[COFF, ARM64] Fix symbol offsets in ADRP/ADD/LDR/STR relocations
[llvm-core.git] / lib / Target / AArch64 / MCTargetDesc / AArch64AsmBackend.cpp
blob0e42cf422bd5f7cab9848d5152fb3a58efa4c987
1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "AArch64.h"
11 #include "AArch64RegisterInfo.h"
12 #include "MCTargetDesc/AArch64FixupKinds.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCSectionMachO.h"
24 #include "llvm/MC/MCValue.h"
25 #include "llvm/Support/ErrorHandling.h"
26 using namespace llvm;
28 namespace {
30 class AArch64AsmBackend : public MCAsmBackend {
31 static const unsigned PCRelFlagVal =
32 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
33 Triple TheTriple;
35 public:
36 bool IsLittleEndian;
38 public:
39 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
40 : MCAsmBackend(), TheTriple(TT), IsLittleEndian(IsLittleEndian) {}
42 unsigned getNumFixupKinds() const override {
43 return AArch64::NumTargetFixupKinds;
46 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
47 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
48 // This table *must* be in the order that the fixup_* kinds are defined
49 // in AArch64FixupKinds.h.
51 // Name Offset (bits) Size (bits) Flags
52 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
53 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
54 {"fixup_aarch64_add_imm12", 10, 12, 0},
55 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
56 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
57 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
58 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
59 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
60 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
61 {"fixup_aarch64_movw", 5, 16, 0},
62 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
63 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
64 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
65 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal},
66 {"fixup_aarch64_tlsdesc_call", 0, 0, 0}};
68 if (Kind < FirstTargetFixupKind)
69 return MCAsmBackend::getFixupKindInfo(Kind);
71 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
72 "Invalid kind!");
73 return Infos[Kind - FirstTargetFixupKind];
76 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
77 const MCValue &Target, MutableArrayRef<char> Data,
78 uint64_t Value, bool IsResolved) const override;
80 bool mayNeedRelaxation(const MCInst &Inst) const override;
81 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
82 const MCRelaxableFragment *DF,
83 const MCAsmLayout &Layout) const override;
84 void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
85 MCInst &Res) const override;
86 bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
88 void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
90 unsigned getPointerSize() const { return 8; }
92 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
94 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
95 const MCValue &Target) override;
98 } // end anonymous namespace
100 /// \brief The number of bytes the fixup may change.
101 static unsigned getFixupKindNumBytes(unsigned Kind) {
102 switch (Kind) {
103 default:
104 llvm_unreachable("Unknown fixup kind!");
106 case AArch64::fixup_aarch64_tlsdesc_call:
107 return 0;
109 case FK_Data_1:
110 return 1;
112 case AArch64::fixup_aarch64_movw:
113 case FK_Data_2:
114 case FK_SecRel_2:
115 return 2;
117 case AArch64::fixup_aarch64_pcrel_branch14:
118 case AArch64::fixup_aarch64_add_imm12:
119 case AArch64::fixup_aarch64_ldst_imm12_scale1:
120 case AArch64::fixup_aarch64_ldst_imm12_scale2:
121 case AArch64::fixup_aarch64_ldst_imm12_scale4:
122 case AArch64::fixup_aarch64_ldst_imm12_scale8:
123 case AArch64::fixup_aarch64_ldst_imm12_scale16:
124 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
125 case AArch64::fixup_aarch64_pcrel_branch19:
126 return 3;
128 case AArch64::fixup_aarch64_pcrel_adr_imm21:
129 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
130 case AArch64::fixup_aarch64_pcrel_branch26:
131 case AArch64::fixup_aarch64_pcrel_call26:
132 case FK_Data_4:
133 case FK_SecRel_4:
134 return 4;
136 case FK_Data_8:
137 return 8;
141 static unsigned AdrImmBits(unsigned Value) {
142 unsigned lo2 = Value & 0x3;
143 unsigned hi19 = (Value & 0x1ffffc) >> 2;
144 return (hi19 << 5) | (lo2 << 29);
147 static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
148 MCContext &Ctx, const Triple &TheTriple,
149 bool IsResolved) {
150 unsigned Kind = Fixup.getKind();
151 int64_t SignedValue = static_cast<int64_t>(Value);
152 switch (Kind) {
153 default:
154 llvm_unreachable("Unknown fixup kind!");
155 case AArch64::fixup_aarch64_pcrel_adr_imm21:
156 if (SignedValue > 2097151 || SignedValue < -2097152)
157 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
158 return AdrImmBits(Value & 0x1fffffULL);
159 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
160 assert(!IsResolved);
161 if (TheTriple.isOSBinFormatCOFF())
162 return AdrImmBits(Value & 0x1fffffULL);
163 return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
164 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
165 case AArch64::fixup_aarch64_pcrel_branch19:
166 // Signed 21-bit immediate
167 if (SignedValue > 2097151 || SignedValue < -2097152)
168 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
169 if (Value & 0x3)
170 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
171 // Low two bits are not encoded.
