1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file declares the SDNode class and derived classes, which are used to
11 // represent the nodes and operations present in a SelectionDAG. These nodes
12 // and operations are machine code level operations, with some similarities to
13 // the GCC RTL representation.
15 // Clients should include the SelectionDAG.h file instead of this file directly.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
22 #include "llvm/Constants.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/ilist_node.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/System/DataTypes.h"
32 #include "llvm/Support/DebugLoc.h"
39 class MachineBasicBlock
;
40 class MachineConstantPoolValue
;
43 template <typename T
> struct DenseMapInfo
;
44 template <typename T
> struct simplify_type
;
45 template <typename T
> struct ilist_traits
;
47 void checkForCycles(const SDNode
*N
);
49 /// SDVTList - This represents a list of ValueType's that has been intern'd by
50 /// a SelectionDAG. Instances of this simple value class are returned by
51 /// SelectionDAG::getVTList(...).
58 /// ISD namespace - This namespace contains an enum which represents all of the
59 /// SelectionDAG node types and value types.
63 //===--------------------------------------------------------------------===//
64 /// ISD::NodeType enum - This enum defines the target-independent operators
65 /// for a SelectionDAG.
67 /// Targets may also define target-dependent operator codes for SDNodes. For
68 /// example, on x86, these are the enum values in the X86ISD namespace.
69 /// Targets should aim to use target-independent operators to model their
70 /// instruction sets as much as possible, and only use target-dependent
71 /// operators when they have special requirements.
73 /// Finally, during and after selection proper, SNodes may use special
74 /// operator codes that correspond directly with MachineInstr opcodes. These
75 /// are used to represent selected instructions. See the isMachineOpcode()
76 /// and getMachineOpcode() member functions of SDNode.
79 // DELETED_NODE - This is an illegal value that is used to catch
80 // errors. This opcode is not a legal opcode for any node.
83 // EntryToken - This is the marker used to indicate the start of the region.
86 // TokenFactor - This node takes multiple tokens as input and produces a
87 // single token result. This is used to represent the fact that the operand
88 // operators are independent of each other.
91 // AssertSext, AssertZext - These nodes record if a register contains a
92 // value that has already been zero or sign extended from a narrower type.
93 // These nodes take two operands. The first is the node that has already
94 // been extended, and the second is a value type node indicating the width
96 AssertSext
, AssertZext
,
98 // Various leaf nodes.
99 BasicBlock
, VALUETYPE
, CONDCODE
, Register
,
100 Constant
, ConstantFP
,
101 GlobalAddress
, GlobalTLSAddress
, FrameIndex
,
102 JumpTable
, ConstantPool
, ExternalSymbol
, BlockAddress
,
104 // The address of the GOT
107 // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
108 // llvm.returnaddress on the DAG. These nodes take one operand, the index
109 // of the frame or return address to return. An index of zero corresponds
110 // to the current function's frame or return address, an index of one to the
111 // parent's frame or return address, and so on.
112 FRAMEADDR
, RETURNADDR
,
114 // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
115 // first (possible) on-stack argument. This is needed for correct stack
116 // adjustment during unwind.
117 FRAME_TO_ARGS_OFFSET
,
119 // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
120 // address of the exception block on entry to an landing pad block.
123 // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
124 // address of the Language Specific Data Area for the enclosing function.
127 // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
128 // the selection index of the exception thrown.
131 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132 // 'eh_return' gcc dwarf builtin, which is used to return from
133 // exception. The general meaning is: adjust stack by OFFSET and pass
134 // execution to HANDLER. Many platform-related details also :)
137 // TargetConstant* - Like Constant*, but the DAG does not do any folding or
138 // simplification of the constant.
142 // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
143 // anything else with this node, and this is valid in the target-specific
144 // dag, turning into a GlobalAddress operand.
146 TargetGlobalTLSAddress
,
150 TargetExternalSymbol
,
153 /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
154 /// This node represents a target intrinsic function with no side effects.
155 /// The first operand is the ID number of the intrinsic from the
156 /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
157 /// node has returns the result of the intrinsic.
160 /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
161 /// This node represents a target intrinsic function with side effects that
162 /// returns a result. The first operand is a chain pointer. The second is
163 /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
164 /// operands to the intrinsic follow. The node has two results, the result
165 /// of the intrinsic and an output chain.
168 /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
169 /// This node represents a target intrinsic function with side effects that
170 /// does not return a result. The first operand is a chain pointer. The
171 /// second is the ID number of the intrinsic from the llvm::Intrinsic
172 /// namespace. The operands to the intrinsic follow.
175 // CopyToReg - This node has three operands: a chain, a register number to
176 // set to this value, and a value.
179 // CopyFromReg - This node indicates that the input value is a virtual or
180 // physical register that is defined outside of the scope of this
181 // SelectionDAG. The register is available from the RegisterSDNode object.
184 // UNDEF - An undefined node
187 // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
188 // a Constant, which is required to be operand #1) half of the integer or
189 // float value specified as operand #0. This is only for use before
190 // legalization, for values that will be broken into multiple registers.
193 // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
194 // two values of the same integer value type, this produces a value twice as
195 // big. Like EXTRACT_ELEMENT, this can only be used before legalization.
198 // MERGE_VALUES - This node takes multiple discrete operands and returns
199 // them all as its individual results. This nodes has exactly the same
200 // number of inputs and outputs. This node is useful for some pieces of the
201 // code generator that want to think about a single node with multiple
202 // results, not multiple nodes.
205 // Simple integer binary arithmetic operators.
206 ADD
, SUB
, MUL
, SDIV
, UDIV
, SREM
, UREM
,
208 // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
209 // a signed/unsigned value of type i[2*N], and return the full value as
210 // two results, each of type iN.
211 SMUL_LOHI
, UMUL_LOHI
,
213 // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
217 // CARRY_FALSE - This node is used when folding other nodes,
218 // like ADDC/SUBC, which indicate the carry result is always false.
221 // Carry-setting nodes for multiple precision addition and subtraction.
222 // These nodes take two operands of the same value type, and produce two
223 // results. The first result is the normal add or sub result, the second
224 // result is the carry flag result.
227 // Carry-using nodes for multiple precision addition and subtraction. These
228 // nodes take three operands: The first two are the normal lhs and rhs to
229 // the add or sub, and the third is the input carry flag. These nodes
230 // produce two results; the normal result of the add or sub, and the output
231 // carry flag. These nodes both read and write a carry flag to allow them
232 // to them to be chained together for add and sub of arbitrarily large
236 // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
237 // These nodes take two operands: the normal LHS and RHS to the add. They
238 // produce two results: the normal result of the add, and a boolean that
239 // indicates if an overflow occured (*not* a flag, because it may be stored
240 // to memory, etc.). If the type of the boolean is not i1 then the high
241 // bits conform to getBooleanContents.
242 // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
245 // Same for subtraction
248 // Same for multiplication
251 // Simple binary floating point operators.
252 FADD
, FSUB
, FMUL
, FDIV
, FREM
,
254 // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
255 // DAG node does not require that X and Y have the same type, just that they
256 // are both floating point. X and the result must have the same type.
257 // FCOPYSIGN(f32, f64) is allowed.
260 // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
261 // value as an integer 0/1 value.
264 /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
265 /// specified, possibly variable, elements. The number of elements is
266 /// required to be a power of two. The types of the operands must all be
267 /// the same and must match the vector element type, except that integer
268 /// types are allowed to be larger than the element type, in which case
269 /// the operands are implicitly truncated.
272 /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
273 /// at IDX replaced with VAL. If the type of VAL is larger than the vector
274 /// element type then VAL is truncated before replacement.
277 /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
278 /// identified by the (potentially variable) element number IDX. If the
279 /// return type is an integer type larger than the element type of the
280 /// vector, the result is extended to the width of the return type.
283 /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
284 /// vector type with the same length and element type, this produces a
285 /// concatenated vector result value, with length equal to the sum of the
286 /// lengths of the input vectors.
289 /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
290 /// vector value) starting with the (potentially variable) element number
291 /// IDX, which must be a multiple of the result vector length.
294 /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
295 /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
296 /// values that indicate which value (or undef) each result element will
297 /// get. These constant ints are accessible through the
298 /// ShuffleVectorSDNode class. This is quite similar to the Altivec
299 /// 'vperm' instruction, except that the indices must be constants and are
300 /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
303 /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
304 /// scalar value into element 0 of the resultant vector type. The top
305 /// elements 1 to N-1 of the N-element vector are undefined. The type
306 /// of the operand must match the vector element type, except when they
307 /// are integer types. In this case the operand is allowed to be wider
308 /// than the vector element type, and is implicitly truncated to it.
311 // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
312 // an unsigned/signed value of type i[2*N], then return the top part.
315 // Bitwise operators - logical and, logical or, logical xor, shift left,
316 // shift right algebraic (shift in sign bits), shift right logical (shift in
317 // zeroes), rotate left, rotate right, and byteswap.
318 AND
, OR
, XOR
, SHL
, SRA
, SRL
, ROTL
, ROTR
, BSWAP
,
320 // Counting operators
323 // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
324 // i1 then the high bits must conform to getBooleanContents.
327 // Select with condition operator - This selects between a true value and
328 // a false value (ops #2 and #3) based on the boolean result of comparing
329 // the lhs and rhs (ops #0 and #1) of a conditional expression with the
330 // condition code in op #4, a CondCodeSDNode.
333 // SetCC operator - This evaluates to a true value iff the condition is
334 // true. If the result value type is not i1 then the high bits conform
335 // to getBooleanContents. The operands to this are the left and right
336 // operands to compare (ops #0, and #1) and the condition code to compare
337 // them with (op #2) as a CondCodeSDNode.
340 // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
341 // integer elements with all bits of the result elements set to true if the
342 // comparison is true or all cleared if the comparison is false. The
343 // operands to this are the left and right operands to compare (LHS/RHS) and
344 // the condition code to compare them with (COND) as a CondCodeSDNode.
347 // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
348 // integer shift operations, just like ADD/SUB_PARTS. The operation
350 // [Lo,Hi] = op [LoLHS,HiLHS], Amt
351 SHL_PARTS
, SRA_PARTS
, SRL_PARTS
,
353 // Conversion operators. These are all single input single output
354 // operations. For all of these, the result type must be strictly
355 // wider or narrower (depending on the operation) than the source
358 // SIGN_EXTEND - Used for integer types, replicating the sign bit
362 // ZERO_EXTEND - Used for integer types, zeroing the new bits.
365 // ANY_EXTEND - Used for integer types. The high bits are undefined.
368 // TRUNCATE - Completely drop the high bits.
371 // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
372 // depends on the first letter) to floating point.
376 // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
377 // sign extend a small value in a large integer register (e.g. sign
378 // extending the low 8 bits of a 32-bit register to fill the top 24 bits
379 // with the 7th bit). The size of the smaller type is indicated by the 1th
380 // operand, a ValueType node.
