1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
28 #include <linux/usb/phy.h>
29 #include <linux/usb/composite.h>
35 /* conversion functions */
36 static inline struct dwc2_hsotg_req
*our_req(struct usb_request
*req
)
38 return container_of(req
, struct dwc2_hsotg_req
, req
);
41 static inline struct dwc2_hsotg_ep
*our_ep(struct usb_ep
*ep
)
43 return container_of(ep
, struct dwc2_hsotg_ep
, ep
);
46 static inline struct dwc2_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
48 return container_of(gadget
, struct dwc2_hsotg
, gadget
);
51 static inline void dwc2_set_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
53 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) | val
, offset
);
56 static inline void dwc2_clear_bit(struct dwc2_hsotg
*hsotg
, u32 offset
, u32 val
)
58 dwc2_writel(hsotg
, dwc2_readl(hsotg
, offset
) & ~val
, offset
);
61 static inline struct dwc2_hsotg_ep
*index_to_ep(struct dwc2_hsotg
*hsotg
,
62 u32 ep_index
, u32 dir_in
)
65 return hsotg
->eps_in
[ep_index
];
67 return hsotg
->eps_out
[ep_index
];
70 /* forward declaration of functions */
71 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
);
74 * using_dma - return the DMA status of the driver.
75 * @hsotg: The driver state.
77 * Return true if we're using DMA.
79 * Currently, we have the DMA support code worked into everywhere
80 * that needs it, but the AMBA DMA implementation in the hardware can
81 * only DMA from 32bit aligned addresses. This means that gadgets such
82 * as the CDC Ethernet cannot work as they often pass packets which are
85 * Unfortunately the choice to use DMA or not is global to the controller
86 * and seems to be only settable when the controller is being put through
87 * a core reset. This means we either need to fix the gadgets to take
88 * account of DMA alignment, or add bounce buffers (yuerk).
90 * g_using_dma is set depending on dts flag.
92 static inline bool using_dma(struct dwc2_hsotg
*hsotg
)
94 return hsotg
->params
.g_dma
;
98 * using_desc_dma - return the descriptor DMA status of the driver.
99 * @hsotg: The driver state.
101 * Return true if we're using descriptor DMA.
103 static inline bool using_desc_dma(struct dwc2_hsotg
*hsotg
)
105 return hsotg
->params
.g_dma_desc
;
109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
110 * @hs_ep: The endpoint
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep
*hs_ep
)
117 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
118 u16 limit
= DSTS_SOFFN_LIMIT
;
120 if (hsotg
->gadget
.speed
!= USB_SPEED_HIGH
)
123 hs_ep
->target_frame
+= hs_ep
->interval
;
124 if (hs_ep
->target_frame
> limit
) {
125 hs_ep
->frame_overrun
= true;
126 hs_ep
->target_frame
&= limit
;
128 hs_ep
->frame_overrun
= false;
133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
135 * @hs_ep: The endpoint.
137 * This function used in service interval based scheduling flow to calculate
138 * descriptor frame number filed value. For service interval mode frame
139 * number in descriptor should point to last (u)frame in the interval.
142 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep
*hs_ep
)
144 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
145 u16 limit
= DSTS_SOFFN_LIMIT
;
147 if (hsotg
->gadget
.speed
!= USB_SPEED_HIGH
)
150 if (hs_ep
->target_frame
)
151 hs_ep
->target_frame
-= 1;
153 hs_ep
->target_frame
= limit
;
157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
158 * @hsotg: The device state
159 * @ints: A bitmask of the interrupts to enable
161 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
163 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
166 new_gsintmsk
= gsintmsk
| ints
;
168 if (new_gsintmsk
!= gsintmsk
) {
169 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
170 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
176 * @hsotg: The device state
177 * @ints: A bitmask of the interrupts to enable
179 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
181 u32 gsintmsk
= dwc2_readl(hsotg
, GINTMSK
);
184 new_gsintmsk
= gsintmsk
& ~ints
;
186 if (new_gsintmsk
!= gsintmsk
)
187 dwc2_writel(hsotg
, new_gsintmsk
, GINTMSK
);
191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
192 * @hsotg: The device state
193 * @ep: The endpoint index
194 * @dir_in: True if direction is in.
195 * @en: The enable value, true to enable
197 * Set or clear the mask for an individual endpoint's interrupt
200 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg
*hsotg
,
201 unsigned int ep
, unsigned int dir_in
,
211 local_irq_save(flags
);
212 daint
= dwc2_readl(hsotg
, DAINTMSK
);
217 dwc2_writel(hsotg
, daint
, DAINTMSK
);
218 local_irq_restore(flags
);
222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
224 * @hsotg: Programming view of the DWC_otg controller
226 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
228 if (hsotg
->hw_params
.en_multiple_tx_fifo
)
229 /* In dedicated FIFO mode we need count of IN EPs */
230 return hsotg
->hw_params
.num_dev_in_eps
;
232 /* In shared FIFO mode we need count of Periodic IN EPs */
233 return hsotg
->hw_params
.num_dev_perio_in_ep
;
237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
238 * device mode TX FIFOs
240 * @hsotg: Programming view of the DWC_otg controller
242 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
248 np_tx_fifo_size
= min_t(u32
, hsotg
->hw_params
.dev_nperio_tx_fifo_size
,
249 hsotg
->params
.g_np_tx_fifo_size
);
251 /* Get Endpoint Info Control block size in DWORDs. */
252 tx_addr_max
= hsotg
->hw_params
.total_fifo_size
;
254 addr
= hsotg
->params
.g_rx_fifo_size
+ np_tx_fifo_size
;
255 if (tx_addr_max
<= addr
)
258 return tx_addr_max
- addr
;
262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
264 * @hsotg: Programming view of the DWC_otg controller
267 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg
*hsotg
)
272 gintsts2
= dwc2_readl(hsotg
, GINTSTS2
);
273 gintmsk2
= dwc2_readl(hsotg
, GINTMSK2
);
274 gintsts2
&= gintmsk2
;
276 if (gintsts2
& GINTSTS2_WKUP_ALERT_INT
) {
277 dev_dbg(hsotg
->dev
, "%s: Wkup_Alert_Int\n", __func__
);
278 dwc2_set_bit(hsotg
, GINTSTS2
, GINTSTS2_WKUP_ALERT_INT
);
279 dwc2_set_bit(hsotg
, DCTL
, DCTL_RMTWKUPSIG
);
284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
287 * @hsotg: Programming view of the DWC_otg controller
289 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
294 tx_fifo_depth
= dwc2_hsotg_tx_fifo_total_depth(hsotg
);
296 tx_fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
299 return tx_fifo_depth
;
301 return tx_fifo_depth
/ tx_fifo_count
;
305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
306 * @hsotg: The device instance.
308 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg
*hsotg
)
315 u32
*txfsz
= hsotg
->params
.g_tx_fifo_size
;
317 /* Reset fifo map if not correctly cleared during previous session */
318 WARN_ON(hsotg
->fifo_map
);
321 /* set RX/NPTX FIFO sizes */
322 dwc2_writel(hsotg
, hsotg
->params
.g_rx_fifo_size
, GRXFSIZ
);
323 dwc2_writel(hsotg
, (hsotg
->params
.g_rx_fifo_size
<<
324 FIFOSIZE_STARTADDR_SHIFT
) |
325 (hsotg
->params
.g_np_tx_fifo_size
<< FIFOSIZE_DEPTH_SHIFT
),
329 * arange all the rest of the TX FIFOs, as some versions of this
330 * block have overlapping default addresses. This also ensures
331 * that if the settings have been changed, then they are set to
335 /* start at the end of the GNPTXFSIZ, rounded up */
336 addr
= hsotg
->params
.g_rx_fifo_size
+ hsotg
->params
.g_np_tx_fifo_size
;
339 * Configure fifos sizes from provided configuration and assign
340 * them to endpoints dynamically according to maxpacket size value of
343 for (ep
= 1; ep
< MAX_EPS_CHANNELS
; ep
++) {
347 val
|= txfsz
[ep
] << FIFOSIZE_DEPTH_SHIFT
;
348 WARN_ONCE(addr
+ txfsz
[ep
] > hsotg
->fifo_mem
,
349 "insufficient fifo memory");
352 dwc2_writel(hsotg
, val
, DPTXFSIZN(ep
));
353 val
= dwc2_readl(hsotg
, DPTXFSIZN(ep
));
356 dwc2_writel(hsotg
, hsotg
->hw_params
.total_fifo_size
|
357 addr
<< GDFIFOCFG_EPINFOBASE_SHIFT
,
360 * according to p428 of the design guide, we need to ensure that
361 * all fifos are flushed before continuing
364 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH
|
365 GRSTCTL_RXFFLSH
, GRSTCTL
);
367 /* wait until the fifos are both flushed */
370 val
= dwc2_readl(hsotg
, GRSTCTL
);
372 if ((val
& (GRSTCTL_TXFFLSH
| GRSTCTL_RXFFLSH
)) == 0)
375 if (--timeout
== 0) {
377 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
385 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
390 * @ep: USB endpoint to allocate request for.
391 * @flags: Allocation flags
393 * Allocate a new USB request structure appropriate for the specified endpoint
395 static struct usb_request
*dwc2_hsotg_ep_alloc_request(struct usb_ep
*ep
,
398 struct dwc2_hsotg_req
*req
;
400 req
= kzalloc(sizeof(*req
), flags
);
404 INIT_LIST_HEAD(&req
->queue
);
410 * is_ep_periodic - return true if the endpoint is in periodic mode.
411 * @hs_ep: The endpoint to query.
413 * Returns true if the endpoint is in periodic mode, meaning it is being
414 * used for an Interrupt or ISO transfer.
416 static inline int is_ep_periodic(struct dwc2_hsotg_ep
*hs_ep
)
418 return hs_ep
->periodic
;
422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
423 * @hsotg: The device state.
424 * @hs_ep: The endpoint for the request
425 * @hs_req: The request being processed.
427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
428 * of a request to ensure the buffer is ready for access by the caller.
430 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg
*hsotg
,
431 struct dwc2_hsotg_ep
*hs_ep
,
432 struct dwc2_hsotg_req
*hs_req
)
434 struct usb_request
*req
= &hs_req
->req
;
436 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->map_dir
);
440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
441 * for Control endpoint
442 * @hsotg: The device state.
444 * This function will allocate 4 descriptor chains for EP 0: 2 for
445 * Setup stage, per one for IN and OUT data/status transactions.
447 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg
*hsotg
)
449 hsotg
->setup_desc
[0] =
450 dmam_alloc_coherent(hsotg
->dev
,
451 sizeof(struct dwc2_dma_desc
),
452 &hsotg
->setup_desc_dma
[0],
454 if (!hsotg
->setup_desc
[0])
457 hsotg
->setup_desc
[1] =
458 dmam_alloc_coherent(hsotg
->dev
,
459 sizeof(struct dwc2_dma_desc
),
460 &hsotg
->setup_desc_dma
[1],
462 if (!hsotg
->setup_desc
[1])
465 hsotg
->ctrl_in_desc
=
466 dmam_alloc_coherent(hsotg
->dev
,
467 sizeof(struct dwc2_dma_desc
),
468 &hsotg
->ctrl_in_desc_dma
,
470 if (!hsotg
->ctrl_in_desc
)
473 hsotg
->ctrl_out_desc
=
474 dmam_alloc_coherent(hsotg
->dev
,
475 sizeof(struct dwc2_dma_desc
),
476 &hsotg
->ctrl_out_desc_dma
,
478 if (!hsotg
->ctrl_out_desc
)
488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
489 * @hsotg: The controller state.
490 * @hs_ep: The endpoint we're going to write for.
491 * @hs_req: The request to write data for.
493 * This is called when the TxFIFO has some space in it to hold a new
494 * transmission and we have something to give it. The actual setup of
495 * the data size is done elsewhere, so all we have to do is to actually
498 * The return value is zero if there is more space (or nothing was done)
499 * otherwise -ENOSPC is returned if the FIFO space was used up.
501 * This routine is only needed for PIO
503 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg
*hsotg
,
504 struct dwc2_hsotg_ep
*hs_ep
,
505 struct dwc2_hsotg_req
*hs_req
)
507 bool periodic
= is_ep_periodic(hs_ep
);
508 u32 gnptxsts
= dwc2_readl(hsotg
, GNPTXSTS
);
509 int buf_pos
= hs_req
->req
.actual
;
510 int to_write
= hs_ep
->size_loaded
;
516 to_write
-= (buf_pos
- hs_ep
->last_load
);
518 /* if there's nothing to write, get out early */
522 if (periodic
&& !hsotg
->dedicated_fifos
) {
523 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
528 * work out how much data was loaded so we can calculate
529 * how much data is left in the fifo.
532 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
535 * if shared fifo, we cannot write anything until the
536 * previous data has been completely sent.
538 if (hs_ep
->fifo_load
!= 0) {
539 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
543 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
545 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
547 /* how much of the data has moved */
548 size_done
= hs_ep
->size_loaded
- size_left
;
550 /* how much data is left in the fifo */
551 can_write
= hs_ep
->fifo_load
- size_done
;
552 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
553 __func__
, can_write
);
555 can_write
= hs_ep
->fifo_size
- can_write
;
556 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
557 __func__
, can_write
);
559 if (can_write
<= 0) {
560 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
563 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
564 can_write
= dwc2_readl(hsotg
,
565 DTXFSTS(hs_ep
->fifo_index
));
570 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts
) == 0) {
572 "%s: no queue slots available (0x%08x)\n",
575 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_NPTXFEMP
);
579 can_write
= GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts
);
580 can_write
*= 4; /* fifo size is in 32bit quantities. */
583 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
585 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
586 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
589 * limit to 512 bytes of data, it seems at least on the non-periodic
590 * FIFO, requests of >512 cause the endpoint to get stuck with a
591 * fragment of the end of the transfer in it.
593 if (can_write
> 512 && !periodic
)
597 * limit the write to one max-packet size worth of data, but allow
598 * the transfer to return that it did not run out of fifo space
601 if (to_write
> max_transfer
) {
602 to_write
= max_transfer
;
604 /* it's needed only when we do not use dedicated fifos */
605 if (!hsotg
->dedicated_fifos
)
606 dwc2_hsotg_en_gsint(hsotg
,
607 periodic
? GINTSTS_PTXFEMP
:
611 /* see if we can write data */
613 if (to_write
> can_write
) {
614 to_write
= can_write
;
615 pkt_round
= to_write
% max_transfer
;
618 * Round the write down to an
619 * exact number of packets.
621 * Note, we do not currently check to see if we can ever
622 * write a full packet or not to the FIFO.
626 to_write
-= pkt_round
;
629 * enable correct FIFO interrupt to alert us when there
633 /* it's needed only when we do not use dedicated fifos */
634 if (!hsotg
->dedicated_fifos
)
635 dwc2_hsotg_en_gsint(hsotg
,
636 periodic
? GINTSTS_PTXFEMP
:
640 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
641 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
646 hs_req
->req
.actual
= buf_pos
+ to_write
;
647 hs_ep
->total_data
+= to_write
;
650 hs_ep
->fifo_load
+= to_write
;
652 to_write
= DIV_ROUND_UP(to_write
, 4);
653 data
= hs_req
->req
.buf
+ buf_pos
;
655 dwc2_writel_rep(hsotg
, EPFIFO(hs_ep
->index
), data
, to_write
);
657 return (to_write
>= can_write
) ? -ENOSPC
: 0;
661 * get_ep_limit - get the maximum data legnth for this endpoint
662 * @hs_ep: The endpoint
664 * Return the maximum data that can be queued in one go on a given endpoint
665 * so that transfers that are too long can be split.
667 static unsigned int get_ep_limit(struct dwc2_hsotg_ep
*hs_ep
)
669 int index
= hs_ep
->index
;
670 unsigned int maxsize
;
674 maxsize
= DXEPTSIZ_XFERSIZE_LIMIT
+ 1;
675 maxpkt
= DXEPTSIZ_PKTCNT_LIMIT
+ 1;
679 maxpkt
= DIEPTSIZ0_PKTCNT_LIMIT
+ 1;
684 /* we made the constant loading easier above by using +1 */
689 * constrain by packet count if maxpkts*pktsize is greater
690 * than the length register size.
693 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
694 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
700 * dwc2_hsotg_read_frameno - read current frame number
701 * @hsotg: The device instance
703 * Return the current frame number
705 static u32
dwc2_hsotg_read_frameno(struct dwc2_hsotg
*hsotg
)
709 dsts
= dwc2_readl(hsotg
, DSTS
);
710 dsts
&= DSTS_SOFFN_MASK
;
711 dsts
>>= DSTS_SOFFN_SHIFT
;
717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
718 * DMA descriptor chain prepared for specific endpoint
719 * @hs_ep: The endpoint
721 * Return the maximum data that can be queued in one go on a given endpoint
722 * depending on its descriptor chain capacity so that transfers that
723 * are too long can be split.
725 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep
*hs_ep
)
727 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
728 int is_isoc
= hs_ep
->isochronous
;
729 unsigned int maxsize
;
730 u32 mps
= hs_ep
->ep
.maxpacket
;
731 int dir_in
= hs_ep
->dir_in
;
734 maxsize
= (hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_LIMIT
:
735 DEV_DMA_ISOC_RX_NBYTES_LIMIT
) *
736 MAX_DMA_DESC_NUM_HS_ISOC
;
738 maxsize
= DEV_DMA_NBYTES_LIMIT
* MAX_DMA_DESC_NUM_GENERIC
;
740 /* Interrupt OUT EP with mps not multiple of 4 */
742 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4))
743 maxsize
= mps
* MAX_DMA_DESC_NUM_GENERIC
;
749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
750 * @hs_ep: The endpoint
751 * @mask: RX/TX bytes mask to be defined
753 * Returns maximum data payload for one descriptor after analyzing endpoint
755 * DMA descriptor transfer bytes limit depends on EP type:
757 * Isochronous - descriptor rx/tx bytes bitfield limit,
758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
759 * have concatenations from various descriptors within one packet.
760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
761 * to a single descriptor.
763 * Selects corresponding mask for RX/TX bytes as well.
765 static u32
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep
*hs_ep
, u32
*mask
)
767 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
768 u32 mps
= hs_ep
->ep
.maxpacket
;
769 int dir_in
= hs_ep
->dir_in
;
772 if (!hs_ep
->index
&& !dir_in
) {
774 *mask
= DEV_DMA_NBYTES_MASK
;
775 } else if (hs_ep
->isochronous
) {
777 desc_size
= DEV_DMA_ISOC_TX_NBYTES_LIMIT
;
778 *mask
= DEV_DMA_ISOC_TX_NBYTES_MASK
;
780 desc_size
= DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
781 *mask
= DEV_DMA_ISOC_RX_NBYTES_MASK
;
784 desc_size
= DEV_DMA_NBYTES_LIMIT
;
785 *mask
= DEV_DMA_NBYTES_MASK
;
787 /* Round down desc_size to be mps multiple */
788 desc_size
-= desc_size
% mps
;
791 /* Interrupt OUT EP with mps not multiple of 4 */
793 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4)) {
795 *mask
= DEV_DMA_NBYTES_MASK
;
801 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep
*hs_ep
,
802 struct dwc2_dma_desc
**desc
,
807 int dir_in
= hs_ep
->dir_in
;
808 u32 mps
= hs_ep
->ep
.maxpacket
;
814 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
816 hs_ep
->desc_count
= (len
/ maxsize
) +
817 ((len
% maxsize
) ? 1 : 0);
819 hs_ep
->desc_count
= 1;
821 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
823 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HBUSY
824 << DEV_DMA_BUFF_STS_SHIFT
);
827 if (!hs_ep
->index
&& !dir_in
)
828 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
831 maxsize
<< DEV_DMA_NBYTES_SHIFT
& mask
;
832 (*desc
)->buf
= dma_buff
+ offset
;
838 (*desc
)->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
841 (*desc
)->status
|= (len
% mps
) ? DEV_DMA_SHORT
:
842 ((hs_ep
->send_zlp
&& true_last
) ?
