Add non-temporal flags and remove an assumption of default arguments.
[llvm-core.git] / include / llvm / CodeGen / SelectionDAGNodes.h
blobdf1f91b6227b7407d80638c8a92430074dc9ae52
1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the SDNode class and derived classes, which are used to
11 // represent the nodes and operations present in a SelectionDAG. These nodes
12 // and operations are machine code level operations, with some similarities to
13 // the GCC RTL representation.
15 // Clients should include the SelectionDAG.h file instead of this file directly.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
22 #include "llvm/Constants.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/ilist_node.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/System/DataTypes.h"
32 #include "llvm/Support/DebugLoc.h"
33 #include <cassert>
35 namespace llvm {
37 class SelectionDAG;
38 class GlobalValue;
39 class MachineBasicBlock;
40 class MachineConstantPoolValue;
41 class SDNode;
42 class Value;
43 template <typename T> struct DenseMapInfo;
44 template <typename T> struct simplify_type;
45 template <typename T> struct ilist_traits;
47 void checkForCycles(const SDNode *N);
49 /// SDVTList - This represents a list of ValueType's that has been intern'd by
50 /// a SelectionDAG. Instances of this simple value class are returned by
51 /// SelectionDAG::getVTList(...).
52 ///
53 struct SDVTList {
54 const EVT *VTs;
55 unsigned int NumVTs;
58 /// ISD namespace - This namespace contains an enum which represents all of the
59 /// SelectionDAG node types and value types.
60 ///
61 namespace ISD {
63 //===--------------------------------------------------------------------===//
64 /// ISD::NodeType enum - This enum defines the target-independent operators
65 /// for a SelectionDAG.
66 ///
67 /// Targets may also define target-dependent operator codes for SDNodes. For
68 /// example, on x86, these are the enum values in the X86ISD namespace.
69 /// Targets should aim to use target-independent operators to model their
70 /// instruction sets as much as possible, and only use target-dependent
71 /// operators when they have special requirements.
72 ///
73 /// Finally, during and after selection proper, SNodes may use special
74 /// operator codes that correspond directly with MachineInstr opcodes. These
75 /// are used to represent selected instructions. See the isMachineOpcode()
76 /// and getMachineOpcode() member functions of SDNode.
77 ///
78 enum NodeType {
79 // DELETED_NODE - This is an illegal value that is used to catch
80 // errors. This opcode is not a legal opcode for any node.
81 DELETED_NODE,
83 // EntryToken - This is the marker used to indicate the start of the region.
84 EntryToken,
86 // TokenFactor - This node takes multiple tokens as input and produces a
87 // single token result. This is used to represent the fact that the operand
88 // operators are independent of each other.
89 TokenFactor,
91 // AssertSext, AssertZext - These nodes record if a register contains a
92 // value that has already been zero or sign extended from a narrower type.
93 // These nodes take two operands. The first is the node that has already
94 // been extended, and the second is a value type node indicating the width
95 // of the extension
96 AssertSext, AssertZext,
98 // Various leaf nodes.
99 BasicBlock, VALUETYPE, CONDCODE, Register,
100 Constant, ConstantFP,
101 GlobalAddress, GlobalTLSAddress, FrameIndex,
102 JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
104 // The address of the GOT
105 GLOBAL_OFFSET_TABLE,
107 // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
108 // llvm.returnaddress on the DAG. These nodes take one operand, the index
109 // of the frame or return address to return. An index of zero corresponds
110 // to the current function's frame or return address, an index of one to the
111 // parent's frame or return address, and so on.
112 FRAMEADDR, RETURNADDR,
114 // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
115 // first (possible) on-stack argument. This is needed for correct stack
116 // adjustment during unwind.
117 FRAME_TO_ARGS_OFFSET,
119 // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
120 // address of the exception block on entry to an landing pad block.
121 EXCEPTIONADDR,
123 // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
124 // address of the Language Specific Data Area for the enclosing function.
125 LSDAADDR,
127 // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
128 // the selection index of the exception thrown.
129 EHSELECTION,
131 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132 // 'eh_return' gcc dwarf builtin, which is used to return from
133 // exception. The general meaning is: adjust stack by OFFSET and pass
134 // execution to HANDLER. Many platform-related details also :)
135 EH_RETURN,
137 // TargetConstant* - Like Constant*, but the DAG does not do any folding or
138 // simplification of the constant.
139 TargetConstant,
140 TargetConstantFP,
142 // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
143 // anything else with this node, and this is valid in the target-specific
144 // dag, turning into a GlobalAddress operand.
145 TargetGlobalAddress,
146 TargetGlobalTLSAddress,
147 TargetFrameIndex,
148 TargetJumpTable,
149 TargetConstantPool,
150 TargetExternalSymbol,
151 TargetBlockAddress,
153 /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
154 /// This node represents a target intrinsic function with no side effects.
155 /// The first operand is the ID number of the intrinsic from the
156 /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
157 /// node has returns the result of the intrinsic.
158 INTRINSIC_WO_CHAIN,
160 /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
161 /// This node represents a target intrinsic function with side effects that
162 /// returns a result. The first operand is a chain pointer. The second is
163 /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
164 /// operands to the intrinsic follow. The node has two results, the result
165 /// of the intrinsic and an output chain.
166 INTRINSIC_W_CHAIN,
168 /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
169 /// This node represents a target intrinsic function with side effects that
170 /// does not return a result. The first operand is a chain pointer. The
171 /// second is the ID number of the intrinsic from the llvm::Intrinsic
172 /// namespace. The operands to the intrinsic follow.
173 INTRINSIC_VOID,
175 // CopyToReg - This node has three operands: a chain, a register number to
176 // set to this value, and a value.
177 CopyToReg,
179 // CopyFromReg - This node indicates that the input value is a virtual or
180 // physical register that is defined outside of the scope of this
181 // SelectionDAG. The register is available from the RegisterSDNode object.
182 CopyFromReg,
184 // UNDEF - An undefined node
185 UNDEF,
187 // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
188 // a Constant, which is required to be operand #1) half of the integer or
189 // float value specified as operand #0. This is only for use before
190 // legalization, for values that will be broken into multiple registers.
191 EXTRACT_ELEMENT,
193 // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
194 // two values of the same integer value type, this produces a value twice as
195 // big. Like EXTRACT_ELEMENT, this can only be used before legalization.
196 BUILD_PAIR,
198 // MERGE_VALUES - This node takes multiple discrete operands and returns
199 // them all as its individual results. This nodes has exactly the same
200 // number of inputs and outputs. This node is useful for some pieces of the
201 // code generator that want to think about a single node with multiple
202 // results, not multiple nodes.
203 MERGE_VALUES,
205 // Simple integer binary arithmetic operators.
206 ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
208 // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
209 // a signed/unsigned value of type i[2*N], and return the full value as
210 // two results, each of type iN.
211 SMUL_LOHI, UMUL_LOHI,
213 // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
214 // remainder result.
215 SDIVREM, UDIVREM,
217 // CARRY_FALSE - This node is used when folding other nodes,
218 // like ADDC/SUBC, which indicate the carry result is always false.
219 CARRY_FALSE,
221 // Carry-setting nodes for multiple precision addition and subtraction.
222 // These nodes take two operands of the same value type, and produce two
223 // results. The first result is the normal add or sub result, the second
224 // result is the carry flag result.
225 ADDC, SUBC,
227 // Carry-using nodes for multiple precision addition and subtraction. These
228 // nodes take three operands: The first two are the normal lhs and rhs to
229 // the add or sub, and the third is the input carry flag. These nodes
230 // produce two results; the normal result of the add or sub, and the output
231 // carry flag. These nodes both read and write a carry flag to allow them
232 // to them to be chained together for add and sub of arbitrarily large
233 // values.
234 ADDE, SUBE,
236 // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
237 // These nodes take two operands: the normal LHS and RHS to the add. They
238 // produce two results: the normal result of the add, and a boolean that
239 // indicates if an overflow occured (*not* a flag, because it may be stored
240 // to memory, etc.). If the type of the boolean is not i1 then the high
241 // bits conform to getBooleanContents.
242 // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
243 SADDO, UADDO,
245 // Same for subtraction
246 SSUBO, USUBO,
248 // Same for multiplication
249 SMULO, UMULO,
251 // Simple binary floating point operators.
252 FADD, FSUB, FMUL, FDIV, FREM,
254 // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
255 // DAG node does not require that X and Y have the same type, just that they
256 // are both floating point. X and the result must have the same type.
257 // FCOPYSIGN(f32, f64) is allowed.
258 FCOPYSIGN,
260 // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
261 // value as an integer 0/1 value.
262 FGETSIGN,
264 /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
265 /// specified, possibly variable, elements. The number of elements is
266 /// required to be a power of two. The types of the operands must all be
267 /// the same and must match the vector element type, except that integer
268 /// types are allowed to be larger than the element type, in which case
269 /// the operands are implicitly truncated.
270 BUILD_VECTOR,
272 /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
273 /// at IDX replaced with VAL. If the type of VAL is larger than the vector
274 /// element type then VAL is truncated before replacement.
275 INSERT_VECTOR_ELT,
277 /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
278 /// identified by the (potentially variable) element number IDX. If the
279 /// return type is an integer type larger than the element type of the
280 /// vector, the result is extended to the width of the return type.
281 EXTRACT_VECTOR_ELT,
283 /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
284 /// vector type with the same length and element type, this produces a
285 /// concatenated vector result value, with length equal to the sum of the
286 /// lengths of the input vectors.
287 CONCAT_VECTORS,
289 /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
290 /// vector value) starting with the (potentially variable) element number
291 /// IDX, which must be a multiple of the result vector length.
292 EXTRACT_SUBVECTOR,
294 /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
295 /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
296 /// values that indicate which value (or undef) each result element will
297 /// get. These constant ints are accessible through the
298 /// ShuffleVectorSDNode class. This is quite similar to the Altivec
299 /// 'vperm' instruction, except that the indices must be constants and are
300 /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
301 VECTOR_SHUFFLE,
303 /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
304 /// scalar value into element 0 of the resultant vector type. The top
305 /// elements 1 to N-1 of the N-element vector are undefined. The type
306 /// of the operand must match the vector element type, except when they
307 /// are integer types. In this case the operand is allowed to be wider
308 /// than the vector element type, and is implicitly truncated to it.
309 SCALAR_TO_VECTOR,
311 // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
312 // an unsigned/signed value of type i[2*N], then return the top part.
