Merge tag 'io_uring-6.11-20240802' of git://git.kernel.dk/linux
[linux.git] / drivers / regulator / core.c
blob7674b7f2df147b4b99ad7069b39409a0235fa853
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
47 static struct dentry *debugfs_root;
50 * struct regulator_map
52 * Used to provide symbolic supply names to devices.
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
62 * struct regulator_enable_gpio
64 * Management for shared enable GPIO pin
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
74 * struct regulator_supply_alias
76 * Used to map lookups for a supply onto an alternative device.
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
103 const char *rdev_get_name(struct regulator_dev *rdev)
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
112 EXPORT_SYMBOL_GPL(rdev_get_name);
114 static bool have_full_constraints(void)
116 return has_full_constraints || of_have_populated_dt();
119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
129 return false;
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
143 static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
146 bool lock = false;
147 int ret = 0;
149 mutex_lock(&regulator_nesting_mutex);
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
157 if (lock) {
158 mutex_unlock(&regulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(&regulator_nesting_mutex);
162 } else {
163 lock = true;
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
171 mutex_unlock(&regulator_nesting_mutex);
173 return ret;
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
186 static void regulator_lock(struct regulator_dev *rdev)
188 regulator_lock_nested(rdev, NULL);
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
198 static void regulator_unlock(struct regulator_dev *rdev)
200 mutex_lock(&regulator_nesting_mutex);
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
209 mutex_unlock(&regulator_nesting_mutex);
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
218 * Locks both rdevs using the regulator_ww_class.
220 static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
224 struct regulator_dev *held, *contended;
225 int ret;
227 ww_acquire_init(ww_ctx, &regulator_ww_class);
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
255 exit:
256 ww_acquire_done(ww_ctx);
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
265 * The inverse of regulator_lock_two().
268 static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
277 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
279 struct regulator_dev *c_rdev;
280 int i;
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
285 if (rdev->supply->rdev == c_rdev)
286 return true;
289 return false;
292 static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
301 if (!c_rdev)
302 continue;
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
312 regulator_unlock(c_rdev);
316 static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
321 struct regulator_dev *c_rdev;
322 int i, err;
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
327 if (!c_rdev)
328 continue;
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
341 } else {
342 *old_contended_rdev = NULL;
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
357 return 0;
359 err_unlock:
360 regulator_unlock_recursive(rdev, i);
362 return err;
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
371 * Unlock all regulators related with rdev by coupling or supplying.
373 static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
388 static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
395 mutex_lock(&regulator_list_mutex);
397 ww_acquire_init(ww_ctx, &regulator_ww_class);
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
415 } while (err == -EDEADLK);
417 ww_acquire_done(ww_ctx);
419 mutex_unlock(&regulator_list_mutex);
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
433 static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
450 return NULL;
452 err_node_put:
453 of_node_put(child);
454 return regnode;
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
466 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
485 return regnode;
488 /* Platform voltage constraint check */
489 int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
492 BUG_ON(*min_uV > *max_uV);
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
510 return 0;
513 /* return 0 if the state is valid */
514 static int regulator_check_states(suspend_state_t state)
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
519 /* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
522 int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = &regulator->voltage[state];
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
550 return 0;
553 /* current constraint check */
554 static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
557 BUG_ON(*min_uA > *max_uA);
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
575 return 0;
578 /* operating mode constraint check */
579 static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
608 return -EINVAL;
611 static inline struct regulator_state *
612 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
614 if (rdev->constraints == NULL)
615 return NULL;
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
629 static const struct regulator_state *
630 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
632 const struct regulator_state *rstate;
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
650 return rstate;
653 static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
667 static DEVICE_ATTR_RO(microvolts);
669 static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
676 static DEVICE_ATTR_RO(microamps);
678 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
685 static DEVICE_ATTR_RO(name);
687 static const char *regulator_opmode_to_str(int mode)
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
699 return "unknown";
702 static ssize_t regulator_print_opmode(char *buf, int mode)
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
707 static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
714 static DEVICE_ATTR_RO(opmode);
716 static ssize_t regulator_print_state(char *buf, int state)
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
726 static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
736 return ret;
738 static DEVICE_ATTR_RO(state);
740 static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
783 return sprintf(buf, "%s\n", label);
785 static DEVICE_ATTR_RO(status);
787 static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
797 static DEVICE_ATTR_RO(min_microamps);
799 static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
809 static DEVICE_ATTR_RO(max_microamps);
811 static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
821 static DEVICE_ATTR_RO(min_microvolts);
823 static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
833 static DEVICE_ATTR_RO(max_microvolts);
835 static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
850 static DEVICE_ATTR_RO(requested_microamps);
852 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
858 static DEVICE_ATTR_RO(num_users);
860 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
871 return sprintf(buf, "unknown\n");
873 static DEVICE_ATTR_RO(type);
875 static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
882 static DEVICE_ATTR_RO(suspend_mem_microvolts);
884 static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
891 static DEVICE_ATTR_RO(suspend_disk_microvolts);
893 static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
900 static DEVICE_ATTR_RO(suspend_standby_microvolts);
902 static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
910 static DEVICE_ATTR_RO(suspend_mem_mode);
912 static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
920 static DEVICE_ATTR_RO(suspend_disk_mode);
922 static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
930 static DEVICE_ATTR_RO(suspend_standby_mode);
932 static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
940 static DEVICE_ATTR_RO(suspend_mem_state);
942 static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
950 static DEVICE_ATTR_RO(suspend_disk_state);
952 static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
960 static DEVICE_ATTR_RO(suspend_standby_state);
962 static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
979 return sprintf(buf, "%s\n", report);
981 static DEVICE_ATTR_RO(bypass);
983 #define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
995 static DEVICE_ATTR_RO(name)
997 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1007 /* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1010 static int drms_uA_update(struct regulator_dev *rdev)
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1039 current_uA += rdev->constraints->system_load;
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1102 return err;
1105 static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1108 int ret = 0;
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1140 return ret;
1143 static int suspend_set_initial_state(struct regulator_dev *rdev)
1145 const struct regulator_state *rstate;
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1152 return __suspend_set_state(rdev, rstate);
1155 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156 static void print_constraints_debug(struct regulator_dev *rdev)
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1223 rdev_dbg(rdev, "%s\n", buf);
1225 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1229 static void print_constraints(struct regulator_dev *rdev)
1231 struct regulation_constraints *constraints = rdev->constraints;
1233 print_constraints_debug(rdev);
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1241 static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1277 target_min = current_uV;
1278 target_max = current_uV;
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1375 return 0;
1378 static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1405 return 0;
1408 static int _regulator_do_enable(struct regulator_dev *rdev);
1410 static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1414 bool enable;
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1426 return set(rdev, limit, severity, enable);
1429 static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1433 int ret = 0;
1435 if (!set)
1436 return -EOPNOTSUPP;
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1454 return ret;
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1466 static int set_machine_constraints(struct regulator_dev *rdev)
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1508 } else if (rdev->constraints->system_load) {
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1513 drms_uA_update(rdev);
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1691 print_constraints(rdev);
1692 return 0;
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1704 static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1707 int err;
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1720 supply_rdev->open_count++;
1722 return 0;
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1736 static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1743 if (supply == NULL)
1744 return -EINVAL;
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1766 mutex_lock(&regulator_list_mutex);
1767 list_for_each_entry(node, &regulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1787 list_add(&new_node->list, &regulator_map_list);
1788 mutex_unlock(&regulator_list_mutex);
1790 return 0;
1792 fail:
1793 mutex_unlock(&regulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1799 static void unset_regulator_supplies(struct regulator_dev *rdev)
1801 struct regulator_map *node, *n;
1803 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1812 #ifdef CONFIG_DEBUG_FS
1813 static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1822 if (!c)
1823 return 0;
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1848 return ret;
1851 #endif
1853 static const struct file_operations constraint_flags_fops = {
1854 #ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858 #endif
1861 #define REG_STR_SIZE 64
1863 static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1867 struct regulator *regulator;
1868 int err = 0;
1870 lockdep_assert_held_once(&rdev->mutex.base);
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1899 list_add(&regulator->list, &rdev->consumer_list);
1901 if (dev) {
1902 regulator->dev = dev;
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1914 if (err != -EEXIST) {
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs)) {
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 regulator->debugfs = NULL;
1922 if (regulator->debugfs) {
1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 &regulator->uA_load);
1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 regulator, &constraint_flags_fops);
1934 * Check now if the regulator is an always on regulator - if
1935 * it is then we don't need to do nearly so much work for
1936 * enable/disable calls.
1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 _regulator_is_enabled(rdev))
1940 regulator->always_on = true;
1942 return regulator;
1945 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1947 if (rdev->constraints && rdev->constraints->enable_time)
1948 return rdev->constraints->enable_time;
1949 if (rdev->desc->ops->enable_time)
1950 return rdev->desc->ops->enable_time(rdev);
1951 return rdev->desc->enable_time;
1954 static struct regulator_supply_alias *regulator_find_supply_alias(
1955 struct device *dev, const char *supply)
1957 struct regulator_supply_alias *map;
1959 list_for_each_entry(map, &regulator_supply_alias_list, list)
1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 return map;
1963 return NULL;
1966 static void regulator_supply_alias(struct device **dev, const char **supply)
1968 struct regulator_supply_alias *map;
1970 map = regulator_find_supply_alias(*dev, *supply);
1971 if (map) {
1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 *supply, map->alias_supply,
1974 dev_name(map->alias_dev));
1975 *dev = map->alias_dev;
1976 *supply = map->alias_supply;
1980 static int regulator_match(struct device *dev, const void *data)
1982 struct regulator_dev *r = dev_to_rdev(dev);
1984 return strcmp(rdev_get_name(r), data) == 0;
1987 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1989 struct device *dev;
1991 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1993 return dev ? dev_to_rdev(dev) : NULL;
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2008 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 const char *supply)
2011 struct regulator_dev *r = NULL;
2012 struct device_node *node;
2013 struct regulator_map *map;
2014 const char *devname = NULL;
2016 regulator_supply_alias(&dev, &supply);
2018 /* first do a dt based lookup */
2019 if (dev && dev->of_node) {
2020 node = of_get_regulator(dev, supply);
2021 if (node) {
2022 r = of_find_regulator_by_node(node);
2023 of_node_put(node);
2024 if (r)
2025 return r;
2028 * We have a node, but there is no device.
2029 * assume it has not registered yet.
2031 return ERR_PTR(-EPROBE_DEFER);
2035 /* if not found, try doing it non-dt way */
2036 if (dev)
2037 devname = dev_name(dev);
2039 mutex_lock(&regulator_list_mutex);
2040 list_for_each_entry(map, &regulator_map_list, list) {
2041 /* If the mapping has a device set up it must match */
2042 if (map->dev_name &&
2043 (!devname || strcmp(map->dev_name, devname)))
2044 continue;
2046 if (strcmp(map->supply, supply) == 0 &&
2047 get_device(&map->regulator->dev)) {
2048 r = map->regulator;
2049 break;
2052 mutex_unlock(&regulator_list_mutex);
2054 if (r)
2055 return r;
2057 r = regulator_lookup_by_name(supply);
2058 if (r)
2059 return r;
2061 return ERR_PTR(-ENODEV);
2064 static int regulator_resolve_supply(struct regulator_dev *rdev)
2066 struct regulator_dev *r;
2067 struct device *dev = rdev->dev.parent;
2068 struct ww_acquire_ctx ww_ctx;
2069 int ret = 0;
2071 /* No supply to resolve? */
2072 if (!rdev->supply_name)
2073 return 0;
2075 /* Supply already resolved? (fast-path without locking contention) */
2076 if (rdev->supply)
2077 return 0;
2079 r = regulator_dev_lookup(dev, rdev->supply_name);
2080 if (IS_ERR(r)) {
2081 ret = PTR_ERR(r);
2083 /* Did the lookup explicitly defer for us? */
2084 if (ret == -EPROBE_DEFER)
2085 goto out;
2087 if (have_full_constraints()) {
2088 r = dummy_regulator_rdev;
2089 get_device(&r->dev);
2090 } else {
2091 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 rdev->supply_name, rdev->desc->name);
2093 ret = -EPROBE_DEFER;
2094 goto out;
2098 if (r == rdev) {
2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 rdev->desc->name, rdev->supply_name);
2101 if (!have_full_constraints()) {
2102 ret = -EINVAL;
2103 goto out;
2105 r = dummy_regulator_rdev;
2106 get_device(&r->dev);
2110 * If the supply's parent device is not the same as the
2111 * regulator's parent device, then ensure the parent device
2112 * is bound before we resolve the supply, in case the parent
2113 * device get probe deferred and unregisters the supply.
2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 if (!device_is_bound(r->dev.parent)) {
2117 put_device(&r->dev);
2118 ret = -EPROBE_DEFER;
2119 goto out;
2123 /* Recursively resolve the supply of the supply */
2124 ret = regulator_resolve_supply(r);
2125 if (ret < 0) {
2126 put_device(&r->dev);
2127 goto out;
2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 * between rdev->supply null check and setting rdev->supply in
2133 * set_supply() from concurrent tasks.
2135 regulator_lock_two(rdev, r, &ww_ctx);
2137 /* Supply just resolved by a concurrent task? */
2138 if (rdev->supply) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2144 ret = set_supply(rdev, r);
2145 if (ret < 0) {
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147 put_device(&r->dev);
2148 goto out;
2151 regulator_unlock_two(rdev, r, &ww_ctx);
2154 * In set_machine_constraints() we may have turned this regulator on
2155 * but we couldn't propagate to the supply if it hadn't been resolved
2156 * yet. Do it now.
2158 if (rdev->use_count) {
2159 ret = regulator_enable(rdev->supply);
2160 if (ret < 0) {
2161 _regulator_put(rdev->supply);
2162 rdev->supply = NULL;
2163 goto out;
2167 out:
2168 return ret;
2171 /* Internal regulator request function */
2172 struct regulator *_regulator_get(struct device *dev, const char *id,
2173 enum regulator_get_type get_type)
2175 struct regulator_dev *rdev;
2176 struct regulator *regulator;
2177 struct device_link *link;
2178 int ret;
2180 if (get_type >= MAX_GET_TYPE) {
2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 return ERR_PTR(-EINVAL);
2185 if (id == NULL) {
2186 pr_err("get() with no identifier\n");
2187 return ERR_PTR(-EINVAL);
2190 rdev = regulator_dev_lookup(dev, id);
2191 if (IS_ERR(rdev)) {
2192 ret = PTR_ERR(rdev);
2195 * If regulator_dev_lookup() fails with error other
2196 * than -ENODEV our job here is done, we simply return it.