846 len
<< DEV_DMA_NBYTES_SHIFT
& mask
;
847 (*desc
)->buf
= dma_buff
+ offset
;
850 (*desc
)->status
&= ~DEV_DMA_BUFF_STS_MASK
;
851 (*desc
)->status
|= (DEV_DMA_BUFF_STS_HREADY
852 << DEV_DMA_BUFF_STS_SHIFT
);
858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
859 * @hs_ep: The endpoint
860 * @ureq: Request to transfer
861 * @offset: offset in bytes
862 * @len: Length of the transfer
864 * This function will iterate over descriptor chain and fill its entries
865 * with corresponding information based on transfer data.
867 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep
*hs_ep
,
871 struct usb_request
*ureq
= NULL
;
872 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
873 struct scatterlist
*sg
;
878 ureq
= &hs_ep
->req
->req
;
880 /* non-DMA sg buffer */
881 if (!ureq
|| !ureq
->num_sgs
) {
882 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
883 dma_buff
, len
, true);
888 for_each_sg(ureq
->sg
, sg
, ureq
->num_mapped_sgs
, i
) {
889 dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep
, &desc
,
890 sg_dma_address(sg
) + sg
->offset
, sg_dma_len(sg
),
891 (i
== (ureq
->num_mapped_sgs
- 1)));
892 desc_count
+= hs_ep
->desc_count
;
895 hs_ep
->desc_count
= desc_count
;
899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
900 * @hs_ep: The isochronous endpoint.
901 * @dma_buff: usb requests dma buffer.
902 * @len: usb request transfer length.
904 * Fills next free descriptor with the data of the arrived usb request,
905 * frame info, sets Last and IOC bits increments next_desc. If filled
906 * descriptor is not the first one, removes L bit from the previous descriptor
909 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep
*hs_ep
,
910 dma_addr_t dma_buff
, unsigned int len
)
912 struct dwc2_dma_desc
*desc
;
913 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
918 dwc2_gadget_get_desc_params(hs_ep
, &mask
);
920 index
= hs_ep
->next_desc
;
921 desc
= &hs_ep
->desc_list
[index
];
923 /* Check if descriptor chain full */
924 if ((desc
->status
>> DEV_DMA_BUFF_STS_SHIFT
) ==
925 DEV_DMA_BUFF_STS_HREADY
) {
926 dev_dbg(hsotg
->dev
, "%s: desc chain full\n", __func__
);
930 /* Clear L bit of previous desc if more than one entries in the chain */
931 if (hs_ep
->next_desc
)
932 hs_ep
->desc_list
[index
- 1].status
&= ~DEV_DMA_L
;
934 dev_dbg(hsotg
->dev
, "%s: Filling ep %d, dir %s isoc desc # %d\n",
935 __func__
, hs_ep
->index
, hs_ep
->dir_in
? "in" : "out", index
);
938 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
<< DEV_DMA_BUFF_STS_SHIFT
);
940 desc
->buf
= dma_buff
;
941 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
|
942 ((len
<< DEV_DMA_NBYTES_SHIFT
) & mask
));
946 pid
= DIV_ROUND_UP(len
, hs_ep
->ep
.maxpacket
);
949 desc
->status
|= ((pid
<< DEV_DMA_ISOC_PID_SHIFT
) &
950 DEV_DMA_ISOC_PID_MASK
) |
951 ((len
% hs_ep
->ep
.maxpacket
) ?
953 ((hs_ep
->target_frame
<<
954 DEV_DMA_ISOC_FRNUM_SHIFT
) &
955 DEV_DMA_ISOC_FRNUM_MASK
);
958 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
959 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
<< DEV_DMA_BUFF_STS_SHIFT
);
961 /* Increment frame number by interval for IN */
963 dwc2_gadget_incr_frame_num(hs_ep
);
965 /* Update index of last configured entry in the chain */
967 if (hs_ep
->next_desc
>= MAX_DMA_DESC_NUM_HS_ISOC
)
968 hs_ep
->next_desc
= 0;
974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
975 * @hs_ep: The isochronous endpoint.
977 * Prepare descriptor chain for isochronous endpoints. Afterwards
978 * write DMA address to HW and enable the endpoint.
980 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
982 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
983 struct dwc2_hsotg_req
*hs_req
, *treq
;
984 int index
= hs_ep
->index
;
990 struct dwc2_dma_desc
*desc
;
992 if (list_empty(&hs_ep
->queue
)) {
993 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
994 dev_dbg(hsotg
->dev
, "%s: No requests in queue\n", __func__
);
998 /* Initialize descriptor chain by Host Busy status */
999 for (i
= 0; i
< MAX_DMA_DESC_NUM_HS_ISOC
; i
++) {
1000 desc
= &hs_ep
->desc_list
[i
];
1002 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
1003 << DEV_DMA_BUFF_STS_SHIFT
);
1006 hs_ep
->next_desc
= 0;
1007 list_for_each_entry_safe(hs_req
, treq
, &hs_ep
->queue
, queue
) {
1008 dma_addr_t dma_addr
= hs_req
->req
.dma
;
1010 if (hs_req
->req
.num_sgs
) {
1011 WARN_ON(hs_req
->req
.num_sgs
> 1);
1012 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
1014 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
1015 hs_req
->req
.length
);
1020 hs_ep
->compl_desc
= 0;
1021 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1022 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1024 /* write descriptor chain address to control register */
1025 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
1027 ctrl
= dwc2_readl(hsotg
, depctl
);
1028 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
1029 dwc2_writel(hsotg
, ctrl
, depctl
);
1032 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
);
1033 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
1034 struct dwc2_hsotg_ep
*hs_ep
,
1035 struct dwc2_hsotg_req
*hs_req
,
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1048 static void dwc2_hsotg_start_req(struct dwc2_hsotg
*hsotg
,
1049 struct dwc2_hsotg_ep
*hs_ep
,
1050 struct dwc2_hsotg_req
*hs_req
,
1053 struct usb_request
*ureq
= &hs_req
->req
;
1054 int index
= hs_ep
->index
;
1055 int dir_in
= hs_ep
->dir_in
;
1060 unsigned int length
;
1061 unsigned int packets
;
1062 unsigned int maxreq
;
1063 unsigned int dma_reg
;
1066 if (hs_ep
->req
&& !continuing
) {
1067 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
1070 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
1072 "%s: continue different req\n", __func__
);
1078 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
1079 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1080 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1082 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083 __func__
, dwc2_readl(hsotg
, epctrl_reg
), index
,
1084 hs_ep
->dir_in
? "in" : "out");
1086 /* If endpoint is stalled, we will restart request later */
1087 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
1089 if (index
&& ctrl
& DXEPCTL_STALL
) {
1090 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
1094 length
= ureq
->length
- ureq
->actual
;
1095 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
1096 ureq
->length
, ureq
->actual
);
1098 if (!using_desc_dma(hsotg
))
1099 maxreq
= get_ep_limit(hs_ep
);
1101 maxreq
= dwc2_gadget_get_chain_limit(hs_ep
);
1103 if (length
> maxreq
) {
1104 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
1106 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
1107 __func__
, length
, maxreq
, round
);
1109 /* round down to multiple of packets */
1117 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
1119 packets
= 1; /* send one packet if length is zero. */
1121 if (dir_in
&& index
!= 0)
1122 if (hs_ep
->isochronous
)
1123 epsize
= DXEPTSIZ_MC(packets
);
1125 epsize
= DXEPTSIZ_MC(1);
1130 * zero length packet should be programmed on its own and should not
1131 * be counted in DIEPTSIZ.PktCnt with other packets.
1133 if (dir_in
&& ureq
->zero
&& !continuing
) {
1134 /* Test if zlp is actually required. */
1135 if ((ureq
->length
>= hs_ep
->ep
.maxpacket
) &&
1136 !(ureq
->length
% hs_ep
->ep
.maxpacket
))
1137 hs_ep
->send_zlp
= 1;
1140 epsize
|= DXEPTSIZ_PKTCNT(packets
);
1141 epsize
|= DXEPTSIZ_XFERSIZE(length
);
1143 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
1146 /* store the request as the current one we're doing */
1147 hs_ep
->req
= hs_req
;
1149 if (using_desc_dma(hsotg
)) {
1151 u32 mps
= hs_ep
->ep
.maxpacket
;
1153 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1157 else if (length
% mps
)
1158 length
+= (mps
- (length
% mps
));
1162 offset
= ureq
->actual
;
1164 /* Fill DDMA chain entries */
1165 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, ureq
->dma
+ offset
,
1168 /* write descriptor chain address to control register */
1169 dwc2_writel(hsotg
, hs_ep
->desc_list_dma
, dma_reg
);
1171 dev_dbg(hsotg
->dev
, "%s: %08x pad => 0x%08x\n",
1172 __func__
, (u32
)hs_ep
->desc_list_dma
, dma_reg
);
1174 /* write size / packets */
1175 dwc2_writel(hsotg
, epsize
, epsize_reg
);
1177 if (using_dma(hsotg
) && !continuing
&& (length
!= 0)) {
1179 * write DMA address to control register, buffer
1180 * already synced by dwc2_hsotg_ep_queue().
1183 dwc2_writel(hsotg
, ureq
->dma
, dma_reg
);
1185 dev_dbg(hsotg
->dev
, "%s: %pad => 0x%08x\n",
1186 __func__
, &ureq
->dma
, dma_reg
);
1190 if (hs_ep
->isochronous
) {
1191 if (!dwc2_gadget_target_frame_elapsed(hs_ep
)) {
1192 if (hs_ep
->interval
== 1) {
1193 if (hs_ep
->target_frame
& 0x1)
1194 ctrl
|= DXEPCTL_SETODDFR
;
1196 ctrl
|= DXEPCTL_SETEVENFR
;
1198 ctrl
|= DXEPCTL_CNAK
;
1200 hs_req
->req
.frame_number
= hs_ep
->target_frame
;
1201 hs_req
->req
.actual
= 0;
1202 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, -ENODATA
);
1207 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1209 dev_dbg(hsotg
->dev
, "ep0 state:%d\n", hsotg
->ep0_state
);
1211 /* For Setup request do not clear NAK */
1212 if (!(index
== 0 && hsotg
->ep0_state
== DWC2_EP0_SETUP
))
1213 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1215 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
1216 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
1219 * set these, it seems that DMA support increments past the end
1220 * of the packet buffer so we need to calculate the length from
1223 hs_ep
->size_loaded
= length
;
1224 hs_ep
->last_load
= ureq
->actual
;
1226 if (dir_in
&& !using_dma(hsotg
)) {
1227 /* set these anyway, we may need them for non-periodic in */
1228 hs_ep
->fifo_load
= 0;
1230 dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1234 * Note, trying to clear the NAK here causes problems with transmit
1235 * on the S3C6400 ending up with the TXFIFO becoming full.
1238 /* check ep is enabled */
1239 if (!(dwc2_readl(hsotg
, epctrl_reg
) & DXEPCTL_EPENA
))
1241 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242 index
, dwc2_readl(hsotg
, epctrl_reg
));
1244 dev_dbg(hsotg
->dev
, "%s: DXEPCTL=0x%08x\n",
1245 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
1247 /* enable ep interrupts */
1248 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1263 static int dwc2_hsotg_map_dma(struct dwc2_hsotg
*hsotg
,
1264 struct dwc2_hsotg_ep
*hs_ep
,
1265 struct usb_request
*req
)
1269 hs_ep
->map_dir
= hs_ep
->dir_in
;
1270 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
1277 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
1278 __func__
, req
->buf
, req
->length
);
1283 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg
*hsotg
,
1284 struct dwc2_hsotg_ep
*hs_ep
,
1285 struct dwc2_hsotg_req
*hs_req
)
1287 void *req_buf
= hs_req
->req
.buf
;
1289 /* If dma is not being used or buffer is aligned */
1290 if (!using_dma(hsotg
) || !((long)req_buf
& 3))
1293 WARN_ON(hs_req
->saved_req_buf
);
1295 dev_dbg(hsotg
->dev
, "%s: %s: buf=%p length=%d\n", __func__
,
1296 hs_ep
->ep
.name
, req_buf
, hs_req
->req
.length
);
1298 hs_req
->req
.buf
= kmalloc(hs_req
->req
.length
, GFP_ATOMIC
);
1299 if (!hs_req
->req
.buf
) {
1300 hs_req
->req
.buf
= req_buf
;
1302 "%s: unable to allocate memory for bounce buffer\n",
1307 /* Save actual buffer */
1308 hs_req
->saved_req_buf
= req_buf
;
1311 memcpy(hs_req
->req
.buf
, req_buf
, hs_req
->req
.length
);
1316 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg
*hsotg
,
1317 struct dwc2_hsotg_ep
*hs_ep
,
1318 struct dwc2_hsotg_req
*hs_req
)
1320 /* If dma is not being used or buffer was aligned */
1321 if (!using_dma(hsotg
) || !hs_req
->saved_req_buf
)
1324 dev_dbg(hsotg
->dev
, "%s: %s: status=%d actual-length=%d\n", __func__
,
1325 hs_ep
->ep
.name
, hs_req
->req
.status
, hs_req
->req
.actual
);
1327 /* Copy data from bounce buffer on successful out transfer */
1328 if (!hs_ep
->dir_in
&& !hs_req
->req
.status
)
1329 memcpy(hs_req
->saved_req_buf
, hs_req
->req
.buf
,
1330 hs_req
->req
.actual
);
1332 /* Free bounce buffer */
1333 kfree(hs_req
->req
.buf
);
1335 hs_req
->req
.buf
= hs_req
->saved_req_buf
;
1336 hs_req
->saved_req_buf
= NULL
;
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1346 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
)
1348 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1349 u32 target_frame
= hs_ep
->target_frame
;
1350 u32 current_frame
= hsotg
->frame_number
;
1351 bool frame_overrun
= hs_ep
->frame_overrun
;
1352 u16 limit
= DSTS_SOFFN_LIMIT
;
1354 if (hsotg
->gadget
.speed
!= USB_SPEED_HIGH
)
1357 if (!frame_overrun
&& current_frame
>= target_frame
)
1360 if (frame_overrun
&& current_frame
>= target_frame
&&
1361 ((current_frame
- target_frame
) < limit
/ 2))
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1372 * Called to update EP0 structure's pointers depend on stage of
1375 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg
*hsotg
,
1376 struct dwc2_hsotg_ep
*hs_ep
)
1378 switch (hsotg
->ep0_state
) {
1379 case DWC2_EP0_SETUP
:
1380 case DWC2_EP0_STATUS_OUT
:
1381 hs_ep
->desc_list
= hsotg
->setup_desc
[0];
1382 hs_ep
->desc_list_dma
= hsotg
->setup_desc_dma
[0];
1384 case DWC2_EP0_DATA_IN
:
1385 case DWC2_EP0_STATUS_IN
:
1386 hs_ep
->desc_list
= hsotg
->ctrl_in_desc
;
1387 hs_ep
->desc_list_dma
= hsotg
->ctrl_in_desc_dma
;
1389 case DWC2_EP0_DATA_OUT
:
1390 hs_ep
->desc_list
= hsotg
->ctrl_out_desc
;
1391 hs_ep
->desc_list_dma
= hsotg
->ctrl_out_desc_dma
;
1394 dev_err(hsotg
->dev
, "invalid EP 0 state in queue %d\n",
1402 static int dwc2_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
1405 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1406 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1407 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1414 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
1416 req
->zero
, req
->short_not_ok
);
1418 if (hs
->lx_state
== DWC2_L1
) {
1419 dwc2_wakeup_from_lpm_l1(hs
, true);
1422 /* Prevent new request submission when controller is suspended */
1423 if (hs
->lx_state
!= DWC2_L0
) {
1424 dev_dbg(hs
->dev
, "%s: submit request only in active state\n",
1429 /* initialise status of the request */
1430 INIT_LIST_HEAD(&hs_req
->queue
);
1432 req
->status
= -EINPROGRESS
;
1434 /* Don't queue ISOC request if length greater than mps*mc */
1435 if (hs_ep
->isochronous
&&
1436 req
->length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
1437 dev_err(hs
->dev
, "req length > maxpacket*mc\n");
1441 /* In DDMA mode for ISOC's don't queue request if length greater
1442 * than descriptor limits.
1444 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1445 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
1446 if (hs_ep
->dir_in
&& req
->length
> maxsize
) {
1447 dev_err(hs
->dev
, "wrong length %d (maxsize=%d)\n",
1448 req
->length
, maxsize
);
1452 if (!hs_ep
->dir_in
&& req
->length
> hs_ep
->ep
.maxpacket
) {
1453 dev_err(hs
->dev
, "ISOC OUT: wrong length %d (mps=%d)\n",
1454 req
->length
, hs_ep
->ep
.maxpacket
);
1459 ret
= dwc2_hsotg_handle_unaligned_buf_start(hs
, hs_ep
, hs_req
);
1463 /* if we're using DMA, sync the buffers as necessary */
1464 if (using_dma(hs
)) {
1465 ret
= dwc2_hsotg_map_dma(hs
, hs_ep
, req
);
1469 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1470 if (using_desc_dma(hs
) && !hs_ep
->index
) {
1471 ret
= dwc2_gadget_set_ep0_desc_chain(hs
, hs_ep
);
1476 first
= list_empty(&hs_ep
->queue
);
1477 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
1480 * Handle DDMA isochronous transfers separately - just add new entry
1481 * to the descriptor chain.
1482 * Transfer will be started once SW gets either one of NAK or
1483 * OutTknEpDis interrupts.
1485 if (using_desc_dma(hs
) && hs_ep
->isochronous
) {
1486 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
) {
1487 dma_addr_t dma_addr
= hs_req
->req
.dma
;
1489 if (hs_req
->req
.num_sgs
) {
1490 WARN_ON(hs_req
->req
.num_sgs
> 1);
1491 dma_addr
= sg_dma_address(hs_req
->req
.sg
);
1493 dwc2_gadget_fill_isoc_desc(hs_ep
, dma_addr
,
1494 hs_req
->req
.length
);
1499 /* Change EP direction if status phase request is after data out */
1500 if (!hs_ep
->index
&& !req
->length
&& !hs_ep
->dir_in
&&
1501 hs
->ep0_state
== DWC2_EP0_DATA_OUT
)
1505 if (!hs_ep
->isochronous
) {
1506 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1510 /* Update current frame number value. */
1511 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1512 while (dwc2_gadget_target_frame_elapsed(hs_ep
)) {
1513 dwc2_gadget_incr_frame_num(hs_ep
);
1514 /* Update current frame number value once more as it
1517 hs
->frame_number
= dwc2_hsotg_read_frameno(hs
);
1520 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
)
1521 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1526 static int dwc2_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
1529 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1530 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1531 unsigned long flags
;
1534 spin_lock_irqsave(&hs
->lock
, flags
);
1535 ret
= dwc2_hsotg_ep_queue(ep
, req
, gfp_flags
);
1536 spin_unlock_irqrestore(&hs
->lock
, flags
);
1541 static void dwc2_hsotg_ep_free_request(struct usb_ep
*ep
,
1542 struct usb_request
*req
)
1544 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1550 * dwc2_hsotg_complete_oursetup - setup completion callback
1551 * @ep: The endpoint the request was on.
1552 * @req: The request completed.