313 MULHU, MULHS,
315 // Bitwise operators - logical and, logical or, logical xor, shift left,
316 // shift right algebraic (shift in sign bits), shift right logical (shift in
317 // zeroes), rotate left, rotate right, and byteswap.
318 AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
320 // Counting operators
321 CTTZ, CTLZ, CTPOP,
323 // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
324 // i1 then the high bits must conform to getBooleanContents.
325 SELECT,
327 // Select with condition operator - This selects between a true value and
328 // a false value (ops #2 and #3) based on the boolean result of comparing
329 // the lhs and rhs (ops #0 and #1) of a conditional expression with the
330 // condition code in op #4, a CondCodeSDNode.
331 SELECT_CC,
333 // SetCC operator - This evaluates to a true value iff the condition is
334 // true. If the result value type is not i1 then the high bits conform
335 // to getBooleanContents. The operands to this are the left and right
336 // operands to compare (ops #0, and #1) and the condition code to compare
337 // them with (op #2) as a CondCodeSDNode.
338 SETCC,
340 // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
341 // integer elements with all bits of the result elements set to true if the
342 // comparison is true or all cleared if the comparison is false. The
343 // operands to this are the left and right operands to compare (LHS/RHS) and
344 // the condition code to compare them with (COND) as a CondCodeSDNode.
345 VSETCC,
347 // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
348 // integer shift operations, just like ADD/SUB_PARTS. The operation
349 // ordering is:
350 // [Lo,Hi] = op [LoLHS,HiLHS], Amt
351 SHL_PARTS, SRA_PARTS, SRL_PARTS,
353 // Conversion operators. These are all single input single output
354 // operations. For all of these, the result type must be strictly
355 // wider or narrower (depending on the operation) than the source
356 // type.
358 // SIGN_EXTEND - Used for integer types, replicating the sign bit
359 // into new bits.
360 SIGN_EXTEND,
362 // ZERO_EXTEND - Used for integer types, zeroing the new bits.
363 ZERO_EXTEND,
365 // ANY_EXTEND - Used for integer types. The high bits are undefined.
366 ANY_EXTEND,
368 // TRUNCATE - Completely drop the high bits.
369 TRUNCATE,
371 // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
372 // depends on the first letter) to floating point.
373 SINT_TO_FP,
374 UINT_TO_FP,
376 // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
377 // sign extend a small value in a large integer register (e.g. sign
378 // extending the low 8 bits of a 32-bit register to fill the top 24 bits
379 // with the 7th bit). The size of the smaller type is indicated by the 1th
380 // operand, a ValueType node.
381 SIGN_EXTEND_INREG,
383 /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
384 /// integer.
385 FP_TO_SINT,
386 FP_TO_UINT,
388 /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
389 /// down to the precision of the destination VT. TRUNC is a flag, which is
390 /// always an integer that is zero or one. If TRUNC is 0, this is a
391 /// normal rounding, if it is 1, this FP_ROUND is known to not change the
392 /// value of Y.
394 /// The TRUNC = 1 case is used in cases where we know that the value will
395 /// not be modified by the node, because Y is not using any of the extra
396 /// precision of source type. This allows certain transformations like
397 /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
398 /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
399 FP_ROUND,
401 // FLT_ROUNDS_ - Returns current rounding mode:
402 // -1 Undefined
403 // 0 Round to 0
404 // 1 Round to nearest
405 // 2 Round to +inf
406 // 3 Round to -inf
407 FLT_ROUNDS_,
409 /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
410 /// rounds it to a floating point value. It then promotes it and returns it
411 /// in a register of the same size. This operation effectively just
412 /// discards excess precision. The type to round down to is specified by
413 /// the VT operand, a VTSDNode.
414 FP_ROUND_INREG,
416 /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
417 FP_EXTEND,
419 // BIT_CONVERT - This operator converts between integer, vector and FP
420 // values, as if the value was stored to memory with one type and loaded
421 // from the same address with the other type (or equivalently for vector
422 // format conversions, etc). The source and result are required to have
423 // the same bit size (e.g. f32 <-> i32). This can also be used for
424 // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
425 // getNode().
426 BIT_CONVERT,
428 // CONVERT_RNDSAT - This operator is used to support various conversions
429 // between various types (float, signed, unsigned and vectors of those
430 // types) with rounding and saturation. NOTE: Avoid using this operator as
431 // most target don't support it and the operator might be removed in the
432 // future. It takes the following arguments:
433 // 0) value
434 // 1) dest type (type to convert to)
435 // 2) src type (type to convert from)
436 // 3) rounding imm
437 // 4) saturation imm
438 // 5) ISD::CvtCode indicating the type of conversion to do
439 CONVERT_RNDSAT,
441 // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
442 // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
443 // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
444 // point operations. These are inspired by libm.
445 FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
446 FLOG, FLOG2, FLOG10, FEXP, FEXP2,
447 FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
449 // LOAD and STORE have token chains as their first operand, then the same
450 // operands as an LLVM load/store instruction, then an offset node that
451 // is added / subtracted from the base pointer to form the address (for
452 // indexed memory ops).
453 LOAD, STORE,
455 // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
456 // to a specified boundary. This node always has two return values: a new
457 // stack pointer value and a chain. The first operand is the token chain,
458 // the second is the number of bytes to allocate, and the third is the
459 // alignment boundary. The size is guaranteed to be a multiple of the stack
460 // alignment, and the alignment is guaranteed to be bigger than the stack
461 // alignment (if required) or 0 to get standard stack alignment.
462 DYNAMIC_STACKALLOC,
464 // Control flow instructions. These all have token chains.
466 // BR - Unconditional branch. The first operand is the chain
467 // operand, the second is the MBB to branch to.
470 // BRIND - Indirect branch. The first operand is the chain, the second
471 // is the value to branch to, which must be of the same type as the target's
472 // pointer type.
473 BRIND,
475 // BR_JT - Jumptable branch. The first operand is the chain, the second
476 // is the jumptable index, the last one is the jumptable entry index.
477 BR_JT,
479 // BRCOND - Conditional branch. The first operand is the chain, the
480 // second is the condition, the third is the block to branch to if the
481 // condition is true. If the type of the condition is not i1, then the
482 // high bits must conform to getBooleanContents.
483 BRCOND,
485 // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
486 // that the condition is represented as condition code, and two nodes to
487 // compare, rather than as a combined SetCC node. The operands in order are
488 // chain, cc, lhs, rhs, block to branch to if condition is true.
489 BR_CC,
491 // INLINEASM - Represents an inline asm block. This node always has two
492 // return values: a chain and a flag result. The inputs are as follows:
493 // Operand #0 : Input chain.
494 // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
495 // Operand #2n+2: A RegisterNode.
496 // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
497 // Operand #last: Optional, an incoming flag.
498 INLINEASM,
500 // EH_LABEL - Represents a label in mid basic block used to track
501 // locations needed for debug and exception handling tables. These nodes
502 // take a chain as input and return a chain.
503 EH_LABEL,
505 // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
506 // value, the same type as the pointer type for the system, and an output
507 // chain.
508 STACKSAVE,
510 // STACKRESTORE has two operands, an input chain and a pointer to restore to
511 // it returns an output chain.
512 STACKRESTORE,
514 // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
515 // a call sequence, and carry arbitrary information that target might want
516 // to know. The first operand is a chain, the rest are specified by the
517 // target and not touched by the DAG optimizers.
518 // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
519 CALLSEQ_START, // Beginning of a call sequence
520 CALLSEQ_END, // End of a call sequence
522 // VAARG - VAARG has three operands: an input chain, a pointer, and a
523 // SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
524 VAARG,
526 // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
527 // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
528 // source.
529 VACOPY,
531 // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
532 // pointer, and a SRCVALUE.
533 VAEND, VASTART,
535 // SRCVALUE - This is a node type that holds a Value* that is used to
536 // make reference to a value in the LLVM IR.
537 SRCVALUE,
539 // PCMARKER - This corresponds to the pcmarker intrinsic.
540 PCMARKER,
542 // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
543 // The only operand is a chain and a value and a chain are produced. The
544 // value is the contents of the architecture specific cycle counter like
545 // register (or other high accuracy low latency clock source)
546 READCYCLECOUNTER,
548 // HANDLENODE node - Used as a handle for various purposes.
549 HANDLENODE,
551 // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
552 // It takes as input a token chain, the pointer to the trampoline,
553 // the pointer to the nested function, the pointer to pass for the
554 // 'nest' parameter, a SRCVALUE for the trampoline and another for
555 // the nested function (allowing targets to access the original
556 // Function*). It produces the result of the intrinsic and a token
557 // chain as output.
558 TRAMPOLINE,
560 // TRAP - Trapping instruction
561 TRAP,
563 // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
564 // their first operand. The other operands are the address to prefetch,
565 // read / write specifier, and locality specifier.
566 PREFETCH,
568 // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
569 // store-store, device)
570 // This corresponds to the memory.barrier intrinsic.
571 // it takes an input chain, 4 operands to specify the type of barrier, an
572 // operand specifying if the barrier applies to device and uncached memory
573 // and produces an output chain.
574 MEMBARRIER,
576 // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
577 // this corresponds to the atomic.lcs intrinsic.
578 // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
579 // the return is always the original value in *ptr
580 ATOMIC_CMP_SWAP,
582 // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
583 // this corresponds to the atomic.swap intrinsic.
584 // amt is stored to *ptr atomically.
585 // the return is always the original value in *ptr
586 ATOMIC_SWAP,
588 // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
589 // this corresponds to the atomic.load.[OpName] intrinsic.
590 // op(*ptr, amt) is stored to *ptr atomically.
591 // the return is always the original value in *ptr
592 ATOMIC_LOAD_ADD,
593 ATOMIC_LOAD_SUB,
594 ATOMIC_LOAD_AND,
595 ATOMIC_LOAD_OR,
596 ATOMIC_LOAD_XOR,
597 ATOMIC_LOAD_NAND,
598 ATOMIC_LOAD_MIN,
599 ATOMIC_LOAD_MAX,
600 ATOMIC_LOAD_UMIN,
601 ATOMIC_LOAD_UMAX,
603 /// BUILTIN_OP_END - This must be the last enum value in this list.
604 /// The target-specific pre-isel opcode values start here.
605 BUILTIN_OP_END
608 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
609 /// which do not reference a specific memory location should be less than
610 /// this value. Those that do must not be less than this value, and can
611 /// be used with SelectionDAG::getMemIntrinsicNode.
612 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+80;
614 /// Node predicates
616 /// isBuildVectorAllOnes - Return true if the specified node is a
617 /// BUILD_VECTOR where all of the elements are ~0 or undef.