172 return (Value >> 2) & 0x7ffff;
173 case AArch64::fixup_aarch64_add_imm12:
174 case AArch64::fixup_aarch64_ldst_imm12_scale1:
175 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
176 Value &= 0xfff;
177 // Unsigned 12-bit immediate
178 if (Value >= 0x1000)
179 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
180 return Value;
181 case AArch64::fixup_aarch64_ldst_imm12_scale2:
182 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
183 Value &= 0xfff;
184 // Unsigned 12-bit immediate which gets multiplied by 2
185 if (Value >= 0x2000)
186 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
187 if (Value & 0x1)
188 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
189 return Value >> 1;
190 case AArch64::fixup_aarch64_ldst_imm12_scale4:
191 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
192 Value &= 0xfff;
193 // Unsigned 12-bit immediate which gets multiplied by 4
194 if (Value >= 0x4000)
195 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
196 if (Value & 0x3)
197 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
198 return Value >> 2;
199 case AArch64::fixup_aarch64_ldst_imm12_scale8:
200 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
201 Value &= 0xfff;
202 // Unsigned 12-bit immediate which gets multiplied by 8
203 if (Value >= 0x8000)
204 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
205 if (Value & 0x7)
206 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
207 return Value >> 3;
208 case AArch64::fixup_aarch64_ldst_imm12_scale16:
209 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
210 Value &= 0xfff;
211 // Unsigned 12-bit immediate which gets multiplied by 16
212 if (Value >= 0x10000)
213 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
214 if (Value & 0xf)
215 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
216 return Value >> 4;
217 case AArch64::fixup_aarch64_movw:
218 Ctx.reportError(Fixup.getLoc(),
219 "no resolvable MOVZ/MOVK fixups supported yet");
220 return Value;
221 case AArch64::fixup_aarch64_pcrel_branch14:
222 // Signed 16-bit immediate
223 if (SignedValue > 32767 || SignedValue < -32768)
224 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
225 // Low two bits are not encoded (4-byte alignment assumed).
226 if (Value & 0x3)
227 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
228 return (Value >> 2) & 0x3fff;
229 case AArch64::fixup_aarch64_pcrel_branch26:
230 case AArch64::fixup_aarch64_pcrel_call26:
231 // Signed 28-bit immediate
232 if (SignedValue > 134217727 || SignedValue < -134217728)
233 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
234 // Low two bits are not encoded (4-byte alignment assumed).
235 if (Value & 0x3)
236 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
237 return (Value >> 2) & 0x3ffffff;
238 case FK_Data_1:
239 case FK_Data_2:
240 case FK_Data_4:
241 case FK_Data_8:
242 case FK_SecRel_2:
243 case FK_SecRel_4:
244 return Value;
248 /// getFixupKindContainereSizeInBytes - The number of bytes of the
249 /// container involved in big endian or 0 if the item is little endian
250 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
251 if (IsLittleEndian)
252 return 0;
254 switch (Kind) {
255 default:
256 llvm_unreachable("Unknown fixup kind!");
258 case FK_Data_1:
259 return 1;
260 case FK_Data_2:
261 return 2;
262 case FK_Data_4:
263 return 4;
264 case FK_Data_8:
265 return 8;
267 case AArch64::fixup_aarch64_tlsdesc_call:
268 case AArch64::fixup_aarch64_movw:
269 case AArch64::fixup_aarch64_pcrel_branch14:
270 case AArch64::fixup_aarch64_add_imm12:
271 case AArch64::fixup_aarch64_ldst_imm12_scale1:
272 case AArch64::fixup_aarch64_ldst_imm12_scale2:
273 case AArch64::fixup_aarch64_ldst_imm12_scale4:
274 case AArch64::fixup_aarch64_ldst_imm12_scale8:
275 case AArch64::fixup_aarch64_ldst_imm12_scale16:
276 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
277 case AArch64::fixup_aarch64_pcrel_branch19:
278 case AArch64::fixup_aarch64_pcrel_adr_imm21:
279 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
280 case AArch64::fixup_aarch64_pcrel_branch26:
281 case AArch64::fixup_aarch64_pcrel_call26:
282 // Instructions are always little endian
283 return 0;
287 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
288 const MCValue &Target,
289 MutableArrayRef<char> Data, uint64_t Value,
290 bool IsResolved) const {
291 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
292 if (!Value)
293 return; // Doesn't change encoding.
294 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
295 MCContext &Ctx = Asm.getContext();
296 // Apply any target-specific value adjustments.