1554 * Called on completion of any requests the driver itself
1555 * submitted that need cleaning up.
1557 static void dwc2_hsotg_complete_oursetup(struct usb_ep
*ep
,
1558 struct usb_request
*req
)
1560 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1561 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1563 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
1565 dwc2_hsotg_ep_free_request(ep
, req
);
1569 * ep_from_windex - convert control wIndex value to endpoint
1570 * @hsotg: The driver state.
1571 * @windex: The control request wIndex field (in host order).
1573 * Convert the given wIndex into a pointer to an driver endpoint
1574 * structure, or return NULL if it is not a valid endpoint.
1576 static struct dwc2_hsotg_ep
*ep_from_windex(struct dwc2_hsotg
*hsotg
,
1579 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
1580 int idx
= windex
& 0x7F;
1582 if (windex
>= 0x100)
1585 if (idx
> hsotg
->num_of_eps
)
1588 return index_to_ep(hsotg
, idx
, dir
);
1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1593 * @hsotg: The driver state.
1594 * @testmode: requested usb test mode
1595 * Enable usb Test Mode requested by the Host.
1597 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
)
1599 int dctl
= dwc2_readl(hsotg
, DCTL
);
1601 dctl
&= ~DCTL_TSTCTL_MASK
;
1605 case USB_TEST_SE0_NAK
:
1606 case USB_TEST_PACKET
:
1607 case USB_TEST_FORCE_ENABLE
:
1608 dctl
|= testmode
<< DCTL_TSTCTL_SHIFT
;
1613 dwc2_writel(hsotg
, dctl
, DCTL
);
1618 * dwc2_hsotg_send_reply - send reply to control request
1619 * @hsotg: The device state
1621 * @buff: Buffer for request
1622 * @length: Length of reply.
1624 * Create a request and queue it on the given endpoint. This is useful as
1625 * an internal method of sending replies to certain control requests, etc.
1627 static int dwc2_hsotg_send_reply(struct dwc2_hsotg
*hsotg
,
1628 struct dwc2_hsotg_ep
*ep
,
1632 struct usb_request
*req
;
1635 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1637 req
= dwc2_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1638 hsotg
->ep0_reply
= req
;
1640 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1644 req
->buf
= hsotg
->ep0_buff
;
1645 req
->length
= length
;
1647 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1651 req
->complete
= dwc2_hsotg_complete_oursetup
;
1654 memcpy(req
->buf
, buff
, length
);
1656 ret
= dwc2_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1658 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1666 * dwc2_hsotg_process_req_status - process request GET_STATUS
1667 * @hsotg: The device state
1668 * @ctrl: USB control request
1670 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg
*hsotg
,
1671 struct usb_ctrlrequest
*ctrl
)
1673 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1674 struct dwc2_hsotg_ep
*ep
;
1679 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1682 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1686 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1687 case USB_RECIP_DEVICE
:
1688 status
= hsotg
->gadget
.is_selfpowered
<<
1689 USB_DEVICE_SELF_POWERED
;
1690 status
|= hsotg
->remote_wakeup_allowed
<<
1691 USB_DEVICE_REMOTE_WAKEUP
;
1692 reply
= cpu_to_le16(status
);
1695 case USB_RECIP_INTERFACE
:
1696 /* currently, the data result should be zero */
1697 reply
= cpu_to_le16(0);
1700 case USB_RECIP_ENDPOINT
:
1701 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1705 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1712 if (le16_to_cpu(ctrl
->wLength
) != 2)
1715 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1717 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1724 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
);
1727 * get_ep_head - return the first request on the endpoint
1728 * @hs_ep: The controller endpoint to get
1730 * Get the first request on the endpoint.
1732 static struct dwc2_hsotg_req
*get_ep_head(struct dwc2_hsotg_ep
*hs_ep
)
1734 return list_first_entry_or_null(&hs_ep
->queue
, struct dwc2_hsotg_req
,
1739 * dwc2_gadget_start_next_request - Starts next request from ep queue
1740 * @hs_ep: Endpoint structure
1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1743 * in its handler. Hence we need to unmask it here to be able to do
1744 * resynchronization.
1746 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep
*hs_ep
)
1748 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1749 int dir_in
= hs_ep
->dir_in
;
1750 struct dwc2_hsotg_req
*hs_req
;
1752 if (!list_empty(&hs_ep
->queue
)) {
1753 hs_req
= get_ep_head(hs_ep
);
1754 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1757 if (!hs_ep
->isochronous
)
1761 dev_dbg(hsotg
->dev
, "%s: No more ISOC-IN requests\n",
1764 dev_dbg(hsotg
->dev
, "%s: No more ISOC-OUT requests\n",
1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1771 * @hsotg: The device state
1772 * @ctrl: USB control request
1774 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg
*hsotg
,
1775 struct usb_ctrlrequest
*ctrl
)
1777 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1778 struct dwc2_hsotg_req
*hs_req
;
1779 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1780 struct dwc2_hsotg_ep
*ep
;
1787 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1788 __func__
, set
? "SET" : "CLEAR");
1790 wValue
= le16_to_cpu(ctrl
->wValue
);
1791 wIndex
= le16_to_cpu(ctrl
->wIndex
);
1792 recip
= ctrl
->bRequestType
& USB_RECIP_MASK
;
1795 case USB_RECIP_DEVICE
:
1797 case USB_DEVICE_REMOTE_WAKEUP
:
1799 hsotg
->remote_wakeup_allowed
= 1;
1801 hsotg
->remote_wakeup_allowed
= 0;
1804 case USB_DEVICE_TEST_MODE
:
1805 if ((wIndex
& 0xff) != 0)
1810 hsotg
->test_mode
= wIndex
>> 8;
1816 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1819 "%s: failed to send reply\n", __func__
);
1824 case USB_RECIP_ENDPOINT
:
1825 ep
= ep_from_windex(hsotg
, wIndex
);
1827 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1833 case USB_ENDPOINT_HALT
:
1834 halted
= ep
->halted
;
1837 dwc2_hsotg_ep_sethalt(&ep
->ep
, set
, true);
1839 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1842 "%s: failed to send reply\n", __func__
);
1847 * we have to complete all requests for ep if it was
1848 * halted, and the halt was cleared by CLEAR_FEATURE
1851 if (!set
&& halted
) {
1853 * If we have request in progress,
1859 list_del_init(&hs_req
->queue
);
1860 if (hs_req
->req
.complete
) {
1861 spin_unlock(&hsotg
->lock
);
1862 usb_gadget_giveback_request(
1863 &ep
->ep
, &hs_req
->req
);
1864 spin_lock(&hsotg
->lock
);
1868 /* If we have pending request, then start it */
1870 dwc2_gadget_start_next_request(ep
);
1885 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
);
1888 * dwc2_hsotg_stall_ep0 - stall ep0
1889 * @hsotg: The device state
1891 * Set stall for ep0 as response for setup request.
1893 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg
*hsotg
)
1895 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1899 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1900 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1903 * DxEPCTL_Stall will be cleared by EP once it has
1904 * taken effect, so no need to clear later.
1907 ctrl
= dwc2_readl(hsotg
, reg
);
1908 ctrl
|= DXEPCTL_STALL
;
1909 ctrl
|= DXEPCTL_CNAK
;
1910 dwc2_writel(hsotg
, ctrl
, reg
);
1913 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1914 ctrl
, reg
, dwc2_readl(hsotg
, reg
));
1917 * complete won't be called, so we enqueue
1918 * setup request here
1920 dwc2_hsotg_enqueue_setup(hsotg
);
1924 * dwc2_hsotg_process_control - process a control request
1925 * @hsotg: The device state
1926 * @ctrl: The control request received
1928 * The controller has received the SETUP phase of a control request, and
1929 * needs to work out what to do next (and whether to pass it on to the
1932 static void dwc2_hsotg_process_control(struct dwc2_hsotg
*hsotg
,
1933 struct usb_ctrlrequest
*ctrl
)
1935 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1940 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1941 ctrl
->bRequestType
, ctrl
->bRequest
, ctrl
->wValue
,
1942 ctrl
->wIndex
, ctrl
->wLength
);
1944 if (ctrl
->wLength
== 0) {
1946 hsotg
->ep0_state
= DWC2_EP0_STATUS_IN
;
1947 } else if (ctrl
->bRequestType
& USB_DIR_IN
) {
1949 hsotg
->ep0_state
= DWC2_EP0_DATA_IN
;
1952 hsotg
->ep0_state
= DWC2_EP0_DATA_OUT
;
1955 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1956 switch (ctrl
->bRequest
) {
1957 case USB_REQ_SET_ADDRESS
:
1958 hsotg
->connected
= 1;
1959 dcfg
= dwc2_readl(hsotg
, DCFG
);
1960 dcfg
&= ~DCFG_DEVADDR_MASK
;
1961 dcfg
|= (le16_to_cpu(ctrl
->wValue
) <<
1962 DCFG_DEVADDR_SHIFT
) & DCFG_DEVADDR_MASK
;
1963 dwc2_writel(hsotg
, dcfg
, DCFG
);
1965 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1967 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1970 case USB_REQ_GET_STATUS
:
1971 ret
= dwc2_hsotg_process_req_status(hsotg
, ctrl
);
1974 case USB_REQ_CLEAR_FEATURE
:
1975 case USB_REQ_SET_FEATURE
:
1976 ret
= dwc2_hsotg_process_req_feature(hsotg
, ctrl
);
1981 /* as a fallback, try delivering it to the driver to deal with */
1983 if (ret
== 0 && hsotg
->driver
) {
1984 spin_unlock(&hsotg
->lock
);
1985 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1986 spin_lock(&hsotg
->lock
);
1988 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1991 hsotg
->delayed_status
= false;
1992 if (ret
== USB_GADGET_DELAYED_STATUS
)
1993 hsotg
->delayed_status
= true;
1996 * the request is either unhandlable, or is not formatted correctly
1997 * so respond with a STALL for the status stage to indicate failure.
2001 dwc2_hsotg_stall_ep0(hsotg
);
2005 * dwc2_hsotg_complete_setup - completion of a setup transfer
2006 * @ep: The endpoint the request was on.
2007 * @req: The request completed.
2009 * Called on completion of any requests the driver itself submitted for
2012 static void dwc2_hsotg_complete_setup(struct usb_ep
*ep
,
2013 struct usb_request
*req
)
2015 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
2016 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2018 if (req
->status
< 0) {
2019 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
2023 spin_lock(&hsotg
->lock
);
2024 if (req
->actual
== 0)
2025 dwc2_hsotg_enqueue_setup(hsotg
);
2027 dwc2_hsotg_process_control(hsotg
, req
->buf
);
2028 spin_unlock(&hsotg
->lock
);
2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2033 * @hsotg: The device state.
2035 * Enqueue a request on EP0 if necessary to received any SETUP packets
2036 * received from the host.
2038 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
)
2040 struct usb_request
*req
= hsotg
->ctrl_req
;
2041 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
2044 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
2048 req
->buf
= hsotg
->ctrl_buff
;
2049 req
->complete
= dwc2_hsotg_complete_setup
;
2051 if (!list_empty(&hs_req
->queue
)) {
2052 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
2056 hsotg
->eps_out
[0]->dir_in
= 0;
2057 hsotg
->eps_out
[0]->send_zlp
= 0;
2058 hsotg
->ep0_state
= DWC2_EP0_SETUP
;
2060 ret
= dwc2_hsotg_ep_queue(&hsotg
->eps_out
[0]->ep
, req
, GFP_ATOMIC
);
2062 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
2064 * Don't think there's much we can do other than watch the
2070 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg
*hsotg
,
2071 struct dwc2_hsotg_ep
*hs_ep
)
2074 u8 index
= hs_ep
->index
;
2075 u32 epctl_reg
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2076 u32 epsiz_reg
= hs_ep
->dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
2079 dev_dbg(hsotg
->dev
, "Sending zero-length packet on ep%d\n",
2082 dev_dbg(hsotg
->dev
, "Receiving zero-length packet on ep%d\n",
2084 if (using_desc_dma(hsotg
)) {
2085 /* Not specific buffer needed for ep0 ZLP */
2086 dma_addr_t dma
= hs_ep
->desc_list_dma
;
2089 dwc2_gadget_set_ep0_desc_chain(hsotg
, hs_ep
);
2091 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, dma
, 0);
2093 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2094 DXEPTSIZ_XFERSIZE(0),
2098 ctrl
= dwc2_readl(hsotg
, epctl_reg
);
2099 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
2100 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
2101 ctrl
|= DXEPCTL_USBACTEP
;
2102 dwc2_writel(hsotg
, ctrl
, epctl_reg
);
2106 * dwc2_hsotg_complete_request - complete a request given to us
2107 * @hsotg: The device state.
2108 * @hs_ep: The endpoint the request was on.
2109 * @hs_req: The request to complete.
2110 * @result: The result code (0 => Ok, otherwise errno)
2112 * The given request has finished, so call the necessary completion
2113 * if it has one and then look to see if we can start a new request
2116 * Note, expects the ep to already be locked as appropriate.
2118 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
2119 struct dwc2_hsotg_ep
*hs_ep
,
2120 struct dwc2_hsotg_req
*hs_req
,
2124 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
2128 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
2129 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
2132 * only replace the status if we've not already set an error
2133 * from a previous transaction
2136 if (hs_req
->req
.status
== -EINPROGRESS
)
2137 hs_req
->req
.status
= result
;
2139 if (using_dma(hsotg
))
2140 dwc2_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
2142 dwc2_hsotg_handle_unaligned_buf_complete(hsotg
, hs_ep
, hs_req
);
2145 list_del_init(&hs_req
->queue
);
2148 * call the complete request with the locks off, just in case the
2149 * request tries to queue more work for this endpoint.
2152 if (hs_req
->req
.complete
) {
2153 spin_unlock(&hsotg
->lock
);
2154 usb_gadget_giveback_request(&hs_ep
->ep
, &hs_req
->req
);
2155 spin_lock(&hsotg
->lock
);
2158 /* In DDMA don't need to proceed to starting of next ISOC request */
2159 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
)
2163 * Look to see if there is anything else to do. Note, the completion
2164 * of the previous request may have caused a new request to be started
2165 * so be careful when doing this.
2168 if (!hs_ep
->req
&& result
>= 0)
2169 dwc2_gadget_start_next_request(hs_ep
);
2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2174 * @hs_ep: The endpoint the request was on.
2176 * Get first request from the ep queue, determine descriptor on which complete
2177 * happened. SW discovers which descriptor currently in use by HW, adjusts
2178 * dma_address and calculates index of completed descriptor based on the value
2179 * of DEPDMA register. Update actual length of request, giveback to gadget.
2181 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2183 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2184 struct dwc2_hsotg_req
*hs_req
;
2185 struct usb_request
*ureq
;
2189 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2191 /* Process only descriptors with buffer status set to DMA done */
2192 while ((desc_sts
& DEV_DMA_BUFF_STS_MASK
) >>
2193 DEV_DMA_BUFF_STS_SHIFT
== DEV_DMA_BUFF_STS_DMADONE
) {
2195 hs_req
= get_ep_head(hs_ep
);
2197 dev_warn(hsotg
->dev
, "%s: ISOC EP queue empty\n", __func__
);
2200 ureq
= &hs_req
->req
;
2202 /* Check completion status */
2203 if ((desc_sts
& DEV_DMA_STS_MASK
) >> DEV_DMA_STS_SHIFT
==
2205 mask
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_MASK
:
2206 DEV_DMA_ISOC_RX_NBYTES_MASK
;
2207 ureq
->actual
= ureq
->length
- ((desc_sts
& mask
) >>
2208 DEV_DMA_ISOC_NBYTES_SHIFT
);
2210 /* Adjust actual len for ISOC Out if len is
2213 if (!hs_ep
->dir_in
&& ureq
->length
& 0x3)
2214 ureq
->actual
+= 4 - (ureq
->length
& 0x3);
2216 /* Set actual frame number for completed transfers */
2217 ureq
->frame_number
=
2218 (desc_sts
& DEV_DMA_ISOC_FRNUM_MASK
) >>
2219 DEV_DMA_ISOC_FRNUM_SHIFT
;
2222 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2224 hs_ep
->compl_desc
++;
2225 if (hs_ep
->compl_desc
> (MAX_DMA_DESC_NUM_HS_ISOC
- 1))
2226 hs_ep
->compl_desc
= 0;
2227 desc_sts
= hs_ep
->desc_list
[hs_ep
->compl_desc
].status
;
2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2233 * @hs_ep: The isochronous endpoint.
2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2236 * interrupt. Reset target frame and next_desc to allow to start
2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2238 * interrupt for OUT direction.
2240 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep
*hs_ep
)
2242 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2245 dwc2_flush_rx_fifo(hsotg
);
2246 dwc2_hsotg_complete_request(hsotg
, hs_ep
, get_ep_head(hs_ep
), 0);
2248 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
2249 hs_ep
->next_desc
= 0;
2250 hs_ep
->compl_desc
= 0;
2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2255 * @hsotg: The device state.
2256 * @ep_idx: The endpoint index for the data
2257 * @size: The size of data in the fifo, in bytes
2259 * The FIFO status shows there is data to read from the FIFO for a given
2260 * endpoint, so sort out whether we need to read the data into a request
2261 * that has been made for that endpoint.
2263 static void dwc2_hsotg_rx_data(struct dwc2_hsotg
*hsotg
, int ep_idx
, int size
)
2265 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[ep_idx
];
2266 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2272 u32 epctl
= dwc2_readl(hsotg
, DOEPCTL(ep_idx
));
2276 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2277 __func__
, size
, ep_idx
, epctl
);
2279 /* dump the data from the FIFO, we've nothing we can do */
2280 for (ptr
= 0; ptr
< size
; ptr
+= 4)
2281 (void)dwc2_readl(hsotg
, EPFIFO(ep_idx
));
2287 read_ptr
= hs_req
->req
.actual
;
2288 max_req
= hs_req
->req
.length
- read_ptr
;
2290 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
2291 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
2293 if (to_read
> max_req
) {
2295 * more data appeared than we where willing
2296 * to deal with in this request.
2299 /* currently we don't deal this */
2303 hs_ep
->total_data
+= to_read
;
2304 hs_req
->req
.actual
+= to_read
;
2305 to_read
= DIV_ROUND_UP(to_read
, 4);
2308 * note, we might over-write the buffer end by 3 bytes depending on
2309 * alignment of the data.
2311 dwc2_readl_rep(hsotg
, EPFIFO(ep_idx
),
2312 hs_req
->req
.buf
+ read_ptr
, to_read
);
2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2317 * @hsotg: The device instance
2318 * @dir_in: If IN zlp
2320 * Generate a zero-length IN packet request for terminating a SETUP
2323 * Note, since we don't write any data to the TxFIFO, then it is
2324 * currently believed that we do not need to wait for any space in
2327 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg
*hsotg
, bool dir_in
)
2329 /* eps_out[0] is used in both directions */
2330 hsotg
->eps_out
[0]->dir_in
= dir_in
;
2331 hsotg
->ep0_state
= dir_in
? DWC2_EP0_STATUS_IN
: DWC2_EP0_STATUS_OUT
;
2333 dwc2_hsotg_program_zlp(hsotg
, hsotg
->eps_out
[0]);
2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2338 * @hs_ep - The endpoint on which transfer went
2340 * Iterate over endpoints descriptor chain and get info on bytes remained
2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2343 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2345 const struct usb_endpoint_descriptor
*ep_desc
= hs_ep
->ep
.desc
;
2346 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2347 unsigned int bytes_rem
= 0;
2348 unsigned int bytes_rem_correction
= 0;
2349 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
2352 u32 mps
= hs_ep
->ep
.maxpacket
;
2353 int dir_in
= hs_ep
->dir_in
;
2358 /* Interrupt OUT EP with mps not multiple of 4 */
2360 if (usb_endpoint_xfer_int(ep_desc
) && !dir_in
&& (mps
% 4))
2361 bytes_rem_correction
= 4 - (mps
% 4);
2363 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
2364 status
= desc
->status
;
2365 bytes_rem
+= status
& DEV_DMA_NBYTES_MASK
;
2366 bytes_rem
-= bytes_rem_correction
;
2368 if (status
& DEV_DMA_STS_MASK
)
2369 dev_err(hsotg
->dev
, "descriptor %d closed with %x\n",
2370 i
, status
& DEV_DMA_STS_MASK
);
2372 if (status
& DEV_DMA_L
)
2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2383 * @hsotg: The device instance
2384 * @epnum: The endpoint received from
2386 * The RXFIFO has delivered an OutDone event, which means that the data
2387 * transfer for an OUT endpoint has been completed, either by a short
2388 * packet or by the finish of a transfer.