2198 if (ret != -ENODEV)
2199 return ERR_PTR(ret);
2201 if (!have_full_constraints()) {
2202 dev_warn(dev,
2203 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2204 return ERR_PTR(-ENODEV);
2207 switch (get_type) {
2208 case NORMAL_GET:
2210 * Assume that a regulator is physically present and
2211 * enabled, even if it isn't hooked up, and just
2212 * provide a dummy.
2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 rdev = dummy_regulator_rdev;
2216 get_device(&rdev->dev);
2217 break;
2219 case EXCLUSIVE_GET:
2220 dev_warn(dev,
2221 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2222 fallthrough;
2224 default:
2225 return ERR_PTR(-ENODEV);
2229 if (rdev->exclusive) {
2230 regulator = ERR_PTR(-EPERM);
2231 put_device(&rdev->dev);
2232 return regulator;
2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 regulator = ERR_PTR(-EBUSY);
2237 put_device(&rdev->dev);
2238 return regulator;
2241 mutex_lock(&regulator_list_mutex);
2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 mutex_unlock(&regulator_list_mutex);
2245 if (ret != 0) {
2246 regulator = ERR_PTR(-EPROBE_DEFER);
2247 put_device(&rdev->dev);
2248 return regulator;
2251 ret = regulator_resolve_supply(rdev);
2252 if (ret < 0) {
2253 regulator = ERR_PTR(ret);
2254 put_device(&rdev->dev);
2255 return regulator;
2258 if (!try_module_get(rdev->owner)) {
2259 regulator = ERR_PTR(-EPROBE_DEFER);
2260 put_device(&rdev->dev);
2261 return regulator;
2264 regulator_lock(rdev);
2265 regulator = create_regulator(rdev, dev, id);
2266 regulator_unlock(rdev);
2267 if (regulator == NULL) {
2268 regulator = ERR_PTR(-ENOMEM);
2269 module_put(rdev->owner);
2270 put_device(&rdev->dev);
2271 return regulator;
2274 rdev->open_count++;
2275 if (get_type == EXCLUSIVE_GET) {
2276 rdev->exclusive = 1;
2278 ret = _regulator_is_enabled(rdev);
2279 if (ret > 0) {
2280 rdev->use_count = 1;
2281 regulator->enable_count = 1;
2283 /* Propagate the regulator state to its supply */
2284 if (rdev->supply) {
2285 ret = regulator_enable(rdev->supply);
2286 if (ret < 0) {
2287 destroy_regulator(regulator);
2288 module_put(rdev->owner);
2289 put_device(&rdev->dev);
2290 return ERR_PTR(ret);
2293 } else {
2294 rdev->use_count = 0;
2295 regulator->enable_count = 0;
2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 if (!IS_ERR_OR_NULL(link))
2301 regulator->device_link = true;
2303 return regulator;
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged. It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2319 struct regulator *regulator_get(struct device *dev, const char *id)
2321 return _regulator_get(dev, id, NORMAL_GET);
2323 EXPORT_SYMBOL_GPL(regulator_get);
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno. Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged. It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2346 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2348 return _regulator_get(dev, id, EXCLUSIVE_GET);
2350 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged. It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2372 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2374 return _regulator_get(dev, id, OPTIONAL_GET);
2376 EXPORT_SYMBOL_GPL(regulator_get_optional);
2378 static void destroy_regulator(struct regulator *regulator)
2380 struct regulator_dev *rdev = regulator->rdev;
2382 debugfs_remove_recursive(regulator->debugfs);
2384 if (regulator->dev) {
2385 if (regulator->device_link)
2386 device_link_remove(regulator->dev, &rdev->dev);
2388 /* remove any sysfs entries */
2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2392 regulator_lock(rdev);
2393 list_del(&regulator->list);
2395 rdev->open_count--;
2396 rdev->exclusive = 0;
2397 regulator_unlock(rdev);
2399 kfree_const(regulator->supply_name);
2400 kfree(regulator);
2403 /* regulator_list_mutex lock held by regulator_put() */
2404 static void _regulator_put(struct regulator *regulator)
2406 struct regulator_dev *rdev;
2408 if (IS_ERR_OR_NULL(regulator))
2409 return;
2411 lockdep_assert_held_once(&regulator_list_mutex);
2413 /* Docs say you must disable before calling regulator_put() */
2414 WARN_ON(regulator->enable_count);
2416 rdev = regulator->rdev;
2418 destroy_regulator(regulator);
2420 module_put(rdev->owner);
2421 put_device(&rdev->dev);
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2432 void regulator_put(struct regulator *regulator)
2434 mutex_lock(&regulator_list_mutex);
2435 _regulator_put(regulator);
2436 mutex_unlock(&regulator_list_mutex);
2438 EXPORT_SYMBOL_GPL(regulator_put);
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2452 int regulator_register_supply_alias(struct device *dev, const char *id,
2453 struct device *alias_dev,
2454 const char *alias_id)
2456 struct regulator_supply_alias *map;
2458 map = regulator_find_supply_alias(dev, id);
2459 if (map)
2460 return -EEXIST;
2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 if (!map)
2464 return -ENOMEM;
2466 map->src_dev = dev;
2467 map->src_supply = id;
2468 map->alias_dev = alias_dev;
2469 map->alias_supply = alias_id;
2471 list_add(&map->list, &regulator_supply_alias_list);
2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 id, dev_name(dev), alias_id, dev_name(alias_dev));
2476 return 0;
2478 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2481 * regulator_unregister_supply_alias - Remove device alias
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2486 * Remove a lookup alias if one exists for id on dev.
2488 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2490 struct regulator_supply_alias *map;
2492 map = regulator_find_supply_alias(dev, id);
2493 if (map) {
2494 list_del(&map->list);
2495 kfree(map);
2498 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2510 * @return 0 on success, an errno on failure.
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation. If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2517 int regulator_bulk_register_supply_alias(struct device *dev,
2518 const char *const *id,
2519 struct device *alias_dev,
2520 const char *const *alias_id,
2521 int num_id)
2523 int i;
2524 int ret;
2526 for (i = 0; i < num_id; ++i) {
2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 alias_id[i]);
2529 if (ret < 0)
2530 goto err;
2533 return 0;
2535 err:
2536 dev_err(dev,
2537 "Failed to create supply alias %s,%s -> %s,%s\n",
2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2540 while (--i >= 0)
2541 regulator_unregister_supply_alias(dev, id[i]);
2543 return ret;
2545 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2557 void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 const char *const *id,
2559 int num_id)
2561 int i;
2563 for (i = 0; i < num_id; ++i)
2564 regulator_unregister_supply_alias(dev, id[i]);
2566 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2569 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 const struct regulator_config *config)
2573 struct regulator_enable_gpio *pin, *new_pin;
2574 struct gpio_desc *gpiod;
2576 gpiod = config->ena_gpiod;
2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2579 mutex_lock(&regulator_list_mutex);
2581 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2582 if (pin->gpiod == gpiod) {
2583 rdev_dbg(rdev, "GPIO is already used\n");
2584 goto update_ena_gpio_to_rdev;
2588 if (new_pin == NULL) {
2589 mutex_unlock(&regulator_list_mutex);
2590 return -ENOMEM;
2593 pin = new_pin;
2594 new_pin = NULL;
2596 pin->gpiod = gpiod;
2597 list_add(&pin->list, &regulator_ena_gpio_list);
2599 update_ena_gpio_to_rdev:
2600 pin->request_count++;
2601 rdev->ena_pin = pin;
2603 mutex_unlock(&regulator_list_mutex);
2604 kfree(new_pin);
2606 return 0;
2609 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2611 struct regulator_enable_gpio *pin, *n;
2613 if (!rdev->ena_pin)
2614 return;
2616 /* Free the GPIO only in case of no use */
2617 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2618 if (pin != rdev->ena_pin)
2619 continue;
2621 if (--pin->request_count)
2622 break;
2624 gpiod_put(pin->gpiod);
2625 list_del(&pin->list);
2626 kfree(pin);
2627 break;
2630 rdev->ena_pin = NULL;
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2641 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2643 struct regulator_enable_gpio *pin = rdev->ena_pin;
2645 if (!pin)
2646 return -EINVAL;
2648 if (enable) {
2649 /* Enable GPIO at initial use */
2650 if (pin->enable_count == 0)
2651 gpiod_set_value_cansleep(pin->gpiod, 1);
2653 pin->enable_count++;
2654 } else {
2655 if (pin->enable_count > 1) {
2656 pin->enable_count--;
2657 return 0;
2660 /* Disable GPIO if not used */
2661 if (pin->enable_count <= 1) {
2662 gpiod_set_value_cansleep(pin->gpiod, 0);
2663 pin->enable_count = 0;
2667 return 0;
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2674 * Delay for the requested amount of time as per the guidelines in:
2676 * Documentation/timers/timers-howto.rst
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2681 static void _regulator_delay_helper(unsigned int delay)
2683 unsigned int ms = delay / 1000;
2684 unsigned int us = delay % 1000;
2686 if (ms > 0) {
2688 * For small enough values, handle super-millisecond
2689 * delays in the usleep_range() call below.
2691 if (ms < 20)
2692 us += ms * 1000;
2693 else
2694 msleep(ms);
2698 * Give the scheduler some room to coalesce with any other
2699 * wakeup sources. For delays shorter than 10 us, don't even
2700 * bother setting up high-resolution timers and just busy-
2701 * loop.
2703 if (us >= 10)
2704 usleep_range(us, us + 100);
2705 else
2706 udelay(us);
2710 * _regulator_check_status_enabled
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2716 * Return:
2717 * * 1 - if status shows regulator is in enabled state
2718 * * 0 - if not enabled state
2719 * * Error Value - as received from ops->get_status()
2721 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2723 int ret = rdev->desc->ops->get_status(rdev);
2725 if (ret < 0) {
2726 rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 return ret;
2730 switch (ret) {
2731 case REGULATOR_STATUS_OFF:
2732 case REGULATOR_STATUS_ERROR:
2733 case REGULATOR_STATUS_UNDEFINED:
2734 return 0;
2735 default:
2736 return 1;
2740 static int _regulator_do_enable(struct regulator_dev *rdev)
2742 int ret, delay;
2744 /* Query before enabling in case configuration dependent. */
2745 ret = _regulator_get_enable_time(rdev);
2746 if (ret >= 0) {
2747 delay = ret;
2748 } else {
2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 delay = 0;
2753 trace_regulator_enable(rdev_get_name(rdev));
2755 if (rdev->desc->off_on_delay) {
2756 /* if needed, keep a distance of off_on_delay from last time
2757 * this regulator was disabled.
2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2762 if (remaining > 0)
2763 _regulator_delay_helper(remaining);
2766 if (rdev->ena_pin) {
2767 if (!rdev->ena_gpio_state) {
2768 ret = regulator_ena_gpio_ctrl(rdev, true);
2769 if (ret < 0)
2770 return ret;
2771 rdev->ena_gpio_state = 1;
2773 } else if (rdev->desc->ops->enable) {
2774 ret = rdev->desc->ops->enable(rdev);
2775 if (ret < 0)
2776 return ret;
2777 } else {
2778 return -EINVAL;
2781 /* Allow the regulator to ramp; it would be useful to extend
2782 * this for bulk operations so that the regulators can ramp
2783 * together.
2785 trace_regulator_enable_delay(rdev_get_name(rdev));
2787 /* If poll_enabled_time is set, poll upto the delay calculated
2788 * above, delaying poll_enabled_time uS to check if the regulator
2789 * actually got enabled.
2790 * If the regulator isn't enabled after our delay helper has expired,
2791 * return -ETIMEDOUT.
2793 if (rdev->desc->poll_enabled_time) {
2794 int time_remaining = delay;
2796 while (time_remaining > 0) {
2797 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2799 if (rdev->desc->ops->get_status) {
2800 ret = _regulator_check_status_enabled(rdev);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret)
2804 break;
2805 } else if (rdev->desc->ops->is_enabled(rdev))
2806 break;
2808 time_remaining -= rdev->desc->poll_enabled_time;
2811 if (time_remaining <= 0) {
2812 rdev_err(rdev, "Enabled check timed out\n");
2813 return -ETIMEDOUT;
2815 } else {
2816 _regulator_delay_helper(delay);
2819 trace_regulator_enable_complete(rdev_get_name(rdev));
2821 return 0;
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled. Explained in example with two consumers of the same
2831 * regulator:
2832 * consumer A: set_load(100); => total load = 0
2833 * consumer A: regulator_enable(); => total load = 100
2834 * consumer B: set_load(1000); => total load = 100
2835 * consumer B: regulator_enable(); => total load = 1100
2836 * consumer A: regulator_disable(); => total_load = 1000
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2842 * Returns 0 upon no error; -error upon error.
2844 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2846 int ret;
2847 struct regulator_dev *rdev = regulator->rdev;
2849 lockdep_assert_held_once(&rdev->mutex.base);
2851 regulator->enable_count++;
2852 if (regulator->uA_load && regulator->enable_count == 1) {
2853 ret = drms_uA_update(rdev);
2854 if (ret)
2855 regulator->enable_count--;
2856 return ret;
2859 return 0;
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2866 * The opposite of _regulator_handle_consumer_enable().
2868 * Returns 0 upon no error; -error upon error.