297 Value = adjustFixupValue(Fixup, Value, Ctx, TheTriple, IsResolved);
299 // Shift the value into position.
300 Value <<= Info.TargetOffset;
302 unsigned Offset = Fixup.getOffset();
303 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
305 // Used to point to big endian bytes.
306 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
308 // For each byte of the fragment that the fixup touches, mask in the
309 // bits from the fixup value.
310 if (FulleSizeInBytes == 0) {
311 // Handle as little-endian
312 for (unsigned i = 0; i != NumBytes; ++i) {
313 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
315 } else {
316 // Handle as big-endian
317 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
318 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
319 for (unsigned i = 0; i != NumBytes; ++i) {
320 unsigned Idx = FulleSizeInBytes - 1 - i;
321 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
326 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
327 return false;
330 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
331 uint64_t Value,
332 const MCRelaxableFragment *DF,
333 const MCAsmLayout &Layout) const {
334 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic
335 // into the targets for now.
337 // Relax if the value is too big for a (signed) i8.
338 return int64_t(Value) != int64_t(int8_t(Value));
341 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
342 const MCSubtargetInfo &STI,
343 MCInst &Res) const {
344 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
347 bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
348 // If the count is not 4-byte aligned, we must be writing data into the text
349 // section (otherwise we have unaligned instructions, and thus have far
350 // bigger problems), so just write zeros instead.
351 OW->WriteZeros(Count % 4);
353 // We are properly aligned, so write NOPs as requested.
354 Count /= 4;
355 for (uint64_t i = 0; i != Count; ++i)
356 OW->write32(0xd503201f);
357 return true;
360 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
361 const MCFixup &Fixup,
362 const MCValue &Target) {
363 // The ADRP instruction adds some multiple of 0x1000 to the current PC &
364 // ~0xfff. This means that the required offset to reach a symbol can vary by
365 // up to one step depending on where the ADRP is in memory. For example:
367 // ADRP x0, there
368 // there:
370 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
371 // we'll need that as an offset. At any other address "there" will be in the
372 // same page as the ADRP and the instruction should encode 0x0. Assuming the
373 // section isn't 0x1000-aligned, we therefore need to delegate this decision
374 // to the linker -- a relocation!
375 if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
376 return true;
377 return false;
380 namespace {
382 namespace CU {
384 /// \brief Compact unwind encoding values.
385 enum CompactUnwindEncodings {
386 /// \brief A "frameless" leaf function, where no non-volatile registers are
387 /// saved. The return remains in LR throughout the function.
388 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
390 /// \brief No compact unwind encoding available. Instead the low 23-bits of
391 /// the compact unwind encoding is the offset of the DWARF FDE in the
392 /// __eh_frame section. This mode is never used in object files. It is only
393 /// generated by the linker in final linked images, which have only DWARF info
394 /// for a function.
395 UNWIND_ARM64_MODE_DWARF = 0x03000000,
397 /// \brief This is a standard arm64 prologue where FP/LR are immediately
398 /// pushed on the stack, then SP is copied to FP. If there are any
399 /// non-volatile register saved, they are copied into the stack fame in pairs
400 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
401 /// five X pairs and four D pairs can be saved, but the memory layout must be
402 /// in register number order.
403 UNWIND_ARM64_MODE_FRAME = 0x04000000,
405 /// \brief Frame register pair encodings.
406 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
407 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
408 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
409 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
410 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
411 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
412 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
413 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
414 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
417 } // end CU namespace
419 // FIXME: This should be in a separate file.
420 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
421 const MCRegisterInfo &MRI;
423 /// \brief Encode compact unwind stack adjustment for frameless functions.
424 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
425 /// The stack size always needs to be 16 byte aligned.
426 uint32_t encodeStackAdjustment(uint32_t StackSize) const {
427 return (StackSize / 16) << 12;
430 public:
431 DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
432 const MCRegisterInfo &MRI)
433 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
435 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
436 return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
437 MachO::CPU_SUBTYPE_ARM64_ALL);
440 /// \brief Generate the compact unwind encoding from the CFI directives.
441 uint32_t generateCompactUnwindEncoding(
442 ArrayRef<MCCFIInstruction> Instrs) const override {
443 if (Instrs.empty())
444 return CU::UNWIND_ARM64_MODE_FRAMELESS;
446 bool HasFP = false;
447 unsigned StackSize = 0;
449 uint32_t CompactUnwindEncoding = 0;
450 for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
451 const MCCFIInstruction &Inst = Instrs[i];
453 switch (Inst.getOperation()) {
454 default:
455 // Cannot handle this directive: bail out.
456 return CU::UNWIND_ARM64_MODE_DWARF;
457 case MCCFIInstruction::OpDefCfa: {
458 // Defines a frame pointer.