2390 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg
*hsotg
, int epnum
)
2392 u32 epsize
= dwc2_readl(hsotg
, DOEPTSIZ(epnum
));
2393 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[epnum
];
2394 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2395 struct usb_request
*req
= &hs_req
->req
;
2396 unsigned int size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2400 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
2404 if (epnum
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_OUT
) {
2405 dev_dbg(hsotg
->dev
, "zlp packet received\n");
2406 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2407 dwc2_hsotg_enqueue_setup(hsotg
);
2411 if (using_desc_dma(hsotg
))
2412 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2414 if (using_dma(hsotg
)) {
2415 unsigned int size_done
;
2418 * Calculate the size of the transfer by checking how much
2419 * is left in the endpoint size register and then working it
2420 * out from the amount we loaded for the transfer.
2422 * We need to do this as DMA pointers are always 32bit aligned
2423 * so may overshoot/undershoot the transfer.
2426 size_done
= hs_ep
->size_loaded
- size_left
;
2427 size_done
+= hs_ep
->last_load
;
2429 req
->actual
= size_done
;
2432 /* if there is more request to do, schedule new transfer */
2433 if (req
->actual
< req
->length
&& size_left
== 0) {
2434 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2438 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
2439 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
2440 __func__
, req
->actual
, req
->length
);
2443 * todo - what should we return here? there's no one else
2444 * even bothering to check the status.
2448 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2449 if (!using_desc_dma(hsotg
) && epnum
== 0 &&
2450 hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2451 /* Move to STATUS IN */
2452 if (!hsotg
->delayed_status
)
2453 dwc2_hsotg_ep0_zlp(hsotg
, true);
2456 /* Set actual frame number for completed transfers */
2457 if (!using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
2458 req
->frame_number
= hs_ep
->target_frame
;
2459 dwc2_gadget_incr_frame_num(hs_ep
);
2462 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
2466 * dwc2_hsotg_handle_rx - RX FIFO has data
2467 * @hsotg: The device instance
2469 * The IRQ handler has detected that the RX FIFO has some data in it
2470 * that requires processing, so find out what is in there and do the
2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2474 * chunks, so if you have x packets received on an endpoint you'll get x
2475 * FIFO events delivered, each with a packet's worth of data in it.
2477 * When using DMA, we should not be processing events from the RXFIFO
2478 * as the actual data should be sent to the memory directly and we turn
2479 * on the completion interrupts to get notifications of transfer completion.
2481 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg
*hsotg
)
2483 u32 grxstsr
= dwc2_readl(hsotg
, GRXSTSP
);
2484 u32 epnum
, status
, size
;
2486 WARN_ON(using_dma(hsotg
));
2488 epnum
= grxstsr
& GRXSTS_EPNUM_MASK
;
2489 status
= grxstsr
& GRXSTS_PKTSTS_MASK
;
2491 size
= grxstsr
& GRXSTS_BYTECNT_MASK
;
2492 size
>>= GRXSTS_BYTECNT_SHIFT
;
2494 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2495 __func__
, grxstsr
, size
, epnum
);
2497 switch ((status
& GRXSTS_PKTSTS_MASK
) >> GRXSTS_PKTSTS_SHIFT
) {
2498 case GRXSTS_PKTSTS_GLOBALOUTNAK
:
2499 dev_dbg(hsotg
->dev
, "GLOBALOUTNAK\n");
2502 case GRXSTS_PKTSTS_OUTDONE
:
2503 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
2504 dwc2_hsotg_read_frameno(hsotg
));
2506 if (!using_dma(hsotg
))
2507 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2510 case GRXSTS_PKTSTS_SETUPDONE
:
2512 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2513 dwc2_hsotg_read_frameno(hsotg
),
2514 dwc2_readl(hsotg
, DOEPCTL(0)));
2516 * Call dwc2_hsotg_handle_outdone here if it was not called from
2517 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2518 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2520 if (hsotg
->ep0_state
== DWC2_EP0_SETUP
)
2521 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2524 case GRXSTS_PKTSTS_OUTRX
:
2525 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2528 case GRXSTS_PKTSTS_SETUPRX
:
2530 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2531 dwc2_hsotg_read_frameno(hsotg
),
2532 dwc2_readl(hsotg
, DOEPCTL(0)));
2534 WARN_ON(hsotg
->ep0_state
!= DWC2_EP0_SETUP
);
2536 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2540 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
2543 dwc2_hsotg_dump(hsotg
);
2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2550 * @mps: The maximum packet size in bytes.
2552 static u32
dwc2_hsotg_ep0_mps(unsigned int mps
)
2556 return D0EPCTL_MPS_64
;
2558 return D0EPCTL_MPS_32
;
2560 return D0EPCTL_MPS_16
;
2562 return D0EPCTL_MPS_8
;
2565 /* bad max packet size, warn and return invalid result */
2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2572 * @hsotg: The driver state.
2573 * @ep: The index number of the endpoint
2574 * @mps: The maximum packet size in bytes
2575 * @mc: The multicount value
2576 * @dir_in: True if direction is in.
2578 * Configure the maximum packet size for the given endpoint, updating
2579 * the hardware control registers to reflect this.
2581 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg
*hsotg
,
2582 unsigned int ep
, unsigned int mps
,
2583 unsigned int mc
, unsigned int dir_in
)
2585 struct dwc2_hsotg_ep
*hs_ep
;
2588 hs_ep
= index_to_ep(hsotg
, ep
, dir_in
);
2593 u32 mps_bytes
= mps
;
2595 /* EP0 is a special case */
2596 mps
= dwc2_hsotg_ep0_mps(mps_bytes
);
2599 hs_ep
->ep
.maxpacket
= mps_bytes
;
2607 hs_ep
->ep
.maxpacket
= mps
;
2611 reg
= dwc2_readl(hsotg
, DIEPCTL(ep
));
2612 reg
&= ~DXEPCTL_MPS_MASK
;
2614 dwc2_writel(hsotg
, reg
, DIEPCTL(ep
));
2616 reg
= dwc2_readl(hsotg
, DOEPCTL(ep
));
2617 reg
&= ~DXEPCTL_MPS_MASK
;
2619 dwc2_writel(hsotg
, reg
, DOEPCTL(ep
));
2625 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2630 * @hsotg: The driver state
2631 * @idx: The index for the endpoint (0..15)
2633 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg
*hsotg
, unsigned int idx
)
2635 dwc2_writel(hsotg
, GRSTCTL_TXFNUM(idx
) | GRSTCTL_TXFFLSH
,
2638 /* wait until the fifo is flushed */
2639 if (dwc2_hsotg_wait_bit_clear(hsotg
, GRSTCTL
, GRSTCTL_TXFFLSH
, 100))
2640 dev_warn(hsotg
->dev
, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2646 * @hsotg: The driver state
2647 * @hs_ep: The driver endpoint to check.
2649 * Check to see if there is a request that has data to send, and if so
2650 * make an attempt to write data into the FIFO.
2652 static int dwc2_hsotg_trytx(struct dwc2_hsotg
*hsotg
,
2653 struct dwc2_hsotg_ep
*hs_ep
)
2655 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2657 if (!hs_ep
->dir_in
|| !hs_req
) {
2659 * if request is not enqueued, we disable interrupts
2660 * for endpoints, excepting ep0
2662 if (hs_ep
->index
!= 0)
2663 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
2668 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
2669 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
2671 return dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
2678 * dwc2_hsotg_complete_in - complete IN transfer
2679 * @hsotg: The device state.
2680 * @hs_ep: The endpoint that has just completed.
2682 * An IN transfer has been completed, update the transfer's state and then
2683 * call the relevant completion routines.
2685 static void dwc2_hsotg_complete_in(struct dwc2_hsotg
*hsotg
,
2686 struct dwc2_hsotg_ep
*hs_ep
)
2688 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2689 u32 epsize
= dwc2_readl(hsotg
, DIEPTSIZ(hs_ep
->index
));
2690 int size_left
, size_done
;
2693 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
2697 /* Finish ZLP handling for IN EP0 transactions */
2698 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_IN
) {
2699 dev_dbg(hsotg
->dev
, "zlp packet sent\n");
2702 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2703 * changed to IN. Change back to complete OUT transfer request
2707 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2708 if (hsotg
->test_mode
) {
2711 ret
= dwc2_hsotg_set_test_mode(hsotg
, hsotg
->test_mode
);
2713 dev_dbg(hsotg
->dev
, "Invalid Test #%d\n",
2715 dwc2_hsotg_stall_ep0(hsotg
);
2719 dwc2_hsotg_enqueue_setup(hsotg
);
2724 * Calculate the size of the transfer by checking how much is left
2725 * in the endpoint size register and then working it out from
2726 * the amount we loaded for the transfer.
2728 * We do this even for DMA, as the transfer may have incremented
2729 * past the end of the buffer (DMA transfers are always 32bit
2732 if (using_desc_dma(hsotg
)) {
2733 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2735 dev_err(hsotg
->dev
, "error parsing DDMA results %d\n",
2738 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2741 size_done
= hs_ep
->size_loaded
- size_left
;
2742 size_done
+= hs_ep
->last_load
;
2744 if (hs_req
->req
.actual
!= size_done
)
2745 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
2746 __func__
, hs_req
->req
.actual
, size_done
);
2748 hs_req
->req
.actual
= size_done
;
2749 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
2750 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
2752 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
2753 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
2754 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2758 /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2759 if (hs_ep
->send_zlp
) {
2760 hs_ep
->send_zlp
= 0;
2761 if (!using_desc_dma(hsotg
)) {
2762 dwc2_hsotg_program_zlp(hsotg
, hs_ep
);
2763 /* transfer will be completed on next complete interrupt */
2768 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_DATA_IN
) {
2769 /* Move to STATUS OUT */
2770 dwc2_hsotg_ep0_zlp(hsotg
, false);
2774 /* Set actual frame number for completed transfers */
2775 if (!using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
2776 hs_req
->req
.frame_number
= hs_ep
->target_frame
;
2777 dwc2_gadget_incr_frame_num(hs_ep
);
2780 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2785 * @hsotg: The device state.
2786 * @idx: Index of ep.
2787 * @dir_in: Endpoint direction 1-in 0-out.
2789 * Reads for endpoint with given index and direction, by masking
2790 * epint_reg with coresponding mask.
2792 static u32
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg
*hsotg
,
2793 unsigned int idx
, int dir_in
)
2795 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
2796 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2801 mask
= dwc2_readl(hsotg
, epmsk_reg
);
2802 diepempmsk
= dwc2_readl(hsotg
, DIEPEMPMSK
);
2803 mask
|= ((diepempmsk
>> idx
) & 0x1) ? DIEPMSK_TXFIFOEMPTY
: 0;
2804 mask
|= DXEPINT_SETUP_RCVD
;
2806 ints
= dwc2_readl(hsotg
, epint_reg
);
2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2815 * This interrupt indicates that the endpoint has been disabled per the
2816 * application's request.
2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2819 * in case of ISOC completes current request.
2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2822 * request starts it.
2824 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep
*hs_ep
)
2826 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2827 struct dwc2_hsotg_req
*hs_req
;
2828 unsigned char idx
= hs_ep
->index
;
2829 int dir_in
= hs_ep
->dir_in
;
2830 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2831 int dctl
= dwc2_readl(hsotg
, DCTL
);
2833 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
2836 int epctl
= dwc2_readl(hsotg
, epctl_reg
);
2838 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
2840 if ((epctl
& DXEPCTL_STALL
) && (epctl
& DXEPCTL_EPTYPE_BULK
)) {
2841 int dctl
= dwc2_readl(hsotg
, DCTL
);
2843 dctl
|= DCTL_CGNPINNAK
;
2844 dwc2_writel(hsotg
, dctl
, DCTL
);
2848 if (dctl
& DCTL_GOUTNAKSTS
) {
2849 dctl
|= DCTL_CGOUTNAK
;
2850 dwc2_writel(hsotg
, dctl
, DCTL
);
2854 if (!hs_ep
->isochronous
)
2857 if (list_empty(&hs_ep
->queue
)) {
2858 dev_dbg(hsotg
->dev
, "%s: complete_ep 0x%p, ep->queue empty!\n",
2864 hs_req
= get_ep_head(hs_ep
);
2866 hs_req
->req
.frame_number
= hs_ep
->target_frame
;
2867 hs_req
->req
.actual
= 0;
2868 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
,
2871 dwc2_gadget_incr_frame_num(hs_ep
);
2872 /* Update current frame number value. */
2873 hsotg
->frame_number
= dwc2_hsotg_read_frameno(hsotg
);
2874 } while (dwc2_gadget_target_frame_elapsed(hs_ep
));
2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2879 * @ep: The endpoint on which interrupt is asserted.
2881 * This is starting point for ISOC-OUT transfer, synchronization done with
2882 * first out token received from host while corresponding EP is disabled.
2884 * Device does not know initial frame in which out token will come. For this
2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2886 * getting this interrupt SW starts calculation for next transfer frame.
2888 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep
*ep
)
2890 struct dwc2_hsotg
*hsotg
= ep
->parent
;
2891 struct dwc2_hsotg_req
*hs_req
;
2892 int dir_in
= ep
->dir_in
;
2894 if (dir_in
|| !ep
->isochronous
)
2897 if (using_desc_dma(hsotg
)) {
2898 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2899 /* Start first ISO Out */
2900 ep
->target_frame
= hsotg
->frame_number
;
2901 dwc2_gadget_start_isoc_ddma(ep
);
2906 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2909 ep
->target_frame
= hsotg
->frame_number
;
2910 if (ep
->interval
> 1) {
2911 ctrl
= dwc2_readl(hsotg
, DOEPCTL(ep
->index
));
2912 if (ep
->target_frame
& 0x1)
2913 ctrl
|= DXEPCTL_SETODDFR
;
2915 ctrl
|= DXEPCTL_SETEVENFR
;
2917 dwc2_writel(hsotg
, ctrl
, DOEPCTL(ep
->index
));
2921 while (dwc2_gadget_target_frame_elapsed(ep
)) {
2922 hs_req
= get_ep_head(ep
);
2924 hs_req
->req
.frame_number
= ep
->target_frame
;
2925 hs_req
->req
.actual
= 0;
2926 dwc2_hsotg_complete_request(hsotg
, ep
, hs_req
, -ENODATA
);
2929 dwc2_gadget_incr_frame_num(ep
);
2930 /* Update current frame number value. */
2931 hsotg
->frame_number
= dwc2_hsotg_read_frameno(hsotg
);
2935 dwc2_gadget_start_next_request(ep
);
2939 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
2940 struct dwc2_hsotg_ep
*hs_ep
);
2943 * dwc2_gadget_handle_nak - handle NAK interrupt
2944 * @hs_ep: The endpoint on which interrupt is asserted.
2946 * This is starting point for ISOC-IN transfer, synchronization done with
2947 * first IN token received from host while corresponding EP is disabled.
2949 * Device does not know when first one token will arrive from host. On first
2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2952 * sent in response to that as there was no data in FIFO. SW is basing on this
2953 * interrupt to obtain frame in which token has come and then based on the
2954 * interval calculates next frame for transfer.
2956 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep
*hs_ep
)
2958 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2959 struct dwc2_hsotg_req
*hs_req
;
2960 int dir_in
= hs_ep
->dir_in
;
2963 if (!dir_in
|| !hs_ep
->isochronous
)
2966 if (hs_ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2968 if (using_desc_dma(hsotg
)) {
2969 hs_ep
->target_frame
= hsotg
->frame_number
;
2970 dwc2_gadget_incr_frame_num(hs_ep
);
2972 /* In service interval mode target_frame must
2973 * be set to last (u)frame of the service interval.
2975 if (hsotg
->params
.service_interval
) {
2976 /* Set target_frame to the first (u)frame of
2977 * the service interval
2979 hs_ep
->target_frame
&= ~hs_ep
->interval
+ 1;
2981 /* Set target_frame to the last (u)frame of
2982 * the service interval
2984 dwc2_gadget_incr_frame_num(hs_ep
);
2985 dwc2_gadget_dec_frame_num_by_one(hs_ep
);
2988 dwc2_gadget_start_isoc_ddma(hs_ep
);
2992 hs_ep
->target_frame
= hsotg
->frame_number
;
2993 if (hs_ep
->interval
> 1) {
2994 u32 ctrl
= dwc2_readl(hsotg
,
2995 DIEPCTL(hs_ep
->index
));
2996 if (hs_ep
->target_frame
& 0x1)
2997 ctrl
|= DXEPCTL_SETODDFR
;
2999 ctrl
|= DXEPCTL_SETEVENFR
;
3001 dwc2_writel(hsotg
, ctrl
, DIEPCTL(hs_ep
->index
));
3005 if (using_desc_dma(hsotg
))
3008 ctrl
= dwc2_readl(hsotg
, DIEPCTL(hs_ep
->index
));
3009 if (ctrl
& DXEPCTL_EPENA
)
3010 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
3012 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
3014 while (dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3015 hs_req
= get_ep_head(hs_ep
);
3017 hs_req
->req
.frame_number
= hs_ep
->target_frame
;
3018 hs_req
->req
.actual
= 0;
3019 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, -ENODATA
);
3022 dwc2_gadget_incr_frame_num(hs_ep
);
3023 /* Update current frame number value. */
3024 hsotg
->frame_number
= dwc2_hsotg_read_frameno(hsotg
);
3028 dwc2_gadget_start_next_request(hs_ep
);
3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3033 * @hsotg: The driver state
3034 * @idx: The index for the endpoint (0..15)
3035 * @dir_in: Set if this is an IN endpoint
3037 * Process and clear any interrupt pending for an individual endpoint
3039 static void dwc2_hsotg_epint(struct dwc2_hsotg
*hsotg
, unsigned int idx
,
3042 struct dwc2_hsotg_ep
*hs_ep
= index_to_ep(hsotg
, idx
, dir_in
);
3043 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
3044 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
3045 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
3048 ints
= dwc2_gadget_read_ep_interrupts(hsotg
, idx
, dir_in
);
3050 /* Clear endpoint interrupts */
3051 dwc2_writel(hsotg
, ints
, epint_reg
);
3054 dev_err(hsotg
->dev
, "%s:Interrupt for unconfigured ep%d(%s)\n",
3055 __func__
, idx
, dir_in
? "in" : "out");
3059 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3060 __func__
, idx
, dir_in
? "in" : "out", ints
);
3062 /* Don't process XferCompl interrupt if it is a setup packet */
3063 if (idx
== 0 && (ints
& (DXEPINT_SETUP
| DXEPINT_SETUP_RCVD
)))
3064 ints
&= ~DXEPINT_XFERCOMPL
;
3067 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3068 * stage and xfercomplete was generated without SETUP phase done
3069 * interrupt. SW should parse received setup packet only after host's
3070 * exit from setup phase of control transfer.