2870 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2872 struct regulator_dev *rdev = regulator->rdev;
2874 lockdep_assert_held_once(&rdev->mutex.base);
2876 if (!regulator->enable_count) {
2877 rdev_err(rdev, "Underflow of regulator enable count\n");
2878 return -EINVAL;
2881 regulator->enable_count--;
2882 if (regulator->uA_load && regulator->enable_count == 0)
2883 return drms_uA_update(rdev);
2885 return 0;
2888 /* locks held by regulator_enable() */
2889 static int _regulator_enable(struct regulator *regulator)
2891 struct regulator_dev *rdev = regulator->rdev;
2892 int ret;
2894 lockdep_assert_held_once(&rdev->mutex.base);
2896 if (rdev->use_count == 0 && rdev->supply) {
2897 ret = _regulator_enable(rdev->supply);
2898 if (ret < 0)
2899 return ret;
2902 /* balance only if there are regulators coupled */
2903 if (rdev->coupling_desc.n_coupled > 1) {
2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 if (ret < 0)
2906 goto err_disable_supply;
2909 ret = _regulator_handle_consumer_enable(regulator);
2910 if (ret < 0)
2911 goto err_disable_supply;
2913 if (rdev->use_count == 0) {
2915 * The regulator may already be enabled if it's not switchable
2916 * or was left on
2918 ret = _regulator_is_enabled(rdev);
2919 if (ret == -EINVAL || ret == 0) {
2920 if (!regulator_ops_is_valid(rdev,
2921 REGULATOR_CHANGE_STATUS)) {
2922 ret = -EPERM;
2923 goto err_consumer_disable;
2926 ret = _regulator_do_enable(rdev);
2927 if (ret < 0)
2928 goto err_consumer_disable;
2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 NULL);
2932 } else if (ret < 0) {
2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 goto err_consumer_disable;
2936 /* Fallthrough on positive return values - already enabled */
2939 if (regulator->enable_count == 1)
2940 rdev->use_count++;
2942 return 0;
2944 err_consumer_disable:
2945 _regulator_handle_consumer_disable(regulator);
2947 err_disable_supply:
2948 if (rdev->use_count == 0 && rdev->supply)
2949 _regulator_disable(rdev->supply);
2951 return ret;
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value. Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2965 int regulator_enable(struct regulator *regulator)
2967 struct regulator_dev *rdev = regulator->rdev;
2968 struct ww_acquire_ctx ww_ctx;
2969 int ret;
2971 regulator_lock_dependent(rdev, &ww_ctx);
2972 ret = _regulator_enable(regulator);
2973 regulator_unlock_dependent(rdev, &ww_ctx);
2975 return ret;
2977 EXPORT_SYMBOL_GPL(regulator_enable);
2979 static int _regulator_do_disable(struct regulator_dev *rdev)
2981 int ret;
2983 trace_regulator_disable(rdev_get_name(rdev));
2985 if (rdev->ena_pin) {
2986 if (rdev->ena_gpio_state) {
2987 ret = regulator_ena_gpio_ctrl(rdev, false);
2988 if (ret < 0)
2989 return ret;
2990 rdev->ena_gpio_state = 0;
2993 } else if (rdev->desc->ops->disable) {
2994 ret = rdev->desc->ops->disable(rdev);
2995 if (ret != 0)
2996 return ret;
2999 if (rdev->desc->off_on_delay)
3000 rdev->last_off = ktime_get_boottime();
3002 trace_regulator_disable_complete(rdev_get_name(rdev));
3004 return 0;
3007 /* locks held by regulator_disable() */
3008 static int _regulator_disable(struct regulator *regulator)
3010 struct regulator_dev *rdev = regulator->rdev;
3011 int ret = 0;
3013 lockdep_assert_held_once(&rdev->mutex.base);
3015 if (WARN(regulator->enable_count == 0,
3016 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 return -EIO;
3019 if (regulator->enable_count == 1) {
3020 /* disabling last enable_count from this regulator */
3021 /* are we the last user and permitted to disable ? */
3022 if (rdev->use_count == 1 &&
3023 (rdev->constraints && !rdev->constraints->always_on)) {
3025 /* we are last user */
3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 ret = _notifier_call_chain(rdev,
3028 REGULATOR_EVENT_PRE_DISABLE,
3029 NULL);
3030 if (ret & NOTIFY_STOP_MASK)
3031 return -EINVAL;
3033 ret = _regulator_do_disable(rdev);
3034 if (ret < 0) {
3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 _notifier_call_chain(rdev,
3037 REGULATOR_EVENT_ABORT_DISABLE,
3038 NULL);
3039 return ret;
3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 NULL);
3045 rdev->use_count = 0;
3046 } else if (rdev->use_count > 1) {
3047 rdev->use_count--;
3051 if (ret == 0)
3052 ret = _regulator_handle_consumer_disable(regulator);
3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 ret = _regulator_disable(rdev->supply);
3060 return ret;
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3067 * Disable the regulator output voltage or current. Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3075 int regulator_disable(struct regulator *regulator)
3077 struct regulator_dev *rdev = regulator->rdev;
3078 struct ww_acquire_ctx ww_ctx;
3079 int ret;
3081 regulator_lock_dependent(rdev, &ww_ctx);
3082 ret = _regulator_disable(regulator);
3083 regulator_unlock_dependent(rdev, &ww_ctx);
3085 return ret;
3087 EXPORT_SYMBOL_GPL(regulator_disable);
3089 /* locks held by regulator_force_disable() */
3090 static int _regulator_force_disable(struct regulator_dev *rdev)
3092 int ret = 0;
3094 lockdep_assert_held_once(&rdev->mutex.base);
3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 if (ret & NOTIFY_STOP_MASK)
3099 return -EINVAL;
3101 ret = _regulator_do_disable(rdev);
3102 if (ret < 0) {
3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 return ret;
3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 REGULATOR_EVENT_DISABLE, NULL);
3112 return 0;
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3124 int regulator_force_disable(struct regulator *regulator)
3126 struct regulator_dev *rdev = regulator->rdev;
3127 struct ww_acquire_ctx ww_ctx;
3128 int ret;
3130 regulator_lock_dependent(rdev, &ww_ctx);
3132 ret = _regulator_force_disable(regulator->rdev);
3134 if (rdev->coupling_desc.n_coupled > 1)
3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3137 if (regulator->uA_load) {
3138 regulator->uA_load = 0;
3139 ret = drms_uA_update(rdev);
3142 if (rdev->use_count != 0 && rdev->supply)
3143 _regulator_disable(rdev->supply);
3145 regulator_unlock_dependent(rdev, &ww_ctx);
3147 return ret;
3149 EXPORT_SYMBOL_GPL(regulator_force_disable);
3151 static void regulator_disable_work(struct work_struct *work)
3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 disable_work.work);
3155 struct ww_acquire_ctx ww_ctx;
3156 int count, i, ret;
3157 struct regulator *regulator;
3158 int total_count = 0;
3160 regulator_lock_dependent(rdev, &ww_ctx);
3163 * Workqueue functions queue the new work instance while the previous
3164 * work instance is being processed. Cancel the queued work instance
3165 * as the work instance under processing does the job of the queued
3166 * work instance.
3168 cancel_delayed_work(&rdev->disable_work);
3170 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 count = regulator->deferred_disables;
3173 if (!count)
3174 continue;
3176 total_count += count;
3177 regulator->deferred_disables = 0;
3179 for (i = 0; i < count; i++) {
3180 ret = _regulator_disable(regulator);
3181 if (ret != 0)
3182 rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 ERR_PTR(ret));
3186 WARN_ON(!total_count);
3188 if (rdev->coupling_desc.n_coupled > 1)
3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3191 regulator_unlock_dependent(rdev, &ww_ctx);
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3199 * Execute regulator_disable() on the regulator after a delay. This
3200 * is intended for use with devices that require some time to quiesce.
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3206 int regulator_disable_deferred(struct regulator *regulator, int ms)
3208 struct regulator_dev *rdev = regulator->rdev;
3210 if (!ms)
3211 return regulator_disable(regulator);
3213 regulator_lock(rdev);
3214 regulator->deferred_disables++;
3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 msecs_to_jiffies(ms));
3217 regulator_unlock(rdev);
3219 return 0;
3221 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3223 static int _regulator_is_enabled(struct regulator_dev *rdev)
3225 /* A GPIO control always takes precedence */
3226 if (rdev->ena_pin)
3227 return rdev->ena_gpio_state;
3229 /* If we don't know then assume that the regulator is always on */
3230 if (!rdev->desc->ops->is_enabled)
3231 return 1;
3233 return rdev->desc->ops->is_enabled(rdev);
3236 static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 unsigned selector, int lock)
3239 const struct regulator_ops *ops = rdev->desc->ops;
3240 int ret;
3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 return rdev->desc->fixed_uV;
3245 if (ops->list_voltage) {
3246 if (selector >= rdev->desc->n_voltages)
3247 return -EINVAL;
3248 if (selector < rdev->desc->linear_min_sel)
3249 return 0;
3250 if (lock)
3251 regulator_lock(rdev);
3252 ret = ops->list_voltage(rdev, selector);
3253 if (lock)
3254 regulator_unlock(rdev);
3255 } else if (rdev->is_switch && rdev->supply) {
3256 ret = _regulator_list_voltage(rdev->supply->rdev,
3257 selector, lock);
3258 } else {
3259 return -EINVAL;
3262 if (ret > 0) {
3263 if (ret < rdev->constraints->min_uV)
3264 ret = 0;
3265 else if (ret > rdev->constraints->max_uV)
3266 ret = 0;
3269 return ret;
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3284 int regulator_is_enabled(struct regulator *regulator)
3286 int ret;
3288 if (regulator->always_on)
3289 return 1;
3291 regulator_lock(regulator->rdev);
3292 ret = _regulator_is_enabled(regulator->rdev);
3293 regulator_unlock(regulator->rdev);
3295 return ret;
3297 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3303 * Returns number of selectors, or negative errno. Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3307 int regulator_count_voltages(struct regulator *regulator)
3309 struct regulator_dev *rdev = regulator->rdev;
3311 if (rdev->desc->n_voltages)
3312 return rdev->desc->n_voltages;
3314 if (!rdev->is_switch || !rdev->supply)
3315 return -EINVAL;
3317 return regulator_count_voltages(rdev->supply);
3319 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3331 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3333 return _regulator_list_voltage(regulator->rdev, selector, 1);
3335 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3344 struct regmap *regulator_get_regmap(struct regulator *regulator)
3346 struct regmap *map = regulator->rdev->regmap;
3348 return map ? map : ERR_PTR(-EOPNOTSUPP);
3350 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3353 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3354 * @regulator: regulator source
3355 * @vsel_reg: voltage selector register, output parameter
3356 * @vsel_mask: mask for voltage selector bitfield, output parameter
3358 * Returns the hardware register offset and bitmask used for setting the
3359 * regulator voltage. This might be useful when configuring voltage-scaling
3360 * hardware or firmware that can make I2C requests behind the kernel's back,
3361 * for example.
3363 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3364 * and 0 is returned, otherwise a negative errno is returned.
3366 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3367 unsigned *vsel_reg,
3368 unsigned *vsel_mask)
3370 struct regulator_dev *rdev = regulator->rdev;
3371 const struct regulator_ops *ops = rdev->desc->ops;
3373 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3374 return -EOPNOTSUPP;
3376 *vsel_reg = rdev->desc->vsel_reg;
3377 *vsel_mask = rdev->desc->vsel_mask;
3379 return 0;
3381 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3384 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3385 * @regulator: regulator source
3386 * @selector: identify voltage to list
3388 * Converts the selector to a hardware-specific voltage selector that can be
3389 * directly written to the regulator registers. The address of the voltage
3390 * register can be determined by calling @regulator_get_hardware_vsel_register.
3392 * On error a negative errno is returned.
3394 int regulator_list_hardware_vsel(struct regulator *regulator,
3395 unsigned selector)
3397 struct regulator_dev *rdev = regulator->rdev;
3398 const struct regulator_ops *ops = rdev->desc->ops;
3400 if (selector >= rdev->desc->n_voltages)
3401 return -EINVAL;
3402 if (selector < rdev->desc->linear_min_sel)
3403 return 0;
3404 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3405 return -EOPNOTSUPP;
3407 return selector;
3409 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3412 * regulator_hardware_enable - access the HW for enable/disable regulator
3413 * @regulator: regulator source
3414 * @enable: true for enable, false for disable
3416 * Request that the regulator be enabled/disabled with the regulator output at
3417 * the predefined voltage or current value.
3419 * On success 0 is returned, otherwise a negative errno is returned.
3421 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3423 struct regulator_dev *rdev = regulator->rdev;
3424 const struct regulator_ops *ops = rdev->desc->ops;
3425 int ret = -EOPNOTSUPP;
3427 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3428 return ret;
3430 if (enable)
3431 ret = ops->enable(rdev);
3432 else
3433 ret = ops->disable(rdev);
3435 return ret;
3437 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3440 * regulator_get_linear_step - return the voltage step size between VSEL values
3441 * @regulator: regulator source
3443 * Returns the voltage step size between VSEL values for linear
3444 * regulators, or return 0 if the regulator isn't a linear regulator.
3446 unsigned int regulator_get_linear_step(struct regulator *regulator)
3448 struct regulator_dev *rdev = regulator->rdev;
3450 return rdev->desc->uV_step;
3452 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3455 * regulator_is_supported_voltage - check if a voltage range can be supported
3457 * @regulator: Regulator to check.
3458 * @min_uV: Minimum required voltage in uV.
3459 * @max_uV: Maximum required voltage in uV.
3461 * Returns a boolean.