618 bool isBuildVectorAllOnes(const SDNode *N);
620 /// isBuildVectorAllZeros - Return true if the specified node is a
621 /// BUILD_VECTOR where all of the elements are 0 or undef.
622 bool isBuildVectorAllZeros(const SDNode *N);
624 /// isScalarToVector - Return true if the specified node is a
625 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
626 /// element is not an undef.
627 bool isScalarToVector(const SDNode *N);
629 //===--------------------------------------------------------------------===//
630 /// MemIndexedMode enum - This enum defines the load / store indexed
631 /// addressing modes.
633 /// UNINDEXED "Normal" load / store. The effective address is already
634 /// computed and is available in the base pointer. The offset
635 /// operand is always undefined. In addition to producing a
636 /// chain, an unindexed load produces one value (result of the
637 /// load); an unindexed store does not produce a value.
639 /// PRE_INC Similar to the unindexed mode where the effective address is
640 /// PRE_DEC the value of the base pointer add / subtract the offset.
641 /// It considers the computation as being folded into the load /
642 /// store operation (i.e. the load / store does the address
643 /// computation as well as performing the memory transaction).
644 /// The base operand is always undefined. In addition to
645 /// producing a chain, pre-indexed load produces two values
646 /// (result of the load and the result of the address
647 /// computation); a pre-indexed store produces one value (result
648 /// of the address computation).
650 /// POST_INC The effective address is the value of the base pointer. The
651 /// POST_DEC value of the offset operand is then added to / subtracted
652 /// from the base after memory transaction. In addition to
653 /// producing a chain, post-indexed load produces two values
654 /// (the result of the load and the result of the base +/- offset
655 /// computation); a post-indexed store produces one value (the
656 /// the result of the base +/- offset computation).
658 enum MemIndexedMode {
659 UNINDEXED = 0,
660 PRE_INC,
661 PRE_DEC,
662 POST_INC,
663 POST_DEC,
664 LAST_INDEXED_MODE
667 //===--------------------------------------------------------------------===//
668 /// LoadExtType enum - This enum defines the three variants of LOADEXT
669 /// (load with extension).
671 /// SEXTLOAD loads the integer operand and sign extends it to a larger
672 /// integer result type.
673 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
674 /// integer result type.
675 /// EXTLOAD is used for three things: floating point extending loads,
676 /// integer extending loads [the top bits are undefined], and vector
677 /// extending loads [load into low elt].
679 enum LoadExtType {
680 NON_EXTLOAD = 0,
681 EXTLOAD,
682 SEXTLOAD,
683 ZEXTLOAD,
684 LAST_LOADEXT_TYPE
687 //===--------------------------------------------------------------------===//
688 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
689 /// below work out, when considering SETFALSE (something that never exists
690 /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
691 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
692 /// to. If the "N" column is 1, the result of the comparison is undefined if
693 /// the input is a NAN.
695 /// All of these (except for the 'always folded ops') should be handled for
696 /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
697 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
699 /// Note that these are laid out in a specific order to allow bit-twiddling
700 /// to transform conditions.
701 enum CondCode {
702 // Opcode N U L G E Intuitive operation
703 SETFALSE, // 0 0 0 0 Always false (always folded)
704 SETOEQ, // 0 0 0 1 True if ordered and equal
705 SETOGT, // 0 0 1 0 True if ordered and greater than
706 SETOGE, // 0 0 1 1 True if ordered and greater than or equal
707 SETOLT, // 0 1 0 0 True if ordered and less than
708 SETOLE, // 0 1 0 1 True if ordered and less than or equal
709 SETONE, // 0 1 1 0 True if ordered and operands are unequal
710 SETO, // 0 1 1 1 True if ordered (no nans)
711 SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
712 SETUEQ, // 1 0 0 1 True if unordered or equal
713 SETUGT, // 1 0 1 0 True if unordered or greater than
714 SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
715 SETULT, // 1 1 0 0 True if unordered or less than
716 SETULE, // 1 1 0 1 True if unordered, less than, or equal
717 SETUNE, // 1 1 1 0 True if unordered or not equal
718 SETTRUE, // 1 1 1 1 Always true (always folded)
719 // Don't care operations: undefined if the input is a nan.
720 SETFALSE2, // 1 X 0 0 0 Always false (always folded)
721 SETEQ, // 1 X 0 0 1 True if equal
722 SETGT, // 1 X 0 1 0 True if greater than
723 SETGE, // 1 X 0 1 1 True if greater than or equal
724 SETLT, // 1 X 1 0 0 True if less than
725 SETLE, // 1 X 1 0 1 True if less than or equal
726 SETNE, // 1 X 1 1 0 True if not equal
727 SETTRUE2, // 1 X 1 1 1 Always true (always folded)
729 SETCC_INVALID // Marker value.
732 /// isSignedIntSetCC - Return true if this is a setcc instruction that
733 /// performs a signed comparison when used with integer operands.
734 inline bool isSignedIntSetCC(CondCode Code) {
735 return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
738 /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
739 /// performs an unsigned comparison when used with integer operands.
740 inline bool isUnsignedIntSetCC(CondCode Code) {
741 return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
744 /// isTrueWhenEqual - Return true if the specified condition returns true if
745 /// the two operands to the condition are equal. Note that if one of the two
746 /// operands is a NaN, this value is meaningless.
747 inline bool isTrueWhenEqual(CondCode Cond) {
748 return ((int)Cond & 1) != 0;
751 /// getUnorderedFlavor - This function returns 0 if the condition is always
752 /// false if an operand is a NaN, 1 if the condition is always true if the
753 /// operand is a NaN, and 2 if the condition is undefined if the operand is a
754 /// NaN.
755 inline unsigned getUnorderedFlavor(CondCode Cond) {
756 return ((int)Cond >> 3) & 3;
759 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
760 /// 'op' is a valid SetCC operation.
761 CondCode getSetCCInverse(CondCode Operation, bool isInteger);
763 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
764 /// when given the operation for (X op Y).
765 CondCode getSetCCSwappedOperands(CondCode Operation);
767 /// getSetCCOrOperation - Return the result of a logical OR between different
768 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
769 /// function returns SETCC_INVALID if it is not possible to represent the
770 /// resultant comparison.
771 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
773 /// getSetCCAndOperation - Return the result of a logical AND between
774 /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
775 /// function returns SETCC_INVALID if it is not possible to represent the
776 /// resultant comparison.
777 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
779 //===--------------------------------------------------------------------===//
780 /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
781 /// supports.
782 enum CvtCode {
783 CVT_FF, // Float from Float
784 CVT_FS, // Float from Signed
785 CVT_FU, // Float from Unsigned
786 CVT_SF, // Signed from Float
787 CVT_UF, // Unsigned from Float
788 CVT_SS, // Signed from Signed
789 CVT_SU, // Signed from Unsigned
790 CVT_US, // Unsigned from Signed
791 CVT_UU, // Unsigned from Unsigned
792 CVT_INVALID // Marker - Invalid opcode
794 } // end llvm::ISD namespace
797 //===----------------------------------------------------------------------===//
798 /// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
799 /// values as the result of a computation. Many nodes return multiple values,
800 /// from loads (which define a token and a return value) to ADDC (which returns
801 /// a result and a carry value), to calls (which may return an arbitrary number
802 /// of values).
804 /// As such, each use of a SelectionDAG computation must indicate the node that
805 /// computes it as well as which return value to use from that node. This pair
806 /// of information is represented with the SDValue value type.
808 class SDValue {
809 SDNode *Node; // The node defining the value we are using.
810 unsigned ResNo; // Which return value of the node we are using.
811 public:
812 SDValue() : Node(0), ResNo(0) {}
813 SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
815 /// get the index which selects a specific result in the SDNode
816 unsigned getResNo() const { return ResNo; }
818 /// get the SDNode which holds the desired result
819 SDNode *getNode() const { return Node; }
821 /// set the SDNode
822 void setNode(SDNode *N) { Node = N; }
824 inline SDNode *operator->() const { return Node; }
826 bool operator==(const SDValue &O) const {
827 return Node == O.Node && ResNo == O.ResNo;
829 bool operator!=(const SDValue &O) const {
830 return !operator==(O);
832 bool operator<(const SDValue &O) const {
833 return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
836 SDValue getValue(unsigned R) const {
837 return SDValue(Node, R);
840 // isOperandOf - Return true if this node is an operand of N.
841 bool isOperandOf(SDNode *N) const;
843 /// getValueType - Return the ValueType of the referenced return value.
845 inline EVT getValueType() const;
847 /// getValueSizeInBits - Returns the size of the value in bits.
849 unsigned getValueSizeInBits() const {
850 return getValueType().getSizeInBits();
853 // Forwarding methods - These forward to the corresponding methods in SDNode.
854 inline unsigned getOpcode() const;
855 inline unsigned getNumOperands() const;
856 inline const SDValue &getOperand(unsigned i) const;
857 inline uint64_t getConstantOperandVal(unsigned i) const;
858 inline bool isTargetMemoryOpcode() const;
859 inline bool isTargetOpcode() const;
860 inline bool isMachineOpcode() const;
861 inline unsigned getMachineOpcode() const;
862 inline const DebugLoc getDebugLoc() const;
865 /// reachesChainWithoutSideEffects - Return true if this operand (which must
866 /// be a chain) reaches the specified operand without crossing any
867 /// side-effecting instructions. In practice, this looks through token
868 /// factors and non-volatile loads. In order to remain efficient, this only
869 /// looks a couple of nodes in, it does not do an exhaustive search.
870 bool reachesChainWithoutSideEffects(SDValue Dest,
871 unsigned Depth = 2) const;
873 /// use_empty - Return true if there are no nodes using value ResNo
874 /// of Node.
876 inline bool use_empty() const;
878 /// hasOneUse - Return true if there is exactly one node using value
879 /// ResNo of Node.
881 inline bool hasOneUse() const;
885 template<> struct DenseMapInfo<SDValue> {
886 static inline SDValue getEmptyKey() {
887 return SDValue((SDNode*)-1, -1U);
889 static inline SDValue getTombstoneKey() {
890 return SDValue((SDNode*)-1, 0);
892 static unsigned getHashValue(const SDValue &Val) {
893 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
894 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
896 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
897 return LHS == RHS;
900 template <> struct isPodLike<SDValue> { static const bool value = true; };
903 /// simplify_type specializations - Allow casting operators to work directly on
904 /// SDValues as if they were SDNode*'s.