383 /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
388 /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
389 /// down to the precision of the destination VT. TRUNC is a flag, which is
390 /// always an integer that is zero or one. If TRUNC is 0, this is a
391 /// normal rounding, if it is 1, this FP_ROUND is known to not change the
394 /// The TRUNC = 1 case is used in cases where we know that the value will
395 /// not be modified by the node, because Y is not using any of the extra
396 /// precision of source type. This allows certain transformations like
397 /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
398 /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
401 // FLT_ROUNDS_ - Returns current rounding mode:
404 // 1 Round to nearest
409 /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
410 /// rounds it to a floating point value. It then promotes it and returns it
411 /// in a register of the same size. This operation effectively just
412 /// discards excess precision. The type to round down to is specified by
413 /// the VT operand, a VTSDNode.
416 /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
419 // BIT_CONVERT - This operator converts between integer, vector and FP
420 // values, as if the value was stored to memory with one type and loaded
421 // from the same address with the other type (or equivalently for vector
422 // format conversions, etc). The source and result are required to have
423 // the same bit size (e.g. f32 <-> i32). This can also be used for
424 // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
428 // CONVERT_RNDSAT - This operator is used to support various conversions
429 // between various types (float, signed, unsigned and vectors of those
430 // types) with rounding and saturation. NOTE: Avoid using this operator as
431 // most target don't support it and the operator might be removed in the
432 // future. It takes the following arguments:
434 // 1) dest type (type to convert to)
435 // 2) src type (type to convert from)
438 // 5) ISD::CvtCode indicating the type of conversion to do
441 // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
442 // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
443 // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
444 // point operations. These are inspired by libm.
445 FNEG
, FABS
, FSQRT
, FSIN
, FCOS
, FPOWI
, FPOW
,
446 FLOG
, FLOG2
, FLOG10
, FEXP
, FEXP2
,
447 FCEIL
, FTRUNC
, FRINT
, FNEARBYINT
, FFLOOR
,
449 // LOAD and STORE have token chains as their first operand, then the same
450 // operands as an LLVM load/store instruction, then an offset node that
451 // is added / subtracted from the base pointer to form the address (for
452 // indexed memory ops).
455 // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
456 // to a specified boundary. This node always has two return values: a new
457 // stack pointer value and a chain. The first operand is the token chain,
458 // the second is the number of bytes to allocate, and the third is the
459 // alignment boundary. The size is guaranteed to be a multiple of the stack
460 // alignment, and the alignment is guaranteed to be bigger than the stack
461 // alignment (if required) or 0 to get standard stack alignment.
464 // Control flow instructions. These all have token chains.
466 // BR - Unconditional branch. The first operand is the chain
467 // operand, the second is the MBB to branch to.
470 // BRIND - Indirect branch. The first operand is the chain, the second
471 // is the value to branch to, which must be of the same type as the target's
475 // BR_JT - Jumptable branch. The first operand is the chain, the second
476 // is the jumptable index, the last one is the jumptable entry index.
479 // BRCOND - Conditional branch. The first operand is the chain, the
480 // second is the condition, the third is the block to branch to if the
481 // condition is true. If the type of the condition is not i1, then the
482 // high bits must conform to getBooleanContents.
485 // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
486 // that the condition is represented as condition code, and two nodes to
487 // compare, rather than as a combined SetCC node. The operands in order are
488 // chain, cc, lhs, rhs, block to branch to if condition is true.
491 // INLINEASM - Represents an inline asm block. This node always has two
492 // return values: a chain and a flag result. The inputs are as follows:
493 // Operand #0 : Input chain.
494 // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
495 // Operand #2n+2: A RegisterNode.
496 // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
497 // Operand #last: Optional, an incoming flag.
500 // EH_LABEL - Represents a label in mid basic block used to track
501 // locations needed for debug and exception handling tables. These nodes
502 // take a chain as input and return a chain.
505 // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
506 // value, the same type as the pointer type for the system, and an output
510 // STACKRESTORE has two operands, an input chain and a pointer to restore to
511 // it returns an output chain.
514 // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
515 // a call sequence, and carry arbitrary information that target might want
516 // to know. The first operand is a chain, the rest are specified by the
517 // target and not touched by the DAG optimizers.
518 // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
519 CALLSEQ_START
, // Beginning of a call sequence
520 CALLSEQ_END
, // End of a call sequence
522 // VAARG - VAARG has three operands: an input chain, a pointer, and a
523 // SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
526 // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
527 // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
531 // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
532 // pointer, and a SRCVALUE.
535 // SRCVALUE - This is a node type that holds a Value* that is used to
536 // make reference to a value in the LLVM IR.
539 // PCMARKER - This corresponds to the pcmarker intrinsic.
542 // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
543 // The only operand is a chain and a value and a chain are produced. The
544 // value is the contents of the architecture specific cycle counter like
545 // register (or other high accuracy low latency clock source)
548 // HANDLENODE node - Used as a handle for various purposes.
551 // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
552 // It takes as input a token chain, the pointer to the trampoline,
553 // the pointer to the nested function, the pointer to pass for the
554 // 'nest' parameter, a SRCVALUE for the trampoline and another for
555 // the nested function (allowing targets to access the original
556 // Function*). It produces the result of the intrinsic and a token
560 // TRAP - Trapping instruction
563 // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
564 // their first operand. The other operands are the address to prefetch,
565 // read / write specifier, and locality specifier.
568 // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
569 // store-store, device)
570 // This corresponds to the memory.barrier intrinsic.
571 // it takes an input chain, 4 operands to specify the type of barrier, an
572 // operand specifying if the barrier applies to device and uncached memory
573 // and produces an output chain.
576 // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
577 // this corresponds to the atomic.lcs intrinsic.
578 // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
579 // the return is always the original value in *ptr
582 // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
583 // this corresponds to the atomic.swap intrinsic.
584 // amt is stored to *ptr atomically.
585 // the return is always the original value in *ptr
588 // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
589 // this corresponds to the atomic.load.[OpName] intrinsic.
590 // op(*ptr, amt) is stored to *ptr atomically.
591 // the return is always the original value in *ptr
603 /// BUILTIN_OP_END - This must be the last enum value in this list.
604 /// The target-specific pre-isel opcode values start here.
608 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
609 /// which do not reference a specific memory location should be less than
610 /// this value. Those that do must not be less than this value, and can
611 /// be used with SelectionDAG::getMemIntrinsicNode.
612 static const int FIRST_TARGET_MEMORY_OPCODE
= BUILTIN_OP_END
+80;
616 /// isBuildVectorAllOnes - Return true if the specified node is a
617 /// BUILD_VECTOR where all of the elements are ~0 or undef.
618 bool isBuildVectorAllOnes(const SDNode
*N
);
620 /// isBuildVectorAllZeros - Return true if the specified node is a
621 /// BUILD_VECTOR where all of the elements are 0 or undef.
622 bool isBuildVectorAllZeros(const SDNode
*N
);
624 /// isScalarToVector - Return true if the specified node is a
625 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
626 /// element is not an undef.
627 bool isScalarToVector(const SDNode
*N
);
629 //===--------------------------------------------------------------------===//
630 /// MemIndexedMode enum - This enum defines the load / store indexed
631 /// addressing modes.
633 /// UNINDEXED "Normal" load / store. The effective address is already
634 /// computed and is available in the base pointer. The offset
635 /// operand is always undefined. In addition to producing a
636 /// chain, an unindexed load produces one value (result of the
637 /// load); an unindexed store does not produce a value.
639 /// PRE_INC Similar to the unindexed mode where the effective address is
640 /// PRE_DEC the value of the base pointer add / subtract the offset.
641 /// It considers the computation as being folded into the load /
642 /// store operation (i.e. the load / store does the address
643 /// computation as well as performing the memory transaction).
644 /// The base operand is always undefined. In addition to
645 /// producing a chain, pre-indexed load produces two values
646 /// (result of the load and the result of the address
647 /// computation); a pre-indexed store produces one value (result
648 /// of the address computation).
650 /// POST_INC The effective address is the value of the base pointer. The
651 /// POST_DEC value of the offset operand is then added to / subtracted
652 /// from the base after memory transaction. In addition to
653 /// producing a chain, post-indexed load produces two values
654 /// (the result of the load and the result of the base +/- offset
655 /// computation); a post-indexed store produces one value (the
656 /// the result of the base +/- offset computation).
658 enum MemIndexedMode
{
667 //===--------------------------------------------------------------------===//
668 /// LoadExtType enum - This enum defines the three variants of LOADEXT
669 /// (load with extension).
671 /// SEXTLOAD loads the integer operand and sign extends it to a larger
672 /// integer result type.
673 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
674 /// integer result type.
675 /// EXTLOAD is used for three things: floating point extending loads,
676 /// integer extending loads [the top bits are undefined], and vector
677 /// extending loads [load into low elt].
687 //===--------------------------------------------------------------------===//
688 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
689 /// below work out, when considering SETFALSE (something that never exists
690 /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
691 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
692 /// to. If the "N" column is 1, the result of the comparison is undefined if
693 /// the input is a NAN.
695 /// All of these (except for the 'always folded ops') should be handled for
696 /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
697 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
699 /// Note that these are laid out in a specific order to allow bit-twiddling
700 /// to transform conditions.
702 // Opcode N U L G E Intuitive operation
703 SETFALSE
, // 0 0 0 0 Always false (always folded)
704 SETOEQ
, // 0 0 0 1 True if ordered and equal
705 SETOGT
, // 0 0 1 0 True if ordered and greater than
706 SETOGE
, // 0 0 1 1 True if ordered and greater than or equal
707 SETOLT
, // 0 1 0 0 True if ordered and less than
708 SETOLE
, // 0 1 0 1 True if ordered and less than or equal
709 SETONE
, // 0 1 1 0 True if ordered and operands are unequal
710 SETO
, // 0 1 1 1 True if ordered (no nans)
711 SETUO
, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
712 SETUEQ
, // 1 0 0 1 True if unordered or equal
713 SETUGT
, // 1 0 1 0 True if unordered or greater than
714 SETUGE
, // 1 0 1 1 True if unordered, greater than, or equal
715 SETULT
, // 1 1 0 0 True if unordered or less than
716 SETULE
, // 1 1 0 1 True if unordered, less than, or equal
717 SETUNE
, // 1 1 1 0 True if unordered or not equal
718 SETTRUE
, // 1 1 1 1 Always true (always folded)
719 // Don't care operations: undefined if the input is a nan.
720 SETFALSE2
, // 1 X 0 0 0 Always false (always folded)
721 SETEQ
, // 1 X 0 0 1 True if equal
722 SETGT
, // 1 X 0 1 0 True if greater than
723 SETGE
, // 1 X 0 1 1 True if greater than or equal
724 SETLT
, // 1 X 1 0 0 True if less than
725 SETLE
, // 1 X 1 0 1 True if less than or equal
726 SETNE
, // 1 X 1 1 0 True if not equal
727 SETTRUE2
, // 1 X 1 1 1 Always true (always folded)
729 SETCC_INVALID
// Marker value.
732 /// isSignedIntSetCC - Return true if this is a setcc instruction that
733 /// performs a signed comparison when used with integer operands.