3463 int regulator_is_supported_voltage(struct regulator *regulator,
3464 int min_uV, int max_uV)
3466 struct regulator_dev *rdev = regulator->rdev;
3467 int i, voltages, ret;
3469 /* If we can't change voltage check the current voltage */
3470 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3471 ret = regulator_get_voltage(regulator);
3472 if (ret >= 0)
3473 return min_uV <= ret && ret <= max_uV;
3474 else
3475 return ret;
3478 /* Any voltage within constrains range is fine? */
3479 if (rdev->desc->continuous_voltage_range)
3480 return min_uV >= rdev->constraints->min_uV &&
3481 max_uV <= rdev->constraints->max_uV;
3483 ret = regulator_count_voltages(regulator);
3484 if (ret < 0)
3485 return 0;
3486 voltages = ret;
3488 for (i = 0; i < voltages; i++) {
3489 ret = regulator_list_voltage(regulator, i);
3491 if (ret >= min_uV && ret <= max_uV)
3492 return 1;
3495 return 0;
3497 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3499 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3500 int max_uV)
3502 const struct regulator_desc *desc = rdev->desc;
3504 if (desc->ops->map_voltage)
3505 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3507 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3508 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3510 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3511 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3513 if (desc->ops->list_voltage ==
3514 regulator_list_voltage_pickable_linear_range)
3515 return regulator_map_voltage_pickable_linear_range(rdev,
3516 min_uV, max_uV);
3518 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3521 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3522 int min_uV, int max_uV,
3523 unsigned *selector)
3525 struct pre_voltage_change_data data;
3526 int ret;
3528 data.old_uV = regulator_get_voltage_rdev(rdev);
3529 data.min_uV = min_uV;
3530 data.max_uV = max_uV;
3531 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3532 &data);
3533 if (ret & NOTIFY_STOP_MASK)
3534 return -EINVAL;
3536 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3537 if (ret >= 0)
3538 return ret;
3540 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3541 (void *)data.old_uV);
3543 return ret;
3546 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3547 int uV, unsigned selector)
3549 struct pre_voltage_change_data data;
3550 int ret;
3552 data.old_uV = regulator_get_voltage_rdev(rdev);
3553 data.min_uV = uV;
3554 data.max_uV = uV;
3555 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3556 &data);
3557 if (ret & NOTIFY_STOP_MASK)
3558 return -EINVAL;
3560 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3561 if (ret >= 0)
3562 return ret;
3564 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3565 (void *)data.old_uV);
3567 return ret;
3570 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3571 int uV, int new_selector)
3573 const struct regulator_ops *ops = rdev->desc->ops;
3574 int diff, old_sel, curr_sel, ret;
3576 /* Stepping is only needed if the regulator is enabled. */
3577 if (!_regulator_is_enabled(rdev))
3578 goto final_set;
3580 if (!ops->get_voltage_sel)
3581 return -EINVAL;
3583 old_sel = ops->get_voltage_sel(rdev);
3584 if (old_sel < 0)
3585 return old_sel;
3587 diff = new_selector - old_sel;
3588 if (diff == 0)
3589 return 0; /* No change needed. */
3591 if (diff > 0) {
3592 /* Stepping up. */
3593 for (curr_sel = old_sel + rdev->desc->vsel_step;
3594 curr_sel < new_selector;
3595 curr_sel += rdev->desc->vsel_step) {
3597 * Call the callback directly instead of using
3598 * _regulator_call_set_voltage_sel() as we don't
3599 * want to notify anyone yet. Same in the branch
3600 * below.
3602 ret = ops->set_voltage_sel(rdev, curr_sel);
3603 if (ret)
3604 goto try_revert;
3606 } else {
3607 /* Stepping down. */
3608 for (curr_sel = old_sel - rdev->desc->vsel_step;
3609 curr_sel > new_selector;
3610 curr_sel -= rdev->desc->vsel_step) {
3611 ret = ops->set_voltage_sel(rdev, curr_sel);
3612 if (ret)
3613 goto try_revert;
3617 final_set:
3618 /* The final selector will trigger the notifiers. */
3619 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3621 try_revert:
3623 * At least try to return to the previous voltage if setting a new
3624 * one failed.
3626 (void)ops->set_voltage_sel(rdev, old_sel);
3627 return ret;
3630 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3631 int old_uV, int new_uV)
3633 unsigned int ramp_delay = 0;
3635 if (rdev->constraints->ramp_delay)
3636 ramp_delay = rdev->constraints->ramp_delay;
3637 else if (rdev->desc->ramp_delay)
3638 ramp_delay = rdev->desc->ramp_delay;
3639 else if (rdev->constraints->settling_time)
3640 return rdev->constraints->settling_time;
3641 else if (rdev->constraints->settling_time_up &&
3642 (new_uV > old_uV))
3643 return rdev->constraints->settling_time_up;
3644 else if (rdev->constraints->settling_time_down &&
3645 (new_uV < old_uV))
3646 return rdev->constraints->settling_time_down;
3648 if (ramp_delay == 0)
3649 return 0;
3651 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3654 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3655 int min_uV, int max_uV)
3657 int ret;
3658 int delay = 0;
3659 int best_val = 0;
3660 unsigned int selector;
3661 int old_selector = -1;
3662 const struct regulator_ops *ops = rdev->desc->ops;
3663 int old_uV = regulator_get_voltage_rdev(rdev);
3665 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3667 min_uV += rdev->constraints->uV_offset;
3668 max_uV += rdev->constraints->uV_offset;
3671 * If we can't obtain the old selector there is not enough
3672 * info to call set_voltage_time_sel().
3674 if (_regulator_is_enabled(rdev) &&
3675 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3676 old_selector = ops->get_voltage_sel(rdev);
3677 if (old_selector < 0)
3678 return old_selector;
3681 if (ops->set_voltage) {
3682 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3683 &selector);
3685 if (ret >= 0) {
3686 if (ops->list_voltage)
3687 best_val = ops->list_voltage(rdev,
3688 selector);
3689 else
3690 best_val = regulator_get_voltage_rdev(rdev);
3693 } else if (ops->set_voltage_sel) {
3694 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3695 if (ret >= 0) {
3696 best_val = ops->list_voltage(rdev, ret);
3697 if (min_uV <= best_val && max_uV >= best_val) {
3698 selector = ret;
3699 if (old_selector == selector)
3700 ret = 0;
3701 else if (rdev->desc->vsel_step)
3702 ret = _regulator_set_voltage_sel_step(
3703 rdev, best_val, selector);
3704 else
3705 ret = _regulator_call_set_voltage_sel(
3706 rdev, best_val, selector);
3707 } else {
3708 ret = -EINVAL;
3711 } else {
3712 ret = -EINVAL;
3715 if (ret)
3716 goto out;
3718 if (ops->set_voltage_time_sel) {
3720 * Call set_voltage_time_sel if successfully obtained
3721 * old_selector
3723 if (old_selector >= 0 && old_selector != selector)
3724 delay = ops->set_voltage_time_sel(rdev, old_selector,
3725 selector);
3726 } else {
3727 if (old_uV != best_val) {
3728 if (ops->set_voltage_time)
3729 delay = ops->set_voltage_time(rdev, old_uV,
3730 best_val);
3731 else
3732 delay = _regulator_set_voltage_time(rdev,
3733 old_uV,
3734 best_val);
3738 if (delay < 0) {
3739 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3740 delay = 0;
3743 /* Insert any necessary delays */
3744 _regulator_delay_helper(delay);
3746 if (best_val >= 0) {
3747 unsigned long data = best_val;
3749 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3750 (void *)data);
3753 out:
3754 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3756 return ret;
3759 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3760 int min_uV, int max_uV, suspend_state_t state)
3762 struct regulator_state *rstate;
3763 int uV, sel;
3765 rstate = regulator_get_suspend_state(rdev, state);
3766 if (rstate == NULL)
3767 return -EINVAL;
3769 if (min_uV < rstate->min_uV)
3770 min_uV = rstate->min_uV;
3771 if (max_uV > rstate->max_uV)
3772 max_uV = rstate->max_uV;
3774 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3775 if (sel < 0)
3776 return sel;
3778 uV = rdev->desc->ops->list_voltage(rdev, sel);
3779 if (uV >= min_uV && uV <= max_uV)
3780 rstate->uV = uV;
3782 return 0;
3785 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3786 int min_uV, int max_uV,
3787 suspend_state_t state)
3789 struct regulator_dev *rdev = regulator->rdev;
3790 struct regulator_voltage *voltage = &regulator->voltage[state];
3791 int ret = 0;
3792 int old_min_uV, old_max_uV;
3793 int current_uV;
3795 /* If we're setting the same range as last time the change
3796 * should be a noop (some cpufreq implementations use the same
3797 * voltage for multiple frequencies, for example).
3799 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3800 goto out;
3802 /* If we're trying to set a range that overlaps the current voltage,
3803 * return successfully even though the regulator does not support
3804 * changing the voltage.
3806 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3807 current_uV = regulator_get_voltage_rdev(rdev);
3808 if (min_uV <= current_uV && current_uV <= max_uV) {
3809 voltage->min_uV = min_uV;
3810 voltage->max_uV = max_uV;
3811 goto out;
3815 /* sanity check */
3816 if (!rdev->desc->ops->set_voltage &&
3817 !rdev->desc->ops->set_voltage_sel) {
3818 ret = -EINVAL;
3819 goto out;
3822 /* constraints check */
3823 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3824 if (ret < 0)
3825 goto out;
3827 /* restore original values in case of error */
3828 old_min_uV = voltage->min_uV;
3829 old_max_uV = voltage->max_uV;
3830 voltage->min_uV = min_uV;
3831 voltage->max_uV = max_uV;
3833 /* for not coupled regulators this will just set the voltage */
3834 ret = regulator_balance_voltage(rdev, state);
3835 if (ret < 0) {
3836 voltage->min_uV = old_min_uV;
3837 voltage->max_uV = old_max_uV;
3840 out:
3841 return ret;
3844 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3845 int max_uV, suspend_state_t state)
3847 int best_supply_uV = 0;
3848 int supply_change_uV = 0;
3849 int ret;
3851 if (rdev->supply &&
3852 regulator_ops_is_valid(rdev->supply->rdev,
3853 REGULATOR_CHANGE_VOLTAGE) &&
3854 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3855 rdev->desc->ops->get_voltage_sel))) {
3856 int current_supply_uV;
3857 int selector;
3859 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3860 if (selector < 0) {
3861 ret = selector;
3862 goto out;
3865 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3866 if (best_supply_uV < 0) {
3867 ret = best_supply_uV;
3868 goto out;
3871 best_supply_uV += rdev->desc->min_dropout_uV;
3873 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3874 if (current_supply_uV < 0) {
3875 ret = current_supply_uV;
3876 goto out;
3879 supply_change_uV = best_supply_uV - current_supply_uV;
3882 if (supply_change_uV > 0) {
3883 ret = regulator_set_voltage_unlocked(rdev->supply,
3884 best_supply_uV, INT_MAX, state);
3885 if (ret) {
3886 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3887 ERR_PTR(ret));
3888 goto out;
3892 if (state == PM_SUSPEND_ON)
3893 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3894 else
3895 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3896 max_uV, state);
3897 if (ret < 0)
3898 goto out;
3900 if (supply_change_uV < 0) {
3901 ret = regulator_set_voltage_unlocked(rdev->supply,
3902 best_supply_uV, INT_MAX, state);
3903 if (ret)
3904 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3905 ERR_PTR(ret));
3906 /* No need to fail here */
3907 ret = 0;
3910 out:
3911 return ret;
3913 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3915 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3916 int *current_uV, int *min_uV)
3918 struct regulation_constraints *constraints = rdev->constraints;
3920 /* Limit voltage change only if necessary */
3921 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3922 return 1;
3924 if (*current_uV < 0) {
3925 *current_uV = regulator_get_voltage_rdev(rdev);
3927 if (*current_uV < 0)
3928 return *current_uV;
3931 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3932 return 1;
3934 /* Clamp target voltage within the given step */
3935 if (*current_uV < *min_uV)
3936 *min_uV = min(*current_uV + constraints->max_uV_step,
3937 *min_uV);
3938 else
3939 *min_uV = max(*current_uV - constraints->max_uV_step,
3940 *min_uV);
3942 return 0;
3945 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3946 int *current_uV,
3947 int *min_uV, int *max_uV,
3948 suspend_state_t state,
3949 int n_coupled)
3951 struct coupling_desc *c_desc = &rdev->coupling_desc;
3952 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3953 struct regulation_constraints *constraints = rdev->constraints;
3954 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3955 int max_current_uV = 0, min_current_uV = INT_MAX;
3956 int highest_min_uV = 0, target_uV, possible_uV;
3957 int i, ret, max_spread;
3958 bool done;
3960 *current_uV = -1;
3963 * If there are no coupled regulators, simply set the voltage
3964 * demanded by consumers.
3966 if (n_coupled == 1) {
3968 * If consumers don't provide any demands, set voltage
3969 * to min_uV
3971 desired_min_uV = constraints->min_uV;
3972 desired_max_uV = constraints->max_uV;
3974 ret = regulator_check_consumers(rdev,
3975 &desired_min_uV,
3976 &desired_max_uV, state);
3977 if (ret < 0)
3978 return ret;
3980 done = true;
3982 goto finish;
3985 /* Find highest min desired voltage */
3986 for (i = 0; i < n_coupled; i++) {
3987 int tmp_min = 0;
3988 int tmp_max = INT_MAX;
3990 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3992 ret = regulator_check_consumers(c_rdevs[i],
3993 &tmp_min,
3994 &tmp_max, state);
3995 if (ret < 0)
3996 return ret;
3998 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3999 if (ret < 0)
4000 return ret;
4002 highest_min_uV = max(highest_min_uV, tmp_min);
4004 if (i == 0) {
4005 desired_min_uV = tmp_min;
4006 desired_max_uV = tmp_max;
4010 max_spread = constraints->max_spread[0];
4013 * Let target_uV be equal to the desired one if possible.
4014 * If not, set it to minimum voltage, allowed by other coupled
4015 * regulators.
4017 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4020 * Find min and max voltages, which currently aren't violating
4021 * max_spread.