905 template<> struct simplify_type<SDValue> {
906 typedef SDNode* SimpleType;
907 static SimpleType getSimplifiedValue(const SDValue &Val) {
908 return static_cast<SimpleType>(Val.getNode());
911 template<> struct simplify_type<const SDValue> {
912 typedef SDNode* SimpleType;
913 static SimpleType getSimplifiedValue(const SDValue &Val) {
914 return static_cast<SimpleType>(Val.getNode());
918 /// SDUse - Represents a use of a SDNode. This class holds an SDValue,
919 /// which records the SDNode being used and the result number, a
920 /// pointer to the SDNode using the value, and Next and Prev pointers,
921 /// which link together all the uses of an SDNode.
923 class SDUse {
924 /// Val - The value being used.
925 SDValue Val;
926 /// User - The user of this value.
927 SDNode *User;
928 /// Prev, Next - Pointers to the uses list of the SDNode referred by
929 /// this operand.
930 SDUse **Prev, *Next;
932 SDUse(const SDUse &U); // Do not implement
933 void operator=(const SDUse &U); // Do not implement
935 public:
936 SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
938 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
939 operator const SDValue&() const { return Val; }
941 /// If implicit conversion to SDValue doesn't work, the get() method returns
942 /// the SDValue.
943 const SDValue &get() const { return Val; }
945 /// getUser - This returns the SDNode that contains this Use.
946 SDNode *getUser() { return User; }
948 /// getNext - Get the next SDUse in the use list.
949 SDUse *getNext() const { return Next; }
951 /// getNode - Convenience function for get().getNode().
952 SDNode *getNode() const { return Val.getNode(); }
953 /// getResNo - Convenience function for get().getResNo().
954 unsigned getResNo() const { return Val.getResNo(); }
955 /// getValueType - Convenience function for get().getValueType().
956 EVT getValueType() const { return Val.getValueType(); }
958 /// operator== - Convenience function for get().operator==
959 bool operator==(const SDValue &V) const {
960 return Val == V;
963 /// operator!= - Convenience function for get().operator!=
964 bool operator!=(const SDValue &V) const {
965 return Val != V;
968 /// operator< - Convenience function for get().operator<
969 bool operator<(const SDValue &V) const {
970 return Val < V;
973 private:
974 friend class SelectionDAG;
975 friend class SDNode;
977 void setUser(SDNode *p) { User = p; }
979 /// set - Remove this use from its existing use list, assign it the
980 /// given value, and add it to the new value's node's use list.
981 inline void set(const SDValue &V);
982 /// setInitial - like set, but only supports initializing a newly-allocated
983 /// SDUse with a non-null value.
984 inline void setInitial(const SDValue &V);
985 /// setNode - like set, but only sets the Node portion of the value,
986 /// leaving the ResNo portion unmodified.
987 inline void setNode(SDNode *N);
989 void addToList(SDUse **List) {
990 Next = *List;
991 if (Next) Next->Prev = &Next;
992 Prev = List;
993 *List = this;
996 void removeFromList() {
997 *Prev = Next;
998 if (Next) Next->Prev = Prev;
1002 /// simplify_type specializations - Allow casting operators to work directly on
1003 /// SDValues as if they were SDNode*'s.
1004 template<> struct simplify_type<SDUse> {
1005 typedef SDNode* SimpleType;
1006 static SimpleType getSimplifiedValue(const SDUse &Val) {
1007 return static_cast<SimpleType>(Val.getNode());
1010 template<> struct simplify_type<const SDUse> {
1011 typedef SDNode* SimpleType;
1012 static SimpleType getSimplifiedValue(const SDUse &Val) {
1013 return static_cast<SimpleType>(Val.getNode());
1018 /// SDNode - Represents one node in the SelectionDAG.
1020 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
1021 private:
1022 /// NodeType - The operation that this node performs.
1024 int16_t NodeType;
1026 /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
1027 /// then they will be delete[]'d when the node is destroyed.
1028 uint16_t OperandsNeedDelete : 1;
1030 protected:
1031 /// SubclassData - This member is defined by this class, but is not used for
1032 /// anything. Subclasses can use it to hold whatever state they find useful.
1033 /// This field is initialized to zero by the ctor.
1034 uint16_t SubclassData : 15;
1036 private:
1037 /// NodeId - Unique id per SDNode in the DAG.
1038 int NodeId;
1040 /// OperandList - The values that are used by this operation.
1042 SDUse *OperandList;
1044 /// ValueList - The types of the values this node defines. SDNode's may
1045 /// define multiple values simultaneously.
1046 const EVT *ValueList;
1048 /// UseList - List of uses for this SDNode.
1049 SDUse *UseList;
1051 /// NumOperands/NumValues - The number of entries in the Operand/Value list.
1052 unsigned short NumOperands, NumValues;
1054 /// debugLoc - source line information.
1055 DebugLoc debugLoc;
1057 /// getValueTypeList - Return a pointer to the specified value type.
1058 static const EVT *getValueTypeList(EVT VT);
1060 friend class SelectionDAG;
1061 friend struct ilist_traits<SDNode>;
1063 public:
1064 //===--------------------------------------------------------------------===//
1065 // Accessors
1068 /// getOpcode - Return the SelectionDAG opcode value for this node. For
1069 /// pre-isel nodes (those for which isMachineOpcode returns false), these
1070 /// are the opcode values in the ISD and <target>ISD namespaces. For
1071 /// post-isel opcodes, see getMachineOpcode.
1072 unsigned getOpcode() const { return (unsigned short)NodeType; }
1074 /// isTargetOpcode - Test if this node has a target-specific opcode (in the
1075 /// \<target\>ISD namespace).
1076 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
1078 /// isTargetMemoryOpcode - Test if this node has a target-specific
1079 /// memory-referencing opcode (in the \<target\>ISD namespace and
1080 /// greater than FIRST_TARGET_MEMORY_OPCODE).
1081 bool isTargetMemoryOpcode() const {
1082 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
1085 /// isMachineOpcode - Test if this node has a post-isel opcode, directly
1086 /// corresponding to a MachineInstr opcode.
1087 bool isMachineOpcode() const { return NodeType < 0; }
1089 /// getMachineOpcode - This may only be called if isMachineOpcode returns
1090 /// true. It returns the MachineInstr opcode value that the node's opcode
1091 /// corresponds to.
1092 unsigned getMachineOpcode() const {
1093 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
1094 return ~NodeType;
1097 /// use_empty - Return true if there are no uses of this node.
1099 bool use_empty() const { return UseList == NULL; }
1101 /// hasOneUse - Return true if there is exactly one use of this node.
1103 bool hasOneUse() const {
1104 return !use_empty() && llvm::next(use_begin()) == use_end();
1107 /// use_size - Return the number of uses of this node. This method takes
1108 /// time proportional to the number of uses.
1110 size_t use_size() const { return std::distance(use_begin(), use_end()); }
1112 /// getNodeId - Return the unique node id.
1114 int getNodeId() const { return NodeId; }
1116 /// setNodeId - Set unique node id.
1117 void setNodeId(int Id) { NodeId = Id; }
1119 /// getDebugLoc - Return the source location info.
1120 const DebugLoc getDebugLoc() const { return debugLoc; }
1122 /// setDebugLoc - Set source location info. Try to avoid this, putting
1123 /// it in the constructor is preferable.
1124 void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
1126 /// use_iterator - This class provides iterator support for SDUse
1127 /// operands that use a specific SDNode.
1128 class use_iterator
1129 : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
1130 SDUse *Op;
1131 explicit use_iterator(SDUse *op) : Op(op) {
1133 friend class SDNode;
1134 public:
1135 typedef std::iterator<std::forward_iterator_tag,
1136 SDUse, ptrdiff_t>::reference reference;
1137 typedef std::iterator<std::forward_iterator_tag,
1138 SDUse, ptrdiff_t>::pointer pointer;
1140 use_iterator(const use_iterator &I) : Op(I.Op) {}
1141 use_iterator() : Op(0) {}
1143 bool operator==(const use_iterator &x) const {
1144 return Op == x.Op;
1146 bool operator!=(const use_iterator &x) const {
1147 return !operator==(x);
1150 /// atEnd - return true if this iterator is at the end of uses list.
1151 bool atEnd() const { return Op == 0; }
1153 // Iterator traversal: forward iteration only.
1154 use_iterator &operator++() { // Preincrement
1155 assert(Op && "Cannot increment end iterator!");
1156 Op = Op->getNext();
1157 return *this;
1160 use_iterator operator++(int) { // Postincrement
1161 use_iterator tmp = *this; ++*this; return tmp;
1164 /// Retrieve a pointer to the current user node.
1165 SDNode *operator*() const {
1166 assert(Op && "Cannot dereference end iterator!");
1167 return Op->getUser();
1170 SDNode *operator->() const { return operator*(); }
1172 SDUse &getUse() const { return *Op; }
1174 /// getOperandNo - Retrieve the operand # of this use in its user.
1176 unsigned getOperandNo() const {
1177 assert(Op && "Cannot dereference end iterator!");
1178 return (unsigned)(Op - Op->getUser()->OperandList);
1182 /// use_begin/use_end - Provide iteration support to walk over all uses
1183 /// of an SDNode.
1185 use_iterator use_begin() const {
1186 return use_iterator(UseList);
1189 static use_iterator use_end() { return use_iterator(0); }
1192 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
1193 /// indicated value. This method ignores uses of other values defined by this
1194 /// operation.
1195 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
1197 /// hasAnyUseOfValue - Return true if there are any use of the indicated
1198 /// value. This method ignores uses of other values defined by this operation.
1199 bool hasAnyUseOfValue(unsigned Value) const;
1201 /// isOnlyUserOf - Return true if this node is the only use of N.
1203 bool isOnlyUserOf(SDNode *N) const;
1205 /// isOperandOf - Return true if this node is an operand of N.
1207 bool isOperandOf(SDNode *N) const;
1209 /// isPredecessorOf - Return true if this node is a predecessor of N. This
1210 /// node is either an operand of N or it can be reached by recursively
1211 /// traversing up the operands.
1212 /// NOTE: this is an expensive method. Use it carefully.
1213 bool isPredecessorOf(SDNode *N) const;
1215 /// getNumOperands - Return the number of values used by this operation.
1217 unsigned getNumOperands() const { return NumOperands; }
1219 /// getConstantOperandVal - Helper method returns the integer value of a
1220 /// ConstantSDNode operand.