3072 if (using_desc_dma(hsotg
) && idx
== 0 && !hs_ep
->dir_in
&&
3073 hsotg
->ep0_state
== DWC2_EP0_SETUP
&& !(ints
& DXEPINT_SETUP
))
3074 ints
&= ~DXEPINT_XFERCOMPL
;
3076 if (ints
& DXEPINT_XFERCOMPL
) {
3078 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3079 __func__
, dwc2_readl(hsotg
, epctl_reg
),
3080 dwc2_readl(hsotg
, epsiz_reg
));
3082 /* In DDMA handle isochronous requests separately */
3083 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
3084 dwc2_gadget_complete_isoc_request_ddma(hs_ep
);
3085 } else if (dir_in
) {
3087 * We get OutDone from the FIFO, so we only
3088 * need to look at completing IN requests here
3089 * if operating slave mode
3091 if (!hs_ep
->isochronous
|| !(ints
& DXEPINT_NAKINTRPT
))
3092 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
3094 if (idx
== 0 && !hs_ep
->req
)
3095 dwc2_hsotg_enqueue_setup(hsotg
);
3096 } else if (using_dma(hsotg
)) {
3098 * We're using DMA, we need to fire an OutDone here
3099 * as we ignore the RXFIFO.
3101 if (!hs_ep
->isochronous
|| !(ints
& DXEPINT_OUTTKNEPDIS
))
3102 dwc2_hsotg_handle_outdone(hsotg
, idx
);
3106 if (ints
& DXEPINT_EPDISBLD
)
3107 dwc2_gadget_handle_ep_disabled(hs_ep
);
3109 if (ints
& DXEPINT_OUTTKNEPDIS
)
3110 dwc2_gadget_handle_out_token_ep_disabled(hs_ep
);
3112 if (ints
& DXEPINT_NAKINTRPT
)
3113 dwc2_gadget_handle_nak(hs_ep
);
3115 if (ints
& DXEPINT_AHBERR
)
3116 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
3118 if (ints
& DXEPINT_SETUP
) { /* Setup or Timeout */
3119 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
3121 if (using_dma(hsotg
) && idx
== 0) {
3123 * this is the notification we've received a
3124 * setup packet. In non-DMA mode we'd get this
3125 * from the RXFIFO, instead we need to process
3132 dwc2_hsotg_handle_outdone(hsotg
, 0);
3136 if (ints
& DXEPINT_STSPHSERCVD
) {
3137 dev_dbg(hsotg
->dev
, "%s: StsPhseRcvd\n", __func__
);
3139 /* Safety check EP0 state when STSPHSERCVD asserted */
3140 if (hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
3141 /* Move to STATUS IN for DDMA */
3142 if (using_desc_dma(hsotg
)) {
3143 if (!hsotg
->delayed_status
)
3144 dwc2_hsotg_ep0_zlp(hsotg
, true);
3146 /* In case of 3 stage Control Write with delayed
3147 * status, when Status IN transfer started
3148 * before STSPHSERCVD asserted, NAKSTS bit not
3149 * cleared by CNAK in dwc2_hsotg_start_req()
3150 * function. Clear now NAKSTS to allow complete
3153 dwc2_set_bit(hsotg
, DIEPCTL(0),
3160 if (ints
& DXEPINT_BACK2BACKSETUP
)
3161 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
3163 if (ints
& DXEPINT_BNAINTR
) {
3164 dev_dbg(hsotg
->dev
, "%s: BNA interrupt\n", __func__
);
3165 if (hs_ep
->isochronous
)
3166 dwc2_gadget_handle_isoc_bna(hs_ep
);
3169 if (dir_in
&& !hs_ep
->isochronous
) {
3170 /* not sure if this is important, but we'll clear it anyway */
3171 if (ints
& DXEPINT_INTKNTXFEMP
) {
3172 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
3176 /* this probably means something bad is happening */
3177 if (ints
& DXEPINT_INTKNEPMIS
) {
3178 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
3182 /* FIFO has space or is empty (see GAHBCFG) */
3183 if (hsotg
->dedicated_fifos
&&
3184 ints
& DXEPINT_TXFEMP
) {
3185 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
3187 if (!using_dma(hsotg
))
3188 dwc2_hsotg_trytx(hsotg
, hs_ep
);
3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3195 * @hsotg: The device state.
3197 * Handle updating the device settings after the enumeration phase has
3200 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg
*hsotg
)
3202 u32 dsts
= dwc2_readl(hsotg
, DSTS
);
3203 int ep0_mps
= 0, ep_mps
= 8;
3206 * This should signal the finish of the enumeration phase
3207 * of the USB handshaking, so we should now know what rate
3211 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
3214 * note, since we're limited by the size of transfer on EP0, and
3215 * it seems IN transfers must be a even number of packets we do
3216 * not advertise a 64byte MPS on EP0.
3219 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3220 switch ((dsts
& DSTS_ENUMSPD_MASK
) >> DSTS_ENUMSPD_SHIFT
) {
3221 case DSTS_ENUMSPD_FS
:
3222 case DSTS_ENUMSPD_FS48
:
3223 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
3224 ep0_mps
= EP0_MPS_LIMIT
;
3228 case DSTS_ENUMSPD_HS
:
3229 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
3230 ep0_mps
= EP0_MPS_LIMIT
;
3234 case DSTS_ENUMSPD_LS
:
3235 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
3239 * note, we don't actually support LS in this driver at the
3240 * moment, and the documentation seems to imply that it isn't
3241 * supported by the PHYs on some of the devices.
3245 dev_info(hsotg
->dev
, "new device is %s\n",
3246 usb_speed_string(hsotg
->gadget
.speed
));
3249 * we should now know the maximum packet size for an
3250 * endpoint, so set the endpoints to a default value.
3255 /* Initialize ep0 for both in and out directions */
3256 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 1);
3257 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 0);
3258 for (i
= 1; i
< hsotg
->num_of_eps
; i
++) {
3259 if (hsotg
->eps_in
[i
])
3260 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3262 if (hsotg
->eps_out
[i
])
3263 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3268 /* ensure after enumeration our EP0 is active */
3270 dwc2_hsotg_enqueue_setup(hsotg
);
3272 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3273 dwc2_readl(hsotg
, DIEPCTL0
),
3274 dwc2_readl(hsotg
, DOEPCTL0
));
3278 * kill_all_requests - remove all requests from the endpoint's queue
3279 * @hsotg: The device state.
3280 * @ep: The endpoint the requests may be on.
3281 * @result: The result code to use.
3283 * Go through the requests on the given endpoint and mark them
3284 * completed with the given result code.
3286 static void kill_all_requests(struct dwc2_hsotg
*hsotg
,
3287 struct dwc2_hsotg_ep
*ep
,
3294 while (!list_empty(&ep
->queue
)) {
3295 struct dwc2_hsotg_req
*req
= get_ep_head(ep
);
3297 dwc2_hsotg_complete_request(hsotg
, ep
, req
, result
);
3300 if (!hsotg
->dedicated_fifos
)
3302 size
= (dwc2_readl(hsotg
, DTXFSTS(ep
->fifo_index
)) & 0xffff) * 4;
3303 if (size
< ep
->fifo_size
)
3304 dwc2_hsotg_txfifo_flush(hsotg
, ep
->fifo_index
);
3308 * dwc2_hsotg_disconnect - disconnect service
3309 * @hsotg: The device state.
3311 * The device has been disconnected. Remove all current
3312 * transactions and signal the gadget driver that this
3315 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*hsotg
)
3319 if (!hsotg
->connected
)
3322 hsotg
->connected
= 0;
3323 hsotg
->test_mode
= 0;
3325 /* all endpoints should be shutdown */
3326 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
3327 if (hsotg
->eps_in
[ep
])
3328 kill_all_requests(hsotg
, hsotg
->eps_in
[ep
],
3330 if (hsotg
->eps_out
[ep
])
3331 kill_all_requests(hsotg
, hsotg
->eps_out
[ep
],
3335 call_gadget(hsotg
, disconnect
);
3336 hsotg
->lx_state
= DWC2_L3
;
3338 usb_gadget_set_state(&hsotg
->gadget
, USB_STATE_NOTATTACHED
);
3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3343 * @hsotg: The device state:
3344 * @periodic: True if this is a periodic FIFO interrupt
3346 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg
*hsotg
, bool periodic
)
3348 struct dwc2_hsotg_ep
*ep
;
3351 /* look through for any more data to transmit */
3352 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
3353 ep
= index_to_ep(hsotg
, epno
, 1);
3361 if ((periodic
&& !ep
->periodic
) ||
3362 (!periodic
&& ep
->periodic
))
3365 ret
= dwc2_hsotg_trytx(hsotg
, ep
);
3371 /* IRQ flags which will trigger a retry around the IRQ loop */
3372 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3376 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
);
3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3379 * @hsotg: The device state
3380 * @is_usb_reset: Usb resetting flag
3382 * Issue a soft reset to the core, and await the core finishing it.
3384 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*hsotg
,
3393 /* Kill any ep0 requests as controller will be reinitialized */
3394 kill_all_requests(hsotg
, hsotg
->eps_out
[0], -ECONNRESET
);
3396 if (!is_usb_reset
) {
3397 if (dwc2_core_reset(hsotg
, true))
3400 /* all endpoints should be shutdown */
3401 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
3402 if (hsotg
->eps_in
[ep
])
3403 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
3404 if (hsotg
->eps_out
[ep
])
3405 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
3410 * we must now enable ep0 ready for host detection and then
3411 * set configuration.
3414 /* keep other bits untouched (so e.g. forced modes are not lost) */
3415 usbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
3416 usbcfg
&= ~GUSBCFG_TOUTCAL_MASK
;
3417 usbcfg
|= GUSBCFG_TOUTCAL(7);
3419 /* remove the HNP/SRP and set the PHY */
3420 usbcfg
&= ~(GUSBCFG_SRPCAP
| GUSBCFG_HNPCAP
);
3421 dwc2_writel(hsotg
, usbcfg
, GUSBCFG
);
3423 dwc2_phy_init(hsotg
, true);
3425 dwc2_hsotg_init_fifo(hsotg
);
3427 if (!is_usb_reset
) {
3428 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3429 if (hsotg
->params
.eusb2_disc
)
3430 dwc2_set_bit(hsotg
, GOTGCTL
, GOTGCTL_EUSB2_DISC_SUPP
);
3433 dcfg
|= DCFG_EPMISCNT(1);
3435 switch (hsotg
->params
.speed
) {
3436 case DWC2_SPEED_PARAM_LOW
:
3437 dcfg
|= DCFG_DEVSPD_LS
;
3439 case DWC2_SPEED_PARAM_FULL
:
3440 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
)
3441 dcfg
|= DCFG_DEVSPD_FS48
;
3443 dcfg
|= DCFG_DEVSPD_FS
;
3446 dcfg
|= DCFG_DEVSPD_HS
;
3449 if (hsotg
->params
.ipg_isoc_en
)
3450 dcfg
|= DCFG_IPG_ISOC_SUPPORDED
;
3452 dwc2_writel(hsotg
, dcfg
, DCFG
);
3454 /* Clear any pending OTG interrupts */
3455 dwc2_writel(hsotg
, 0xffffffff, GOTGINT
);
3457 /* Clear any pending interrupts */
3458 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
3459 intmsk
= GINTSTS_ERLYSUSP
| GINTSTS_SESSREQINT
|
3460 GINTSTS_GOUTNAKEFF
| GINTSTS_GINNAKEFF
|
3461 GINTSTS_USBRST
| GINTSTS_RESETDET
|
3462 GINTSTS_ENUMDONE
| GINTSTS_OTGINT
|
3463 GINTSTS_USBSUSP
| GINTSTS_WKUPINT
|
3464 GINTSTS_LPMTRANRCVD
;
3466 if (!using_desc_dma(hsotg
))
3467 intmsk
|= GINTSTS_INCOMPL_SOIN
| GINTSTS_INCOMPL_SOOUT
;
3469 if (!hsotg
->params
.external_id_pin_ctl
)
3470 intmsk
|= GINTSTS_CONIDSTSCHNG
;
3472 dwc2_writel(hsotg
, intmsk
, GINTMSK
);
3474 if (using_dma(hsotg
)) {
3475 dwc2_writel(hsotg
, GAHBCFG_GLBL_INTR_EN
| GAHBCFG_DMA_EN
|
3476 hsotg
->params
.ahbcfg
,
3479 /* Set DDMA mode support in the core if needed */
3480 if (using_desc_dma(hsotg
))
3481 dwc2_set_bit(hsotg
, DCFG
, DCFG_DESCDMA_EN
);
3484 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
) ?
3485 (GAHBCFG_NP_TXF_EMP_LVL
|
3486 GAHBCFG_P_TXF_EMP_LVL
) : 0) |
3487 GAHBCFG_GLBL_INTR_EN
, GAHBCFG
);
3491 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3492 * when we have no data to transfer. Otherwise we get being flooded by
3496 dwc2_writel(hsotg
, ((hsotg
->dedicated_fifos
&& !using_dma(hsotg
)) ?
3497 DIEPMSK_TXFIFOEMPTY
| DIEPMSK_INTKNTXFEMPMSK
: 0) |
3498 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
|
3499 DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
,
3503 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3504 * DMA mode we may need this and StsPhseRcvd.
3506 dwc2_writel(hsotg
, (using_dma(hsotg
) ? (DIEPMSK_XFERCOMPLMSK
|
3507 DOEPMSK_STSPHSERCVDMSK
) : 0) |
3508 DOEPMSK_EPDISBLDMSK
| DOEPMSK_AHBERRMSK
|
3512 /* Enable BNA interrupt for DDMA */
3513 if (using_desc_dma(hsotg
)) {
3514 dwc2_set_bit(hsotg
, DOEPMSK
, DOEPMSK_BNAMSK
);
3515 dwc2_set_bit(hsotg
, DIEPMSK
, DIEPMSK_BNAININTRMSK
);
3518 /* Enable Service Interval mode if supported */
3519 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3520 dwc2_set_bit(hsotg
, DCTL
, DCTL_SERVICE_INTERVAL_SUPPORTED
);
3522 dwc2_writel(hsotg
, 0, DAINTMSK
);
3524 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3525 dwc2_readl(hsotg
, DIEPCTL0
),
3526 dwc2_readl(hsotg
, DOEPCTL0
));
3528 /* enable in and out endpoint interrupts */
3529 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_OEPINT
| GINTSTS_IEPINT
);
3532 * Enable the RXFIFO when in slave mode, as this is how we collect
3533 * the data. In DMA mode, we get events from the FIFO but also
3534 * things we cannot process, so do not use it.
3536 if (!using_dma(hsotg
))
3537 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_RXFLVL
);
3539 /* Enable interrupts for EP0 in and out */
3540 dwc2_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
3541 dwc2_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
3543 if (!is_usb_reset
) {
3544 dwc2_set_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3545 udelay(10); /* see openiboot */
3546 dwc2_clear_bit(hsotg
, DCTL
, DCTL_PWRONPRGDONE
);
3549 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", dwc2_readl(hsotg
, DCTL
));
3552 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3553 * writing to the EPCTL register..
3556 /* set to read 1 8byte packet */
3557 dwc2_writel(hsotg
, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3558 DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0
);
3560 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3561 DXEPCTL_CNAK
| DXEPCTL_EPENA
|
3565 /* enable, but don't activate EP0in */
3566 dwc2_writel(hsotg
, dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3567 DXEPCTL_USBACTEP
, DIEPCTL0
);
3569 /* clear global NAKs */
3570 val
= DCTL_CGOUTNAK
| DCTL_CGNPINNAK
;
3572 val
|= DCTL_SFTDISCON
;
3573 dwc2_set_bit(hsotg
, DCTL
, val
);
3575 /* configure the core to support LPM */
3576 dwc2_gadget_init_lpm(hsotg
);
3578 /* program GREFCLK register if needed */
3579 if (using_desc_dma(hsotg
) && hsotg
->params
.service_interval
)
3580 dwc2_gadget_program_ref_clk(hsotg
);
3582 /* must be at-least 3ms to allow bus to see disconnect */
3585 hsotg
->lx_state
= DWC2_L0
;
3587 dwc2_hsotg_enqueue_setup(hsotg
);
3589 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3590 dwc2_readl(hsotg
, DIEPCTL0
),
3591 dwc2_readl(hsotg
, DOEPCTL0
));
3594 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg
*hsotg
)
3596 /* set the soft-disconnect bit */
3597 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3600 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
)
3602 /* remove the soft-disconnect and let's go */
3603 if (!hsotg
->role_sw
|| (dwc2_readl(hsotg
, GOTGCTL
) & GOTGCTL_BSESVLD
))
3604 dwc2_clear_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
3608 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3609 * @hsotg: The device state:
3611 * This interrupt indicates one of the following conditions occurred while
3612 * transmitting an ISOC transaction.
3613 * - Corrupted IN Token for ISOC EP.
3614 * - Packet not complete in FIFO.
3616 * The following actions will be taken:
3617 * - Determine the EP
3618 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3620 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg
*hsotg
)
3622 struct dwc2_hsotg_ep
*hs_ep
;
3627 dev_dbg(hsotg
->dev
, "Incomplete isoc in interrupt received:\n");
3629 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3631 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3632 hs_ep
= hsotg
->eps_in
[idx
];
3633 /* Proceed only unmasked ISOC EPs */
3634 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3637 epctrl
= dwc2_readl(hsotg
, DIEPCTL(idx
));
3638 if ((epctrl
& DXEPCTL_EPENA
) &&
3639 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3640 epctrl
|= DXEPCTL_SNAK
;
3641 epctrl
|= DXEPCTL_EPDIS
;
3642 dwc2_writel(hsotg
, epctrl
, DIEPCTL(idx
));
3646 /* Clear interrupt */
3647 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOIN
, GINTSTS
);
3651 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3652 * @hsotg: The device state:
3654 * This interrupt indicates one of the following conditions occurred while
3655 * transmitting an ISOC transaction.
3656 * - Corrupted OUT Token for ISOC EP.
3657 * - Packet not complete in FIFO.
3659 * The following actions will be taken:
3660 * - Determine the EP
3661 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3663 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg
*hsotg
)
3669 struct dwc2_hsotg_ep
*hs_ep
;
3672 dev_dbg(hsotg
->dev
, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__
);
3674 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3675 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3677 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3678 hs_ep
= hsotg
->eps_out
[idx
];
3679 /* Proceed only unmasked ISOC EPs */
3680 if ((BIT(idx
) & ~daintmsk
) || !hs_ep
->isochronous
)
3683 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3684 if ((epctrl
& DXEPCTL_EPENA
) &&
3685 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3686 /* Unmask GOUTNAKEFF interrupt */
3687 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3688 gintmsk
|= GINTSTS_GOUTNAKEFF
;
3689 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3691 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3692 if (!(gintsts
& GINTSTS_GOUTNAKEFF
)) {
3693 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3699 /* Clear interrupt */
3700 dwc2_writel(hsotg
, GINTSTS_INCOMPL_SOOUT
, GINTSTS
);
3704 * dwc2_hsotg_irq - handle device interrupt
3705 * @irq: The IRQ number triggered
3706 * @pw: The pw value when registered the handler.