734 inline bool isSignedIntSetCC(CondCode Code
) {
735 return Code
== SETGT
|| Code
== SETGE
|| Code
== SETLT
|| Code
== SETLE
;
738 /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
739 /// performs an unsigned comparison when used with integer operands.
740 inline bool isUnsignedIntSetCC(CondCode Code
) {
741 return Code
== SETUGT
|| Code
== SETUGE
|| Code
== SETULT
|| Code
== SETULE
;
744 /// isTrueWhenEqual - Return true if the specified condition returns true if
745 /// the two operands to the condition are equal. Note that if one of the two
746 /// operands is a NaN, this value is meaningless.
747 inline bool isTrueWhenEqual(CondCode Cond
) {
748 return ((int)Cond
& 1) != 0;
751 /// getUnorderedFlavor - This function returns 0 if the condition is always
752 /// false if an operand is a NaN, 1 if the condition is always true if the
753 /// operand is a NaN, and 2 if the condition is undefined if the operand is a
755 inline unsigned getUnorderedFlavor(CondCode Cond
) {
756 return ((int)Cond
>> 3) & 3;
759 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
760 /// 'op' is a valid SetCC operation.
761 CondCode
getSetCCInverse(CondCode Operation
, bool isInteger
);
763 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
764 /// when given the operation for (X op Y).
765 CondCode
getSetCCSwappedOperands(CondCode Operation
);
767 /// getSetCCOrOperation - Return the result of a logical OR between different
768 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
769 /// function returns SETCC_INVALID if it is not possible to represent the
770 /// resultant comparison.
771 CondCode
getSetCCOrOperation(CondCode Op1
, CondCode Op2
, bool isInteger
);
773 /// getSetCCAndOperation - Return the result of a logical AND between
774 /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
775 /// function returns SETCC_INVALID if it is not possible to represent the
776 /// resultant comparison.
777 CondCode
getSetCCAndOperation(CondCode Op1
, CondCode Op2
, bool isInteger
);
779 //===--------------------------------------------------------------------===//
780 /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
783 CVT_FF
, // Float from Float
784 CVT_FS
, // Float from Signed
785 CVT_FU
, // Float from Unsigned
786 CVT_SF
, // Signed from Float
787 CVT_UF
, // Unsigned from Float
788 CVT_SS
, // Signed from Signed
789 CVT_SU
, // Signed from Unsigned
790 CVT_US
, // Unsigned from Signed
791 CVT_UU
, // Unsigned from Unsigned
792 CVT_INVALID
// Marker - Invalid opcode
794 } // end llvm::ISD namespace
797 //===----------------------------------------------------------------------===//
798 /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
799 /// values as the result of a computation. Many nodes return multiple values,
800 /// from loads (which define a token and a return value) to ADDC (which returns
801 /// a result and a carry value), to calls (which may return an arbitrary number
804 /// As such, each use of a SelectionDAG computation must indicate the node that
805 /// computes it as well as which return value to use from that node. This pair
806 /// of information is represented with the SDValue value type.
809 SDNode
*Node
; // The node defining the value we are using.
810 unsigned ResNo
; // Which return value of the node we are using.
812 SDValue() : Node(0), ResNo(0) {}
813 SDValue(SDNode
*node
, unsigned resno
) : Node(node
), ResNo(resno
) {}
815 /// get the index which selects a specific result in the SDNode
816 unsigned getResNo() const { return ResNo
; }
818 /// get the SDNode which holds the desired result
819 SDNode
*getNode() const { return Node
; }
822 void setNode(SDNode
*N
) { Node
= N
; }
824 inline SDNode
*operator->() const { return Node
; }
826 bool operator==(const SDValue
&O
) const {
827 return Node
== O
.Node
&& ResNo
== O
.ResNo
;
829 bool operator!=(const SDValue
&O
) const {
830 return !operator==(O
);
832 bool operator<(const SDValue
&O
) const {
833 return Node
< O
.Node
|| (Node
== O
.Node
&& ResNo
< O
.ResNo
);
836 SDValue
getValue(unsigned R
) const {
837 return SDValue(Node
, R
);
840 // isOperandOf - Return true if this node is an operand of N.
841 bool isOperandOf(SDNode
*N
) const;
843 /// getValueType - Return the ValueType of the referenced return value.
845 inline EVT
getValueType() const;
847 /// getValueSizeInBits - Returns the size of the value in bits.
849 unsigned getValueSizeInBits() const {
850 return getValueType().getSizeInBits();
853 // Forwarding methods - These forward to the corresponding methods in SDNode.
854 inline unsigned getOpcode() const;
855 inline unsigned getNumOperands() const;
856 inline const SDValue
&getOperand(unsigned i
) const;
857 inline uint64_t getConstantOperandVal(unsigned i
) const;
858 inline bool isTargetMemoryOpcode() const;
859 inline bool isTargetOpcode() const;
860 inline bool isMachineOpcode() const;
861 inline unsigned getMachineOpcode() const;
862 inline const DebugLoc
getDebugLoc() const;
865 /// reachesChainWithoutSideEffects - Return true if this operand (which must
866 /// be a chain) reaches the specified operand without crossing any
867 /// side-effecting instructions. In practice, this looks through token
868 /// factors and non-volatile loads. In order to remain efficient, this only
869 /// looks a couple of nodes in, it does not do an exhaustive search.
870 bool reachesChainWithoutSideEffects(SDValue Dest
,
871 unsigned Depth
= 2) const;
873 /// use_empty - Return true if there are no nodes using value ResNo
876 inline bool use_empty() const;
878 /// hasOneUse - Return true if there is exactly one node using value
881 inline bool hasOneUse() const;
885 template<> struct DenseMapInfo
<SDValue
> {
886 static inline SDValue
getEmptyKey() {
887 return SDValue((SDNode
*)-1, -1U);
889 static inline SDValue
getTombstoneKey() {
890 return SDValue((SDNode
*)-1, 0);
892 static unsigned getHashValue(const SDValue
&Val
) {
893 return ((unsigned)((uintptr_t)Val
.getNode() >> 4) ^
894 (unsigned)((uintptr_t)Val
.getNode() >> 9)) + Val
.getResNo();
896 static bool isEqual(const SDValue
&LHS
, const SDValue
&RHS
) {
900 template <> struct isPodLike
<SDValue
> { static const bool value
= true; };
903 /// simplify_type specializations - Allow casting operators to work directly on
904 /// SDValues as if they were SDNode*'s.
905 template<> struct simplify_type
<SDValue
> {
906 typedef SDNode
* SimpleType
;
907 static SimpleType
getSimplifiedValue(const SDValue
&Val
) {
908 return static_cast<SimpleType
>(Val
.getNode());
911 template<> struct simplify_type
<const SDValue
> {
912 typedef SDNode
* SimpleType
;
913 static SimpleType
getSimplifiedValue(const SDValue
&Val
) {
914 return static_cast<SimpleType
>(Val
.getNode());
918 /// SDUse - Represents a use of a SDNode. This class holds an SDValue,
919 /// which records the SDNode being used and the result number, a
920 /// pointer to the SDNode using the value, and Next and Prev pointers,
921 /// which link together all the uses of an SDNode.
924 /// Val - The value being used.
926 /// User - The user of this value.
928 /// Prev, Next - Pointers to the uses list of the SDNode referred by
932 SDUse(const SDUse
&U
); // Do not implement
933 void operator=(const SDUse
&U
); // Do not implement
936 SDUse() : Val(), User(NULL
), Prev(NULL
), Next(NULL
) {}
938 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
939 operator const SDValue
&() const { return Val
; }
941 /// If implicit conversion to SDValue doesn't work, the get() method returns
943 const SDValue
&get() const { return Val
; }
945 /// getUser - This returns the SDNode that contains this Use.
946 SDNode
*getUser() { return User
; }
948 /// getNext - Get the next SDUse in the use list.
949 SDUse
*getNext() const { return Next
; }
951 /// getNode - Convenience function for get().getNode().
952 SDNode
*getNode() const { return Val
.getNode(); }
953 /// getResNo - Convenience function for get().getResNo().
954 unsigned getResNo() const { return Val
.getResNo(); }
955 /// getValueType - Convenience function for get().getValueType().
956 EVT
getValueType() const { return Val
.getValueType(); }
958 /// operator== - Convenience function for get().operator==
959 bool operator==(const SDValue
&V
) const {
963 /// operator!= - Convenience function for get().operator!=
964 bool operator!=(const SDValue
&V
) const {
968 /// operator< - Convenience function for get().operator<
969 bool operator<(const SDValue
&V
) const {
974 friend class SelectionDAG
;
977 void setUser(SDNode
*p
) { User
= p
; }
979 /// set - Remove this use from its existing use list, assign it the
980 /// given value, and add it to the new value's node's use list.
981 inline void set(const SDValue
&V
);
982 /// setInitial - like set, but only supports initializing a newly-allocated
983 /// SDUse with a non-null value.
984 inline void setInitial(const SDValue
&V
);
985 /// setNode - like set, but only sets the Node portion of the value,
986 /// leaving the ResNo portion unmodified.
987 inline void setNode(SDNode
*N
);
989 void addToList(SDUse
**List
) {
991 if (Next
) Next
->Prev
= &Next
;
996 void removeFromList() {
998 if (Next
) Next
->Prev
= Prev
;
1002 /// simplify_type specializations - Allow casting operators to work directly on
1003 /// SDValues as if they were SDNode*'s.
1004 template<> struct simplify_type
<SDUse
> {
1005 typedef SDNode
* SimpleType
;
1006 static SimpleType
getSimplifiedValue(const SDUse
&Val
) {
1007 return static_cast<SimpleType
>(Val
.getNode());
1010 template<> struct simplify_type
<const SDUse
> {
1011 typedef SDNode
* SimpleType
;
1012 static SimpleType
getSimplifiedValue(const SDUse
&Val
) {
1013 return static_cast<SimpleType
>(Val
.getNode());
1018 /// SDNode - Represents one node in the SelectionDAG.
1020 class SDNode
: public FoldingSetNode
, public ilist_node
<SDNode
> {
1022 /// NodeType - The operation that this node performs.
1026 /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
1027 /// then they will be delete[]'d when the node is destroyed.
1028 uint16_t OperandsNeedDelete
: 1;
1031 /// SubclassData - This member is defined by this class, but is not used for
1032 /// anything. Subclasses can use it to hold whatever state they find useful.
1033 /// This field is initialized to zero by the ctor.
1034 uint16_t SubclassData
: 15;
1037 /// NodeId - Unique id per SDNode in the DAG.
1040 /// OperandList - The values that are used by this operation.
1044 /// ValueList - The types of the values this node defines. SDNode's may
1045 /// define multiple values simultaneously.
1046 const EVT
*ValueList
;
1048 /// UseList - List of uses for this SDNode.
1051 /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1052 unsigned short NumOperands
, NumValues
;
1054 /// debugLoc - source line information.
1057 /// getValueTypeList - Return a pointer to the specified value type.
