[AArch64] Check the expansion of BITREVERSE in regression test
[llvm-core.git] / lib / CodeGen / CallingConvLower.cpp
blob23c0d542560ec0a0ce1cb10af997bb3f54daf092
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CCState class, used for lowering and implementing
11 // calling conventions.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/Target/TargetSubtargetInfo.h"
26 using namespace llvm;
28 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
29 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
30 : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
31 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C),
32 CallOrPrologue(Unknown) {
33 // No stack is used.
34 StackOffset = 0;
35 MaxStackArgAlign = 1;
37 clearByValRegsInfo();
38 UsedRegs.resize((TRI.getNumRegs()+31)/32);
41 /// Allocate space on the stack large enough to pass an argument by value.
42 /// The size and alignment information of the argument is encoded in
43 /// its parameter attribute.
44 void CCState::HandleByVal(unsigned ValNo, MVT ValVT,
45 MVT LocVT, CCValAssign::LocInfo LocInfo,
46 int MinSize, int MinAlign,
47 ISD::ArgFlagsTy ArgFlags) {
48 unsigned Align = ArgFlags.getByValAlign();
49 unsigned Size = ArgFlags.getByValSize();
50 if (MinSize > (int)Size)
51 Size = MinSize;
52 if (MinAlign > (int)Align)
53 Align = MinAlign;
54 MF.getFrameInfo()->ensureMaxAlignment(Align);
55 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Align);
56 Size = unsigned(RoundUpToAlignment(Size, MinAlign));
57 unsigned Offset = AllocateStack(Size, Align);
58 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
61 /// Mark a register and all of its aliases as allocated.
62 void CCState::MarkAllocated(unsigned Reg) {
63 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
64 UsedRegs[*AI/32] |= 1 << (*AI&31);
67 /// Analyze an array of argument values,
68 /// incorporating info about the formals into this state.
69 void
70 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
71 CCAssignFn Fn) {
72 unsigned NumArgs = Ins.size();
74 for (unsigned i = 0; i != NumArgs; ++i) {
75 MVT ArgVT = Ins[i].VT;
76 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
77 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
78 #ifndef NDEBUG
79 dbgs() << "Formal argument #" << i << " has unhandled type "
80 << EVT(ArgVT).getEVTString() << '\n';
81 #endif
82 llvm_unreachable(nullptr);
87 /// Analyze the return values of a function, returning true if the return can
88 /// be performed without sret-demotion and false otherwise.
89 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
90 CCAssignFn Fn) {
91 // Determine which register each value should be copied into.
92 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
93 MVT VT = Outs[i].VT;
94 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
95 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
96 return false;
98 return true;
101 /// Analyze the returned values of a return,
102 /// incorporating info about the result values into this state.
103 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
104 CCAssignFn Fn) {
105 // Determine which register each value should be copied into.
106 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
107 MVT VT = Outs[i].VT;
108 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
109 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) {
110 #ifndef NDEBUG
111 dbgs() << "Return operand #" << i << " has unhandled type "
112 << EVT(VT).getEVTString() << '\n';
113 #endif
114 llvm_unreachable(nullptr);
119 /// Analyze the outgoing arguments to a call,
120 /// incorporating info about the passed values into this state.
121 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
122 CCAssignFn Fn) {
123 unsigned NumOps = Outs.size();
124 for (unsigned i = 0; i != NumOps; ++i) {
125 MVT ArgVT = Outs[i].VT;
126 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
127 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
128 #ifndef NDEBUG
129 dbgs() << "Call operand #" << i << " has unhandled type "
130 << EVT(ArgVT).getEVTString() << '\n';
131 #endif
132 llvm_unreachable(nullptr);
137 /// Same as above except it takes vectors of types and argument flags.
138 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
139 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
140 CCAssignFn Fn) {
141 unsigned NumOps = ArgVTs.size();
142 for (unsigned i = 0; i != NumOps; ++i) {
143 MVT ArgVT = ArgVTs[i];
144 ISD::ArgFlagsTy ArgFlags = Flags[i];
145 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
146 #ifndef NDEBUG
147 dbgs() << "Call operand #" << i << " has unhandled type "
148 << EVT(ArgVT).getEVTString() << '\n';
149 #endif
150 llvm_unreachable(nullptr);
155 /// Analyze the return values of a call, incorporating info about the passed
156 /// values into this state.
157 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
158 CCAssignFn Fn) {
159 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
160 MVT VT = Ins[i].VT;
161 ISD::ArgFlagsTy Flags = Ins[i].Flags;
162 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
163 #ifndef NDEBUG
164 dbgs() << "Call result #" << i << " has unhandled type "
165 << EVT(VT).getEVTString() << '\n';
166 #endif
167 llvm_unreachable(nullptr);
172 /// Same as above except it's specialized for calls that produce a single value.
173 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
174 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
175 #ifndef NDEBUG
176 dbgs() << "Call result has unhandled type "
177 << EVT(VT).getEVTString() << '\n';
178 #endif
179 llvm_unreachable(nullptr);
183 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
184 if (VT.isVector())
185 return true; // Assume -msse-regparm might be in effect.
186 if (!VT.isInteger())
187 return false;
188 if (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall)
189 return true;
190 return false;
193 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
194 MVT VT, CCAssignFn Fn) {
195 unsigned SavedStackOffset = StackOffset;
196 unsigned SavedMaxStackArgAlign = MaxStackArgAlign;
197 unsigned NumLocs = Locs.size();
199 // Set the 'inreg' flag if it is used for this calling convention.
200 ISD::ArgFlagsTy Flags;
201 if (isValueTypeInRegForCC(CallingConv, VT))
202 Flags.setInReg();
204 // Allocate something of this value type repeatedly until we get assigned a
205 // location in memory.
206 bool HaveRegParm = true;
207 while (HaveRegParm) {
208 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
209 #ifndef NDEBUG
210 dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
211 << " while computing remaining regparms\n";
212 #endif
213 llvm_unreachable(nullptr);
215 HaveRegParm = Locs.back().isRegLoc();
218 // Copy all the registers from the value locations we added.
219 assert(NumLocs < Locs.size() && "CC assignment failed to add location");
220 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
221 if (Locs[I].isRegLoc())
222 Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
224 // Clear the assigned values and stack memory. We leave the registers marked
225 // as allocated so that future queries don't return the same registers, i.e.
226 // when i64 and f64 are both passed in GPRs.
227 StackOffset = SavedStackOffset;
228 MaxStackArgAlign = SavedMaxStackArgAlign;
229 Locs.resize(NumLocs);
232 void CCState::analyzeMustTailForwardedRegisters(
233 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
234 CCAssignFn Fn) {
235 // Oftentimes calling conventions will not user register parameters for
236 // variadic functions, so we need to assume we're not variadic so that we get
237 // all the registers that might be used in a non-variadic call.
238 SaveAndRestore<bool> SavedVarArg(IsVarArg, false);
240 for (MVT RegVT : RegParmTypes) {
241 SmallVector<MCPhysReg, 8> RemainingRegs;
242 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
243 const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
244 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
245 for (MCPhysReg PReg : RemainingRegs) {
246 unsigned VReg = MF.addLiveIn(PReg, RC);
247 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));