1221 uint64_t getConstantOperandVal(unsigned Num) const;
1223 const SDValue &getOperand(unsigned Num) const {
1224 assert(Num < NumOperands && "Invalid child # of SDNode!");
1225 return OperandList[Num];
1228 typedef SDUse* op_iterator;
1229 op_iterator op_begin() const { return OperandList; }
1230 op_iterator op_end() const { return OperandList+NumOperands; }
1232 SDVTList getVTList() const {
1233 SDVTList X = { ValueList, NumValues };
1234 return X;
1237 /// getFlaggedNode - If this node has a flag operand, return the node
1238 /// to which the flag operand points. Otherwise return NULL.
1239 SDNode *getFlaggedNode() const {
1240 if (getNumOperands() != 0 &&
1241 getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
1242 return getOperand(getNumOperands()-1).getNode();
1243 return 0;
1246 // If this is a pseudo op, like copyfromreg, look to see if there is a
1247 // real target node flagged to it. If so, return the target node.
1248 const SDNode *getFlaggedMachineNode() const {
1249 const SDNode *FoundNode = this;
1251 // Climb up flag edges until a machine-opcode node is found, or the
1252 // end of the chain is reached.
1253 while (!FoundNode->isMachineOpcode()) {
1254 const SDNode *N = FoundNode->getFlaggedNode();
1255 if (!N) break;
1256 FoundNode = N;
1259 return FoundNode;
1262 /// getNumValues - Return the number of values defined/returned by this
1263 /// operator.
1265 unsigned getNumValues() const { return NumValues; }
1267 /// getValueType - Return the type of a specified result.
1269 EVT getValueType(unsigned ResNo) const {
1270 assert(ResNo < NumValues && "Illegal result number!");
1271 return ValueList[ResNo];
1274 /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
1276 unsigned getValueSizeInBits(unsigned ResNo) const {
1277 return getValueType(ResNo).getSizeInBits();
1280 typedef const EVT* value_iterator;
1281 value_iterator value_begin() const { return ValueList; }
1282 value_iterator value_end() const { return ValueList+NumValues; }
1284 /// getOperationName - Return the opcode of this operation for printing.
1286 std::string getOperationName(const SelectionDAG *G = 0) const;
1287 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1288 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1289 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1290 void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
1291 void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
1293 /// printrFull - Print a SelectionDAG node and all children down to
1294 /// the leaves. The given SelectionDAG allows target-specific nodes
1295 /// to be printed in human-readable form. Unlike printr, this will
1296 /// print the whole DAG, including children that appear multiple
1297 /// times.
1299 void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
1301 /// printrWithDepth - Print a SelectionDAG node and children up to
1302 /// depth "depth." The given SelectionDAG allows target-specific
1303 /// nodes to be printed in human-readable form. Unlike printr, this
1304 /// will print children that appear multiple times wherever they are
1305 /// used.
1307 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
1308 unsigned depth = 100) const;
1311 /// dump - Dump this node, for debugging.
1312 void dump() const;
1314 /// dumpr - Dump (recursively) this node and its use-def subgraph.
1315 void dumpr() const;
1317 /// dump - Dump this node, for debugging.
1318 /// The given SelectionDAG allows target-specific nodes to be printed
1319 /// in human-readable form.
1320 void dump(const SelectionDAG *G) const;
1322 /// dumpr - Dump (recursively) this node and its use-def subgraph.
1323 /// The given SelectionDAG allows target-specific nodes to be printed
1324 /// in human-readable form.
1325 void dumpr(const SelectionDAG *G) const;
1327 /// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
1328 /// target-specific nodes to be printed in human-readable form.
1329 /// Unlike dumpr, this will print the whole DAG, including children
1330 /// that appear multiple times.
1332 void dumprFull(const SelectionDAG *G = 0) const;
1334 /// dumprWithDepth - printrWithDepth to dbgs(). The given
1335 /// SelectionDAG allows target-specific nodes to be printed in
1336 /// human-readable form. Unlike dumpr, this will print children
1337 /// that appear multiple times wherever they are used.
1339 void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
1342 static bool classof(const SDNode *) { return true; }
1344 /// Profile - Gather unique data for the node.
1346 void Profile(FoldingSetNodeID &ID) const;
1348 /// addUse - This method should only be used by the SDUse class.
1350 void addUse(SDUse &U) { U.addToList(&UseList); }
1352 protected:
1353 static SDVTList getSDVTList(EVT VT) {
1354 SDVTList Ret = { getValueTypeList(VT), 1 };
1355 return Ret;
1358 SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1359 unsigned NumOps)
1360 : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
1361 NodeId(-1),
1362 OperandList(NumOps ? new SDUse[NumOps] : 0),
1363 ValueList(VTs.VTs), UseList(NULL),
1364 NumOperands(NumOps), NumValues(VTs.NumVTs),
1365 debugLoc(dl) {
1366 for (unsigned i = 0; i != NumOps; ++i) {
1367 OperandList[i].setUser(this);
1368 OperandList[i].setInitial(Ops[i]);
1370 checkForCycles(this);
1373 /// This constructor adds no operands itself; operands can be
1374 /// set later with InitOperands.
1375 SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
1376 : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
1377 NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
1378 NumOperands(0), NumValues(VTs.NumVTs),
1379 debugLoc(dl) {}
1381 /// InitOperands - Initialize the operands list of this with 1 operand.
1382 void InitOperands(SDUse *Ops, const SDValue &Op0) {
1383 Ops[0].setUser(this);
1384 Ops[0].setInitial(Op0);
1385 NumOperands = 1;
1386 OperandList = Ops;
1387 checkForCycles(this);
1390 /// InitOperands - Initialize the operands list of this with 2 operands.
1391 void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
1392 Ops[0].setUser(this);
1393 Ops[0].setInitial(Op0);
1394 Ops[1].setUser(this);
1395 Ops[1].setInitial(Op1);
1396 NumOperands = 2;
1397 OperandList = Ops;
1398 checkForCycles(this);
1401 /// InitOperands - Initialize the operands list of this with 3 operands.
1402 void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1403 const SDValue &Op2) {
1404 Ops[0].setUser(this);
1405 Ops[0].setInitial(Op0);
1406 Ops[1].setUser(this);
1407 Ops[1].setInitial(Op1);
1408 Ops[2].setUser(this);
1409 Ops[2].setInitial(Op2);
1410 NumOperands = 3;
1411 OperandList = Ops;
1412 checkForCycles(this);
1415 /// InitOperands - Initialize the operands list of this with 4 operands.
1416 void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
1417 const SDValue &Op2, const SDValue &Op3) {
1418 Ops[0].setUser(this);
1419 Ops[0].setInitial(Op0);
1420 Ops[1].setUser(this);
1421 Ops[1].setInitial(Op1);
1422 Ops[2].setUser(this);
1423 Ops[2].setInitial(Op2);
1424 Ops[3].setUser(this);
1425 Ops[3].setInitial(Op3);
1426 NumOperands = 4;
1427 OperandList = Ops;
1428 checkForCycles(this);
1431 /// InitOperands - Initialize the operands list of this with N operands.
1432 void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
1433 for (unsigned i = 0; i != N; ++i) {
1434 Ops[i].setUser(this);
1435 Ops[i].setInitial(Vals[i]);
1437 NumOperands = N;
1438 OperandList = Ops;
1439 checkForCycles(this);
1442 /// DropOperands - Release the operands and set this node to have
1443 /// zero operands.
1444 void DropOperands();
1448 // Define inline functions from the SDValue class.
1450 inline unsigned SDValue::getOpcode() const {
1451 return Node->getOpcode();
1453 inline EVT SDValue::getValueType() const {
1454 return Node->getValueType(ResNo);
1456 inline unsigned SDValue::getNumOperands() const {
1457 return Node->getNumOperands();
1459 inline const SDValue &SDValue::getOperand(unsigned i) const {
1460 return Node->getOperand(i);
1462 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1463 return Node->getConstantOperandVal(i);
1465 inline bool SDValue::isTargetOpcode() const {
1466 return Node->isTargetOpcode();
1468 inline bool SDValue::isTargetMemoryOpcode() const {
1469 return Node->isTargetMemoryOpcode();
1471 inline bool SDValue::isMachineOpcode() const {
1472 return Node->isMachineOpcode();
1474 inline unsigned SDValue::getMachineOpcode() const {
1475 return Node->getMachineOpcode();
1477 inline bool SDValue::use_empty() const {
1478 return !Node->hasAnyUseOfValue(ResNo);
1480 inline bool SDValue::hasOneUse() const {
1481 return Node->hasNUsesOfValue(1, ResNo);
1483 inline const DebugLoc SDValue::getDebugLoc() const {
1484 return Node->getDebugLoc();
1487 // Define inline functions from the SDUse class.
1489 inline void SDUse::set(const SDValue &V) {
1490 if (Val.getNode()) removeFromList();
1491 Val = V;
1492 if (V.getNode()) V.getNode()->addUse(*this);
1495 inline void SDUse::setInitial(const SDValue &V) {
1496 Val = V;
1497 V.getNode()->addUse(*this);
1500 inline void SDUse::setNode(SDNode *N) {
1501 if (Val.getNode()) removeFromList();
1502 Val.setNode(N);
1503 if (N) N->addUse(*this);
1506 /// UnarySDNode - This class is used for single-operand SDNodes. This is solely
1507 /// to allow co-allocation of node operands with the node itself.
1508 class UnarySDNode : public SDNode {
1509 SDUse Op;
1510 public:
1511 UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
1512 : SDNode(Opc, dl, VTs) {
1513 InitOperands(&Op, X);
1517 /// BinarySDNode - This class is used for two-operand SDNodes. This is solely
1518 /// to allow co-allocation of node operands with the node itself.
1519 class BinarySDNode : public SDNode {
1520 SDUse Ops[2];
1521 public:
1522 BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
1523 : SDNode(Opc, dl, VTs) {
1524 InitOperands(Ops, X, Y);
1528 /// TernarySDNode - This class is used for three-operand SDNodes. This is solely
1529 /// to allow co-allocation of node operands with the node itself.
1530 class TernarySDNode : public SDNode {
1531 SDUse Ops[3];
1532 public:
1533 TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
1534 SDValue Z)
1535 : SDNode(Opc, dl, VTs) {
1536 InitOperands(Ops, X, Y, Z);
1541 /// HandleSDNode - This class is used to form a handle around another node that
1542 /// is persistant and is updated across invocations of replaceAllUsesWith on its
1543 /// operand. This node should be directly created by end-users and not added to
1544 /// the AllNodes list.