1058 static const EVT
*getValueTypeList(EVT VT
);
1060 friend class SelectionDAG
;
1061 friend struct ilist_traits
<SDNode
>;
1064 //===--------------------------------------------------------------------===//
1068 /// getOpcode - Return the SelectionDAG opcode value for this node. For
1069 /// pre-isel nodes (those for which isMachineOpcode returns false), these
1070 /// are the opcode values in the ISD and <target>ISD namespaces. For
1071 /// post-isel opcodes, see getMachineOpcode.
1072 unsigned getOpcode() const { return (unsigned short)NodeType
; }
1074 /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1075 /// \<target\>ISD namespace).
1076 bool isTargetOpcode() const { return NodeType
>= ISD::BUILTIN_OP_END
; }
1078 /// isTargetMemoryOpcode - Test if this node has a target-specific
1079 /// memory-referencing opcode (in the \<target\>ISD namespace and
1080 /// greater than FIRST_TARGET_MEMORY_OPCODE).
1081 bool isTargetMemoryOpcode() const {
1082 return NodeType
>= ISD::FIRST_TARGET_MEMORY_OPCODE
;
1085 /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1086 /// corresponding to a MachineInstr opcode.
1087 bool isMachineOpcode() const { return NodeType
< 0; }
1089 /// getMachineOpcode - This may only be called if isMachineOpcode returns
1090 /// true. It returns the MachineInstr opcode value that the node's opcode
1092 unsigned getMachineOpcode() const {
1093 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1097 /// use_empty - Return true if there are no uses of this node.
1099 bool use_empty() const { return UseList
== NULL
; }
1101 /// hasOneUse - Return true if there is exactly one use of this node.
1103 bool hasOneUse() const {
1104 return !use_empty() && llvm::next(use_begin()) == use_end();
1107 /// use_size - Return the number of uses of this node. This method takes
1108 /// time proportional to the number of uses.
1110 size_t use_size() const { return std::distance(use_begin(), use_end()); }
1112 /// getNodeId - Return the unique node id.
1114 int getNodeId() const { return NodeId
; }
1116 /// setNodeId - Set unique node id.
1117 void setNodeId(int Id
) { NodeId
= Id
; }
1119 /// getDebugLoc - Return the source location info.
1120 const DebugLoc
getDebugLoc() const { return debugLoc
; }
1122 /// setDebugLoc - Set source location info. Try to avoid this, putting
1123 /// it in the constructor is preferable.
1124 void setDebugLoc(const DebugLoc dl
) { debugLoc
= dl
; }
1126 /// use_iterator - This class provides iterator support for SDUse
1127 /// operands that use a specific SDNode.
1129 : public std::iterator
<std::forward_iterator_tag
, SDUse
, ptrdiff_t> {
1131 explicit use_iterator(SDUse
*op
) : Op(op
) {
1133 friend class SDNode
;
1135 typedef std::iterator
<std::forward_iterator_tag
,
1136 SDUse
, ptrdiff_t>::reference reference
;
1137 typedef std::iterator
<std::forward_iterator_tag
,
1138 SDUse
, ptrdiff_t>::pointer pointer
;
1140 use_iterator(const use_iterator
&I
) : Op(I
.Op
) {}
1141 use_iterator() : Op(0) {}
1143 bool operator==(const use_iterator
&x
) const {
1146 bool operator!=(const use_iterator
&x
) const {
1147 return !operator==(x
);
1150 /// atEnd - return true if this iterator is at the end of uses list.
1151 bool atEnd() const { return Op
== 0; }
1153 // Iterator traversal: forward iteration only.
1154 use_iterator
&operator++() { // Preincrement
1155 assert(Op
&& "Cannot increment end iterator!");
1160 use_iterator
operator++(int) { // Postincrement
1161 use_iterator tmp
= *this; ++*this; return tmp
;
1164 /// Retrieve a pointer to the current user node.
1165 SDNode
*operator*() const {
1166 assert(Op
&& "Cannot dereference end iterator!");
1167 return Op
->getUser();
1170 SDNode
*operator->() const { return operator*(); }
1172 SDUse
&getUse() const { return *Op
; }
1174 /// getOperandNo - Retrieve the operand # of this use in its user.
1176 unsigned getOperandNo() const {
1177 assert(Op
&& "Cannot dereference end iterator!");
1178 return (unsigned)(Op
- Op
->getUser()->OperandList
);
1182 /// use_begin/use_end - Provide iteration support to walk over all uses
1185 use_iterator
use_begin() const {
1186 return use_iterator(UseList
);
1189 static use_iterator
use_end() { return use_iterator(0); }
1192 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1193 /// indicated value. This method ignores uses of other values defined by this
1195 bool hasNUsesOfValue(unsigned NUses
, unsigned Value
) const;
1197 /// hasAnyUseOfValue - Return true if there are any use of the indicated
1198 /// value. This method ignores uses of other values defined by this operation.
1199 bool hasAnyUseOfValue(unsigned Value
) const;
1201 /// isOnlyUserOf - Return true if this node is the only use of N.
1203 bool isOnlyUserOf(SDNode
*N
) const;
1205 /// isOperandOf - Return true if this node is an operand of N.
1207 bool isOperandOf(SDNode
*N
) const;
1209 /// isPredecessorOf - Return true if this node is a predecessor of N. This
1210 /// node is either an operand of N or it can be reached by recursively
1211 /// traversing up the operands.
1212 /// NOTE: this is an expensive method. Use it carefully.
1213 bool isPredecessorOf(SDNode
*N
) const;
1215 /// getNumOperands - Return the number of values used by this operation.
1217 unsigned getNumOperands() const { return NumOperands
; }
1219 /// getConstantOperandVal - Helper method returns the integer value of a
1220 /// ConstantSDNode operand.
1221 uint64_t getConstantOperandVal(unsigned Num
) const;
1223 const SDValue
&getOperand(unsigned Num
) const {
1224 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
1225 return OperandList
[Num
];
1228 typedef SDUse
* op_iterator
;
1229 op_iterator
op_begin() const { return OperandList
; }
1230 op_iterator
op_end() const { return OperandList
+NumOperands
; }
1232 SDVTList
getVTList() const {
1233 SDVTList X
= { ValueList
, NumValues
};
1237 /// getFlaggedNode - If this node has a flag operand, return the node
1238 /// to which the flag operand points. Otherwise return NULL.
1239 SDNode
*getFlaggedNode() const {
1240 if (getNumOperands() != 0 &&
1241 getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag
)
1242 return getOperand(getNumOperands()-1).getNode();
1246 // If this is a pseudo op, like copyfromreg, look to see if there is a
1247 // real target node flagged to it. If so, return the target node.
1248 const SDNode
*getFlaggedMachineNode() const {
1249 const SDNode
*FoundNode
= this;
1251 // Climb up flag edges until a machine-opcode node is found, or the
1252 // end of the chain is reached.
1253 while (!FoundNode
->isMachineOpcode()) {
1254 const SDNode
*N
= FoundNode
->getFlaggedNode();
1262 /// getNumValues - Return the number of values defined/returned by this
1265 unsigned getNumValues() const { return NumValues
; }
1267 /// getValueType - Return the type of a specified result.
1269 EVT
getValueType(unsigned ResNo
) const {
1270 assert(ResNo
< NumValues
&& "Illegal result number!");
1271 return ValueList
[ResNo
];
1274 /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1276 unsigned getValueSizeInBits(unsigned ResNo
) const {
1277 return getValueType(ResNo
).getSizeInBits();
1280 typedef const EVT
* value_iterator
;
1281 value_iterator
value_begin() const { return ValueList
; }
1282 value_iterator
value_end() const { return ValueList
+NumValues
; }
1284 /// getOperationName - Return the opcode of this operation for printing.
1286 std::string
getOperationName(const SelectionDAG
*G
= 0) const;
1287 static const char* getIndexedModeName(ISD::MemIndexedMode AM
);
1288 void print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const;
1289 void print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const;
1290 void print(raw_ostream
&OS
, const SelectionDAG
*G
= 0) const;
1291 void printr(raw_ostream
&OS
, const SelectionDAG
*G
= 0) const;
1293 /// printrFull - Print a SelectionDAG node and all children down to
1294 /// the leaves. The given SelectionDAG allows target-specific nodes
1295 /// to be printed in human-readable form. Unlike printr, this will
1296 /// print the whole DAG, including children that appear multiple
1299 void printrFull(raw_ostream
&O
, const SelectionDAG
*G
= 0) const;
1301 /// printrWithDepth - Print a SelectionDAG node and children up to
1302 /// depth "depth." The given SelectionDAG allows target-specific
1303 /// nodes to be printed in human-readable form. Unlike printr, this
1304 /// will print children that appear multiple times wherever they are
1307 void printrWithDepth(raw_ostream
&O
, const SelectionDAG
*G
= 0,
1308 unsigned depth
= 100) const;
1311 /// dump - Dump this node, for debugging.
1314 /// dumpr - Dump (recursively) this node and its use-def subgraph.
1317 /// dump - Dump this node, for debugging.
1318 /// The given SelectionDAG allows target-specific nodes to be printed
1319 /// in human-readable form.
1320 void dump(const SelectionDAG
*G
) const;
1322 /// dumpr - Dump (recursively) this node and its use-def subgraph.
1323 /// The given SelectionDAG allows target-specific nodes to be printed
1324 /// in human-readable form.
1325 void dumpr(const SelectionDAG
*G
) const;
1327 /// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
1328 /// target-specific nodes to be printed in human-readable form.
1329 /// Unlike dumpr, this will print the whole DAG, including children
1330 /// that appear multiple times.
1332 void dumprFull(const SelectionDAG
*G
= 0) const;
1334 /// dumprWithDepth - printrWithDepth to dbgs(). The given
1335 /// SelectionDAG allows target-specific nodes to be printed in
1336 /// human-readable form. Unlike dumpr, this will print children
1337 /// that appear multiple times wherever they are used.
1339 void dumprWithDepth(const SelectionDAG
*G
= 0, unsigned depth
= 100) const;
1342 static bool classof(const SDNode
*) { return true; }
1344 /// Profile - Gather unique data for the node.
1346 void Profile(FoldingSetNodeID
&ID
) const;
1348 /// addUse - This method should only be used by the SDUse class.
1350 void addUse(SDUse
&U
) { U
.addToList(&UseList
); }
1353 static SDVTList
getSDVTList(EVT VT
) {
1354 SDVTList Ret
= { getValueTypeList(VT
), 1 };
1358 SDNode(unsigned Opc
, const DebugLoc dl
, SDVTList VTs
, const SDValue
*Ops
,
1360 : NodeType(Opc
), OperandsNeedDelete(true), SubclassData(0),
1362 OperandList(NumOps
? new SDUse
[NumOps
] : 0),
1363 ValueList(VTs
.VTs
), UseList(NULL
),
1364 NumOperands(NumOps
), NumValues(VTs
.NumVTs
),
1366 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
1367 OperandList
[i
].setUser(this);
1368 OperandList
[i
].setInitial(Ops
[i
]);
1370 checkForCycles(this);
1373 /// This constructor adds no operands itself; operands can be
1374 /// set later with InitOperands.