4023 for (i = 1; i < n_coupled; i++) {
4024 int tmp_act;
4026 if (!_regulator_is_enabled(c_rdevs[i]))
4027 continue;
4029 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4030 if (tmp_act < 0)
4031 return tmp_act;
4033 min_current_uV = min(tmp_act, min_current_uV);
4034 max_current_uV = max(tmp_act, max_current_uV);
4037 /* There aren't any other regulators enabled */
4038 if (max_current_uV == 0) {
4039 possible_uV = target_uV;
4040 } else {
4042 * Correct target voltage, so as it currently isn't
4043 * violating max_spread
4045 possible_uV = max(target_uV, max_current_uV - max_spread);
4046 possible_uV = min(possible_uV, min_current_uV + max_spread);
4049 if (possible_uV > desired_max_uV)
4050 return -EINVAL;
4052 done = (possible_uV == target_uV);
4053 desired_min_uV = possible_uV;
4055 finish:
4056 /* Apply max_uV_step constraint if necessary */
4057 if (state == PM_SUSPEND_ON) {
4058 ret = regulator_limit_voltage_step(rdev, current_uV,
4059 &desired_min_uV);
4060 if (ret < 0)
4061 return ret;
4063 if (ret == 0)
4064 done = false;
4067 /* Set current_uV if wasn't done earlier in the code and if necessary */
4068 if (n_coupled > 1 && *current_uV == -1) {
4070 if (_regulator_is_enabled(rdev)) {
4071 ret = regulator_get_voltage_rdev(rdev);
4072 if (ret < 0)
4073 return ret;
4075 *current_uV = ret;
4076 } else {
4077 *current_uV = desired_min_uV;
4081 *min_uV = desired_min_uV;
4082 *max_uV = desired_max_uV;
4084 return done;
4087 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4088 suspend_state_t state, bool skip_coupled)
4090 struct regulator_dev **c_rdevs;
4091 struct regulator_dev *best_rdev;
4092 struct coupling_desc *c_desc = &rdev->coupling_desc;
4093 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4094 unsigned int delta, best_delta;
4095 unsigned long c_rdev_done = 0;
4096 bool best_c_rdev_done;
4098 c_rdevs = c_desc->coupled_rdevs;
4099 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4102 * Find the best possible voltage change on each loop. Leave the loop
4103 * if there isn't any possible change.
4105 do {
4106 best_c_rdev_done = false;
4107 best_delta = 0;
4108 best_min_uV = 0;
4109 best_max_uV = 0;
4110 best_c_rdev = 0;
4111 best_rdev = NULL;
4114 * Find highest difference between optimal voltage
4115 * and current voltage.
4117 for (i = 0; i < n_coupled; i++) {
4119 * optimal_uV is the best voltage that can be set for
4120 * i-th regulator at the moment without violating
4121 * max_spread constraint in order to balance
4122 * the coupled voltages.
4124 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4126 if (test_bit(i, &c_rdev_done))
4127 continue;
4129 ret = regulator_get_optimal_voltage(c_rdevs[i],
4130 &current_uV,
4131 &optimal_uV,
4132 &optimal_max_uV,
4133 state, n_coupled);
4134 if (ret < 0)
4135 goto out;
4137 delta = abs(optimal_uV - current_uV);
4139 if (delta && best_delta <= delta) {
4140 best_c_rdev_done = ret;
4141 best_delta = delta;
4142 best_rdev = c_rdevs[i];
4143 best_min_uV = optimal_uV;
4144 best_max_uV = optimal_max_uV;
4145 best_c_rdev = i;
4149 /* Nothing to change, return successfully */
4150 if (!best_rdev) {
4151 ret = 0;
4152 goto out;
4155 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4156 best_max_uV, state);
4158 if (ret < 0)
4159 goto out;
4161 if (best_c_rdev_done)
4162 set_bit(best_c_rdev, &c_rdev_done);
4164 } while (n_coupled > 1);
4166 out:
4167 return ret;
4170 static int regulator_balance_voltage(struct regulator_dev *rdev,
4171 suspend_state_t state)
4173 struct coupling_desc *c_desc = &rdev->coupling_desc;
4174 struct regulator_coupler *coupler = c_desc->coupler;
4175 bool skip_coupled = false;
4178 * If system is in a state other than PM_SUSPEND_ON, don't check
4179 * other coupled regulators.
4181 if (state != PM_SUSPEND_ON)
4182 skip_coupled = true;
4184 if (c_desc->n_resolved < c_desc->n_coupled) {
4185 rdev_err(rdev, "Not all coupled regulators registered\n");
4186 return -EPERM;
4189 /* Invoke custom balancer for customized couplers */
4190 if (coupler && coupler->balance_voltage)
4191 return coupler->balance_voltage(coupler, rdev, state);
4193 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4197 * regulator_set_voltage - set regulator output voltage
4198 * @regulator: regulator source
4199 * @min_uV: Minimum required voltage in uV
4200 * @max_uV: Maximum acceptable voltage in uV
4202 * Sets a voltage regulator to the desired output voltage. This can be set
4203 * during any regulator state. IOW, regulator can be disabled or enabled.
4205 * If the regulator is enabled then the voltage will change to the new value
4206 * immediately otherwise if the regulator is disabled the regulator will
4207 * output at the new voltage when enabled.
4209 * NOTE: If the regulator is shared between several devices then the lowest
4210 * request voltage that meets the system constraints will be used.
4211 * Regulator system constraints must be set for this regulator before
4212 * calling this function otherwise this call will fail.
4214 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4216 struct ww_acquire_ctx ww_ctx;
4217 int ret;
4219 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4221 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4222 PM_SUSPEND_ON);
4224 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4226 return ret;
4228 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4230 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4231 suspend_state_t state, bool en)
4233 struct regulator_state *rstate;
4235 rstate = regulator_get_suspend_state(rdev, state);
4236 if (rstate == NULL)
4237 return -EINVAL;
4239 if (!rstate->changeable)
4240 return -EPERM;
4242 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4244 return 0;
4247 int regulator_suspend_enable(struct regulator_dev *rdev,
4248 suspend_state_t state)
4250 return regulator_suspend_toggle(rdev, state, true);
4252 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4254 int regulator_suspend_disable(struct regulator_dev *rdev,
4255 suspend_state_t state)
4257 struct regulator *regulator;
4258 struct regulator_voltage *voltage;
4261 * if any consumer wants this regulator device keeping on in
4262 * suspend states, don't set it as disabled.
4264 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4265 voltage = &regulator->voltage[state];
4266 if (voltage->min_uV || voltage->max_uV)
4267 return 0;
4270 return regulator_suspend_toggle(rdev, state, false);
4272 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4274 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4275 int min_uV, int max_uV,
4276 suspend_state_t state)
4278 struct regulator_dev *rdev = regulator->rdev;
4279 struct regulator_state *rstate;
4281 rstate = regulator_get_suspend_state(rdev, state);
4282 if (rstate == NULL)
4283 return -EINVAL;
4285 if (rstate->min_uV == rstate->max_uV) {
4286 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4287 return -EPERM;
4290 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4293 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4294 int max_uV, suspend_state_t state)
4296 struct ww_acquire_ctx ww_ctx;
4297 int ret;
4299 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4300 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4301 return -EINVAL;
4303 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4305 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4306 max_uV, state);
4308 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4310 return ret;
4312 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4315 * regulator_set_voltage_time - get raise/fall time
4316 * @regulator: regulator source
4317 * @old_uV: starting voltage in microvolts
4318 * @new_uV: target voltage in microvolts
4320 * Provided with the starting and ending voltage, this function attempts to
4321 * calculate the time in microseconds required to rise or fall to this new
4322 * voltage.
4324 int regulator_set_voltage_time(struct regulator *regulator,
4325 int old_uV, int new_uV)
4327 struct regulator_dev *rdev = regulator->rdev;
4328 const struct regulator_ops *ops = rdev->desc->ops;
4329 int old_sel = -1;
4330 int new_sel = -1;
4331 int voltage;
4332 int i;
4334 if (ops->set_voltage_time)
4335 return ops->set_voltage_time(rdev, old_uV, new_uV);
4336 else if (!ops->set_voltage_time_sel)
4337 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4339 /* Currently requires operations to do this */
4340 if (!ops->list_voltage || !rdev->desc->n_voltages)
4341 return -EINVAL;
4343 for (i = 0; i < rdev->desc->n_voltages; i++) {
4344 /* We only look for exact voltage matches here */
4345 if (i < rdev->desc->linear_min_sel)
4346 continue;
4348 if (old_sel >= 0 && new_sel >= 0)
4349 break;
4351 voltage = regulator_list_voltage(regulator, i);
4352 if (voltage < 0)
4353 return -EINVAL;
4354 if (voltage == 0)
4355 continue;
4356 if (voltage == old_uV)
4357 old_sel = i;
4358 if (voltage == new_uV)
4359 new_sel = i;
4362 if (old_sel < 0 || new_sel < 0)
4363 return -EINVAL;
4365 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4367 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4370 * regulator_set_voltage_time_sel - get raise/fall time
4371 * @rdev: regulator source device
4372 * @old_selector: selector for starting voltage
4373 * @new_selector: selector for target voltage
4375 * Provided with the starting and target voltage selectors, this function
4376 * returns time in microseconds required to rise or fall to this new voltage
4378 * Drivers providing ramp_delay in regulation_constraints can use this as their
4379 * set_voltage_time_sel() operation.
4381 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4382 unsigned int old_selector,
4383 unsigned int new_selector)
4385 int old_volt, new_volt;
4387 /* sanity check */
4388 if (!rdev->desc->ops->list_voltage)
4389 return -EINVAL;
4391 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4392 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4394 if (rdev->desc->ops->set_voltage_time)
4395 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4396 new_volt);
4397 else
4398 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4400 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4402 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4404 int ret;
4406 regulator_lock(rdev);
4408 if (!rdev->desc->ops->set_voltage &&
4409 !rdev->desc->ops->set_voltage_sel) {
4410 ret = -EINVAL;
4411 goto out;
4414 /* balance only, if regulator is coupled */
4415 if (rdev->coupling_desc.n_coupled > 1)
4416 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4417 else
4418 ret = -EOPNOTSUPP;
4420 out:
4421 regulator_unlock(rdev);
4422 return ret;
4426 * regulator_sync_voltage - re-apply last regulator output voltage
4427 * @regulator: regulator source
4429 * Re-apply the last configured voltage. This is intended to be used
4430 * where some external control source the consumer is cooperating with
4431 * has caused the configured voltage to change.
4433 int regulator_sync_voltage(struct regulator *regulator)
4435 struct regulator_dev *rdev = regulator->rdev;
4436 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4437 int ret, min_uV, max_uV;
4439 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4440 return 0;
4442 regulator_lock(rdev);
4444 if (!rdev->desc->ops->set_voltage &&
4445 !rdev->desc->ops->set_voltage_sel) {
4446 ret = -EINVAL;
4447 goto out;
4450 /* This is only going to work if we've had a voltage configured. */
4451 if (!voltage->min_uV && !voltage->max_uV) {
4452 ret = -EINVAL;
4453 goto out;
4456 min_uV = voltage->min_uV;
4457 max_uV = voltage->max_uV;
4459 /* This should be a paranoia check... */
4460 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4461 if (ret < 0)
4462 goto out;
4464 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4465 if (ret < 0)
4466 goto out;
4468 /* balance only, if regulator is coupled */
4469 if (rdev->coupling_desc.n_coupled > 1)
4470 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4471 else
4472 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4474 out:
4475 regulator_unlock(rdev);
4476 return ret;
4478 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4480 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4482 int sel, ret;
4483 bool bypassed;
4485 if (rdev->desc->ops->get_bypass) {
4486 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4487 if (ret < 0)
4488 return ret;
4489 if (bypassed) {
4490 /* if bypassed the regulator must have a supply */
4491 if (!rdev->supply) {
4492 rdev_err(rdev,
4493 "bypassed regulator has no supply!\n");
4494 return -EPROBE_DEFER;
4497 return regulator_get_voltage_rdev(rdev->supply->rdev);
4501 if (rdev->desc->ops->get_voltage_sel) {
4502 sel = rdev->desc->ops->get_voltage_sel(rdev);
4503 if (sel < 0)
4504 return sel;
4505 ret = rdev->desc->ops->list_voltage(rdev, sel);
4506 } else if (rdev->desc->ops->get_voltage) {
4507 ret = rdev->desc->ops->get_voltage(rdev);
4508 } else if (rdev->desc->ops->list_voltage) {
4509 ret = rdev->desc->ops->list_voltage(rdev, 0);
4510 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4511 ret = rdev->desc->fixed_uV;
4512 } else if (rdev->supply) {
4513 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4514 } else if (rdev->supply_name) {
4515 return -EPROBE_DEFER;
4516 } else {
4517 return -EINVAL;
4520 if (ret < 0)
4521 return ret;
4522 return ret - rdev->constraints->uV_offset;
4524 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4527 * regulator_get_voltage - get regulator output voltage
4528 * @regulator: regulator source
4530 * This returns the current regulator voltage in uV.
4532 * NOTE: If the regulator is disabled it will return the voltage value. This
4533 * function should not be used to determine regulator state.
4535 int regulator_get_voltage(struct regulator *regulator)
4537 struct ww_acquire_ctx ww_ctx;
4538 int ret;
4540 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4541 ret = regulator_get_voltage_rdev(regulator->rdev);
4542 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4544 return ret;
4546 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4549 * regulator_set_current_limit - set regulator output current limit
4550 * @regulator: regulator source
4551 * @min_uA: Minimum supported current in uA
4552 * @max_uA: Maximum supported current in uA
4554 * Sets current sink to the desired output current. This can be set during
4555 * any regulator state. IOW, regulator can be disabled or enabled.
4557 * If the regulator is enabled then the current will change to the new value
4558 * immediately otherwise if the regulator is disabled the regulator will
4559 * output at the new current when enabled.
4561 * NOTE: Regulator system constraints must be set for this regulator before
4562 * calling this function otherwise this call will fail.
4564 int regulator_set_current_limit(struct regulator *regulator,
4565 int min_uA, int max_uA)
4567 struct regulator_dev *rdev = regulator->rdev;
4568 int ret;
4570 regulator_lock(rdev);
4572 /* sanity check */
4573 if (!rdev->desc->ops->set_current_limit) {
4574 ret = -EINVAL;
4575 goto out;
4578 /* constraints check */
4579 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4580 if (ret < 0)
4581 goto out;
4583 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4584 out:
4585 regulator_unlock(rdev);
4586 return ret;
4588 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4590 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4592 /* sanity check */
4593 if (!rdev->desc->ops->get_current_limit)
4594 return -EINVAL;
4596 return rdev->desc->ops->get_current_limit(rdev);
4599 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4601 int ret;
4603 regulator_lock(rdev);
4604 ret = _regulator_get_current_limit_unlocked(rdev);
4605 regulator_unlock(rdev);
4607 return ret;
4611 * regulator_get_current_limit - get regulator output current
4612 * @regulator: regulator source
4614 * This returns the current supplied by the specified current sink in uA.