3708 static irqreturn_t
dwc2_hsotg_irq(int irq
, void *pw
)
3710 struct dwc2_hsotg
*hsotg
= pw
;
3711 int retry_count
= 8;
3715 if (!dwc2_is_device_mode(hsotg
))
3718 spin_lock(&hsotg
->lock
);
3720 gintsts
= dwc2_readl(hsotg
, GINTSTS
);
3721 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3723 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
3724 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
3728 if (gintsts
& GINTSTS_RESETDET
) {
3729 dev_dbg(hsotg
->dev
, "%s: USBRstDet\n", __func__
);
3731 dwc2_writel(hsotg
, GINTSTS_RESETDET
, GINTSTS
);
3733 /* This event must be used only if controller is suspended */
3734 if (hsotg
->in_ppd
&& hsotg
->lx_state
== DWC2_L2
)
3735 dwc2_exit_partial_power_down(hsotg
, 0, true);
3737 /* Exit gadget mode clock gating. */
3738 if (hsotg
->params
.power_down
==
3739 DWC2_POWER_DOWN_PARAM_NONE
&& hsotg
->bus_suspended
&&
3740 !hsotg
->params
.no_clock_gating
)
3741 dwc2_gadget_exit_clock_gating(hsotg
, 0);
3743 hsotg
->lx_state
= DWC2_L0
;
3746 if (gintsts
& (GINTSTS_USBRST
| GINTSTS_RESETDET
)) {
3747 u32 usb_status
= dwc2_readl(hsotg
, GOTGCTL
);
3748 u32 connected
= hsotg
->connected
;
3750 dev_dbg(hsotg
->dev
, "%s: USBRst\n", __func__
);
3751 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
3752 dwc2_readl(hsotg
, GNPTXSTS
));
3754 dwc2_writel(hsotg
, GINTSTS_USBRST
, GINTSTS
);
3756 /* Report disconnection if it is not already done. */
3757 dwc2_hsotg_disconnect(hsotg
);
3759 /* Reset device address to zero */
3760 dwc2_clear_bit(hsotg
, DCFG
, DCFG_DEVADDR_MASK
);
3762 if (usb_status
& GOTGCTL_BSESVLD
&& connected
)
3763 dwc2_hsotg_core_init_disconnected(hsotg
, true);
3766 if (gintsts
& GINTSTS_ENUMDONE
) {
3767 dwc2_writel(hsotg
, GINTSTS_ENUMDONE
, GINTSTS
);
3769 dwc2_hsotg_irq_enumdone(hsotg
);
3772 if (gintsts
& (GINTSTS_OEPINT
| GINTSTS_IEPINT
)) {
3773 u32 daint
= dwc2_readl(hsotg
, DAINT
);
3774 u32 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3775 u32 daint_out
, daint_in
;
3779 daint_out
= daint
>> DAINT_OUTEP_SHIFT
;
3780 daint_in
= daint
& ~(daint_out
<< DAINT_OUTEP_SHIFT
);
3782 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
3784 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_out
;
3785 ep
++, daint_out
>>= 1) {
3787 dwc2_hsotg_epint(hsotg
, ep
, 0);
3790 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_in
;
3791 ep
++, daint_in
>>= 1) {
3793 dwc2_hsotg_epint(hsotg
, ep
, 1);
3797 /* check both FIFOs */
3799 if (gintsts
& GINTSTS_NPTXFEMP
) {
3800 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
3803 * Disable the interrupt to stop it happening again
3804 * unless one of these endpoint routines decides that
3805 * it needs re-enabling
3808 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_NPTXFEMP
);
3809 dwc2_hsotg_irq_fifoempty(hsotg
, false);
3812 if (gintsts
& GINTSTS_PTXFEMP
) {
3813 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
3815 /* See note in GINTSTS_NPTxFEmp */
3817 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_PTXFEMP
);
3818 dwc2_hsotg_irq_fifoempty(hsotg
, true);
3821 if (gintsts
& GINTSTS_RXFLVL
) {
3823 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3824 * we need to retry dwc2_hsotg_handle_rx if this is still
3828 dwc2_hsotg_handle_rx(hsotg
);
3831 if (gintsts
& GINTSTS_ERLYSUSP
) {
3832 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
3833 dwc2_writel(hsotg
, GINTSTS_ERLYSUSP
, GINTSTS
);
3837 * these next two seem to crop-up occasionally causing the core
3838 * to shutdown the USB transfer, so try clearing them and logging
3842 if (gintsts
& GINTSTS_GOUTNAKEFF
) {
3847 struct dwc2_hsotg_ep
*hs_ep
;
3849 daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
3850 daintmsk
>>= DAINT_OUTEP_SHIFT
;
3851 /* Mask this interrupt */
3852 gintmsk
= dwc2_readl(hsotg
, GINTMSK
);
3853 gintmsk
&= ~GINTSTS_GOUTNAKEFF
;
3854 dwc2_writel(hsotg
, gintmsk
, GINTMSK
);
3856 dev_dbg(hsotg
->dev
, "GOUTNakEff triggered\n");
3857 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
3858 hs_ep
= hsotg
->eps_out
[idx
];
3859 /* Proceed only unmasked ISOC EPs */
3860 if (BIT(idx
) & ~daintmsk
)
3863 epctrl
= dwc2_readl(hsotg
, DOEPCTL(idx
));
3866 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
) {
3867 epctrl
|= DXEPCTL_SNAK
;
3868 epctrl
|= DXEPCTL_EPDIS
;
3869 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3874 if (hs_ep
->halted
) {
3875 if (!(epctrl
& DXEPCTL_EPENA
))
3876 epctrl
|= DXEPCTL_EPENA
;
3877 epctrl
|= DXEPCTL_EPDIS
;
3878 epctrl
|= DXEPCTL_STALL
;
3879 dwc2_writel(hsotg
, epctrl
, DOEPCTL(idx
));
3883 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3886 if (gintsts
& GINTSTS_GINNAKEFF
) {
3887 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
3889 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
3891 dwc2_hsotg_dump(hsotg
);
3894 if (gintsts
& GINTSTS_INCOMPL_SOIN
)
3895 dwc2_gadget_handle_incomplete_isoc_in(hsotg
);
3897 if (gintsts
& GINTSTS_INCOMPL_SOOUT
)
3898 dwc2_gadget_handle_incomplete_isoc_out(hsotg
);
3901 * if we've had fifo events, we should try and go around the
3902 * loop again to see if there's any point in returning yet.
3905 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
3908 /* Check WKUP_ALERT interrupt*/
3909 if (hsotg
->params
.service_interval
)
3910 dwc2_gadget_wkup_alert_handler(hsotg
);
3912 spin_unlock(&hsotg
->lock
);
3917 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
3918 struct dwc2_hsotg_ep
*hs_ep
)
3923 epctrl_reg
= hs_ep
->dir_in
? DIEPCTL(hs_ep
->index
) :
3924 DOEPCTL(hs_ep
->index
);
3925 epint_reg
= hs_ep
->dir_in
? DIEPINT(hs_ep
->index
) :
3926 DOEPINT(hs_ep
->index
);
3928 dev_dbg(hsotg
->dev
, "%s: stopping transfer on %s\n", __func__
,
3931 if (hs_ep
->dir_in
) {
3932 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
) {
3933 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_SNAK
);
3934 /* Wait for Nak effect */
3935 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
,
3936 DXEPINT_INEPNAKEFF
, 100))
3937 dev_warn(hsotg
->dev
,
3938 "%s: timeout DIEPINT.NAKEFF\n",
3941 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGNPINNAK
);
3942 /* Wait for Nak effect */
3943 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3944 GINTSTS_GINNAKEFF
, 100))
3945 dev_warn(hsotg
->dev
,
3946 "%s: timeout GINTSTS.GINNAKEFF\n",
3950 /* Mask GINTSTS_GOUTNAKEFF interrupt */
3951 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_GOUTNAKEFF
);
3953 if (!(dwc2_readl(hsotg
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
3954 dwc2_set_bit(hsotg
, DCTL
, DCTL_SGOUTNAK
);
3956 if (!using_dma(hsotg
)) {
3957 /* Wait for GINTSTS_RXFLVL interrupt */
3958 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3959 GINTSTS_RXFLVL
, 100)) {
3960 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.RXFLVL\n",
3964 * Pop GLOBAL OUT NAK status packet from RxFIFO
3965 * to assert GOUTNAKEFF interrupt
3967 dwc2_readl(hsotg
, GRXSTSP
);
3971 /* Wait for global nak to take effect */
3972 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3973 GINTSTS_GOUTNAKEFF
, 100))
3974 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3979 dwc2_set_bit(hsotg
, epctrl_reg
, DXEPCTL_EPDIS
| DXEPCTL_SNAK
);
3981 /* Wait for ep to be disabled */
3982 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
, DXEPINT_EPDISBLD
, 100))
3983 dev_warn(hsotg
->dev
,
3984 "%s: timeout DOEPCTL.EPDisable\n", __func__
);
3986 /* Clear EPDISBLD interrupt */
3987 dwc2_set_bit(hsotg
, epint_reg
, DXEPINT_EPDISBLD
);
3989 if (hs_ep
->dir_in
) {
3990 unsigned short fifo_index
;
3992 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
)
3993 fifo_index
= hs_ep
->fifo_index
;
3998 dwc2_flush_tx_fifo(hsotg
, fifo_index
);
4000 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
4001 if (!hsotg
->dedicated_fifos
&& !hs_ep
->periodic
)
4002 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGNPINNAK
);
4005 /* Remove global NAKs */
4006 dwc2_set_bit(hsotg
, DCTL
, DCTL_CGOUTNAK
);
4011 * dwc2_hsotg_ep_enable - enable the given endpoint
4012 * @ep: The USB endpint to configure
4013 * @desc: The USB endpoint descriptor to configure with.
4015 * This is called from the USB gadget code's usb_ep_enable().
4017 static int dwc2_hsotg_ep_enable(struct usb_ep
*ep
,
4018 const struct usb_endpoint_descriptor
*desc
)
4020 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4021 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4022 unsigned long flags
;
4023 unsigned int index
= hs_ep
->index
;
4029 unsigned int dir_in
;
4030 unsigned int i
, val
, size
;
4032 unsigned char ep_type
;
4036 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4037 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
4038 desc
->wMaxPacketSize
, desc
->bInterval
);
4040 /* not to be called for EP0 */
4042 dev_err(hsotg
->dev
, "%s: called for EP 0\n", __func__
);
4046 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
4047 if (dir_in
!= hs_ep
->dir_in
) {
4048 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
4052 ep_type
= desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
;
4053 mps
= usb_endpoint_maxp(desc
);
4054 mc
= usb_endpoint_maxp_mult(desc
);
4056 /* ISOC IN in DDMA supported bInterval up to 10 */
4057 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
4058 dir_in
&& desc
->bInterval
> 10) {
4060 "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__
);
4064 /* High bandwidth ISOC OUT in DDMA not supported */
4065 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
&&
4066 !dir_in
&& mc
> 1) {
4068 "%s: ISOC OUT, DDMA: HB not supported!\n", __func__
);
4072 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4074 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4075 epctrl
= dwc2_readl(hsotg
, epctrl_reg
);
4077 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4078 __func__
, epctrl
, epctrl_reg
);
4080 if (using_desc_dma(hsotg
) && ep_type
== USB_ENDPOINT_XFER_ISOC
)
4081 desc_num
= MAX_DMA_DESC_NUM_HS_ISOC
;
4083 desc_num
= MAX_DMA_DESC_NUM_GENERIC
;
4085 /* Allocate DMA descriptor chain for non-ctrl endpoints */
4086 if (using_desc_dma(hsotg
) && !hs_ep
->desc_list
) {
4087 hs_ep
->desc_list
= dmam_alloc_coherent(hsotg
->dev
,
4088 desc_num
* sizeof(struct dwc2_dma_desc
),
4089 &hs_ep
->desc_list_dma
, GFP_ATOMIC
);
4090 if (!hs_ep
->desc_list
) {
4096 spin_lock_irqsave(&hsotg
->lock
, flags
);
4098 epctrl
&= ~(DXEPCTL_EPTYPE_MASK
| DXEPCTL_MPS_MASK
);
4099 epctrl
|= DXEPCTL_MPS(mps
);
4102 * mark the endpoint as active, otherwise the core may ignore
4103 * transactions entirely for this endpoint
4105 epctrl
|= DXEPCTL_USBACTEP
;
4107 /* update the endpoint state */
4108 dwc2_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
, mc
, dir_in
);
4110 /* default, set to non-periodic */
4111 hs_ep
->isochronous
= 0;
4112 hs_ep
->periodic
= 0;
4115 hs_ep
->interval
= desc
->bInterval
;
4118 case USB_ENDPOINT_XFER_ISOC
:
4119 epctrl
|= DXEPCTL_EPTYPE_ISO
;
4120 epctrl
|= DXEPCTL_SETEVENFR
;
4121 hs_ep
->isochronous
= 1;
4122 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4123 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
4124 hs_ep
->next_desc
= 0;
4125 hs_ep
->compl_desc
= 0;
4127 hs_ep
->periodic
= 1;
4128 mask
= dwc2_readl(hsotg
, DIEPMSK
);
4129 mask
|= DIEPMSK_NAKMSK
;
4130 dwc2_writel(hsotg
, mask
, DIEPMSK
);
4132 epctrl
|= DXEPCTL_SNAK
;
4133 mask
= dwc2_readl(hsotg
, DOEPMSK
);
4134 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
4135 dwc2_writel(hsotg
, mask
, DOEPMSK
);
4139 case USB_ENDPOINT_XFER_BULK
:
4140 epctrl
|= DXEPCTL_EPTYPE_BULK
;
4143 case USB_ENDPOINT_XFER_INT
:
4145 hs_ep
->periodic
= 1;
4147 if (hsotg
->gadget
.speed
== USB_SPEED_HIGH
)
4148 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
4150 epctrl
|= DXEPCTL_EPTYPE_INTERRUPT
;
4153 case USB_ENDPOINT_XFER_CONTROL
:
4154 epctrl
|= DXEPCTL_EPTYPE_CONTROL
;
4159 * if the hardware has dedicated fifos, we must give each IN EP
4160 * a unique tx-fifo even if it is non-periodic.
4162 if (dir_in
&& hsotg
->dedicated_fifos
) {
4163 unsigned fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
4165 u32 fifo_size
= UINT_MAX
;
4167 size
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
4168 for (i
= 1; i
<= fifo_count
; ++i
) {
4169 if (hsotg
->fifo_map
& (1 << i
))
4171 val
= dwc2_readl(hsotg
, DPTXFSIZN(i
));
4172 val
= (val
>> FIFOSIZE_DEPTH_SHIFT
) * 4;
4175 /* Search for smallest acceptable fifo */
4176 if (val
< fifo_size
) {
4183 "%s: No suitable fifo found\n", __func__
);
4187 epctrl
&= ~(DXEPCTL_TXFNUM_LIMIT
<< DXEPCTL_TXFNUM_SHIFT
);
4188 hsotg
->fifo_map
|= 1 << fifo_index
;
4189 epctrl
|= DXEPCTL_TXFNUM(fifo_index
);
4190 hs_ep
->fifo_index
= fifo_index
;
4191 hs_ep
->fifo_size
= fifo_size
;
4194 /* for non control endpoints, set PID to D0 */
4195 if (index
&& !hs_ep
->isochronous
)
4196 epctrl
|= DXEPCTL_SETD0PID
;
4198 /* WA for Full speed ISOC IN in DDMA mode.
4199 * By Clear NAK status of EP, core will send ZLP
4200 * to IN token and assert NAK interrupt relying
4201 * on TxFIFO status only
4204 if (hsotg
->gadget
.speed
== USB_SPEED_FULL
&&
4205 hs_ep
->isochronous
&& dir_in
) {
4206 /* The WA applies only to core versions from 2.72a
4207 * to 4.00a (including both). Also for FS_IOT_1.00a
4210 u32 gsnpsid
= dwc2_readl(hsotg
, GSNPSID
);
4212 if ((gsnpsid
>= DWC2_CORE_REV_2_72a
&&
4213 gsnpsid
<= DWC2_CORE_REV_4_00a
) ||
4214 gsnpsid
== DWC2_FS_IOT_REV_1_00a
||
4215 gsnpsid
== DWC2_HS_IOT_REV_1_00a
)
4216 epctrl
|= DXEPCTL_CNAK
;
4219 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
4222 dwc2_writel(hsotg
, epctrl
, epctrl_reg
);
4223 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
4224 __func__
, dwc2_readl(hsotg
, epctrl_reg
));
4226 /* enable the endpoint interrupt */
4227 dwc2_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
4230 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4233 if (ret
&& using_desc_dma(hsotg
) && hs_ep
->desc_list
) {
4234 dmam_free_coherent(hsotg
->dev
, desc_num
*
4235 sizeof(struct dwc2_dma_desc
),
4236 hs_ep
->desc_list
, hs_ep
->desc_list_dma
);
4237 hs_ep
->desc_list
= NULL
;
4244 * dwc2_hsotg_ep_disable - disable given endpoint
4245 * @ep: The endpoint to disable.
4247 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
)
4249 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4250 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4251 int dir_in
= hs_ep
->dir_in
;
4252 int index
= hs_ep
->index
;
4256 dev_dbg(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
4258 if (ep
== &hsotg
->eps_out
[0]->ep
) {
4259 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
4263 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4264 dev_err(hsotg
->dev
, "%s: called in host mode?\n", __func__
);
4268 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
4270 ctrl
= dwc2_readl(hsotg
, epctrl_reg
);
4272 if (ctrl
& DXEPCTL_EPENA
)
4273 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
4275 ctrl
&= ~DXEPCTL_EPENA
;
4276 ctrl
&= ~DXEPCTL_USBACTEP
;
4277 ctrl
|= DXEPCTL_SNAK
;
4279 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
4280 dwc2_writel(hsotg
, ctrl
, epctrl_reg
);
4282 /* disable endpoint interrupts */
4283 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
4285 /* terminate all requests with shutdown */
4286 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
);
4288 hsotg
->fifo_map
&= ~(1 << hs_ep
->fifo_index
);
4289 hs_ep
->fifo_index
= 0;
4290 hs_ep
->fifo_size
= 0;
4295 static int dwc2_hsotg_ep_disable_lock(struct usb_ep
*ep
)
4297 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4298 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
4299 unsigned long flags
;
4302 spin_lock_irqsave(&hsotg
->lock
, flags
);
4303 ret
= dwc2_hsotg_ep_disable(ep
);
4304 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4309 * on_list - check request is on the given endpoint
4310 * @ep: The endpoint to check.
4311 * @test: The request to test if it is on the endpoint.
4313 static bool on_list(struct dwc2_hsotg_ep
*ep
, struct dwc2_hsotg_req
*test
)
4315 struct dwc2_hsotg_req
*req
, *treq
;
4317 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
4326 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4327 * @ep: The endpoint to dequeue.
4328 * @req: The request to be removed from a queue.
4330 static int dwc2_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
4332 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
4333 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4334 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4335 unsigned long flags
;
4337 dev_dbg(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
4339 spin_lock_irqsave(&hs
->lock
, flags
);
4341 if (!on_list(hs_ep
, hs_req
)) {
4342 spin_unlock_irqrestore(&hs
->lock
, flags
);
4346 /* Dequeue already started request */
4347 if (req
== &hs_ep
->req
->req
)
4348 dwc2_hsotg_ep_stop_xfr(hs
, hs_ep
);
4350 dwc2_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
4351 spin_unlock_irqrestore(&hs
->lock
, flags
);
4357 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4358 * @ep: The endpoint to be wedged.
4361 static int dwc2_gadget_ep_set_wedge(struct usb_ep
*ep
)
4363 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4364 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4366 unsigned long flags
;
4369 spin_lock_irqsave(&hs
->lock
, flags
);
4371 ret
= dwc2_hsotg_ep_sethalt(ep
, 1, false);
4372 spin_unlock_irqrestore(&hs
->lock
, flags
);
4378 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4379 * @ep: The endpoint to set halt.