1375 SDNode(unsigned Opc
, const DebugLoc dl
, SDVTList VTs
)
1376 : NodeType(Opc
), OperandsNeedDelete(false), SubclassData(0),
1377 NodeId(-1), OperandList(0), ValueList(VTs
.VTs
), UseList(NULL
),
1378 NumOperands(0), NumValues(VTs
.NumVTs
),
1381 /// InitOperands - Initialize the operands list of this with 1 operand.
1382 void InitOperands(SDUse
*Ops
, const SDValue
&Op0
) {
1383 Ops
[0].setUser(this);
1384 Ops
[0].setInitial(Op0
);
1387 checkForCycles(this);
1390 /// InitOperands - Initialize the operands list of this with 2 operands.
1391 void InitOperands(SDUse
*Ops
, const SDValue
&Op0
, const SDValue
&Op1
) {
1392 Ops
[0].setUser(this);
1393 Ops
[0].setInitial(Op0
);
1394 Ops
[1].setUser(this);
1395 Ops
[1].setInitial(Op1
);
1398 checkForCycles(this);
1401 /// InitOperands - Initialize the operands list of this with 3 operands.
1402 void InitOperands(SDUse
*Ops
, const SDValue
&Op0
, const SDValue
&Op1
,
1403 const SDValue
&Op2
) {
1404 Ops
[0].setUser(this);
1405 Ops
[0].setInitial(Op0
);
1406 Ops
[1].setUser(this);
1407 Ops
[1].setInitial(Op1
);
1408 Ops
[2].setUser(this);
1409 Ops
[2].setInitial(Op2
);
1412 checkForCycles(this);
1415 /// InitOperands - Initialize the operands list of this with 4 operands.
1416 void InitOperands(SDUse
*Ops
, const SDValue
&Op0
, const SDValue
&Op1
,
1417 const SDValue
&Op2
, const SDValue
&Op3
) {
1418 Ops
[0].setUser(this);
1419 Ops
[0].setInitial(Op0
);
1420 Ops
[1].setUser(this);
1421 Ops
[1].setInitial(Op1
);
1422 Ops
[2].setUser(this);
1423 Ops
[2].setInitial(Op2
);
1424 Ops
[3].setUser(this);
1425 Ops
[3].setInitial(Op3
);
1428 checkForCycles(this);
1431 /// InitOperands - Initialize the operands list of this with N operands.
1432 void InitOperands(SDUse
*Ops
, const SDValue
*Vals
, unsigned N
) {
1433 for (unsigned i
= 0; i
!= N
; ++i
) {
1434 Ops
[i
].setUser(this);
1435 Ops
[i
].setInitial(Vals
[i
]);
1439 checkForCycles(this);
1442 /// DropOperands - Release the operands and set this node to have
1444 void DropOperands();
1448 // Define inline functions from the SDValue class.
1450 inline unsigned SDValue::getOpcode() const {
1451 return Node
->getOpcode();
1453 inline EVT
SDValue::getValueType() const {
1454 return Node
->getValueType(ResNo
);
1456 inline unsigned SDValue::getNumOperands() const {
1457 return Node
->getNumOperands();
1459 inline const SDValue
&SDValue::getOperand(unsigned i
) const {
1460 return Node
->getOperand(i
);
1462 inline uint64_t SDValue::getConstantOperandVal(unsigned i
) const {
1463 return Node
->getConstantOperandVal(i
);
1465 inline bool SDValue::isTargetOpcode() const {
1466 return Node
->isTargetOpcode();
1468 inline bool SDValue::isTargetMemoryOpcode() const {
1469 return Node
->isTargetMemoryOpcode();
1471 inline bool SDValue::isMachineOpcode() const {
1472 return Node
->isMachineOpcode();
1474 inline unsigned SDValue::getMachineOpcode() const {
1475 return Node
->getMachineOpcode();
1477 inline bool SDValue::use_empty() const {
1478 return !Node
->hasAnyUseOfValue(ResNo
);
1480 inline bool SDValue::hasOneUse() const {
1481 return Node
->hasNUsesOfValue(1, ResNo
);
1483 inline const DebugLoc
SDValue::getDebugLoc() const {
1484 return Node
->getDebugLoc();
1487 // Define inline functions from the SDUse class.
1489 inline void SDUse::set(const SDValue
&V
) {
1490 if (Val
.getNode()) removeFromList();
1492 if (V
.getNode()) V
.getNode()->addUse(*this);
1495 inline void SDUse::setInitial(const SDValue
&V
) {
1497 V
.getNode()->addUse(*this);
1500 inline void SDUse::setNode(SDNode
*N
) {
1501 if (Val
.getNode()) removeFromList();
1503 if (N
) N
->addUse(*this);
1506 /// UnarySDNode - This class is used for single-operand SDNodes. This is solely
1507 /// to allow co-allocation of node operands with the node itself.
1508 class UnarySDNode
: public SDNode
{
1511 UnarySDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, SDValue X
)
1512 : SDNode(Opc
, dl
, VTs
) {
1513 InitOperands(&Op
, X
);
1517 /// BinarySDNode - This class is used for two-operand SDNodes. This is solely
1518 /// to allow co-allocation of node operands with the node itself.
1519 class BinarySDNode
: public SDNode
{
1522 BinarySDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, SDValue X
, SDValue Y
)
1523 : SDNode(Opc
, dl
, VTs
) {
1524 InitOperands(Ops
, X
, Y
);
1528 /// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1529 /// to allow co-allocation of node operands with the node itself.
1530 class TernarySDNode
: public SDNode
{
1533 TernarySDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, SDValue X
, SDValue Y
,
1535 : SDNode(Opc
, dl
, VTs
) {
1536 InitOperands(Ops
, X
, Y
, Z
);
1541 /// HandleSDNode - This class is used to form a handle around another node that
1542 /// is persistant and is updated across invocations of replaceAllUsesWith on its
1543 /// operand. This node should be directly created by end-users and not added to
1544 /// the AllNodes list.
1545 class HandleSDNode
: public SDNode
{
1548 // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1551 explicit __attribute__((__noinline__
)) HandleSDNode(SDValue X
)
1553 explicit HandleSDNode(SDValue X
)
1555 : SDNode(ISD::HANDLENODE
, DebugLoc::getUnknownLoc(),
1556 getSDVTList(MVT::Other
)) {
1557 InitOperands(&Op
, X
);
1560 const SDValue
&getValue() const { return Op
; }
1563 /// Abstact virtual class for operations for memory operations
1564 class MemSDNode
: public SDNode
{
1566 // MemoryVT - VT of in-memory value.
1570 /// MMO - Memory reference information.
1571 MachineMemOperand
*MMO
;
1574 MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT MemoryVT
,
1575 MachineMemOperand
*MMO
);
1577 MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, const SDValue
*Ops
,
1578 unsigned NumOps
, EVT MemoryVT
, MachineMemOperand
*MMO
);
1580 bool readMem() const { return MMO
->isLoad(); }
1581 bool writeMem() const { return MMO
->isStore(); }
1583 /// Returns alignment and volatility of the memory access
1584 unsigned getOriginalAlignment() const {
1585 return MMO
->getBaseAlignment();
1587 unsigned getAlignment() const {
1588 return MMO
->getAlignment();
1591 /// getRawSubclassData - Return the SubclassData value, which contains an
1592 /// encoding of the volatile flag, as well as bits used by subclasses. This
1593 /// function should only be used to compute a FoldingSetNodeID value.
1594 unsigned getRawSubclassData() const {
1595 return SubclassData
;
1598 bool isVolatile() const { return (SubclassData
>> 5) & 1; }
1599 bool isNonTemporal() const { return MMO
->isNonTemporal(); }
1601 /// Returns the SrcValue and offset that describes the location of the access
1602 const Value
*getSrcValue() const { return MMO
->getValue(); }
1603 int64_t getSrcValueOffset() const { return MMO
->getOffset(); }
1605 /// getMemoryVT - Return the type of the in-memory value.
1606 EVT
getMemoryVT() const { return MemoryVT
; }
1608 /// getMemOperand - Return a MachineMemOperand object describing the memory
1609 /// reference performed by operation.
1610 MachineMemOperand
*getMemOperand() const { return MMO
; }
1612 /// refineAlignment - Update this MemSDNode's MachineMemOperand information
1613 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1614 /// This must only be used when the new alignment applies to all users of
1615 /// this MachineMemOperand.
1616 void refineAlignment(const MachineMemOperand
*NewMMO
) {
1617 MMO
->refineAlignment(NewMMO
);
1620 const SDValue
&getChain() const { return getOperand(0); }
1621 const SDValue
&getBasePtr() const {
1622 return getOperand(getOpcode() == ISD::STORE
? 2 : 1);
1625 // Methods to support isa and dyn_cast
1626 static bool classof(const MemSDNode
*) { return true; }
1627 static bool classof(const SDNode
*N
) {
1628 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1629 // with either an intrinsic or a target opcode.
1630 return N
->getOpcode() == ISD::LOAD
||
1631 N
->getOpcode() == ISD::STORE
||
1632 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1633 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1634 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1635 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1636 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1637 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1638 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1639 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1640 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1641 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1642 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1643 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
||
1644 N
->isTargetMemoryOpcode();
1648 /// AtomicSDNode - A SDNode reprenting atomic operations.
1650 class AtomicSDNode
: public MemSDNode
{
1654 // Opc: opcode for atomic
1655 // VTL: value type list
1656 // Chain: memory chain for operaand
1657 // Ptr: address to update as a SDValue
1658 // Cmp: compare value
1660 // SrcVal: address to update as a Value (used for MemOperand)
1661 // Align: alignment of memory
1662 AtomicSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTL
, EVT MemVT
,
1663 SDValue Chain
, SDValue Ptr
,
1664 SDValue Cmp
, SDValue Swp
, MachineMemOperand
*MMO
)
1665 : MemSDNode(Opc
, dl
, VTL
, MemVT
, MMO
) {
1666 assert(readMem() && "Atomic MachineMemOperand is not a load!");
1667 assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1668 InitOperands(Ops
, Chain
, Ptr
, Cmp
, Swp
);
1670 AtomicSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTL
, EVT MemVT
,
1671 SDValue Chain
, SDValue Ptr
,
1672 SDValue Val
, MachineMemOperand
*MMO
)
1673 : MemSDNode(Opc
, dl
, VTL
, MemVT
, MMO
) {
1674 assert(readMem() && "Atomic MachineMemOperand is not a load!");
1675 assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1676 InitOperands(Ops
, Chain
, Ptr
, Val
);
1679 const SDValue
&getBasePtr() const { return getOperand(1); }
1680 const SDValue
&getVal() const { return getOperand(2); }
1682 bool isCompareAndSwap() const {
1683 unsigned Op
= getOpcode();
1684 return Op
== ISD::ATOMIC_CMP_SWAP
;
1687 // Methods to support isa and dyn_cast
1688 static bool classof(const AtomicSDNode
*) { return true; }
1689 static bool classof(const SDNode
*N
) {
1690 return N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1691 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1692 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1693 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1694 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1695 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1696 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1697 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1698 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1699 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1700 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1701 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
;
1705 /// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
1706 /// memory and need an associated MachineMemOperand. Its opcode may be
1707 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
1708 /// value not less than FIRST_TARGET_MEMORY_OPCODE.