1545 class HandleSDNode : public SDNode {
1546 SDUse Op;
1547 public:
1548 // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
1549 // fixed.
1550 #ifdef __GNUC__
1551 explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
1552 #else
1553 explicit HandleSDNode(SDValue X)
1554 #endif
1555 : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
1556 getSDVTList(MVT::Other)) {
1557 InitOperands(&Op, X);
1559 ~HandleSDNode();
1560 const SDValue &getValue() const { return Op; }
1563 /// Abstact virtual class for operations for memory operations
1564 class MemSDNode : public SDNode {
1565 private:
1566 // MemoryVT - VT of in-memory value.
1567 EVT MemoryVT;
1569 protected:
1570 /// MMO - Memory reference information.
1571 MachineMemOperand *MMO;
1573 public:
1574 MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
1575 MachineMemOperand *MMO);
1577 MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
1578 unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
1580 bool readMem() const { return MMO->isLoad(); }
1581 bool writeMem() const { return MMO->isStore(); }
1583 /// Returns alignment and volatility of the memory access
1584 unsigned getOriginalAlignment() const {
1585 return MMO->getBaseAlignment();
1587 unsigned getAlignment() const {
1588 return MMO->getAlignment();
1591 /// getRawSubclassData - Return the SubclassData value, which contains an
1592 /// encoding of the volatile flag, as well as bits used by subclasses. This
1593 /// function should only be used to compute a FoldingSetNodeID value.
1594 unsigned getRawSubclassData() const {
1595 return SubclassData;
1598 bool isVolatile() const { return (SubclassData >> 5) & 1; }
1599 bool isNonTemporal() const { return MMO->isNonTemporal(); }
1601 /// Returns the SrcValue and offset that describes the location of the access
1602 const Value *getSrcValue() const { return MMO->getValue(); }
1603 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1605 /// getMemoryVT - Return the type of the in-memory value.
1606 EVT getMemoryVT() const { return MemoryVT; }
1608 /// getMemOperand - Return a MachineMemOperand object describing the memory
1609 /// reference performed by operation.
1610 MachineMemOperand *getMemOperand() const { return MMO; }
1612 /// refineAlignment - Update this MemSDNode's MachineMemOperand information
1613 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1614 /// This must only be used when the new alignment applies to all users of
1615 /// this MachineMemOperand.
1616 void refineAlignment(const MachineMemOperand *NewMMO) {
1617 MMO->refineAlignment(NewMMO);
1620 const SDValue &getChain() const { return getOperand(0); }
1621 const SDValue &getBasePtr() const {
1622 return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1625 // Methods to support isa and dyn_cast
1626 static bool classof(const MemSDNode *) { return true; }
1627 static bool classof(const SDNode *N) {
1628 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1629 // with either an intrinsic or a target opcode.
1630 return N->getOpcode() == ISD::LOAD ||
1631 N->getOpcode() == ISD::STORE ||
1632 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1633 N->getOpcode() == ISD::ATOMIC_SWAP ||
1634 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1635 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1636 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1637 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1638 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1639 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1640 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1641 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1642 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1643 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1644 N->isTargetMemoryOpcode();
1648 /// AtomicSDNode - A SDNode reprenting atomic operations.
1650 class AtomicSDNode : public MemSDNode {
1651 SDUse Ops[4];
1653 public:
1654 // Opc: opcode for atomic
1655 // VTL: value type list
1656 // Chain: memory chain for operaand
1657 // Ptr: address to update as a SDValue
1658 // Cmp: compare value
1659 // Swp: swap value
1660 // SrcVal: address to update as a Value (used for MemOperand)
1661 // Align: alignment of memory
1662 AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1663 SDValue Chain, SDValue Ptr,
1664 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
1665 : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1666 assert(readMem() && "Atomic MachineMemOperand is not a load!");
1667 assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1668 InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1670 AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
1671 SDValue Chain, SDValue Ptr,
1672 SDValue Val, MachineMemOperand *MMO)
1673 : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
1674 assert(readMem() && "Atomic MachineMemOperand is not a load!");
1675 assert(writeMem() && "Atomic MachineMemOperand is not a store!");
1676 InitOperands(Ops, Chain, Ptr, Val);
1679 const SDValue &getBasePtr() const { return getOperand(1); }
1680 const SDValue &getVal() const { return getOperand(2); }
1682 bool isCompareAndSwap() const {
1683 unsigned Op = getOpcode();
1684 return Op == ISD::ATOMIC_CMP_SWAP;
1687 // Methods to support isa and dyn_cast
1688 static bool classof(const AtomicSDNode *) { return true; }
1689 static bool classof(const SDNode *N) {
1690 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1691 N->getOpcode() == ISD::ATOMIC_SWAP ||
1692 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1693 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1694 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1695 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1696 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1697 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1698 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1699 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1700 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1701 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
1705 /// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
1706 /// memory and need an associated MachineMemOperand. Its opcode may be
1707 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
1708 /// value not less than FIRST_TARGET_MEMORY_OPCODE.
1709 class MemIntrinsicSDNode : public MemSDNode {
1710 public:
1711 MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
1712 const SDValue *Ops, unsigned NumOps,
1713 EVT MemoryVT, MachineMemOperand *MMO)
1714 : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
1717 // Methods to support isa and dyn_cast
1718 static bool classof(const MemIntrinsicSDNode *) { return true; }
1719 static bool classof(const SDNode *N) {
1720 // We lower some target intrinsics to their target opcode
1721 // early a node with a target opcode can be of this class
1722 return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1723 N->getOpcode() == ISD::INTRINSIC_VOID ||
1724 N->isTargetMemoryOpcode();
1728 /// ShuffleVectorSDNode - This SDNode is used to implement the code generator
1729 /// support for the llvm IR shufflevector instruction. It combines elements
1730 /// from two input vectors into a new input vector, with the selection and
1731 /// ordering of elements determined by an array of integers, referred to as
1732 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1733 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1734 /// An index of -1 is treated as undef, such that the code generator may put
1735 /// any value in the corresponding element of the result.
1736 class ShuffleVectorSDNode : public SDNode {
1737 SDUse Ops[2];
1739 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1740 // is freed when the SelectionDAG object is destroyed.
1741 const int *Mask;
1742 protected:
1743 friend class SelectionDAG;
1744 ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
1745 const int *M)
1746 : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
1747 InitOperands(Ops, N1, N2);
1749 public:
1751 void getMask(SmallVectorImpl<int> &M) const {
1752 EVT VT = getValueType(0);
1753 M.clear();
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 M.push_back(Mask[i]);
1757 int getMaskElt(unsigned Idx) const {
1758 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1759 return Mask[Idx];
1762 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1763 int getSplatIndex() const {
1764 assert(isSplat() && "Cannot get splat index for non-splat!");
1765 return Mask[0];
1767 static bool isSplatMask(const int *Mask, EVT VT);
1769 static bool classof(const ShuffleVectorSDNode *) { return true; }
1770 static bool classof(const SDNode *N) {
1771 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1775 class ConstantSDNode : public SDNode {
1776 const ConstantInt *Value;
1777 friend class SelectionDAG;
1778 ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
1779 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1780 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1782 public:
1784 const ConstantInt *getConstantIntValue() const { return Value; }
1785 const APInt &getAPIntValue() const { return Value->getValue(); }
1786 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1787 int64_t getSExtValue() const { return Value->getSExtValue(); }
1789 bool isNullValue() const { return Value->isNullValue(); }
1790 bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1792 static bool classof(const ConstantSDNode *) { return true; }
1793 static bool classof(const SDNode *N) {
1794 return N->getOpcode() == ISD::Constant ||
1795 N->getOpcode() == ISD::TargetConstant;
1799 class ConstantFPSDNode : public SDNode {
1800 const ConstantFP *Value;
1801 friend class SelectionDAG;
1802 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1803 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1804 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
1806 public:
1808 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1809 const ConstantFP *getConstantFPValue() const { return Value; }
1811 /// isExactlyValue - We don't rely on operator== working on double values, as
1812 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1813 /// As such, this method can be used to do an exact bit-for-bit comparison of
1814 /// two floating point values.
1816 /// We leave the version with the double argument here because it's just so
1817 /// convenient to write "2.0" and the like. Without this function we'd
1818 /// have to duplicate its logic everywhere it's called.
1819 bool isExactlyValue(double V) const {
1820 bool ignored;
1821 // convert is not supported on this type
1822 if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1823 return false;
1824 APFloat Tmp(V);
1825 Tmp.convert(Value->getValueAPF().getSemantics(),
1826 APFloat::rmNearestTiesToEven, &ignored);
1827 return isExactlyValue(Tmp);
1829 bool isExactlyValue(const APFloat& V) const;
1831 bool isValueValidForType(EVT VT, const APFloat& Val);
1833 static bool classof(const ConstantFPSDNode *) { return true; }
1834 static bool classof(const SDNode *N) {
1835 return N->getOpcode() == ISD::ConstantFP ||
1836 N->getOpcode() == ISD::TargetConstantFP;
1840 class GlobalAddressSDNode : public SDNode {
1841 GlobalValue *TheGlobal;
1842 int64_t Offset;
1843 unsigned char TargetFlags;
1844 friend class SelectionDAG;
1845 GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
1846 int64_t o, unsigned char TargetFlags);
1847 public:
1849 GlobalValue *getGlobal() const { return TheGlobal; }
1850 int64_t getOffset() const { return Offset; }
1851 unsigned char getTargetFlags() const { return TargetFlags; }
1852 // Return the address space this GlobalAddress belongs to.