4616 * NOTE: If the regulator is disabled it will return the current value. This
4617 * function should not be used to determine regulator state.
4619 int regulator_get_current_limit(struct regulator *regulator)
4621 return _regulator_get_current_limit(regulator->rdev);
4623 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4626 * regulator_set_mode - set regulator operating mode
4627 * @regulator: regulator source
4628 * @mode: operating mode - one of the REGULATOR_MODE constants
4630 * Set regulator operating mode to increase regulator efficiency or improve
4631 * regulation performance.
4633 * NOTE: Regulator system constraints must be set for this regulator before
4634 * calling this function otherwise this call will fail.
4636 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4638 struct regulator_dev *rdev = regulator->rdev;
4639 int ret;
4640 int regulator_curr_mode;
4642 regulator_lock(rdev);
4644 /* sanity check */
4645 if (!rdev->desc->ops->set_mode) {
4646 ret = -EINVAL;
4647 goto out;
4650 /* return if the same mode is requested */
4651 if (rdev->desc->ops->get_mode) {
4652 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4653 if (regulator_curr_mode == mode) {
4654 ret = 0;
4655 goto out;
4659 /* constraints check */
4660 ret = regulator_mode_constrain(rdev, &mode);
4661 if (ret < 0)
4662 goto out;
4664 ret = rdev->desc->ops->set_mode(rdev, mode);
4665 out:
4666 regulator_unlock(rdev);
4667 return ret;
4669 EXPORT_SYMBOL_GPL(regulator_set_mode);
4671 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4673 /* sanity check */
4674 if (!rdev->desc->ops->get_mode)
4675 return -EINVAL;
4677 return rdev->desc->ops->get_mode(rdev);
4680 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4682 int ret;
4684 regulator_lock(rdev);
4685 ret = _regulator_get_mode_unlocked(rdev);
4686 regulator_unlock(rdev);
4688 return ret;
4692 * regulator_get_mode - get regulator operating mode
4693 * @regulator: regulator source
4695 * Get the current regulator operating mode.
4697 unsigned int regulator_get_mode(struct regulator *regulator)
4699 return _regulator_get_mode(regulator->rdev);
4701 EXPORT_SYMBOL_GPL(regulator_get_mode);
4703 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4705 int ret = 0;
4707 if (rdev->use_cached_err) {
4708 spin_lock(&rdev->err_lock);
4709 ret = rdev->cached_err;
4710 spin_unlock(&rdev->err_lock);
4712 return ret;
4715 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4716 unsigned int *flags)
4718 int cached_flags, ret = 0;
4720 regulator_lock(rdev);
4722 cached_flags = rdev_get_cached_err_flags(rdev);
4724 if (rdev->desc->ops->get_error_flags)
4725 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4726 else if (!rdev->use_cached_err)
4727 ret = -EINVAL;
4729 *flags |= cached_flags;
4731 regulator_unlock(rdev);
4733 return ret;
4737 * regulator_get_error_flags - get regulator error information
4738 * @regulator: regulator source
4739 * @flags: pointer to store error flags
4741 * Get the current regulator error information.
4743 int regulator_get_error_flags(struct regulator *regulator,
4744 unsigned int *flags)
4746 return _regulator_get_error_flags(regulator->rdev, flags);
4748 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4751 * regulator_set_load - set regulator load
4752 * @regulator: regulator source
4753 * @uA_load: load current
4755 * Notifies the regulator core of a new device load. This is then used by
4756 * DRMS (if enabled by constraints) to set the most efficient regulator
4757 * operating mode for the new regulator loading.
4759 * Consumer devices notify their supply regulator of the maximum power
4760 * they will require (can be taken from device datasheet in the power
4761 * consumption tables) when they change operational status and hence power
4762 * state. Examples of operational state changes that can affect power
4763 * consumption are :-
4765 * o Device is opened / closed.
4766 * o Device I/O is about to begin or has just finished.
4767 * o Device is idling in between work.
4769 * This information is also exported via sysfs to userspace.
4771 * DRMS will sum the total requested load on the regulator and change
4772 * to the most efficient operating mode if platform constraints allow.
4774 * NOTE: when a regulator consumer requests to have a regulator
4775 * disabled then any load that consumer requested no longer counts
4776 * toward the total requested load. If the regulator is re-enabled
4777 * then the previously requested load will start counting again.
4779 * If a regulator is an always-on regulator then an individual consumer's
4780 * load will still be removed if that consumer is fully disabled.
4782 * On error a negative errno is returned.
4784 int regulator_set_load(struct regulator *regulator, int uA_load)
4786 struct regulator_dev *rdev = regulator->rdev;
4787 int old_uA_load;
4788 int ret = 0;
4790 regulator_lock(rdev);
4791 old_uA_load = regulator->uA_load;
4792 regulator->uA_load = uA_load;
4793 if (regulator->enable_count && old_uA_load != uA_load) {
4794 ret = drms_uA_update(rdev);
4795 if (ret < 0)
4796 regulator->uA_load = old_uA_load;
4798 regulator_unlock(rdev);
4800 return ret;
4802 EXPORT_SYMBOL_GPL(regulator_set_load);
4805 * regulator_allow_bypass - allow the regulator to go into bypass mode
4807 * @regulator: Regulator to configure
4808 * @enable: enable or disable bypass mode
4810 * Allow the regulator to go into bypass mode if all other consumers
4811 * for the regulator also enable bypass mode and the machine
4812 * constraints allow this. Bypass mode means that the regulator is
4813 * simply passing the input directly to the output with no regulation.
4815 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4817 struct regulator_dev *rdev = regulator->rdev;
4818 const char *name = rdev_get_name(rdev);
4819 int ret = 0;
4821 if (!rdev->desc->ops->set_bypass)
4822 return 0;
4824 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4825 return 0;
4827 regulator_lock(rdev);
4829 if (enable && !regulator->bypass) {
4830 rdev->bypass_count++;
4832 if (rdev->bypass_count == rdev->open_count) {
4833 trace_regulator_bypass_enable(name);
4835 ret = rdev->desc->ops->set_bypass(rdev, enable);
4836 if (ret != 0)
4837 rdev->bypass_count--;
4838 else
4839 trace_regulator_bypass_enable_complete(name);
4842 } else if (!enable && regulator->bypass) {
4843 rdev->bypass_count--;
4845 if (rdev->bypass_count != rdev->open_count) {
4846 trace_regulator_bypass_disable(name);
4848 ret = rdev->desc->ops->set_bypass(rdev, enable);
4849 if (ret != 0)
4850 rdev->bypass_count++;
4851 else
4852 trace_regulator_bypass_disable_complete(name);
4856 if (ret == 0)
4857 regulator->bypass = enable;
4859 regulator_unlock(rdev);
4861 return ret;
4863 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4866 * regulator_register_notifier - register regulator event notifier
4867 * @regulator: regulator source
4868 * @nb: notifier block
4870 * Register notifier block to receive regulator events.
4872 int regulator_register_notifier(struct regulator *regulator,
4873 struct notifier_block *nb)
4875 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4876 nb);
4878 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4881 * regulator_unregister_notifier - unregister regulator event notifier
4882 * @regulator: regulator source
4883 * @nb: notifier block
4885 * Unregister regulator event notifier block.
4887 int regulator_unregister_notifier(struct regulator *regulator,
4888 struct notifier_block *nb)
4890 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4891 nb);
4893 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4895 /* notify regulator consumers and downstream regulator consumers.
4896 * Note mutex must be held by caller.
4898 static int _notifier_call_chain(struct regulator_dev *rdev,
4899 unsigned long event, void *data)
4901 /* call rdev chain first */
4902 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4904 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4905 struct device *parent = rdev->dev.parent;
4906 const char *rname = rdev_get_name(rdev);
4907 char name[32];
4909 /* Avoid duplicate debugfs directory names */
4910 if (parent && rname == rdev->desc->name) {
4911 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4912 rname);
4913 rname = name;
4915 reg_generate_netlink_event(rname, event);
4918 return ret;
4921 int _regulator_bulk_get(struct device *dev, int num_consumers,
4922 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4924 int i;
4925 int ret;
4927 for (i = 0; i < num_consumers; i++)
4928 consumers[i].consumer = NULL;
4930 for (i = 0; i < num_consumers; i++) {
4931 consumers[i].consumer = _regulator_get(dev,
4932 consumers[i].supply, get_type);
4933 if (IS_ERR(consumers[i].consumer)) {
4934 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4935 "Failed to get supply '%s'",
4936 consumers[i].supply);
4937 consumers[i].consumer = NULL;
4938 goto err;
4941 if (consumers[i].init_load_uA > 0) {
4942 ret = regulator_set_load(consumers[i].consumer,
4943 consumers[i].init_load_uA);
4944 if (ret) {
4945 i++;
4946 goto err;
4951 return 0;
4953 err:
4954 while (--i >= 0)
4955 regulator_put(consumers[i].consumer);
4957 return ret;
4961 * regulator_bulk_get - get multiple regulator consumers
4963 * @dev: Device to supply
4964 * @num_consumers: Number of consumers to register
4965 * @consumers: Configuration of consumers; clients are stored here.
4967 * @return 0 on success, an errno on failure.
4969 * This helper function allows drivers to get several regulator
4970 * consumers in one operation. If any of the regulators cannot be
4971 * acquired then any regulators that were allocated will be freed
4972 * before returning to the caller.
4974 int regulator_bulk_get(struct device *dev, int num_consumers,
4975 struct regulator_bulk_data *consumers)
4977 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4979 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4981 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4983 struct regulator_bulk_data *bulk = data;
4985 bulk->ret = regulator_enable(bulk->consumer);
4989 * regulator_bulk_enable - enable multiple regulator consumers
4991 * @num_consumers: Number of consumers
4992 * @consumers: Consumer data; clients are stored here.
4993 * @return 0 on success, an errno on failure
4995 * This convenience API allows consumers to enable multiple regulator
4996 * clients in a single API call. If any consumers cannot be enabled
4997 * then any others that were enabled will be disabled again prior to
4998 * return.
5000 int regulator_bulk_enable(int num_consumers,
5001 struct regulator_bulk_data *consumers)
5003 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5004 int i;
5005 int ret = 0;
5007 for (i = 0; i < num_consumers; i++) {
5008 async_schedule_domain(regulator_bulk_enable_async,
5009 &consumers[i], &async_domain);
5012 async_synchronize_full_domain(&async_domain);
5014 /* If any consumer failed we need to unwind any that succeeded */
5015 for (i = 0; i < num_consumers; i++) {
5016 if (consumers[i].ret != 0) {
5017 ret = consumers[i].ret;
5018 goto err;
5022 return 0;
5024 err:
5025 for (i = 0; i < num_consumers; i++) {
5026 if (consumers[i].ret < 0)
5027 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5028 ERR_PTR(consumers[i].ret));
5029 else
5030 regulator_disable(consumers[i].consumer);
5033 return ret;
5035 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5038 * regulator_bulk_disable - disable multiple regulator consumers
5040 * @num_consumers: Number of consumers
5041 * @consumers: Consumer data; clients are stored here.
5042 * @return 0 on success, an errno on failure
5044 * This convenience API allows consumers to disable multiple regulator
5045 * clients in a single API call. If any consumers cannot be disabled
5046 * then any others that were disabled will be enabled again prior to
5047 * return.
5049 int regulator_bulk_disable(int num_consumers,
5050 struct regulator_bulk_data *consumers)
5052 int i;
5053 int ret, r;
5055 for (i = num_consumers - 1; i >= 0; --i) {
5056 ret = regulator_disable(consumers[i].consumer);
5057 if (ret != 0)
5058 goto err;
5061 return 0;
5063 err:
5064 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5065 for (++i; i < num_consumers; ++i) {
5066 r = regulator_enable(consumers[i].consumer);
5067 if (r != 0)
5068 pr_err("Failed to re-enable %s: %pe\n",
5069 consumers[i].supply, ERR_PTR(r));
5072 return ret;
5074 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5077 * regulator_bulk_force_disable - force disable multiple regulator consumers
5079 * @num_consumers: Number of consumers
5080 * @consumers: Consumer data; clients are stored here.
5081 * @return 0 on success, an errno on failure
5083 * This convenience API allows consumers to forcibly disable multiple regulator
5084 * clients in a single API call.
5085 * NOTE: This should be used for situations when device damage will
5086 * likely occur if the regulators are not disabled (e.g. over temp).
5087 * Although regulator_force_disable function call for some consumers can
5088 * return error numbers, the function is called for all consumers.
5090 int regulator_bulk_force_disable(int num_consumers,
5091 struct regulator_bulk_data *consumers)
5093 int i;
5094 int ret = 0;
5096 for (i = 0; i < num_consumers; i++) {
5097 consumers[i].ret =
5098 regulator_force_disable(consumers[i].consumer);
5100 /* Store first error for reporting */
5101 if (consumers[i].ret && !ret)
5102 ret = consumers[i].ret;
5105 return ret;
5107 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5110 * regulator_bulk_free - free multiple regulator consumers
5112 * @num_consumers: Number of consumers
5113 * @consumers: Consumer data; clients are stored here.
5115 * This convenience API allows consumers to free multiple regulator
5116 * clients in a single API call.
5118 void regulator_bulk_free(int num_consumers,
5119 struct regulator_bulk_data *consumers)
5121 int i;
5123 for (i = 0; i < num_consumers; i++) {
5124 regulator_put(consumers[i].consumer);
5125 consumers[i].consumer = NULL;
5128 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5131 * regulator_handle_critical - Handle events for system-critical regulators.
5132 * @rdev: The regulator device.
5133 * @event: The event being handled.
5135 * This function handles critical events such as under-voltage, over-current,
5136 * and unknown errors for regulators deemed system-critical. On detecting such
5137 * events, it triggers a hardware protection shutdown with a defined timeout.