1709 class MemIntrinsicSDNode
: public MemSDNode
{
1711 MemIntrinsicSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
1712 const SDValue
*Ops
, unsigned NumOps
,
1713 EVT MemoryVT
, MachineMemOperand
*MMO
)
1714 : MemSDNode(Opc
, dl
, VTs
, Ops
, NumOps
, MemoryVT
, MMO
) {
1717 // Methods to support isa and dyn_cast
1718 static bool classof(const MemIntrinsicSDNode
*) { return true; }
1719 static bool classof(const SDNode
*N
) {
1720 // We lower some target intrinsics to their target opcode
1721 // early a node with a target opcode can be of this class
1722 return N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1723 N
->getOpcode() == ISD::INTRINSIC_VOID
||
1724 N
->isTargetMemoryOpcode();
1728 /// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1729 /// support for the llvm IR shufflevector instruction. It combines elements
1730 /// from two input vectors into a new input vector, with the selection and
1731 /// ordering of elements determined by an array of integers, referred to as
1732 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1733 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1734 /// An index of -1 is treated as undef, such that the code generator may put
1735 /// any value in the corresponding element of the result.
1736 class ShuffleVectorSDNode
: public SDNode
{
1739 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1740 // is freed when the SelectionDAG object is destroyed.
1743 friend class SelectionDAG
;
1744 ShuffleVectorSDNode(EVT VT
, DebugLoc dl
, SDValue N1
, SDValue N2
,
1746 : SDNode(ISD::VECTOR_SHUFFLE
, dl
, getSDVTList(VT
)), Mask(M
) {
1747 InitOperands(Ops
, N1
, N2
);
1751 void getMask(SmallVectorImpl
<int> &M
) const {
1752 EVT VT
= getValueType(0);
1754 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
1755 M
.push_back(Mask
[i
]);
1757 int getMaskElt(unsigned Idx
) const {
1758 assert(Idx
< getValueType(0).getVectorNumElements() && "Idx out of range!");
1762 bool isSplat() const { return isSplatMask(Mask
, getValueType(0)); }
1763 int getSplatIndex() const {
1764 assert(isSplat() && "Cannot get splat index for non-splat!");
1767 static bool isSplatMask(const int *Mask
, EVT VT
);
1769 static bool classof(const ShuffleVectorSDNode
*) { return true; }
1770 static bool classof(const SDNode
*N
) {
1771 return N
->getOpcode() == ISD::VECTOR_SHUFFLE
;
1775 class ConstantSDNode
: public SDNode
{
1776 const ConstantInt
*Value
;
1777 friend class SelectionDAG
;
1778 ConstantSDNode(bool isTarget
, const ConstantInt
*val
, EVT VT
)
1779 : SDNode(isTarget
? ISD::TargetConstant
: ISD::Constant
,
1780 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), Value(val
) {
1784 const ConstantInt
*getConstantIntValue() const { return Value
; }
1785 const APInt
&getAPIntValue() const { return Value
->getValue(); }
1786 uint64_t getZExtValue() const { return Value
->getZExtValue(); }
1787 int64_t getSExtValue() const { return Value
->getSExtValue(); }
1789 bool isNullValue() const { return Value
->isNullValue(); }
1790 bool isAllOnesValue() const { return Value
->isAllOnesValue(); }
1792 static bool classof(const ConstantSDNode
*) { return true; }
1793 static bool classof(const SDNode
*N
) {
1794 return N
->getOpcode() == ISD::Constant
||
1795 N
->getOpcode() == ISD::TargetConstant
;
1799 class ConstantFPSDNode
: public SDNode
{
1800 const ConstantFP
*Value
;
1801 friend class SelectionDAG
;
1802 ConstantFPSDNode(bool isTarget
, const ConstantFP
*val
, EVT VT
)
1803 : SDNode(isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
,
1804 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), Value(val
) {
1808 const APFloat
& getValueAPF() const { return Value
->getValueAPF(); }
1809 const ConstantFP
*getConstantFPValue() const { return Value
; }
1811 /// isExactlyValue - We don't rely on operator== working on double values, as
1812 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1813 /// As such, this method can be used to do an exact bit-for-bit comparison of
1814 /// two floating point values.
1816 /// We leave the version with the double argument here because it's just so
1817 /// convenient to write "2.0" and the like. Without this function we'd
1818 /// have to duplicate its logic everywhere it's called.
1819 bool isExactlyValue(double V
) const {
1821 // convert is not supported on this type
1822 if (&Value
->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble
)
1825 Tmp
.convert(Value
->getValueAPF().getSemantics(),
1826 APFloat::rmNearestTiesToEven
, &ignored
);
1827 return isExactlyValue(Tmp
);
1829 bool isExactlyValue(const APFloat
& V
) const;
1831 bool isValueValidForType(EVT VT
, const APFloat
& Val
);
1833 static bool classof(const ConstantFPSDNode
*) { return true; }
1834 static bool classof(const SDNode
*N
) {
1835 return N
->getOpcode() == ISD::ConstantFP
||
1836 N
->getOpcode() == ISD::TargetConstantFP
;
1840 class GlobalAddressSDNode
: public SDNode
{
1841 GlobalValue
*TheGlobal
;
1843 unsigned char TargetFlags
;
1844 friend class SelectionDAG
;
1845 GlobalAddressSDNode(unsigned Opc
, const GlobalValue
*GA
, EVT VT
,
1846 int64_t o
, unsigned char TargetFlags
);
1849 GlobalValue
*getGlobal() const { return TheGlobal
; }
1850 int64_t getOffset() const { return Offset
; }
1851 unsigned char getTargetFlags() const { return TargetFlags
; }
1852 // Return the address space this GlobalAddress belongs to.
1853 unsigned getAddressSpace() const;
1855 static bool classof(const GlobalAddressSDNode
*) { return true; }
1856 static bool classof(const SDNode
*N
) {
1857 return N
->getOpcode() == ISD::GlobalAddress
||
1858 N
->getOpcode() == ISD::TargetGlobalAddress
||
1859 N
->getOpcode() == ISD::GlobalTLSAddress
||
1860 N
->getOpcode() == ISD::TargetGlobalTLSAddress
;
1864 class FrameIndexSDNode
: public SDNode
{
1866 friend class SelectionDAG
;
1867 FrameIndexSDNode(int fi
, EVT VT
, bool isTarg
)
1868 : SDNode(isTarg
? ISD::TargetFrameIndex
: ISD::FrameIndex
,
1869 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), FI(fi
) {
1873 int getIndex() const { return FI
; }
1875 static bool classof(const FrameIndexSDNode
*) { return true; }
1876 static bool classof(const SDNode
*N
) {
1877 return N
->getOpcode() == ISD::FrameIndex
||
1878 N
->getOpcode() == ISD::TargetFrameIndex
;
1882 class JumpTableSDNode
: public SDNode
{
1884 unsigned char TargetFlags
;
1885 friend class SelectionDAG
;
1886 JumpTableSDNode(int jti
, EVT VT
, bool isTarg
, unsigned char TF
)
1887 : SDNode(isTarg
? ISD::TargetJumpTable
: ISD::JumpTable
,
1888 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), JTI(jti
), TargetFlags(TF
) {
1892 int getIndex() const { return JTI
; }
1893 unsigned char getTargetFlags() const { return TargetFlags
; }
1895 static bool classof(const JumpTableSDNode
*) { return true; }
1896 static bool classof(const SDNode
*N
) {
1897 return N
->getOpcode() == ISD::JumpTable
||
1898 N
->getOpcode() == ISD::TargetJumpTable
;
1902 class ConstantPoolSDNode
: public SDNode
{
1905 MachineConstantPoolValue
*MachineCPVal
;
1907 int Offset
; // It's a MachineConstantPoolValue if top bit is set.
1908 unsigned Alignment
; // Minimum alignment requirement of CP (not log2 value).
1909 unsigned char TargetFlags
;
1910 friend class SelectionDAG
;
1911 ConstantPoolSDNode(bool isTarget
, Constant
*c
, EVT VT
, int o
, unsigned Align
,
1913 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
,
1914 DebugLoc::getUnknownLoc(),
1915 getSDVTList(VT
)), Offset(o
), Alignment(Align
), TargetFlags(TF
) {
1916 assert((int)Offset
>= 0 && "Offset is too large");
1919 ConstantPoolSDNode(bool isTarget
, MachineConstantPoolValue
*v
,
1920 EVT VT
, int o
, unsigned Align
, unsigned char TF
)
1921 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
,
1922 DebugLoc::getUnknownLoc(),
1923 getSDVTList(VT
)), Offset(o
), Alignment(Align
), TargetFlags(TF
) {
1924 assert((int)Offset
>= 0 && "Offset is too large");
1925 Val
.MachineCPVal
= v
;
1926 Offset
|= 1 << (sizeof(unsigned)*CHAR_BIT
-1);
1931 bool isMachineConstantPoolEntry() const {
1932 return (int)Offset
< 0;
1935 Constant
*getConstVal() const {
1936 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1937 return Val
.ConstVal
;
1940 MachineConstantPoolValue
*getMachineCPVal() const {
1941 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1942 return Val
.MachineCPVal
;
1945 int getOffset() const {
1946 return Offset
& ~(1 << (sizeof(unsigned)*CHAR_BIT
-1));
1949 // Return the alignment of this constant pool object, which is either 0 (for
1950 // default alignment) or the desired value.
1951 unsigned getAlignment() const { return Alignment
; }
1952 unsigned char getTargetFlags() const { return TargetFlags
; }
1954 const Type
*getType() const;
1956 static bool classof(const ConstantPoolSDNode
*) { return true; }
1957 static bool classof(const SDNode
*N
) {
1958 return N
->getOpcode() == ISD::ConstantPool
||
1959 N
->getOpcode() == ISD::TargetConstantPool
;
1963 class BasicBlockSDNode
: public SDNode
{
1964 MachineBasicBlock
*MBB
;
1965 friend class SelectionDAG
;
1966 /// Debug info is meaningful and potentially useful here, but we create
1967 /// blocks out of order when they're jumped to, which makes it a bit
1968 /// harder. Let's see if we need it first.
1969 explicit BasicBlockSDNode(MachineBasicBlock
*mbb
)
1970 : SDNode(ISD::BasicBlock
, DebugLoc::getUnknownLoc(),
1971 getSDVTList(MVT::Other
)), MBB(mbb
) {
1975 MachineBasicBlock
*getBasicBlock() const { return MBB
; }
1977 static bool classof(const BasicBlockSDNode
*) { return true; }
1978 static bool classof(const SDNode
*N
) {
1979 return N
->getOpcode() == ISD::BasicBlock
;
1983 /// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1985 class BuildVectorSDNode
: public SDNode
{
1986 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1987 explicit BuildVectorSDNode(); // Do not implement
1989 /// isConstantSplat - Check if this is a constant splat, and if so, find the
1990 /// smallest element size that splats the vector. If MinSplatBits is
1991 /// nonzero, the element size must be at least that large. Note that the
1992 /// splat element may be the entire vector (i.e., a one element vector).