1853 unsigned getAddressSpace() const;
1855 static bool classof(const GlobalAddressSDNode *) { return true; }
1856 static bool classof(const SDNode *N) {
1857 return N->getOpcode() == ISD::GlobalAddress ||
1858 N->getOpcode() == ISD::TargetGlobalAddress ||
1859 N->getOpcode() == ISD::GlobalTLSAddress ||
1860 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1864 class FrameIndexSDNode : public SDNode {
1865 int FI;
1866 friend class SelectionDAG;
1867 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1868 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1869 DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
1871 public:
1873 int getIndex() const { return FI; }
1875 static bool classof(const FrameIndexSDNode *) { return true; }
1876 static bool classof(const SDNode *N) {
1877 return N->getOpcode() == ISD::FrameIndex ||
1878 N->getOpcode() == ISD::TargetFrameIndex;
1882 class JumpTableSDNode : public SDNode {
1883 int JTI;
1884 unsigned char TargetFlags;
1885 friend class SelectionDAG;
1886 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1887 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1888 DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1890 public:
1892 int getIndex() const { return JTI; }
1893 unsigned char getTargetFlags() const { return TargetFlags; }
1895 static bool classof(const JumpTableSDNode *) { return true; }
1896 static bool classof(const SDNode *N) {
1897 return N->getOpcode() == ISD::JumpTable ||
1898 N->getOpcode() == ISD::TargetJumpTable;
1902 class ConstantPoolSDNode : public SDNode {
1903 union {
1904 Constant *ConstVal;
1905 MachineConstantPoolValue *MachineCPVal;
1906 } Val;
1907 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1908 unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
1909 unsigned char TargetFlags;
1910 friend class SelectionDAG;
1911 ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
1912 unsigned char TF)
1913 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1914 DebugLoc::getUnknownLoc(),
1915 getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1916 assert((int)Offset >= 0 && "Offset is too large");
1917 Val.ConstVal = c;
1919 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1920 EVT VT, int o, unsigned Align, unsigned char TF)
1921 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
1922 DebugLoc::getUnknownLoc(),
1923 getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
1924 assert((int)Offset >= 0 && "Offset is too large");
1925 Val.MachineCPVal = v;
1926 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1928 public:
1931 bool isMachineConstantPoolEntry() const {
1932 return (int)Offset < 0;
1935 Constant *getConstVal() const {
1936 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1937 return Val.ConstVal;
1940 MachineConstantPoolValue *getMachineCPVal() const {
1941 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1942 return Val.MachineCPVal;
1945 int getOffset() const {
1946 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1949 // Return the alignment of this constant pool object, which is either 0 (for
1950 // default alignment) or the desired value.
1951 unsigned getAlignment() const { return Alignment; }
1952 unsigned char getTargetFlags() const { return TargetFlags; }
1954 const Type *getType() const;
1956 static bool classof(const ConstantPoolSDNode *) { return true; }
1957 static bool classof(const SDNode *N) {
1958 return N->getOpcode() == ISD::ConstantPool ||
1959 N->getOpcode() == ISD::TargetConstantPool;
1963 class BasicBlockSDNode : public SDNode {
1964 MachineBasicBlock *MBB;
1965 friend class SelectionDAG;
1966 /// Debug info is meaningful and potentially useful here, but we create
1967 /// blocks out of order when they're jumped to, which makes it a bit
1968 /// harder. Let's see if we need it first.
1969 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1970 : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
1971 getSDVTList(MVT::Other)), MBB(mbb) {
1973 public:
1975 MachineBasicBlock *getBasicBlock() const { return MBB; }
1977 static bool classof(const BasicBlockSDNode *) { return true; }
1978 static bool classof(const SDNode *N) {
1979 return N->getOpcode() == ISD::BasicBlock;
1983 /// BuildVectorSDNode - A "pseudo-class" with methods for operating on
1984 /// BUILD_VECTORs.
1985 class BuildVectorSDNode : public SDNode {
1986 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1987 explicit BuildVectorSDNode(); // Do not implement
1988 public:
1989 /// isConstantSplat - Check if this is a constant splat, and if so, find the
1990 /// smallest element size that splats the vector. If MinSplatBits is
1991 /// nonzero, the element size must be at least that large. Note that the
1992 /// splat element may be the entire vector (i.e., a one element vector).
1993 /// Returns the splat element value in SplatValue. Any undefined bits in
1994 /// that value are zero, and the corresponding bits in the SplatUndef mask
1995 /// are set. The SplatBitSize value is set to the splat element size in
1996 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1997 /// undefined. isBigEndian describes the endianness of the target.
1998 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1999 unsigned &SplatBitSize, bool &HasAnyUndefs,
2000 unsigned MinSplatBits = 0, bool isBigEndian = false);
2002 static inline bool classof(const BuildVectorSDNode *) { return true; }
2003 static inline bool classof(const SDNode *N) {
2004 return N->getOpcode() == ISD::BUILD_VECTOR;
2008 /// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
2009 /// used when the SelectionDAG needs to make a simple reference to something
2010 /// in the LLVM IR representation.
2012 class SrcValueSDNode : public SDNode {
2013 const Value *V;
2014 friend class SelectionDAG;
2015 /// Create a SrcValue for a general value.
2016 explicit SrcValueSDNode(const Value *v)
2017 : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
2018 getSDVTList(MVT::Other)), V(v) {}
2020 public:
2021 /// getValue - return the contained Value.
2022 const Value *getValue() const { return V; }
2024 static bool classof(const SrcValueSDNode *) { return true; }
2025 static bool classof(const SDNode *N) {
2026 return N->getOpcode() == ISD::SRCVALUE;
2031 class RegisterSDNode : public SDNode {
2032 unsigned Reg;
2033 friend class SelectionDAG;
2034 RegisterSDNode(unsigned reg, EVT VT)
2035 : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
2036 getSDVTList(VT)), Reg(reg) {
2038 public:
2040 unsigned getReg() const { return Reg; }
2042 static bool classof(const RegisterSDNode *) { return true; }
2043 static bool classof(const SDNode *N) {
2044 return N->getOpcode() == ISD::Register;
2048 class BlockAddressSDNode : public SDNode {
2049 BlockAddress *BA;
2050 unsigned char TargetFlags;
2051 friend class SelectionDAG;
2052 BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
2053 unsigned char Flags)
2054 : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
2055 BA(ba), TargetFlags(Flags) {
2057 public:
2058 BlockAddress *getBlockAddress() const { return BA; }
2059 unsigned char getTargetFlags() const { return TargetFlags; }
2061 static bool classof(const BlockAddressSDNode *) { return true; }
2062 static bool classof(const SDNode *N) {
2063 return N->getOpcode() == ISD::BlockAddress ||
2064 N->getOpcode() == ISD::TargetBlockAddress;
2068 class LabelSDNode : public SDNode {
2069 SDUse Chain;
2070 unsigned LabelID;
2071 friend class SelectionDAG;
2072 LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
2073 : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
2074 InitOperands(&Chain, ch);
2076 public:
2077 unsigned getLabelID() const { return LabelID; }
2079 static bool classof(const LabelSDNode *) { return true; }
2080 static bool classof(const SDNode *N) {
2081 return N->getOpcode() == ISD::EH_LABEL;
2085 class ExternalSymbolSDNode : public SDNode {
2086 const char *Symbol;
2087 unsigned char TargetFlags;
2089 friend class SelectionDAG;
2090 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2091 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2092 DebugLoc::getUnknownLoc(),
2093 getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
2095 public:
2097 const char *getSymbol() const { return Symbol; }
2098 unsigned char getTargetFlags() const { return TargetFlags; }
2100 static bool classof(const ExternalSymbolSDNode *) { return true; }
2101 static bool classof(const SDNode *N) {
2102 return N->getOpcode() == ISD::ExternalSymbol ||
2103 N->getOpcode() == ISD::TargetExternalSymbol;
2107 class CondCodeSDNode : public SDNode {
2108 ISD::CondCode Condition;
2109 friend class SelectionDAG;
2110 explicit CondCodeSDNode(ISD::CondCode Cond)
2111 : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
2112 getSDVTList(MVT::Other)), Condition(Cond) {
2114 public:
2116 ISD::CondCode get() const { return Condition; }
2118 static bool classof(const CondCodeSDNode *) { return true; }
2119 static bool classof(const SDNode *N) {
2120 return N->getOpcode() == ISD::CONDCODE;
2124 /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
2125 /// future and most targets don't support it.
2126 class CvtRndSatSDNode : public SDNode {
2127 ISD::CvtCode CvtCode;
2128 friend class SelectionDAG;
2129 explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
2130 unsigned NumOps, ISD::CvtCode Code)
2131 : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
2132 CvtCode(Code) {
2133 assert(NumOps == 5 && "wrong number of operations");
2135 public:
2136 ISD::CvtCode getCvtCode() const { return CvtCode; }
2138 static bool classof(const CvtRndSatSDNode *) { return true; }
2139 static bool classof(const SDNode *N) {
2140 return N->getOpcode() == ISD::CONVERT_RNDSAT;
2144 namespace ISD {
2145 struct ArgFlagsTy {
2146 private:
2147 static const uint64_t NoFlagSet = 0ULL;
2148 static const uint64_t ZExt = 1ULL<<0; ///< Zero extended
2149 static const uint64_t ZExtOffs = 0;
2150 static const uint64_t SExt = 1ULL<<1; ///< Sign extended
2151 static const uint64_t SExtOffs = 1;
2152 static const uint64_t InReg = 1ULL<<2; ///< Passed in register
2153 static const uint64_t InRegOffs = 2;
2154 static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr
2155 static const uint64_t SRetOffs = 3;
2156 static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value
2157 static const uint64_t ByValOffs = 4;
2158 static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain
2159 static const uint64_t NestOffs = 5;
2160 static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment
2161 static const uint64_t ByValAlignOffs = 6;
2162 static const uint64_t Split = 1ULL << 10;
2163 static const uint64_t SplitOffs = 10;
2164 static const uint64_t OrigAlign = 0x1FULL<<27;
2165 static const uint64_t OrigAlignOffs = 27;
2166 static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size
2167 static const uint64_t ByValSizeOffs = 32;
2169 static const uint64_t One = 1ULL; //< 1 of this type, for shifts
2171 uint64_t Flags;
2172 public:
2173 ArgFlagsTy() : Flags(0) { }
2175 bool isZExt() const { return Flags & ZExt; }
2176 void setZExt() { Flags |= One << ZExtOffs; }
2178 bool isSExt() const { return Flags & SExt; }
2179 void setSExt() { Flags |= One << SExtOffs; }
2181 bool isInReg() const { return Flags & InReg; }
2182 void setInReg() { Flags |= One << InRegOffs; }
2184 bool isSRet() const { return Flags & SRet; }
2185 void setSRet() { Flags |= One << SRetOffs; }
2187 bool isByVal() const { return Flags & ByVal; }
2188 void setByVal() { Flags |= One << ByValOffs; }
2190 bool isNest() const { return Flags & Nest; }
2191 void setNest() { Flags |= One << NestOffs; }
2193 unsigned getByValAlign() const {
2194 return (unsigned)
2195 ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
2197 void setByValAlign(unsigned A) {
2198 Flags = (Flags & ~ByValAlign) |
2199 (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
2202 bool isSplit() const { return Flags & Split; }
2203 void setSplit() { Flags |= One << SplitOffs; }
2205 unsigned getOrigAlign() const {
2206 return (unsigned)
2207 ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
2209 void setOrigAlign(unsigned A) {
2210 Flags = (Flags & ~OrigAlign) |
2211 (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
2214 unsigned getByValSize() const {
2215 return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
2217 void setByValSize(unsigned S) {
2218 Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
2221 /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
2222 std::string getArgFlagsString();
2224 /// getRawBits - Represent the flags as a bunch of bits.