5139 static void regulator_handle_critical(struct regulator_dev *rdev,
5140 unsigned long event)
5142 const char *reason = NULL;
5144 if (!rdev->constraints->system_critical)
5145 return;
5147 switch (event) {
5148 case REGULATOR_EVENT_UNDER_VOLTAGE:
5149 reason = "System critical regulator: voltage drop detected";
5150 break;
5151 case REGULATOR_EVENT_OVER_CURRENT:
5152 reason = "System critical regulator: over-current detected";
5153 break;
5154 case REGULATOR_EVENT_FAIL:
5155 reason = "System critical regulator: unknown error";
5158 if (!reason)
5159 return;
5161 hw_protection_shutdown(reason,
5162 rdev->constraints->uv_less_critical_window_ms);
5166 * regulator_notifier_call_chain - call regulator event notifier
5167 * @rdev: regulator source
5168 * @event: notifier block
5169 * @data: callback-specific data.
5171 * Called by regulator drivers to notify clients a regulator event has
5172 * occurred.
5174 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5175 unsigned long event, void *data)
5177 regulator_handle_critical(rdev, event);
5179 _notifier_call_chain(rdev, event, data);
5180 return NOTIFY_DONE;
5183 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5186 * regulator_mode_to_status - convert a regulator mode into a status
5188 * @mode: Mode to convert
5190 * Convert a regulator mode into a status.
5192 int regulator_mode_to_status(unsigned int mode)
5194 switch (mode) {
5195 case REGULATOR_MODE_FAST:
5196 return REGULATOR_STATUS_FAST;
5197 case REGULATOR_MODE_NORMAL:
5198 return REGULATOR_STATUS_NORMAL;
5199 case REGULATOR_MODE_IDLE:
5200 return REGULATOR_STATUS_IDLE;
5201 case REGULATOR_MODE_STANDBY:
5202 return REGULATOR_STATUS_STANDBY;
5203 default:
5204 return REGULATOR_STATUS_UNDEFINED;
5207 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5209 static struct attribute *regulator_dev_attrs[] = {
5210 &dev_attr_name.attr,
5211 &dev_attr_num_users.attr,
5212 &dev_attr_type.attr,
5213 &dev_attr_microvolts.attr,
5214 &dev_attr_microamps.attr,
5215 &dev_attr_opmode.attr,
5216 &dev_attr_state.attr,
5217 &dev_attr_status.attr,
5218 &dev_attr_bypass.attr,
5219 &dev_attr_requested_microamps.attr,
5220 &dev_attr_min_microvolts.attr,
5221 &dev_attr_max_microvolts.attr,
5222 &dev_attr_min_microamps.attr,
5223 &dev_attr_max_microamps.attr,
5224 &dev_attr_under_voltage.attr,
5225 &dev_attr_over_current.attr,
5226 &dev_attr_regulation_out.attr,
5227 &dev_attr_fail.attr,
5228 &dev_attr_over_temp.attr,
5229 &dev_attr_under_voltage_warn.attr,
5230 &dev_attr_over_current_warn.attr,
5231 &dev_attr_over_voltage_warn.attr,
5232 &dev_attr_over_temp_warn.attr,
5233 &dev_attr_suspend_standby_state.attr,
5234 &dev_attr_suspend_mem_state.attr,
5235 &dev_attr_suspend_disk_state.attr,
5236 &dev_attr_suspend_standby_microvolts.attr,
5237 &dev_attr_suspend_mem_microvolts.attr,
5238 &dev_attr_suspend_disk_microvolts.attr,
5239 &dev_attr_suspend_standby_mode.attr,
5240 &dev_attr_suspend_mem_mode.attr,
5241 &dev_attr_suspend_disk_mode.attr,
5242 NULL
5246 * To avoid cluttering sysfs (and memory) with useless state, only
5247 * create attributes that can be meaningfully displayed.
5249 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5250 struct attribute *attr, int idx)
5252 struct device *dev = kobj_to_dev(kobj);
5253 struct regulator_dev *rdev = dev_to_rdev(dev);
5254 const struct regulator_ops *ops = rdev->desc->ops;
5255 umode_t mode = attr->mode;
5257 /* these three are always present */
5258 if (attr == &dev_attr_name.attr ||
5259 attr == &dev_attr_num_users.attr ||
5260 attr == &dev_attr_type.attr)
5261 return mode;
5263 /* some attributes need specific methods to be displayed */
5264 if (attr == &dev_attr_microvolts.attr) {
5265 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5266 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5267 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5268 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5269 return mode;
5270 return 0;
5273 if (attr == &dev_attr_microamps.attr)
5274 return ops->get_current_limit ? mode : 0;
5276 if (attr == &dev_attr_opmode.attr)
5277 return ops->get_mode ? mode : 0;
5279 if (attr == &dev_attr_state.attr)
5280 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5282 if (attr == &dev_attr_status.attr)
5283 return ops->get_status ? mode : 0;
5285 if (attr == &dev_attr_bypass.attr)
5286 return ops->get_bypass ? mode : 0;
5288 if (attr == &dev_attr_under_voltage.attr ||
5289 attr == &dev_attr_over_current.attr ||
5290 attr == &dev_attr_regulation_out.attr ||
5291 attr == &dev_attr_fail.attr ||
5292 attr == &dev_attr_over_temp.attr ||
5293 attr == &dev_attr_under_voltage_warn.attr ||
5294 attr == &dev_attr_over_current_warn.attr ||
5295 attr == &dev_attr_over_voltage_warn.attr ||
5296 attr == &dev_attr_over_temp_warn.attr)
5297 return ops->get_error_flags ? mode : 0;
5299 /* constraints need specific supporting methods */
5300 if (attr == &dev_attr_min_microvolts.attr ||
5301 attr == &dev_attr_max_microvolts.attr)
5302 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5304 if (attr == &dev_attr_min_microamps.attr ||
5305 attr == &dev_attr_max_microamps.attr)
5306 return ops->set_current_limit ? mode : 0;
5308 if (attr == &dev_attr_suspend_standby_state.attr ||
5309 attr == &dev_attr_suspend_mem_state.attr ||
5310 attr == &dev_attr_suspend_disk_state.attr)
5311 return mode;
5313 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5314 attr == &dev_attr_suspend_mem_microvolts.attr ||
5315 attr == &dev_attr_suspend_disk_microvolts.attr)
5316 return ops->set_suspend_voltage ? mode : 0;
5318 if (attr == &dev_attr_suspend_standby_mode.attr ||
5319 attr == &dev_attr_suspend_mem_mode.attr ||
5320 attr == &dev_attr_suspend_disk_mode.attr)
5321 return ops->set_suspend_mode ? mode : 0;
5323 return mode;
5326 static const struct attribute_group regulator_dev_group = {
5327 .attrs = regulator_dev_attrs,
5328 .is_visible = regulator_attr_is_visible,
5331 static const struct attribute_group *regulator_dev_groups[] = {
5332 &regulator_dev_group,
5333 NULL
5336 static void regulator_dev_release(struct device *dev)
5338 struct regulator_dev *rdev = dev_get_drvdata(dev);
5340 debugfs_remove_recursive(rdev->debugfs);
5341 kfree(rdev->constraints);
5342 of_node_put(rdev->dev.of_node);
5343 kfree(rdev);
5346 static void rdev_init_debugfs(struct regulator_dev *rdev)
5348 struct device *parent = rdev->dev.parent;
5349 const char *rname = rdev_get_name(rdev);
5350 char name[NAME_MAX];
5352 /* Avoid duplicate debugfs directory names */
5353 if (parent && rname == rdev->desc->name) {
5354 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5355 rname);
5356 rname = name;
5359 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5360 if (IS_ERR(rdev->debugfs))
5361 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5363 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5364 &rdev->use_count);
5365 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5366 &rdev->open_count);
5367 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5368 &rdev->bypass_count);
5371 static int regulator_register_resolve_supply(struct device *dev, void *data)
5373 struct regulator_dev *rdev = dev_to_rdev(dev);
5375 if (regulator_resolve_supply(rdev))
5376 rdev_dbg(rdev, "unable to resolve supply\n");
5378 return 0;
5381 int regulator_coupler_register(struct regulator_coupler *coupler)
5383 mutex_lock(&regulator_list_mutex);
5384 list_add_tail(&coupler->list, &regulator_coupler_list);
5385 mutex_unlock(&regulator_list_mutex);
5387 return 0;
5390 static struct regulator_coupler *
5391 regulator_find_coupler(struct regulator_dev *rdev)
5393 struct regulator_coupler *coupler;
5394 int err;
5397 * Note that regulators are appended to the list and the generic
5398 * coupler is registered first, hence it will be attached at last
5399 * if nobody cared.
5401 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5402 err = coupler->attach_regulator(coupler, rdev);
5403 if (!err) {
5404 if (!coupler->balance_voltage &&
5405 rdev->coupling_desc.n_coupled > 2)
5406 goto err_unsupported;
5408 return coupler;
5411 if (err < 0)
5412 return ERR_PTR(err);
5414 if (err == 1)
5415 continue;
5417 break;
5420 return ERR_PTR(-EINVAL);
5422 err_unsupported:
5423 if (coupler->detach_regulator)
5424 coupler->detach_regulator(coupler, rdev);
5426 rdev_err(rdev,
5427 "Voltage balancing for multiple regulator couples is unimplemented\n");
5429 return ERR_PTR(-EPERM);
5432 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5434 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5435 struct coupling_desc *c_desc = &rdev->coupling_desc;
5436 int n_coupled = c_desc->n_coupled;
5437 struct regulator_dev *c_rdev;
5438 int i;
5440 for (i = 1; i < n_coupled; i++) {
5441 /* already resolved */
5442 if (c_desc->coupled_rdevs[i])
5443 continue;
5445 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5447 if (!c_rdev)
5448 continue;
5450 if (c_rdev->coupling_desc.coupler != coupler) {
5451 rdev_err(rdev, "coupler mismatch with %s\n",
5452 rdev_get_name(c_rdev));
5453 return;
5456 c_desc->coupled_rdevs[i] = c_rdev;
5457 c_desc->n_resolved++;
5459 regulator_resolve_coupling(c_rdev);
5463 static void regulator_remove_coupling(struct regulator_dev *rdev)
5465 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5466 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5467 struct regulator_dev *__c_rdev, *c_rdev;
5468 unsigned int __n_coupled, n_coupled;
5469 int i, k;
5470 int err;
5472 n_coupled = c_desc->n_coupled;
5474 for (i = 1; i < n_coupled; i++) {
5475 c_rdev = c_desc->coupled_rdevs[i];
5477 if (!c_rdev)
5478 continue;
5480 regulator_lock(c_rdev);
5482 __c_desc = &c_rdev->coupling_desc;
5483 __n_coupled = __c_desc->n_coupled;
5485 for (k = 1; k < __n_coupled; k++) {
5486 __c_rdev = __c_desc->coupled_rdevs[k];
5488 if (__c_rdev == rdev) {
5489 __c_desc->coupled_rdevs[k] = NULL;
5490 __c_desc->n_resolved--;
5491 break;
5495 regulator_unlock(c_rdev);
5497 c_desc->coupled_rdevs[i] = NULL;
5498 c_desc->n_resolved--;
5501 if (coupler && coupler->detach_regulator) {
5502 err = coupler->detach_regulator(coupler, rdev);
5503 if (err)
5504 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5505 ERR_PTR(err));
5508 kfree(rdev->coupling_desc.coupled_rdevs);
5509 rdev->coupling_desc.coupled_rdevs = NULL;
5512 static int regulator_init_coupling(struct regulator_dev *rdev)
5514 struct regulator_dev **coupled;
5515 int err, n_phandles;
5517 if (!IS_ENABLED(CONFIG_OF))
5518 n_phandles = 0;
5519 else
5520 n_phandles = of_get_n_coupled(rdev);
5522 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5523 if (!coupled)
5524 return -ENOMEM;
5526 rdev->coupling_desc.coupled_rdevs = coupled;
5529 * Every regulator should always have coupling descriptor filled with
5530 * at least pointer to itself.
5532 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5533 rdev->coupling_desc.n_coupled = n_phandles + 1;
5534 rdev->coupling_desc.n_resolved++;
5536 /* regulator isn't coupled */
5537 if (n_phandles == 0)
5538 return 0;
5540 if (!of_check_coupling_data(rdev))
5541 return -EPERM;
5543 mutex_lock(&regulator_list_mutex);
5544 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5545 mutex_unlock(&regulator_list_mutex);
5547 if (IS_ERR(rdev->coupling_desc.coupler)) {
5548 err = PTR_ERR(rdev->coupling_desc.coupler);
5549 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5550 return err;
5553 return 0;
5556 static int generic_coupler_attach(struct regulator_coupler *coupler,
5557 struct regulator_dev *rdev)
5559 if (rdev->coupling_desc.n_coupled > 2) {
5560 rdev_err(rdev,
5561 "Voltage balancing for multiple regulator couples is unimplemented\n");
5562 return -EPERM;
5565 if (!rdev->constraints->always_on) {
5566 rdev_err(rdev,
5567 "Coupling of a non always-on regulator is unimplemented\n");
5568 return -ENOTSUPP;
5571 return 0;
5574 static struct regulator_coupler generic_regulator_coupler = {
5575 .attach_regulator = generic_coupler_attach,
5579 * regulator_register - register regulator
5580 * @dev: the device that drive the regulator
5581 * @regulator_desc: regulator to register
5582 * @cfg: runtime configuration for regulator
5584 * Called by regulator drivers to register a regulator.
5585 * Returns a valid pointer to struct regulator_dev on success
5586 * or an ERR_PTR() on error.