1993 /// Returns the splat element value in SplatValue. Any undefined bits in
1994 /// that value are zero, and the corresponding bits in the SplatUndef mask
1995 /// are set. The SplatBitSize value is set to the splat element size in
1996 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1997 /// undefined. isBigEndian describes the endianness of the target.
1998 bool isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
1999 unsigned &SplatBitSize
, bool &HasAnyUndefs
,
2000 unsigned MinSplatBits
= 0, bool isBigEndian
= false);
2002 static inline bool classof(const BuildVectorSDNode
*) { return true; }
2003 static inline bool classof(const SDNode
*N
) {
2004 return N
->getOpcode() == ISD::BUILD_VECTOR
;
2008 /// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
2009 /// used when the SelectionDAG needs to make a simple reference to something
2010 /// in the LLVM IR representation.
2012 class SrcValueSDNode
: public SDNode
{
2014 friend class SelectionDAG
;
2015 /// Create a SrcValue for a general value.
2016 explicit SrcValueSDNode(const Value
*v
)
2017 : SDNode(ISD::SRCVALUE
, DebugLoc::getUnknownLoc(),
2018 getSDVTList(MVT::Other
)), V(v
) {}
2021 /// getValue - return the contained Value.
2022 const Value
*getValue() const { return V
; }
2024 static bool classof(const SrcValueSDNode
*) { return true; }
2025 static bool classof(const SDNode
*N
) {
2026 return N
->getOpcode() == ISD::SRCVALUE
;
2031 class RegisterSDNode
: public SDNode
{
2033 friend class SelectionDAG
;
2034 RegisterSDNode(unsigned reg
, EVT VT
)
2035 : SDNode(ISD::Register
, DebugLoc::getUnknownLoc(),
2036 getSDVTList(VT
)), Reg(reg
) {
2040 unsigned getReg() const { return Reg
; }
2042 static bool classof(const RegisterSDNode
*) { return true; }
2043 static bool classof(const SDNode
*N
) {
2044 return N
->getOpcode() == ISD::Register
;
2048 class BlockAddressSDNode
: public SDNode
{
2050 unsigned char TargetFlags
;
2051 friend class SelectionDAG
;
2052 BlockAddressSDNode(unsigned NodeTy
, EVT VT
, BlockAddress
*ba
,
2053 unsigned char Flags
)
2054 : SDNode(NodeTy
, DebugLoc::getUnknownLoc(), getSDVTList(VT
)),
2055 BA(ba
), TargetFlags(Flags
) {
2058 BlockAddress
*getBlockAddress() const { return BA
; }
2059 unsigned char getTargetFlags() const { return TargetFlags
; }
2061 static bool classof(const BlockAddressSDNode
*) { return true; }
2062 static bool classof(const SDNode
*N
) {
2063 return N
->getOpcode() == ISD::BlockAddress
||
2064 N
->getOpcode() == ISD::TargetBlockAddress
;
2068 class LabelSDNode
: public SDNode
{
2071 friend class SelectionDAG
;
2072 LabelSDNode(unsigned NodeTy
, DebugLoc dl
, SDValue ch
, unsigned id
)
2073 : SDNode(NodeTy
, dl
, getSDVTList(MVT::Other
)), LabelID(id
) {
2074 InitOperands(&Chain
, ch
);
2077 unsigned getLabelID() const { return LabelID
; }
2079 static bool classof(const LabelSDNode
*) { return true; }
2080 static bool classof(const SDNode
*N
) {
2081 return N
->getOpcode() == ISD::EH_LABEL
;
2085 class ExternalSymbolSDNode
: public SDNode
{
2087 unsigned char TargetFlags
;
2089 friend class SelectionDAG
;
2090 ExternalSymbolSDNode(bool isTarget
, const char *Sym
, unsigned char TF
, EVT VT
)
2091 : SDNode(isTarget
? ISD::TargetExternalSymbol
: ISD::ExternalSymbol
,
2092 DebugLoc::getUnknownLoc(),
2093 getSDVTList(VT
)), Symbol(Sym
), TargetFlags(TF
) {
2097 const char *getSymbol() const { return Symbol
; }
2098 unsigned char getTargetFlags() const { return TargetFlags
; }
2100 static bool classof(const ExternalSymbolSDNode
*) { return true; }
2101 static bool classof(const SDNode
*N
) {
2102 return N
->getOpcode() == ISD::ExternalSymbol
||
2103 N
->getOpcode() == ISD::TargetExternalSymbol
;
2107 class CondCodeSDNode
: public SDNode
{
2108 ISD::CondCode Condition
;
2109 friend class SelectionDAG
;
2110 explicit CondCodeSDNode(ISD::CondCode Cond
)
2111 : SDNode(ISD::CONDCODE
, DebugLoc::getUnknownLoc(),
2112 getSDVTList(MVT::Other
)), Condition(Cond
) {
2116 ISD::CondCode
get() const { return Condition
; }
2118 static bool classof(const CondCodeSDNode
*) { return true; }
2119 static bool classof(const SDNode
*N
) {
2120 return N
->getOpcode() == ISD::CONDCODE
;
2124 /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2125 /// future and most targets don't support it.
2126 class CvtRndSatSDNode
: public SDNode
{
2127 ISD::CvtCode CvtCode
;
2128 friend class SelectionDAG
;
2129 explicit CvtRndSatSDNode(EVT VT
, DebugLoc dl
, const SDValue
*Ops
,
2130 unsigned NumOps
, ISD::CvtCode Code
)
2131 : SDNode(ISD::CONVERT_RNDSAT
, dl
, getSDVTList(VT
), Ops
, NumOps
),
2133 assert(NumOps
== 5 && "wrong number of operations");
2136 ISD::CvtCode
getCvtCode() const { return CvtCode
; }
2138 static bool classof(const CvtRndSatSDNode
*) { return true; }
2139 static bool classof(const SDNode
*N
) {
2140 return N
->getOpcode() == ISD::CONVERT_RNDSAT
;
2147 static const uint64_t NoFlagSet
= 0ULL;
2148 static const uint64_t ZExt
= 1ULL<<0; ///< Zero extended
2149 static const uint64_t ZExtOffs
= 0;
2150 static const uint64_t SExt
= 1ULL<<1; ///< Sign extended
2151 static const uint64_t SExtOffs
= 1;
2152 static const uint64_t InReg
= 1ULL<<2; ///< Passed in register
2153 static const uint64_t InRegOffs
= 2;
2154 static const uint64_t SRet
= 1ULL<<3; ///< Hidden struct-ret ptr
2155 static const uint64_t SRetOffs
= 3;
2156 static const uint64_t ByVal
= 1ULL<<4; ///< Struct passed by value
2157 static const uint64_t ByValOffs
= 4;
2158 static const uint64_t Nest
= 1ULL<<5; ///< Nested fn static chain
2159 static const uint64_t NestOffs
= 5;
2160 static const uint64_t ByValAlign
= 0xFULL
<< 6; //< Struct alignment
2161 static const uint64_t ByValAlignOffs
= 6;
2162 static const uint64_t Split
= 1ULL << 10;
2163 static const uint64_t SplitOffs
= 10;
2164 static const uint64_t OrigAlign
= 0x1FULL
<<27;
2165 static const uint64_t OrigAlignOffs
= 27;
2166 static const uint64_t ByValSize
= 0xffffffffULL
<< 32; //< Struct size
2167 static const uint64_t ByValSizeOffs
= 32;
2169 static const uint64_t One
= 1ULL; //< 1 of this type, for shifts
2173 ArgFlagsTy() : Flags(0) { }
2175 bool isZExt() const { return Flags
& ZExt
; }
2176 void setZExt() { Flags
|= One
<< ZExtOffs
; }
2178 bool isSExt() const { return Flags
& SExt
; }
2179 void setSExt() { Flags
|= One
<< SExtOffs
; }
2181 bool isInReg() const { return Flags
& InReg
; }
2182 void setInReg() { Flags
|= One
<< InRegOffs
; }
2184 bool isSRet() const { return Flags
& SRet
; }
2185 void setSRet() { Flags
|= One
<< SRetOffs
; }
2187 bool isByVal() const { return Flags
& ByVal
; }
2188 void setByVal() { Flags
|= One
<< ByValOffs
; }
2190 bool isNest() const { return Flags
& Nest
; }
2191 void setNest() { Flags
|= One
<< NestOffs
; }
2193 unsigned getByValAlign() const {
2195 ((One
<< ((Flags
& ByValAlign
) >> ByValAlignOffs
)) / 2);
2197 void setByValAlign(unsigned A
) {
2198 Flags
= (Flags
& ~ByValAlign
) |
2199 (uint64_t(Log2_32(A
) + 1) << ByValAlignOffs
);
2202 bool isSplit() const { return Flags
& Split
; }
2203 void setSplit() { Flags
|= One
<< SplitOffs
; }
2205 unsigned getOrigAlign() const {
2207 ((One
<< ((Flags
& OrigAlign
) >> OrigAlignOffs
)) / 2);
2209 void setOrigAlign(unsigned A
) {
2210 Flags
= (Flags
& ~OrigAlign
) |
2211 (uint64_t(Log2_32(A
) + 1) << OrigAlignOffs
);
2214 unsigned getByValSize() const {
2215 return (unsigned)((Flags
& ByValSize
) >> ByValSizeOffs
);
2217 void setByValSize(unsigned S
) {
2218 Flags
= (Flags
& ~ByValSize
) | (uint64_t(S
) << ByValSizeOffs
);
2221 /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2222 std::string
getArgFlagsString();
2224 /// getRawBits - Represent the flags as a bunch of bits.
2225 uint64_t getRawBits() const { return Flags
; }
2228 /// InputArg - This struct carries flags and type information about a
2229 /// single incoming (formal) argument or incoming (from the perspective
2230 /// of the caller) return value virtual register.
2237 InputArg() : VT(MVT::Other
), Used(false) {}
2238 InputArg(ISD::ArgFlagsTy flags
, EVT vt
, bool used
)
2239 : Flags(flags
), VT(vt
), Used(used
) {
2240 assert(VT
.isSimple() &&
2241 "InputArg value type must be Simple!");
2245 /// OutputArg - This struct carries flags and a value for a
2246 /// single outgoing (actual) argument or outgoing (from the perspective
2247 /// of the caller) return value virtual register.
2254 OutputArg() : IsFixed(false) {}
2255 OutputArg(ISD::ArgFlagsTy flags
, SDValue val
, bool isfixed
)
2256 : Flags(flags
), Val(val
), IsFixed(isfixed
) {
2257 assert(Val
.getValueType().isSimple() &&
2258 "OutputArg value type must be Simple!");
2263 /// VTSDNode - This class is used to represent EVT's, which are used
2264 /// to parameterize some operations.