2225 uint64_t getRawBits() const { return Flags; }
2228 /// InputArg - This struct carries flags and type information about a
2229 /// single incoming (formal) argument or incoming (from the perspective
2230 /// of the caller) return value virtual register.
2232 struct InputArg {
2233 ArgFlagsTy Flags;
2234 EVT VT;
2235 bool Used;
2237 InputArg() : VT(MVT::Other), Used(false) {}
2238 InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
2239 : Flags(flags), VT(vt), Used(used) {
2240 assert(VT.isSimple() &&
2241 "InputArg value type must be Simple!");
2245 /// OutputArg - This struct carries flags and a value for a
2246 /// single outgoing (actual) argument or outgoing (from the perspective
2247 /// of the caller) return value virtual register.
2249 struct OutputArg {
2250 ArgFlagsTy Flags;
2251 SDValue Val;
2252 bool IsFixed;
2254 OutputArg() : IsFixed(false) {}
2255 OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
2256 : Flags(flags), Val(val), IsFixed(isfixed) {
2257 assert(Val.getValueType().isSimple() &&
2258 "OutputArg value type must be Simple!");
2263 /// VTSDNode - This class is used to represent EVT's, which are used
2264 /// to parameterize some operations.
2265 class VTSDNode : public SDNode {
2266 EVT ValueType;
2267 friend class SelectionDAG;
2268 explicit VTSDNode(EVT VT)
2269 : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
2270 getSDVTList(MVT::Other)), ValueType(VT) {
2272 public:
2274 EVT getVT() const { return ValueType; }
2276 static bool classof(const VTSDNode *) { return true; }
2277 static bool classof(const SDNode *N) {
2278 return N->getOpcode() == ISD::VALUETYPE;
2282 /// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
2284 class LSBaseSDNode : public MemSDNode {
2285 //! Operand array for load and store
2287 \note Moving this array to the base class captures more
2288 common functionality shared between LoadSDNode and
2289 StoreSDNode
2291 SDUse Ops[4];
2292 public:
2293 LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
2294 unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
2295 EVT MemVT, MachineMemOperand *MMO)
2296 : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
2297 SubclassData |= AM << 2;
2298 assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
2299 InitOperands(Ops, Operands, numOperands);
2300 assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
2301 "Only indexed loads and stores have a non-undef offset operand");
2304 const SDValue &getOffset() const {
2305 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2308 /// getAddressingMode - Return the addressing mode for this load or store:
2309 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2310 ISD::MemIndexedMode getAddressingMode() const {
2311 return ISD::MemIndexedMode((SubclassData >> 2) & 7);
2314 /// isIndexed - Return true if this is a pre/post inc/dec load/store.
2315 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2317 /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
2318 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2320 static bool classof(const LSBaseSDNode *) { return true; }
2321 static bool classof(const SDNode *N) {
2322 return N->getOpcode() == ISD::LOAD ||
2323 N->getOpcode() == ISD::STORE;
2327 /// LoadSDNode - This class is used to represent ISD::LOAD nodes.
2329 class LoadSDNode : public LSBaseSDNode {
2330 friend class SelectionDAG;
2331 LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
2332 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2333 MachineMemOperand *MMO)
2334 : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
2335 VTs, AM, MemVT, MMO) {
2336 SubclassData |= (unsigned short)ETy;
2337 assert(getExtensionType() == ETy && "LoadExtType encoding error!");
2338 assert(readMem() && "Load MachineMemOperand is not a load!");
2339 assert(!writeMem() && "Load MachineMemOperand is a store!");
2341 public:
2343 /// getExtensionType - Return whether this is a plain node,
2344 /// or one of the varieties of value-extending loads.
2345 ISD::LoadExtType getExtensionType() const {
2346 return ISD::LoadExtType(SubclassData & 3);
2349 const SDValue &getBasePtr() const { return getOperand(1); }
2350 const SDValue &getOffset() const { return getOperand(2); }
2352 static bool classof(const LoadSDNode *) { return true; }
2353 static bool classof(const SDNode *N) {
2354 return N->getOpcode() == ISD::LOAD;
2358 /// StoreSDNode - This class is used to represent ISD::STORE nodes.
2360 class StoreSDNode : public LSBaseSDNode {
2361 friend class SelectionDAG;
2362 StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
2363 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2364 MachineMemOperand *MMO)
2365 : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
2366 VTs, AM, MemVT, MMO) {
2367 SubclassData |= (unsigned short)isTrunc;
2368 assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
2369 assert(!readMem() && "Store MachineMemOperand is a load!");
2370 assert(writeMem() && "Store MachineMemOperand is not a store!");
2372 public:
2374 /// isTruncatingStore - Return true if the op does a truncation before store.
2375 /// For integers this is the same as doing a TRUNCATE and storing the result.
2376 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2377 bool isTruncatingStore() const { return SubclassData & 1; }
2379 const SDValue &getValue() const { return getOperand(1); }
2380 const SDValue &getBasePtr() const { return getOperand(2); }
2381 const SDValue &getOffset() const { return getOperand(3); }
2383 static bool classof(const StoreSDNode *) { return true; }
2384 static bool classof(const SDNode *N) {
2385 return N->getOpcode() == ISD::STORE;
2389 /// MachineSDNode - An SDNode that represents everything that will be needed
2390 /// to construct a MachineInstr. These nodes are created during the
2391 /// instruction selection proper phase.
2393 class MachineSDNode : public SDNode {
2394 public:
2395 typedef MachineMemOperand **mmo_iterator;
2397 private:
2398 friend class SelectionDAG;
2399 MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
2400 : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
2402 /// LocalOperands - Operands for this instruction, if they fit here. If
2403 /// they don't, this field is unused.
2404 SDUse LocalOperands[4];
2406 /// MemRefs - Memory reference descriptions for this instruction.
2407 mmo_iterator MemRefs;
2408 mmo_iterator MemRefsEnd;
2410 public:
2411 mmo_iterator memoperands_begin() const { return MemRefs; }
2412 mmo_iterator memoperands_end() const { return MemRefsEnd; }
2413 bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2415 /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
2416 /// list. This does not transfer ownership.
2417 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2418 MemRefs = NewMemRefs;
2419 MemRefsEnd = NewMemRefsEnd;
2422 static bool classof(const MachineSDNode *) { return true; }
2423 static bool classof(const SDNode *N) {
2424 return N->isMachineOpcode();
2428 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2429 SDNode, ptrdiff_t> {
2430 SDNode *Node;
2431 unsigned Operand;
2433 SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2434 public:
2435 bool operator==(const SDNodeIterator& x) const {
2436 return Operand == x.Operand;
2438 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2440 const SDNodeIterator &operator=(const SDNodeIterator &I) {
2441 assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
2442 Operand = I.Operand;
2443 return *this;
2446 pointer operator*() const {
2447 return Node->getOperand(Operand).getNode();
2449 pointer operator->() const { return operator*(); }
2451 SDNodeIterator& operator++() { // Preincrement
2452 ++Operand;
2453 return *this;
2455 SDNodeIterator operator++(int) { // Postincrement
2456 SDNodeIterator tmp = *this; ++*this; return tmp;
2458 size_t operator-(SDNodeIterator Other) const {
2459 assert(Node == Other.Node &&
2460 "Cannot compare iterators of two different nodes!");
2461 return Operand - Other.Operand;
2464 static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
2465 static SDNodeIterator end (SDNode *N) {
2466 return SDNodeIterator(N, N->getNumOperands());
2469 unsigned getOperand() const { return Operand; }
2470 const SDNode *getNode() const { return Node; }
2473 template <> struct GraphTraits<SDNode*> {
2474 typedef SDNode NodeType;
2475 typedef SDNodeIterator ChildIteratorType;
2476 static inline NodeType *getEntryNode(SDNode *N) { return N; }
2477 static inline ChildIteratorType child_begin(NodeType *N) {
2478 return SDNodeIterator::begin(N);
2480 static inline ChildIteratorType child_end(NodeType *N) {
2481 return SDNodeIterator::end(N);
2485 /// LargestSDNode - The largest SDNode class.
2487 typedef LoadSDNode LargestSDNode;
2489 /// MostAlignedSDNode - The SDNode class with the greatest alignment
2490 /// requirement.
2492 typedef GlobalAddressSDNode MostAlignedSDNode;
2494 namespace ISD {
2495 /// isNormalLoad - Returns true if the specified node is a non-extending
2496 /// and unindexed load.
2497 inline bool isNormalLoad(const SDNode *N) {
2498 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2499 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2500 Ld->getAddressingMode() == ISD::UNINDEXED;
2503 /// isNON_EXTLoad - Returns true if the specified node is a non-extending
2504 /// load.
2505 inline bool isNON_EXTLoad(const SDNode *N) {
2506 return isa<LoadSDNode>(N) &&
2507 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2510 /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
2512 inline bool isEXTLoad(const SDNode *N) {
2513 return isa<LoadSDNode>(N) &&
2514 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2517 /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
2519 inline bool isSEXTLoad(const SDNode *N) {
2520 return isa<LoadSDNode>(N) &&
2521 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2524 /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
2526 inline bool isZEXTLoad(const SDNode *N) {
2527 return isa<LoadSDNode>(N) &&
2528 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2531 /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
2533 inline bool isUNINDEXEDLoad(const SDNode *N) {
2534 return isa<LoadSDNode>(N) &&
2535 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2538 /// isNormalStore - Returns true if the specified node is a non-truncating
2539 /// and unindexed store.
2540 inline bool isNormalStore(const SDNode *N) {
2541 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2542 return St && !St->isTruncatingStore() &&
2543 St->getAddressingMode() == ISD::UNINDEXED;
2546 /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
2547 /// store.
2548 inline bool isNON_TRUNCStore(const SDNode *N) {
2549 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2552 /// isTRUNCStore - Returns true if the specified node is a truncating
2553 /// store.
2554 inline bool isTRUNCStore(const SDNode *N) {
2555 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2558 /// isUNINDEXEDStore - Returns true if the specified node is an
2559 /// unindexed store.
2560 inline bool isUNINDEXEDStore(const SDNode *N) {
2561 return isa<StoreSDNode>(N) &&
2562 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2567 } // end llvm namespace
2569 #endif