4380 * @value: Set or unset the halt.
4381 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4382 * the endpoint is busy processing requests.
4384 * We need to stall the endpoint immediately if request comes from set_feature
4385 * protocol command handler.
4387 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
)
4389 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4390 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4391 int index
= hs_ep
->index
;
4396 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
4400 dwc2_hsotg_stall_ep0(hs
);
4403 "%s: can't clear halt on ep0\n", __func__
);
4407 if (hs_ep
->isochronous
) {
4408 dev_err(hs
->dev
, "%s is Isochronous Endpoint\n", ep
->name
);
4412 if (!now
&& value
&& !list_empty(&hs_ep
->queue
)) {
4413 dev_dbg(hs
->dev
, "%s request is pending, cannot halt\n",
4418 if (hs_ep
->dir_in
) {
4419 epreg
= DIEPCTL(index
);
4420 epctl
= dwc2_readl(hs
, epreg
);
4423 epctl
|= DXEPCTL_STALL
| DXEPCTL_SNAK
;
4424 if (epctl
& DXEPCTL_EPENA
)
4425 epctl
|= DXEPCTL_EPDIS
;
4427 epctl
&= ~DXEPCTL_STALL
;
4429 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4430 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4431 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4432 epctl
|= DXEPCTL_SETD0PID
;
4434 dwc2_writel(hs
, epctl
, epreg
);
4436 epreg
= DOEPCTL(index
);
4437 epctl
= dwc2_readl(hs
, epreg
);
4440 /* Unmask GOUTNAKEFF interrupt */
4441 dwc2_hsotg_en_gsint(hs
, GINTSTS_GOUTNAKEFF
);
4443 if (!(dwc2_readl(hs
, GINTSTS
) & GINTSTS_GOUTNAKEFF
))
4444 dwc2_set_bit(hs
, DCTL
, DCTL_SGOUTNAK
);
4445 // STALL bit will be set in GOUTNAKEFF interrupt handler
4447 epctl
&= ~DXEPCTL_STALL
;
4449 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4450 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4451 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4452 epctl
|= DXEPCTL_SETD0PID
;
4453 dwc2_writel(hs
, epctl
, epreg
);
4457 hs_ep
->halted
= value
;
4462 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4463 * @ep: The endpoint to set halt.
4464 * @value: Set or unset the halt.
4466 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
4468 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4469 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4470 unsigned long flags
;
4473 spin_lock_irqsave(&hs
->lock
, flags
);
4474 ret
= dwc2_hsotg_ep_sethalt(ep
, value
, false);
4475 spin_unlock_irqrestore(&hs
->lock
, flags
);
4480 static const struct usb_ep_ops dwc2_hsotg_ep_ops
= {
4481 .enable
= dwc2_hsotg_ep_enable
,
4482 .disable
= dwc2_hsotg_ep_disable_lock
,
4483 .alloc_request
= dwc2_hsotg_ep_alloc_request
,
4484 .free_request
= dwc2_hsotg_ep_free_request
,
4485 .queue
= dwc2_hsotg_ep_queue_lock
,
4486 .dequeue
= dwc2_hsotg_ep_dequeue
,
4487 .set_halt
= dwc2_hsotg_ep_sethalt_lock
,
4488 .set_wedge
= dwc2_gadget_ep_set_wedge
,
4489 /* note, don't believe we have any call for the fifo routines */
4493 * dwc2_hsotg_init - initialize the usb core
4494 * @hsotg: The driver state
4496 static void dwc2_hsotg_init(struct dwc2_hsotg
*hsotg
)
4498 /* unmask subset of endpoint interrupts */
4500 dwc2_writel(hsotg
, DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
|
4501 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
,
4504 dwc2_writel(hsotg
, DOEPMSK_SETUPMSK
| DOEPMSK_AHBERRMSK
|
4505 DOEPMSK_EPDISBLDMSK
| DOEPMSK_XFERCOMPLMSK
,
4508 dwc2_writel(hsotg
, 0, DAINTMSK
);
4510 /* Be in disconnected state until gadget is registered */
4511 dwc2_set_bit(hsotg
, DCTL
, DCTL_SFTDISCON
);
4515 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4516 dwc2_readl(hsotg
, GRXFSIZ
),
4517 dwc2_readl(hsotg
, GNPTXFSIZ
));
4519 dwc2_hsotg_init_fifo(hsotg
);
4521 if (using_dma(hsotg
))
4522 dwc2_set_bit(hsotg
, GAHBCFG
, GAHBCFG_DMA_EN
);
4526 * dwc2_hsotg_udc_start - prepare the udc for work
4527 * @gadget: The usb gadget state
4528 * @driver: The usb gadget driver
4530 * Perform initialization to prepare udc device and driver
4533 static int dwc2_hsotg_udc_start(struct usb_gadget
*gadget
,
4534 struct usb_gadget_driver
*driver
)
4536 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4537 unsigned long flags
;
4541 pr_err("%s: called with no device\n", __func__
);
4546 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
4550 if (driver
->max_speed
< USB_SPEED_FULL
)
4551 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
4553 if (!driver
->setup
) {
4554 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
4558 WARN_ON(hsotg
->driver
);
4560 hsotg
->driver
= driver
;
4561 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
4562 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4564 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
) {
4565 ret
= dwc2_lowlevel_hw_enable(hsotg
);
4570 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4571 otg_set_peripheral(hsotg
->uphy
->otg
, &hsotg
->gadget
);
4573 spin_lock_irqsave(&hsotg
->lock
, flags
);
4574 if (dwc2_hw_is_device(hsotg
)) {
4575 dwc2_hsotg_init(hsotg
);
4576 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4580 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4582 gadget
->sg_supported
= using_desc_dma(hsotg
);
4583 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
4588 hsotg
->driver
= NULL
;
4593 * dwc2_hsotg_udc_stop - stop the udc
4594 * @gadget: The usb gadget state
4596 * Stop udc hw block and stay tunned for future transmissions
4598 static int dwc2_hsotg_udc_stop(struct usb_gadget
*gadget
)
4600 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4601 unsigned long flags
;
4607 /* all endpoints should be shutdown */
4608 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
4609 if (hsotg
->eps_in
[ep
])
4610 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
4611 if (hsotg
->eps_out
[ep
])
4612 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
4615 spin_lock_irqsave(&hsotg
->lock
, flags
);
4617 hsotg
->driver
= NULL
;
4618 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4621 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4623 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4624 otg_set_peripheral(hsotg
->uphy
->otg
, NULL
);
4626 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4627 dwc2_lowlevel_hw_disable(hsotg
);
4633 * dwc2_hsotg_gadget_getframe - read the frame number
4634 * @gadget: The usb gadget state
4636 * Read the {micro} frame number
4638 static int dwc2_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
4640 return dwc2_hsotg_read_frameno(to_hsotg(gadget
));
4644 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4645 * @gadget: The usb gadget state
4646 * @is_selfpowered: Whether the device is self-powered
4648 * Set if the device is self or bus powered.
4650 static int dwc2_hsotg_set_selfpowered(struct usb_gadget
*gadget
,
4653 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4654 unsigned long flags
;
4656 spin_lock_irqsave(&hsotg
->lock
, flags
);
4657 gadget
->is_selfpowered
= !!is_selfpowered
;
4658 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4664 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4665 * @gadget: The usb gadget state
4666 * @is_on: Current state of the USB PHY
4668 * Connect/Disconnect the USB PHY pullup
4670 static int dwc2_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
4672 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4673 unsigned long flags
;
4675 dev_dbg(hsotg
->dev
, "%s: is_on: %d op_state: %d\n", __func__
, is_on
,
4678 /* Don't modify pullup state while in host mode */
4679 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4680 hsotg
->enabled
= is_on
;
4684 spin_lock_irqsave(&hsotg
->lock
, flags
);
4687 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4688 /* Enable ACG feature in device mode,if supported */
4689 dwc2_enable_acg(hsotg
);
4690 dwc2_hsotg_core_connect(hsotg
);
4692 dwc2_hsotg_core_disconnect(hsotg
);
4693 dwc2_hsotg_disconnect(hsotg
);
4697 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4698 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4703 static int dwc2_hsotg_vbus_session(struct usb_gadget
*gadget
, int is_active
)
4705 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4706 unsigned long flags
;
4708 dev_dbg(hsotg
->dev
, "%s: is_active: %d\n", __func__
, is_active
);
4709 spin_lock_irqsave(&hsotg
->lock
, flags
);
4712 * If controller is in partial power down state, it must exit from
4713 * that state before being initialized / de-initialized
4715 if (hsotg
->lx_state
== DWC2_L2
&& hsotg
->in_ppd
)
4717 * No need to check the return value as
4718 * registers are not being restored.
4720 dwc2_exit_partial_power_down(hsotg
, 0, false);
4723 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4725 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4726 if (hsotg
->enabled
) {
4727 /* Enable ACG feature in device mode,if supported */
4728 dwc2_enable_acg(hsotg
);
4729 dwc2_hsotg_core_connect(hsotg
);
4732 dwc2_hsotg_core_disconnect(hsotg
);
4733 dwc2_hsotg_disconnect(hsotg
);
4736 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4741 * dwc2_hsotg_vbus_draw - report bMaxPower field
4742 * @gadget: The usb gadget state
4743 * @mA: Amount of current
4745 * Report how much power the device may consume to the phy.
4747 static int dwc2_hsotg_vbus_draw(struct usb_gadget
*gadget
, unsigned int mA
)
4749 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4751 if (IS_ERR_OR_NULL(hsotg
->uphy
))
4753 return usb_phy_set_power(hsotg
->uphy
, mA
);
4756 static void dwc2_gadget_set_speed(struct usb_gadget
*g
, enum usb_device_speed speed
)
4758 struct dwc2_hsotg
*hsotg
= to_hsotg(g
);
4759 unsigned long flags
;
4761 spin_lock_irqsave(&hsotg
->lock
, flags
);
4763 case USB_SPEED_HIGH
:
4764 hsotg
->params
.speed
= DWC2_SPEED_PARAM_HIGH
;
4766 case USB_SPEED_FULL
:
4767 hsotg
->params
.speed
= DWC2_SPEED_PARAM_FULL
;
4770 hsotg
->params
.speed
= DWC2_SPEED_PARAM_LOW
;
4773 dev_err(hsotg
->dev
, "invalid speed (%d)\n", speed
);
4775 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4778 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops
= {
4779 .get_frame
= dwc2_hsotg_gadget_getframe
,
4780 .set_selfpowered
= dwc2_hsotg_set_selfpowered
,
4781 .udc_start
= dwc2_hsotg_udc_start
,
4782 .udc_stop
= dwc2_hsotg_udc_stop
,
4783 .pullup
= dwc2_hsotg_pullup
,
4784 .udc_set_speed
= dwc2_gadget_set_speed
,
4785 .vbus_session
= dwc2_hsotg_vbus_session
,
4786 .vbus_draw
= dwc2_hsotg_vbus_draw
,
4790 * dwc2_hsotg_initep - initialise a single endpoint
4791 * @hsotg: The device state.
4792 * @hs_ep: The endpoint to be initialised.
4793 * @epnum: The endpoint number
4794 * @dir_in: True if direction is in.
4796 * Initialise the given endpoint (as part of the probe and device state
4797 * creation) to give to the gadget driver. Setup the endpoint name, any
4798 * direction information and other state that may be required.
4800 static void dwc2_hsotg_initep(struct dwc2_hsotg
*hsotg
,
4801 struct dwc2_hsotg_ep
*hs_ep
,
4814 hs_ep
->dir_in
= dir_in
;
4815 hs_ep
->index
= epnum
;
4817 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
4819 INIT_LIST_HEAD(&hs_ep
->queue
);
4820 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
4822 /* add to the list of endpoints known by the gadget driver */
4824 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
4826 hs_ep
->parent
= hsotg
;
4827 hs_ep
->ep
.name
= hs_ep
->name
;
4829 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)
4830 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, 8);
4832 usb_ep_set_maxpacket_limit(&hs_ep
->ep
,
4833 epnum
? 1024 : EP0_MPS_LIMIT
);
4834 hs_ep
->ep
.ops
= &dwc2_hsotg_ep_ops
;
4837 hs_ep
->ep
.caps
.type_control
= true;
4839 if (hsotg
->params
.speed
!= DWC2_SPEED_PARAM_LOW
) {
4840 hs_ep
->ep
.caps
.type_iso
= true;
4841 hs_ep
->ep
.caps
.type_bulk
= true;
4843 hs_ep
->ep
.caps
.type_int
= true;
4847 hs_ep
->ep
.caps
.dir_in
= true;
4849 hs_ep
->ep
.caps
.dir_out
= true;
4852 * if we're using dma, we need to set the next-endpoint pointer
4853 * to be something valid.
4856 if (using_dma(hsotg
)) {
4857 u32 next
= DXEPCTL_NEXTEP((epnum
+ 1) % 15);
4860 dwc2_writel(hsotg
, next
, DIEPCTL(epnum
));
4862 dwc2_writel(hsotg
, next
, DOEPCTL(epnum
));
4867 * dwc2_hsotg_hw_cfg - read HW configuration registers
4868 * @hsotg: Programming view of the DWC_otg controller
4870 * Read the USB core HW configuration registers
4872 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg
*hsotg
)
4878 /* check hardware configuration */
4880 hsotg
->num_of_eps
= hsotg
->hw_params
.num_dev_ep
;
4883 hsotg
->num_of_eps
++;
4885 hsotg
->eps_in
[0] = devm_kzalloc(hsotg
->dev
,
4886 sizeof(struct dwc2_hsotg_ep
),
4888 if (!hsotg
->eps_in
[0])
4890 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4891 hsotg
->eps_out
[0] = hsotg
->eps_in
[0];
4893 cfg
= hsotg
->hw_params
.dev_ep_dirs
;
4894 for (i
= 1, cfg
>>= 2; i
< hsotg
->num_of_eps
; i
++, cfg
>>= 2) {
4896 /* Direction in or both */
4897 if (!(ep_type
& 2)) {
4898 hsotg
->eps_in
[i
] = devm_kzalloc(hsotg
->dev
,
4899 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4900 if (!hsotg
->eps_in
[i
])
4903 /* Direction out or both */
4904 if (!(ep_type
& 1)) {
4905 hsotg
->eps_out
[i
] = devm_kzalloc(hsotg
->dev
,
4906 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4907 if (!hsotg
->eps_out
[i
])
4912 hsotg
->fifo_mem
= hsotg
->hw_params
.total_fifo_size
;
4913 hsotg
->dedicated_fifos
= hsotg
->hw_params
.en_multiple_tx_fifo
;
4915 dev_info(hsotg
->dev
, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4917 hsotg
->dedicated_fifos
? "dedicated" : "shared",
4923 * dwc2_hsotg_dump - dump state of the udc
4924 * @hsotg: Programming view of the DWC_otg controller
4927 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
)
4930 struct device
*dev
= hsotg
->dev
;
4934 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4935 dwc2_readl(hsotg
, DCFG
), dwc2_readl(hsotg
, DCTL
),
4936 dwc2_readl(hsotg
, DIEPMSK
));
4938 dev_info(dev
, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4939 dwc2_readl(hsotg
, GAHBCFG
), dwc2_readl(hsotg
, GHWCFG1
));
4941 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4942 dwc2_readl(hsotg
, GRXFSIZ
), dwc2_readl(hsotg
, GNPTXFSIZ
));
4944 /* show periodic fifo settings */
4946 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
4947 val
= dwc2_readl(hsotg
, DPTXFSIZN(idx
));
4948 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
4949 val
>> FIFOSIZE_DEPTH_SHIFT
,
4950 val
& FIFOSIZE_STARTADDR_MASK
);
4953 for (idx
= 0; idx
< hsotg
->num_of_eps
; idx
++) {
4955 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
4956 dwc2_readl(hsotg
, DIEPCTL(idx
)),
4957 dwc2_readl(hsotg
, DIEPTSIZ(idx
)),
4958 dwc2_readl(hsotg
, DIEPDMA(idx
)));
4960 val
= dwc2_readl(hsotg
, DOEPCTL(idx
));
4962 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4963 idx
, dwc2_readl(hsotg
, DOEPCTL(idx
)),
4964 dwc2_readl(hsotg
, DOEPTSIZ(idx
)),
4965 dwc2_readl(hsotg
, DOEPDMA(idx
)));
4968 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4969 dwc2_readl(hsotg
, DVBUSDIS
), dwc2_readl(hsotg
, DVBUSPULSE
));
4974 * dwc2_gadget_init - init function for gadget
4975 * @hsotg: Programming view of the DWC_otg controller
4978 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
)
4980 struct device
*dev
= hsotg
->dev
;
4984 /* Dump fifo information */
4985 dev_dbg(dev
, "NonPeriodic TXFIFO size: %d\n",
4986 hsotg
->params
.g_np_tx_fifo_size
);
4987 dev_dbg(dev
, "RXFIFO size: %d\n", hsotg
->params
.g_rx_fifo_size
);
4989 switch (hsotg
->params
.speed
) {
4990 case DWC2_SPEED_PARAM_LOW
:
4991 hsotg
->gadget
.max_speed
= USB_SPEED_LOW
;
4993 case DWC2_SPEED_PARAM_FULL
:
4994 hsotg
->gadget
.max_speed
= USB_SPEED_FULL
;
4997 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
5001 hsotg
->gadget
.ops
= &dwc2_hsotg_gadget_ops
;
5002 hsotg
->gadget
.name
= dev_name(dev
);
5003 hsotg
->gadget
.otg_caps
= &hsotg
->params
.otg_caps
;
5004 hsotg
->remote_wakeup_allowed
= 0;
5006 if (hsotg
->params
.lpm
)
5007 hsotg
->gadget
.lpm_capable
= true;
5009 if (hsotg
->dr_mode
== USB_DR_MODE_OTG
)
5010 hsotg
->gadget
.is_otg
= 1;
5011 else if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
5012 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
5014 ret
= dwc2_hsotg_hw_cfg(hsotg
);
5016 dev_err(hsotg
->dev
, "Hardware configuration failed: %d\n", ret
);
5020 hsotg
->ctrl_buff
= devm_kzalloc(hsotg
->dev
,
5021 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
5022 if (!hsotg
->ctrl_buff
)
5025 hsotg
->ep0_buff
= devm_kzalloc(hsotg
->dev
,
5026 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
5027 if (!hsotg
->ep0_buff
)
5030 if (using_desc_dma(hsotg
)) {
5031 ret
= dwc2_gadget_alloc_ctrl_desc_chains(hsotg
);
5036 ret
= devm_request_irq(hsotg
->dev
, hsotg
->irq
, dwc2_hsotg_irq
,
5037 IRQF_SHARED
, dev_name(hsotg
->dev
), hsotg
);
5039 dev_err(dev
, "cannot claim IRQ for gadget\n");
5043 /* hsotg->num_of_eps holds number of EPs other than ep0 */
5045 if (hsotg
->num_of_eps
== 0) {
5046 dev_err(dev
, "wrong number of EPs (zero)\n");
5050 /* setup endpoint information */
5052 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
5053 hsotg
->gadget
.ep0
= &hsotg
->eps_out
[0]->ep
;
5055 /* allocate EP0 request */
5057 hsotg
->ctrl_req
= dwc2_hsotg_ep_alloc_request(&hsotg
->eps_out
[0]->ep
,
5059 if (!hsotg
->ctrl_req
) {
5060 dev_err(dev
, "failed to allocate ctrl req\n");
5064 /* initialise the endpoints now the core has been initialised */
5065 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++) {
5066 if (hsotg
->eps_in
[epnum
])
5067 dwc2_hsotg_initep(hsotg
, hsotg
->eps_in
[epnum
],
5069 if (hsotg
->eps_out
[epnum
])
5070 dwc2_hsotg_initep(hsotg
, hsotg
->eps_out
[epnum
],
5074 dwc2_hsotg_dump(hsotg
);
5080 * dwc2_hsotg_remove - remove function for hsotg driver
5081 * @hsotg: Programming view of the DWC_otg controller
5084 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
)
5086 usb_del_gadget_udc(&hsotg
->gadget
);
5087 dwc2_hsotg_ep_free_request(&hsotg
->eps_out
[0]->ep
, hsotg
->ctrl_req
);
5092 int dwc2_hsotg_suspend(struct dwc2_hsotg
*hsotg
)
5094 unsigned long flags
;
5096 if (hsotg
->lx_state
!= DWC2_L0
)
5099 if (hsotg
->driver
) {
5102 dev_info(hsotg
->dev
, "suspending usb gadget %s\n",
5103 hsotg
->driver
->driver
.name
);
5105 spin_lock_irqsave(&hsotg
->lock
, flags
);
5107 dwc2_hsotg_core_disconnect(hsotg
);
5108 dwc2_hsotg_disconnect(hsotg
);
5109 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
5110 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5112 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
5113 if (hsotg
->eps_in
[ep
])
5114 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_in
[ep
]->ep
);
5115 if (hsotg
->eps_out
[ep
])
5116 dwc2_hsotg_ep_disable_lock(&hsotg
->eps_out
[ep
]->ep
);
5123 int dwc2_hsotg_resume(struct dwc2_hsotg
*hsotg
)
5125 unsigned long flags
;
5127 if (hsotg
->lx_state
== DWC2_L2
)
5130 if (hsotg
->driver
) {
5131 dev_info(hsotg
->dev
, "resuming usb gadget %s\n",
5132 hsotg
->driver
->driver
.name
);
5134 spin_lock_irqsave(&hsotg
->lock
, flags
);
5135 dwc2_hsotg_core_init_disconnected(hsotg
, false);
5136 if (hsotg
->enabled
) {
5137 /* Enable ACG feature in device mode,if supported */
5138 dwc2_enable_acg(hsotg
);
5139 dwc2_hsotg_core_connect(hsotg
);
5141 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
5148 * dwc2_backup_device_registers() - Backup controller device registers.