2265 class VTSDNode
: public SDNode
{
2267 friend class SelectionDAG
;
2268 explicit VTSDNode(EVT VT
)
2269 : SDNode(ISD::VALUETYPE
, DebugLoc::getUnknownLoc(),
2270 getSDVTList(MVT::Other
)), ValueType(VT
) {
2274 EVT
getVT() const { return ValueType
; }
2276 static bool classof(const VTSDNode
*) { return true; }
2277 static bool classof(const SDNode
*N
) {
2278 return N
->getOpcode() == ISD::VALUETYPE
;
2282 /// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2284 class LSBaseSDNode
: public MemSDNode
{
2285 //! Operand array for load and store
2287 \note Moving this array to the base class captures more
2288 common functionality shared between LoadSDNode and
2293 LSBaseSDNode(ISD::NodeType NodeTy
, DebugLoc dl
, SDValue
*Operands
,
2294 unsigned numOperands
, SDVTList VTs
, ISD::MemIndexedMode AM
,
2295 EVT MemVT
, MachineMemOperand
*MMO
)
2296 : MemSDNode(NodeTy
, dl
, VTs
, MemVT
, MMO
) {
2297 SubclassData
|= AM
<< 2;
2298 assert(getAddressingMode() == AM
&& "MemIndexedMode encoding error!");
2299 InitOperands(Ops
, Operands
, numOperands
);
2300 assert((getOffset().getOpcode() == ISD::UNDEF
|| isIndexed()) &&
2301 "Only indexed loads and stores have a non-undef offset operand");
2304 const SDValue
&getOffset() const {
2305 return getOperand(getOpcode() == ISD::LOAD
? 2 : 3);
2308 /// getAddressingMode - Return the addressing mode for this load or store:
2309 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2310 ISD::MemIndexedMode
getAddressingMode() const {
2311 return ISD::MemIndexedMode((SubclassData
>> 2) & 7);
2314 /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2315 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED
; }
2317 /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2318 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED
; }
2320 static bool classof(const LSBaseSDNode
*) { return true; }
2321 static bool classof(const SDNode
*N
) {
2322 return N
->getOpcode() == ISD::LOAD
||
2323 N
->getOpcode() == ISD::STORE
;
2327 /// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2329 class LoadSDNode
: public LSBaseSDNode
{
2330 friend class SelectionDAG
;
2331 LoadSDNode(SDValue
*ChainPtrOff
, DebugLoc dl
, SDVTList VTs
,
2332 ISD::MemIndexedMode AM
, ISD::LoadExtType ETy
, EVT MemVT
,
2333 MachineMemOperand
*MMO
)
2334 : LSBaseSDNode(ISD::LOAD
, dl
, ChainPtrOff
, 3,
2335 VTs
, AM
, MemVT
, MMO
) {
2336 SubclassData
|= (unsigned short)ETy
;
2337 assert(getExtensionType() == ETy
&& "LoadExtType encoding error!");
2338 assert(readMem() && "Load MachineMemOperand is not a load!");
2339 assert(!writeMem() && "Load MachineMemOperand is a store!");
2343 /// getExtensionType - Return whether this is a plain node,
2344 /// or one of the varieties of value-extending loads.
2345 ISD::LoadExtType
getExtensionType() const {
2346 return ISD::LoadExtType(SubclassData
& 3);
2349 const SDValue
&getBasePtr() const { return getOperand(1); }
2350 const SDValue
&getOffset() const { return getOperand(2); }
2352 static bool classof(const LoadSDNode
*) { return true; }
2353 static bool classof(const SDNode
*N
) {
2354 return N
->getOpcode() == ISD::LOAD
;
2358 /// StoreSDNode - This class is used to represent ISD::STORE nodes.
2360 class StoreSDNode
: public LSBaseSDNode
{
2361 friend class SelectionDAG
;
2362 StoreSDNode(SDValue
*ChainValuePtrOff
, DebugLoc dl
, SDVTList VTs
,
2363 ISD::MemIndexedMode AM
, bool isTrunc
, EVT MemVT
,
2364 MachineMemOperand
*MMO
)
2365 : LSBaseSDNode(ISD::STORE
, dl
, ChainValuePtrOff
, 4,
2366 VTs
, AM
, MemVT
, MMO
) {
2367 SubclassData
|= (unsigned short)isTrunc
;
2368 assert(isTruncatingStore() == isTrunc
&& "isTrunc encoding error!");
2369 assert(!readMem() && "Store MachineMemOperand is a load!");
2370 assert(writeMem() && "Store MachineMemOperand is not a store!");
2374 /// isTruncatingStore - Return true if the op does a truncation before store.
2375 /// For integers this is the same as doing a TRUNCATE and storing the result.
2376 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2377 bool isTruncatingStore() const { return SubclassData
& 1; }
2379 const SDValue
&getValue() const { return getOperand(1); }
2380 const SDValue
&getBasePtr() const { return getOperand(2); }
2381 const SDValue
&getOffset() const { return getOperand(3); }
2383 static bool classof(const StoreSDNode
*) { return true; }
2384 static bool classof(const SDNode
*N
) {
2385 return N
->getOpcode() == ISD::STORE
;
2389 /// MachineSDNode - An SDNode that represents everything that will be needed
2390 /// to construct a MachineInstr. These nodes are created during the
2391 /// instruction selection proper phase.
2393 class MachineSDNode
: public SDNode
{
2395 typedef MachineMemOperand
**mmo_iterator
;
2398 friend class SelectionDAG
;
2399 MachineSDNode(unsigned Opc
, const DebugLoc DL
, SDVTList VTs
)
2400 : SDNode(Opc
, DL
, VTs
), MemRefs(0), MemRefsEnd(0) {}
2402 /// LocalOperands - Operands for this instruction, if they fit here. If
2403 /// they don't, this field is unused.
2404 SDUse LocalOperands
[4];
2406 /// MemRefs - Memory reference descriptions for this instruction.
2407 mmo_iterator MemRefs
;
2408 mmo_iterator MemRefsEnd
;
2411 mmo_iterator
memoperands_begin() const { return MemRefs
; }
2412 mmo_iterator
memoperands_end() const { return MemRefsEnd
; }
2413 bool memoperands_empty() const { return MemRefsEnd
== MemRefs
; }
2415 /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
2416 /// list. This does not transfer ownership.
2417 void setMemRefs(mmo_iterator NewMemRefs
, mmo_iterator NewMemRefsEnd
) {
2418 MemRefs
= NewMemRefs
;
2419 MemRefsEnd
= NewMemRefsEnd
;
2422 static bool classof(const MachineSDNode
*) { return true; }
2423 static bool classof(const SDNode
*N
) {
2424 return N
->isMachineOpcode();
2428 class SDNodeIterator
: public std::iterator
<std::forward_iterator_tag
,
2429 SDNode
, ptrdiff_t> {
2433 SDNodeIterator(SDNode
*N
, unsigned Op
) : Node(N
), Operand(Op
) {}
2435 bool operator==(const SDNodeIterator
& x
) const {
2436 return Operand
== x
.Operand
;
2438 bool operator!=(const SDNodeIterator
& x
) const { return !operator==(x
); }
2440 const SDNodeIterator
&operator=(const SDNodeIterator
&I
) {
2441 assert(I
.Node
== Node
&& "Cannot assign iterators to two different nodes!");
2442 Operand
= I
.Operand
;
2446 pointer
operator*() const {
2447 return Node
->getOperand(Operand
).getNode();
2449 pointer
operator->() const { return operator*(); }
2451 SDNodeIterator
& operator++() { // Preincrement
2455 SDNodeIterator
operator++(int) { // Postincrement
2456 SDNodeIterator tmp
= *this; ++*this; return tmp
;
2458 size_t operator-(SDNodeIterator Other
) const {
2459 assert(Node
== Other
.Node
&&
2460 "Cannot compare iterators of two different nodes!");
2461 return Operand
- Other
.Operand
;
2464 static SDNodeIterator
begin(SDNode
*N
) { return SDNodeIterator(N
, 0); }
2465 static SDNodeIterator
end (SDNode
*N
) {
2466 return SDNodeIterator(N
, N
->getNumOperands());
2469 unsigned getOperand() const { return Operand
; }
2470 const SDNode
*getNode() const { return Node
; }
2473 template <> struct GraphTraits
<SDNode
*> {
2474 typedef SDNode NodeType
;
2475 typedef SDNodeIterator ChildIteratorType
;
2476 static inline NodeType
*getEntryNode(SDNode
*N
) { return N
; }
2477 static inline ChildIteratorType
child_begin(NodeType
*N
) {
2478 return SDNodeIterator::begin(N
);
2480 static inline ChildIteratorType
child_end(NodeType
*N
) {
2481 return SDNodeIterator::end(N
);
2485 /// LargestSDNode - The largest SDNode class.
2487 typedef LoadSDNode LargestSDNode
;
2489 /// MostAlignedSDNode - The SDNode class with the greatest alignment
2492 typedef GlobalAddressSDNode MostAlignedSDNode
;
2495 /// isNormalLoad - Returns true if the specified node is a non-extending
2496 /// and unindexed load.
2497 inline bool isNormalLoad(const SDNode
*N
) {
2498 const LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(N
);
2499 return Ld
&& Ld
->getExtensionType() == ISD::NON_EXTLOAD
&&
2500 Ld
->getAddressingMode() == ISD::UNINDEXED
;
2503 /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2505 inline bool isNON_EXTLoad(const SDNode
*N
) {
2506 return isa
<LoadSDNode
>(N
) &&
2507 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::NON_EXTLOAD
;
2510 /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2512 inline bool isEXTLoad(const SDNode
*N
) {
2513 return isa
<LoadSDNode
>(N
) &&
2514 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::EXTLOAD
;
2517 /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2519 inline bool isSEXTLoad(const SDNode
*N
) {
2520 return isa
<LoadSDNode
>(N
) &&
2521 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::SEXTLOAD
;
2524 /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2526 inline bool isZEXTLoad(const SDNode
*N
) {
2527 return isa
<LoadSDNode
>(N
) &&
2528 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::ZEXTLOAD
;
2531 /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2533 inline bool isUNINDEXEDLoad(const SDNode
*N
) {
2534 return isa
<LoadSDNode
>(N
) &&
2535 cast
<LoadSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2538 /// isNormalStore - Returns true if the specified node is a non-truncating
2539 /// and unindexed store.
2540 inline bool isNormalStore(const SDNode
*N
) {
2541 const StoreSDNode
*St
= dyn_cast
<StoreSDNode
>(N
);
2542 return St
&& !St
->isTruncatingStore() &&
2543 St
->getAddressingMode() == ISD::UNINDEXED
;
2546 /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2548 inline bool isNON_TRUNCStore(const SDNode
*N
) {
2549 return isa
<StoreSDNode
>(N
) && !cast
<StoreSDNode
>(N
)->isTruncatingStore();
2552 /// isTRUNCStore - Returns true if the specified node is a truncating
2554 inline bool isTRUNCStore(const SDNode
*N
) {
2555 return isa
<StoreSDNode
>(N
) && cast
<StoreSDNode
>(N
)->isTruncatingStore();
2558 /// isUNINDEXEDStore - Returns true if the specified node is an
2559 /// unindexed store.
2560 inline bool isUNINDEXEDStore(const SDNode
*N
) {
2561 return isa
<StoreSDNode
>(N
) &&
2562 cast
<StoreSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2567 } // end llvm namespace