics for evaluating block
1389 /// placement. This is separate from the actual placement pass so that they can
1390 /// be computed in the absence of any placement transformations or when using
1391 /// alternative placement strategies.
1392 class MachineBlockPlacementStats : public MachineFunctionPass {
1393 /// \brief A handle to the branch probability pass.
1394 const MachineBranchProbabilityInfo *MBPI;
1396 /// \brief A handle to the function-wide block frequency pass.
1397 const MachineBlockFrequencyInfo *MBFI;
1399 public:
1400 static char ID; // Pass identification, replacement for typeid
1401 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1402 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1405 bool runOnMachineFunction(MachineFunction &F) override;
1407 void getAnalysisUsage(AnalysisUsage &AU) const override {
1408 AU.addRequired<MachineBranchProbabilityInfo>();
1409 AU.addRequired<MachineBlockFrequencyInfo>();
1410 AU.setPreservesAll();
1411 MachineFunctionPass::getAnalysisUsage(AU);
1416 char MachineBlockPlacementStats::ID = 0;
1417 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1418 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1419 "Basic Block Placement Stats", false, false)
1420 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1421 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1422 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1423 "Basic Block Placement Stats", false, false)
1425 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1426 // Check for single-block functions and skip them.
1427 if (std::next(F.begin()) == F.end())
1428 return false;
1430 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1431 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1433 for (MachineBasicBlock &MBB : F) {
1434 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1435 Statistic &NumBranches =
1436 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1437 Statistic &BranchTakenFreq =
1438 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1439 for (MachineBasicBlock *Succ : MBB.successors()) {
1440 // Skip if this successor is a fallthrough.
1441 if (MBB.isLayoutSuccessor(Succ))
1442 continue;
1444 BlockFrequency EdgeFreq =
1445 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1446 ++NumBranches;
1447 BranchTakenFreq += EdgeFreq.getFrequency();
1451 return false;