5149 * When suspending usb bus, registers needs to be backuped
5150 * if controller power is disabled once suspended.
5152 * @hsotg: Programming view of the DWC_otg controller
5154 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
5156 struct dwc2_dregs_backup
*dr
;
5159 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5161 /* Backup dev regs */
5162 dr
= &hsotg
->dr_backup
;
5164 dr
->dcfg
= dwc2_readl(hsotg
, DCFG
);
5165 dr
->dctl
= dwc2_readl(hsotg
, DCTL
);
5166 dr
->daintmsk
= dwc2_readl(hsotg
, DAINTMSK
);
5167 dr
->diepmsk
= dwc2_readl(hsotg
, DIEPMSK
);
5168 dr
->doepmsk
= dwc2_readl(hsotg
, DOEPMSK
);
5170 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
5172 dr
->diepctl
[i
] = dwc2_readl(hsotg
, DIEPCTL(i
));
5174 /* Ensure DATA PID is correctly configured */
5175 if (dr
->diepctl
[i
] & DXEPCTL_DPID
)
5176 dr
->diepctl
[i
] |= DXEPCTL_SETD1PID
;
5178 dr
->diepctl
[i
] |= DXEPCTL_SETD0PID
;
5180 dr
->dieptsiz
[i
] = dwc2_readl(hsotg
, DIEPTSIZ(i
));
5181 dr
->diepdma
[i
] = dwc2_readl(hsotg
, DIEPDMA(i
));
5183 /* Backup OUT EPs */
5184 dr
->doepctl
[i
] = dwc2_readl(hsotg
, DOEPCTL(i
));
5186 /* Ensure DATA PID is correctly configured */
5187 if (dr
->doepctl
[i
] & DXEPCTL_DPID
)
5188 dr
->doepctl
[i
] |= DXEPCTL_SETD1PID
;
5190 dr
->doepctl
[i
] |= DXEPCTL_SETD0PID
;
5192 dr
->doeptsiz
[i
] = dwc2_readl(hsotg
, DOEPTSIZ(i
));
5193 dr
->doepdma
[i
] = dwc2_readl(hsotg
, DOEPDMA(i
));
5194 dr
->dtxfsiz
[i
] = dwc2_readl(hsotg
, DPTXFSIZN(i
));
5201 * dwc2_restore_device_registers() - Restore controller device registers.
5202 * When resuming usb bus, device registers needs to be restored
5203 * if controller power were disabled.
5205 * @hsotg: Programming view of the DWC_otg controller
5206 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5208 * Return: 0 if successful, negative error code otherwise
5210 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
, int remote_wakeup
)
5212 struct dwc2_dregs_backup
*dr
;
5215 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
5217 /* Restore dev regs */
5218 dr
= &hsotg
->dr_backup
;
5220 dev_err(hsotg
->dev
, "%s: no device registers to restore\n",
5227 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5229 dwc2_writel(hsotg
, dr
->daintmsk
, DAINTMSK
);
5230 dwc2_writel(hsotg
, dr
->diepmsk
, DIEPMSK
);
5231 dwc2_writel(hsotg
, dr
->doepmsk
, DOEPMSK
);
5233 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
5234 /* Restore IN EPs */
5235 dwc2_writel(hsotg
, dr
->dieptsiz
[i
], DIEPTSIZ(i
));
5236 dwc2_writel(hsotg
, dr
->diepdma
[i
], DIEPDMA(i
));
5237 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5238 /** WA for enabled EPx's IN in DDMA mode. On entering to
5239 * hibernation wrong value read and saved from DIEPDMAx,
5240 * as result BNA interrupt asserted on hibernation exit
5241 * by restoring from saved area.
5243 if (using_desc_dma(hsotg
) &&
5244 (dr
->diepctl
[i
] & DXEPCTL_EPENA
))
5245 dr
->diepdma
[i
] = hsotg
->eps_in
[i
]->desc_list_dma
;
5246 dwc2_writel(hsotg
, dr
->dtxfsiz
[i
], DPTXFSIZN(i
));
5247 dwc2_writel(hsotg
, dr
->diepctl
[i
], DIEPCTL(i
));
5248 /* Restore OUT EPs */
5249 dwc2_writel(hsotg
, dr
->doeptsiz
[i
], DOEPTSIZ(i
));
5250 /* WA for enabled EPx's OUT in DDMA mode. On entering to
5251 * hibernation wrong value read and saved from DOEPDMAx,
5252 * as result BNA interrupt asserted on hibernation exit
5253 * by restoring from saved area.
5255 if (using_desc_dma(hsotg
) &&
5256 (dr
->doepctl
[i
] & DXEPCTL_EPENA
))
5257 dr
->doepdma
[i
] = hsotg
->eps_out
[i
]->desc_list_dma
;
5258 dwc2_writel(hsotg
, dr
->doepdma
[i
], DOEPDMA(i
));
5259 dwc2_writel(hsotg
, dr
->doepctl
[i
], DOEPCTL(i
));
5266 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5268 * @hsotg: Programming view of DWC_otg controller
5271 void dwc2_gadget_init_lpm(struct dwc2_hsotg
*hsotg
)
5275 if (!hsotg
->params
.lpm
)
5278 val
= GLPMCFG_LPMCAP
| GLPMCFG_APPL1RES
;
5279 val
|= hsotg
->params
.hird_threshold_en
? GLPMCFG_HIRD_THRES_EN
: 0;
5280 val
|= hsotg
->params
.lpm_clock_gating
? GLPMCFG_ENBLSLPM
: 0;
5281 val
|= hsotg
->params
.hird_threshold
<< GLPMCFG_HIRD_THRES_SHIFT
;
5282 val
|= hsotg
->params
.besl
? GLPMCFG_ENBESL
: 0;
5283 val
|= GLPMCFG_LPM_REJECT_CTRL_CONTROL
;
5284 val
|= GLPMCFG_LPM_ACCEPT_CTRL_ISOC
;
5285 dwc2_writel(hsotg
, val
, GLPMCFG
);
5286 dev_dbg(hsotg
->dev
, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg
, GLPMCFG
));
5288 /* Unmask WKUP_ALERT Interrupt */
5289 if (hsotg
->params
.service_interval
)
5290 dwc2_set_bit(hsotg
, GINTMSK2
, GINTMSK2_WKUP_ALERT_INT_MSK
);
5294 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5296 * @hsotg: Programming view of DWC_otg controller
5299 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg
*hsotg
)
5303 val
|= GREFCLK_REF_CLK_MODE
;
5304 val
|= hsotg
->params
.ref_clk_per
<< GREFCLK_REFCLKPER_SHIFT
;
5305 val
|= hsotg
->params
.sof_cnt_wkup_alert
<<
5306 GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT
;
5308 dwc2_writel(hsotg
, val
, GREFCLK
);
5309 dev_dbg(hsotg
->dev
, "GREFCLK=0x%08x\n", dwc2_readl(hsotg
, GREFCLK
));
5313 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5315 * @hsotg: Programming view of the DWC_otg controller
5317 * Return non-zero if failed to enter to hibernation.
5319 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg
*hsotg
)
5326 /* Change to L2(suspend) state */
5327 hsotg
->lx_state
= DWC2_L2
;
5328 dev_dbg(hsotg
->dev
, "Start of hibernation completed\n");
5329 ret
= dwc2_backup_global_registers(hsotg
);
5331 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5335 ret
= dwc2_backup_device_registers(hsotg
);
5337 dev_err(hsotg
->dev
, "%s: failed to backup device registers\n",
5342 gpwrdn
= GPWRDN_PWRDNRSTN
;
5344 gusbcfg
= dwc2_readl(hsotg
, GUSBCFG
);
5345 if (gusbcfg
& GUSBCFG_ULPI_UTMI_SEL
) {
5346 /* ULPI interface */
5347 gpwrdn
|= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY
;
5349 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5352 /* Suspend the Phy Clock */
5353 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5354 pcgcctl
|= PCGCTL_STOPPCLK
;
5355 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5358 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5359 gpwrdn
|= GPWRDN_PMUACTV
;
5360 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5363 /* Set flag to indicate that we are in hibernation */
5364 hsotg
->hibernated
= 1;
5366 /* Enable interrupts from wake up logic */
5367 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5368 gpwrdn
|= GPWRDN_PMUINTSEL
;
5369 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5372 /* Unmask device mode interrupts in GPWRDN */
5373 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5374 gpwrdn
|= GPWRDN_RST_DET_MSK
;
5375 gpwrdn
|= GPWRDN_LNSTSCHG_MSK
;
5376 gpwrdn
|= GPWRDN_STS_CHGINT_MSK
;
5377 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5380 /* Enable Power Down Clamp */
5381 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5382 gpwrdn
|= GPWRDN_PWRDNCLMP
;
5383 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5386 /* Switch off VDD */
5387 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5388 gpwrdn
|= GPWRDN_PWRDNSWTCH
;
5389 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5392 /* Save gpwrdn register for further usage if stschng interrupt */
5393 hsotg
->gr_backup
.gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5394 dev_dbg(hsotg
->dev
, "Hibernation completed\n");
5400 * dwc2_gadget_exit_hibernation()
5401 * This function is for exiting from Device mode hibernation by host initiated
5402 * resume/reset and device initiated remote-wakeup.
5404 * @hsotg: Programming view of the DWC_otg controller
5405 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5406 * @reset: indicates whether resume is initiated by Reset.
5408 * Return non-zero if failed to exit from hibernation.
5410 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg
*hsotg
,
5411 int rem_wakeup
, int reset
)
5417 struct dwc2_gregs_backup
*gr
;
5418 struct dwc2_dregs_backup
*dr
;
5420 gr
= &hsotg
->gr_backup
;
5421 dr
= &hsotg
->dr_backup
;
5423 if (!hsotg
->hibernated
) {
5424 dev_dbg(hsotg
->dev
, "Already exited from Hibernation\n");
5428 "%s: called with rem_wakeup = %d reset = %d\n",
5429 __func__
, rem_wakeup
, reset
);
5431 dwc2_hib_restore_common(hsotg
, rem_wakeup
, 0);
5434 /* Clear all pending interupts */
5435 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5438 /* De-assert Restore */
5439 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5440 gpwrdn
&= ~GPWRDN_RESTORE
;
5441 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5445 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5446 pcgcctl
&= ~PCGCTL_RSTPDWNMODULE
;
5447 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5450 /* Restore GUSBCFG, DCFG and DCTL */
5451 dwc2_writel(hsotg
, gr
->gusbcfg
, GUSBCFG
);
5452 dwc2_writel(hsotg
, dr
->dcfg
, DCFG
);
5453 dwc2_writel(hsotg
, dr
->dctl
, DCTL
);
5455 /* On USB Reset, reset device address to zero */
5457 dwc2_clear_bit(hsotg
, DCFG
, DCFG_DEVADDR_MASK
);
5459 /* Reset ULPI latch */
5460 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5461 gpwrdn
&= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY
;
5462 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5464 /* De-assert Wakeup Logic */
5465 gpwrdn
= dwc2_readl(hsotg
, GPWRDN
);
5466 gpwrdn
&= ~GPWRDN_PMUACTV
;
5467 dwc2_writel(hsotg
, gpwrdn
, GPWRDN
);
5471 /* Start Remote Wakeup Signaling */
5472 dwc2_writel(hsotg
, dr
->dctl
| DCTL_RMTWKUPSIG
, DCTL
);
5475 /* Set Device programming done bit */
5476 dctl
= dwc2_readl(hsotg
, DCTL
);
5477 dctl
|= DCTL_PWRONPRGDONE
;
5478 dwc2_writel(hsotg
, dctl
, DCTL
);
5480 /* Wait for interrupts which must be cleared */
5482 /* Clear all pending interupts */
5483 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5485 /* Restore global registers */
5486 ret
= dwc2_restore_global_registers(hsotg
);
5488 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5493 /* Restore device registers */
5494 ret
= dwc2_restore_device_registers(hsotg
, rem_wakeup
);
5496 dev_err(hsotg
->dev
, "%s: failed to restore device registers\n",
5503 dctl
= dwc2_readl(hsotg
, DCTL
);
5504 dctl
&= ~DCTL_RMTWKUPSIG
;
5505 dwc2_writel(hsotg
, dctl
, DCTL
);
5508 hsotg
->hibernated
= 0;
5509 hsotg
->lx_state
= DWC2_L0
;
5510 dev_dbg(hsotg
->dev
, "Hibernation recovery completes here\n");
5516 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5519 * @hsotg: Programming view of the DWC_otg controller
5521 * Return: non-zero if failed to enter device partial power down.
5523 * This function is for entering device mode partial power down.
5525 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg
*hsotg
)
5530 dev_dbg(hsotg
->dev
, "Entering device partial power down started.\n");
5532 /* Backup all registers */
5533 ret
= dwc2_backup_global_registers(hsotg
);
5535 dev_err(hsotg
->dev
, "%s: failed to backup global registers\n",
5540 ret
= dwc2_backup_device_registers(hsotg
);
5542 dev_err(hsotg
->dev
, "%s: failed to backup device registers\n",
5548 * Clear any pending interrupts since dwc2 will not be able to
5549 * clear them after entering partial_power_down.
5551 dwc2_writel(hsotg
, 0xffffffff, GINTSTS
);
5553 /* Put the controller in low power state */
5554 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5556 pcgcctl
|= PCGCTL_PWRCLMP
;
5557 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5560 pcgcctl
|= PCGCTL_RSTPDWNMODULE
;
5561 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5564 pcgcctl
|= PCGCTL_STOPPCLK
;
5565 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5567 /* Set in_ppd flag to 1 as here core enters suspend. */
5569 hsotg
->lx_state
= DWC2_L2
;
5571 dev_dbg(hsotg
->dev
, "Entering device partial power down completed.\n");
5577 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5580 * @hsotg: Programming view of the DWC_otg controller
5581 * @restore: indicates whether need to restore the registers or not.
5583 * Return: non-zero if failed to exit device partial power down.
5585 * This function is for exiting from device mode partial power down.
5587 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg
*hsotg
,
5592 struct dwc2_dregs_backup
*dr
;
5595 dr
= &hsotg
->dr_backup
;
5597 dev_dbg(hsotg
->dev
, "Exiting device partial Power Down started.\n");
5599 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5600 pcgcctl
&= ~PCGCTL_STOPPCLK
;
5601 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5603 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5604 pcgcctl
&= ~PCGCTL_PWRCLMP
;
5605 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5607 pcgcctl
= dwc2_readl(hsotg
, PCGCTL
);
5608 pcgcctl
&= ~PCGCTL_RSTPDWNMODULE
;
5609 dwc2_writel(hsotg
, pcgcctl
, PCGCTL
);
5613 ret
= dwc2_restore_global_registers(hsotg
);
5615 dev_err(hsotg
->dev
, "%s: failed to restore registers\n",
5620 dwc2_writel(hsotg
, dr
->dcfg
, DCFG
);
5622 ret
= dwc2_restore_device_registers(hsotg
, 0);
5624 dev_err(hsotg
->dev
, "%s: failed to restore device registers\n",
5630 /* Set the Power-On Programming done bit */
5631 dctl
= dwc2_readl(hsotg
, DCTL
);
5632 dctl
|= DCTL_PWRONPRGDONE
;
5633 dwc2_writel(hsotg
, dctl
, DCTL
);
5635 /* Set in_ppd flag to 0 as here core exits from suspend. */
5637 hsotg
->lx_state
= DWC2_L0
;
5639 dev_dbg(hsotg
->dev
, "Exiting device partial Power Down completed.\n");
5644 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5646 * @hsotg: Programming view of the DWC_otg controller
5648 * Return: non-zero if failed to enter device partial power down.
5650 * This function is for entering device mode clock gating.
5652 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg
*hsotg
)
5656 dev_dbg(hsotg
->dev
, "Entering device clock gating.\n");
5658 /* Set the Phy Clock bit as suspend is received. */
5659 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
5660 pcgctl
|= PCGCTL_STOPPCLK
;
5661 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
5664 /* Set the Gate hclk as suspend is received. */
5665 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
5666 pcgctl
|= PCGCTL_GATEHCLK
;
5667 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
5670 hsotg
->lx_state
= DWC2_L2
;
5671 hsotg
->bus_suspended
= true;
5675 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5677 * @hsotg: Programming view of the DWC_otg controller
5678 * @rem_wakeup: indicates whether remote wake up is enabled.
5680 * This function is for exiting from device mode clock gating.
5682 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg
*hsotg
, int rem_wakeup
)
5687 dev_dbg(hsotg
->dev
, "Exiting device clock gating.\n");
5689 /* Clear the Gate hclk. */
5690 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
5691 pcgctl
&= ~PCGCTL_GATEHCLK
;
5692 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
5695 /* Phy Clock bit. */
5696 pcgctl
= dwc2_readl(hsotg
, PCGCTL
);
5697 pcgctl
&= ~PCGCTL_STOPPCLK
;
5698 dwc2_writel(hsotg
, pcgctl
, PCGCTL
);
5702 /* Set Remote Wakeup Signaling */
5703 dctl
= dwc2_readl(hsotg
, DCTL
);
5704 dctl
|= DCTL_RMTWKUPSIG
;
5705 dwc2_writel(hsotg
, dctl
, DCTL
);
5708 /* Change to L0 state */
5709 call_gadget(hsotg
, resume
);
5710 hsotg
->lx_state
= DWC2_L0
;
5711 hsotg
->bus_suspended
= false;