459 assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
460 AArch64::FP &&
461 "Invalid frame pointer!");
462 assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
464 const MCCFIInstruction &LRPush = Instrs[++i];
465 assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
466 "Link register not pushed!");
467 const MCCFIInstruction &FPPush = Instrs[++i];
468 assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
469 "Frame pointer not pushed!");
471 unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
472 unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
474 LRReg = getXRegFromWReg(LRReg);
475 FPReg = getXRegFromWReg(FPReg);
477 assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
478 "Pushing invalid registers for frame!");
480 // Indicate that the function has a frame.
481 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
482 HasFP = true;
483 break;
485 case MCCFIInstruction::OpDefCfaOffset: {
486 assert(StackSize == 0 && "We already have the CFA offset!");
487 StackSize = std::abs(Inst.getOffset());
488 break;
490 case MCCFIInstruction::OpOffset: {
491 // Registers are saved in pairs. We expect there to be two consecutive
492 // `.cfi_offset' instructions with the appropriate registers specified.
493 unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
494 if (i + 1 == e)
495 return CU::UNWIND_ARM64_MODE_DWARF;
497 const MCCFIInstruction &Inst2 = Instrs[++i];
498 if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
499 return CU::UNWIND_ARM64_MODE_DWARF;
500 unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
502 // N.B. The encodings must be in register number order, and the X
503 // registers before the D registers.
505 // X19/X20 pair = 0x00000001,
506 // X21/X22 pair = 0x00000002,
507 // X23/X24 pair = 0x00000004,
508 // X25/X26 pair = 0x00000008,
509 // X27/X28 pair = 0x00000010
510 Reg1 = getXRegFromWReg(Reg1);
511 Reg2 = getXRegFromWReg(Reg2);
513 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
514 (CompactUnwindEncoding & 0xF1E) == 0)
515 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
516 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
517 (CompactUnwindEncoding & 0xF1C) == 0)
518 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
519 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
520 (CompactUnwindEncoding & 0xF18) == 0)
521 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
522 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
523 (CompactUnwindEncoding & 0xF10) == 0)
524 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
525 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
526 (CompactUnwindEncoding & 0xF00) == 0)
527 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
528 else {
529 Reg1 = getDRegFromBReg(Reg1);
530 Reg2 = getDRegFromBReg(Reg2);
532 // D8/D9 pair = 0x00000100,
533 // D10/D11 pair = 0x00000200,
534 // D12/D13 pair = 0x00000400,
535 // D14/D15 pair = 0x00000800
536 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
537 (CompactUnwindEncoding & 0xE00) == 0)
538 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
539 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
540 (CompactUnwindEncoding & 0xC00) == 0)
541 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
542 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
543 (CompactUnwindEncoding & 0x800) == 0)
544 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
545 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
546 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
547 else
548 // A pair was pushed which we cannot handle.
549 return CU::UNWIND_ARM64_MODE_DWARF;
552 break;
557 if (!HasFP) {
558 // With compact unwind info we can only represent stack adjustments of up
559 // to 65520 bytes.
560 if (StackSize > 65520)
561 return CU::UNWIND_ARM64_MODE_DWARF;
563 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
564 CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
567 return CompactUnwindEncoding;
571 } // end anonymous namespace
573 namespace {
575 class ELFAArch64AsmBackend : public AArch64AsmBackend {
576 public:
577 uint8_t OSABI;
578 bool IsILP32;
580 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
581 bool IsLittleEndian, bool IsILP32)
582 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
583 IsILP32(IsILP32) {}
585 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
586 return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian, IsILP32);
592 namespace {
593 class COFFAArch64AsmBackend : public AArch64AsmBackend {
594 public:
595 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
596 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
598 MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
599 return createAArch64WinCOFFObjectWriter(OS);
604 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
605 const MCRegisterInfo &MRI,
606 const Triple &TheTriple,
607 StringRef CPU,
608 const MCTargetOptions &Options) {
609 if (TheTriple.isOSBinFormatMachO())
610 return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
612 if (TheTriple.isOSBinFormatCOFF())
613 return new COFFAArch64AsmBackend(T, TheTriple);
615 assert(TheTriple.isOSBinFormatELF() && "Invalid target");
617 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
618 bool IsILP32 = Options.getABIName() == "ilp32";
619 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
620 IsILP32);
623 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
624 const MCRegisterInfo &MRI,
625 const Triple &TheTriple,
626 StringRef CPU,
627 const MCTargetOptions &Options) {
628 assert(TheTriple.isOSBinFormatELF() &&
629 "Big endian is only supported for ELF targets!");
630 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
631 bool IsILP32 = Options.getABIName() == "ilp32";
632 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
633 IsILP32);