5588 struct regulator_dev *
5589 regulator_register(struct device *dev,
5590 const struct regulator_desc *regulator_desc,
5591 const struct regulator_config *cfg)
5593 const struct regulator_init_data *init_data;
5594 struct regulator_config *config = NULL;
5595 static atomic_t regulator_no = ATOMIC_INIT(-1);
5596 struct regulator_dev *rdev;
5597 bool dangling_cfg_gpiod = false;
5598 bool dangling_of_gpiod = false;
5599 int ret, i;
5600 bool resolved_early = false;
5602 if (cfg == NULL)
5603 return ERR_PTR(-EINVAL);
5604 if (cfg->ena_gpiod)
5605 dangling_cfg_gpiod = true;
5606 if (regulator_desc == NULL) {
5607 ret = -EINVAL;
5608 goto rinse;
5611 WARN_ON(!dev || !cfg->dev);
5613 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5614 ret = -EINVAL;
5615 goto rinse;
5618 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5619 regulator_desc->type != REGULATOR_CURRENT) {
5620 ret = -EINVAL;
5621 goto rinse;
5624 /* Only one of each should be implemented */
5625 WARN_ON(regulator_desc->ops->get_voltage &&
5626 regulator_desc->ops->get_voltage_sel);
5627 WARN_ON(regulator_desc->ops->set_voltage &&
5628 regulator_desc->ops->set_voltage_sel);
5630 /* If we're using selectors we must implement list_voltage. */
5631 if (regulator_desc->ops->get_voltage_sel &&
5632 !regulator_desc->ops->list_voltage) {
5633 ret = -EINVAL;
5634 goto rinse;
5636 if (regulator_desc->ops->set_voltage_sel &&
5637 !regulator_desc->ops->list_voltage) {
5638 ret = -EINVAL;
5639 goto rinse;
5642 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5643 if (rdev == NULL) {
5644 ret = -ENOMEM;
5645 goto rinse;
5647 device_initialize(&rdev->dev);
5648 dev_set_drvdata(&rdev->dev, rdev);
5649 rdev->dev.class = &regulator_class;
5650 spin_lock_init(&rdev->err_lock);
5653 * Duplicate the config so the driver could override it after
5654 * parsing init data.
5656 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5657 if (config == NULL) {
5658 ret = -ENOMEM;
5659 goto clean;
5662 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5663 &rdev->dev.of_node);
5666 * Sometimes not all resources are probed already so we need to take
5667 * that into account. This happens most the time if the ena_gpiod comes
5668 * from a gpio extender or something else.
5670 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5671 ret = -EPROBE_DEFER;
5672 goto clean;
5676 * We need to keep track of any GPIO descriptor coming from the
5677 * device tree until we have handled it over to the core. If the
5678 * config that was passed in to this function DOES NOT contain
5679 * a descriptor, and the config after this call DOES contain
5680 * a descriptor, we definitely got one from parsing the device
5681 * tree.
5683 if (!cfg->ena_gpiod && config->ena_gpiod)
5684 dangling_of_gpiod = true;
5685 if (!init_data) {
5686 init_data = config->init_data;
5687 rdev->dev.of_node = of_node_get(config->of_node);
5690 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5691 rdev->reg_data = config->driver_data;
5692 rdev->owner = regulator_desc->owner;
5693 rdev->desc = regulator_desc;
5694 if (config->regmap)
5695 rdev->regmap = config->regmap;
5696 else if (dev_get_regmap(dev, NULL))
5697 rdev->regmap = dev_get_regmap(dev, NULL);
5698 else if (dev->parent)
5699 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5700 INIT_LIST_HEAD(&rdev->consumer_list);
5701 INIT_LIST_HEAD(&rdev->list);
5702 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5703 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5705 if (init_data && init_data->supply_regulator)
5706 rdev->supply_name = init_data->supply_regulator;
5707 else if (regulator_desc->supply_name)
5708 rdev->supply_name = regulator_desc->supply_name;
5710 /* register with sysfs */
5711 rdev->dev.parent = config->dev;
5712 dev_set_name(&rdev->dev, "regulator.%lu",
5713 (unsigned long) atomic_inc_return(&regulator_no));
5715 /* set regulator constraints */
5716 if (init_data)
5717 rdev->constraints = kmemdup(&init_data->constraints,
5718 sizeof(*rdev->constraints),
5719 GFP_KERNEL);
5720 else
5721 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5722 GFP_KERNEL);
5723 if (!rdev->constraints) {
5724 ret = -ENOMEM;
5725 goto wash;
5728 if ((rdev->supply_name && !rdev->supply) &&
5729 (rdev->constraints->always_on ||
5730 rdev->constraints->boot_on)) {
5731 ret = regulator_resolve_supply(rdev);
5732 if (ret)
5733 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5734 ERR_PTR(ret));
5736 resolved_early = true;
5739 /* perform any regulator specific init */
5740 if (init_data && init_data->regulator_init) {
5741 ret = init_data->regulator_init(rdev->reg_data);
5742 if (ret < 0)
5743 goto wash;
5746 if (config->ena_gpiod) {
5747 ret = regulator_ena_gpio_request(rdev, config);
5748 if (ret != 0) {
5749 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5750 ERR_PTR(ret));
5751 goto wash;
5753 /* The regulator core took over the GPIO descriptor */
5754 dangling_cfg_gpiod = false;
5755 dangling_of_gpiod = false;
5758 ret = set_machine_constraints(rdev);
5759 if (ret == -EPROBE_DEFER && !resolved_early) {
5760 /* Regulator might be in bypass mode and so needs its supply
5761 * to set the constraints
5763 /* FIXME: this currently triggers a chicken-and-egg problem
5764 * when creating -SUPPLY symlink in sysfs to a regulator
5765 * that is just being created
5767 rdev_dbg(rdev, "will resolve supply early: %s\n",
5768 rdev->supply_name);
5769 ret = regulator_resolve_supply(rdev);
5770 if (!ret)
5771 ret = set_machine_constraints(rdev);
5772 else
5773 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5774 ERR_PTR(ret));
5776 if (ret < 0)
5777 goto wash;
5779 ret = regulator_init_coupling(rdev);
5780 if (ret < 0)
5781 goto wash;
5783 /* add consumers devices */
5784 if (init_data) {
5785 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5786 ret = set_consumer_device_supply(rdev,
5787 init_data->consumer_supplies[i].dev_name,
5788 init_data->consumer_supplies[i].supply);
5789 if (ret < 0) {
5790 dev_err(dev, "Failed to set supply %s\n",
5791 init_data->consumer_supplies[i].supply);
5792 goto unset_supplies;
5797 if (!rdev->desc->ops->get_voltage &&
5798 !rdev->desc->ops->list_voltage &&
5799 !rdev->desc->fixed_uV)
5800 rdev->is_switch = true;
5802 ret = device_add(&rdev->dev);
5803 if (ret != 0)
5804 goto unset_supplies;
5806 rdev_init_debugfs(rdev);
5808 /* try to resolve regulators coupling since a new one was registered */
5809 mutex_lock(&regulator_list_mutex);
5810 regulator_resolve_coupling(rdev);
5811 mutex_unlock(&regulator_list_mutex);
5813 /* try to resolve regulators supply since a new one was registered */
5814 class_for_each_device(&regulator_class, NULL, NULL,
5815 regulator_register_resolve_supply);
5816 kfree(config);
5817 return rdev;
5819 unset_supplies:
5820 mutex_lock(&regulator_list_mutex);
5821 unset_regulator_supplies(rdev);
5822 regulator_remove_coupling(rdev);
5823 mutex_unlock(&regulator_list_mutex);
5824 wash:
5825 regulator_put(rdev->supply);
5826 kfree(rdev->coupling_desc.coupled_rdevs);
5827 mutex_lock(&regulator_list_mutex);
5828 regulator_ena_gpio_free(rdev);
5829 mutex_unlock(&regulator_list_mutex);
5830 clean:
5831 if (dangling_of_gpiod)
5832 gpiod_put(config->ena_gpiod);
5833 kfree(config);
5834 put_device(&rdev->dev);
5835 rinse:
5836 if (dangling_cfg_gpiod)
5837 gpiod_put(cfg->ena_gpiod);
5838 return ERR_PTR(ret);
5840 EXPORT_SYMBOL_GPL(regulator_register);
5843 * regulator_unregister - unregister regulator
5844 * @rdev: regulator to unregister
5846 * Called by regulator drivers to unregister a regulator.
5848 void regulator_unregister(struct regulator_dev *rdev)
5850 if (rdev == NULL)
5851 return;
5853 if (rdev->supply) {
5854 while (rdev->use_count--)
5855 regulator_disable(rdev->supply);
5856 regulator_put(rdev->supply);
5859 flush_work(&rdev->disable_work.work);
5861 mutex_lock(&regulator_list_mutex);
5863 WARN_ON(rdev->open_count);
5864 regulator_remove_coupling(rdev);
5865 unset_regulator_supplies(rdev);
5866 list_del(&rdev->list);
5867 regulator_ena_gpio_free(rdev);
5868 device_unregister(&rdev->dev);
5870 mutex_unlock(&regulator_list_mutex);
5872 EXPORT_SYMBOL_GPL(regulator_unregister);
5874 #ifdef CONFIG_SUSPEND
5876 * regulator_suspend - prepare regulators for system wide suspend
5877 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5879 * Configure each regulator with it's suspend operating parameters for state.
5881 static int regulator_suspend(struct device *dev)
5883 struct regulator_dev *rdev = dev_to_rdev(dev);
5884 suspend_state_t state = pm_suspend_target_state;
5885 int ret;
5886 const struct regulator_state *rstate;
5888 rstate = regulator_get_suspend_state_check(rdev, state);
5889 if (!rstate)
5890 return 0;
5892 regulator_lock(rdev);
5893 ret = __suspend_set_state(rdev, rstate);
5894 regulator_unlock(rdev);
5896 return ret;
5899 static int regulator_resume(struct device *dev)
5901 suspend_state_t state = pm_suspend_target_state;
5902 struct regulator_dev *rdev = dev_to_rdev(dev);
5903 struct regulator_state *rstate;
5904 int ret = 0;
5906 rstate = regulator_get_suspend_state(rdev, state);
5907 if (rstate == NULL)
5908 return 0;
5910 /* Avoid grabbing the lock if we don't need to */
5911 if (!rdev->desc->ops->resume)
5912 return 0;
5914 regulator_lock(rdev);
5916 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5917 rstate->enabled == DISABLE_IN_SUSPEND)
5918 ret = rdev->desc->ops->resume(rdev);
5920 regulator_unlock(rdev);
5922 return ret;
5924 #else /* !CONFIG_SUSPEND */
5926 #define regulator_suspend NULL
5927 #define regulator_resume NULL
5929 #endif /* !CONFIG_SUSPEND */
5931 #ifdef CONFIG_PM
5932 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5933 .suspend = regulator_suspend,
5934 .resume = regulator_resume,
5936 #endif
5938 const struct class regulator_class = {
5939 .name = "regulator",
5940 .dev_release = regulator_dev_release,
5941 .dev_groups = regulator_dev_groups,
5942 #ifdef CONFIG_PM
5943 .pm = &regulator_pm_ops,
5944 #endif
5947 * regulator_has_full_constraints - the system has fully specified constraints
5949 * Calling this function will cause the regulator API to disable all
5950 * regulators which have a zero use count and don't have an always_on
5951 * constraint in a late_initcall.
5953 * The intention is that this will become the default behaviour in a
5954 * future kernel release so users are encouraged to use this facility
5955 * now.
5957 void regulator_has_full_constraints(void)
5959 has_full_constraints = 1;
5961 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5964 * rdev_get_drvdata - get rdev regulator driver data
5965 * @rdev: regulator
5967 * Get rdev regulator driver private data. This call can be used in the
5968 * regulator driver context.
5970 void *rdev_get_drvdata(struct regulator_dev *rdev)
5972 return rdev->reg_data;
5974 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5977 * regulator_get_drvdata - get regulator driver data
5978 * @regulator: regulator
5980 * Get regulator driver private data. This call can be used in the consumer
5981 * driver context when non API regulator specific functions need to be called.
5983 void *regulator_get_drvdata(struct regulator *regulator)
5985 return regulator->rdev->reg_data;
5987 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5990 * regulator_set_drvdata - set regulator driver data
5991 * @regulator: regulator
5992 * @data: data
5994 void regulator_set_drvdata(struct regulator *regulator, void *data)
5996 regulator->rdev->reg_data = data;
5998 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6001 * rdev_get_id - get regulator ID
6002 * @rdev: regulator
6004 int rdev_get_id(struct regulator_dev *rdev)
6006 return rdev->desc->id;
6008 EXPORT_SYMBOL_GPL(rdev_get_id);
6010 struct device *rdev_get_dev(struct regulator_dev *rdev)
6012 return &rdev->dev;
6014 EXPORT_SYMBOL_GPL(rdev_get_dev);
6016 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6018 return rdev->regmap;
6020 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6022 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6024 return reg_init_data->driver_data;
6026 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6028 #ifdef CONFIG_DEBUG_FS
6029 static int supply_map_show(struct seq_file *sf, void *data)
6031 struct regulator_map *map;
6033 list_for_each_entry(map, &regulator_map_list, list) {
6034 seq_printf(sf, "%s -> %s.%s\n",
6035 rdev_get_name(map->regulator), map->dev_name,
6036 map->supply);
6039 return 0;
6041 DEFINE_SHOW_ATTRIBUTE(supply_map);
6043 struct summary_data {
6044 struct seq_file *s;
6045 struct regulator_dev *parent;
6046 int level;
6049 static void regulator_summary_show_subtree(struct seq_file *s,
6050 struct regulator_dev *rdev,
6051 int level);
6053 static int regulator_summary_show_children(struct device *dev, void *data)
6055 struct regulator_dev *rdev = dev_to_rdev(dev);
6056 struct summary_data *summary_data = data;
6058 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6059 regulator_summary_show_subtree(summary_data->s, rdev,
6060 summary_data->level + 1);
6062 return 0;
6065 static void regulator_summary_show_subtree(struct seq_file *s,
6066 struct regulator_dev *rdev,
6067 int level)
6069 struct regulation_constraints *c;
6070 struct regulator *consumer;
6071 struct summary_data summary_data;
6072 unsigned int opmode;
6074 if (!rdev)
6075 return;
6077 opmode = _regulator_get_mode_unlocked(rdev);
6078 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6079 level * 3 + 1, "",
6080 30 - level * 3, rdev_get_name(rdev),
6081 rdev->use_count, rdev->open_count, rdev->bypass_count,
6082 regulator_opmode_to_str(opmode));
6084 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6085 seq_printf(s, "%5dmA ",
6086 _regulator_get_current_limit_unlocked(rdev) / 1000);
6088 c = rdev->constraints;
6089 if (c) {
6090 switch (rdev->desc->type) {
6091 case REGULATOR_VOLTAGE:
6092 seq_printf(s, "%5dmV %5dmV ",
6093 c->min_uV / 1000, c->max_uV / 1000);
6094 break;
6095 case REGULATOR_CURRENT:
6096 seq_printf(s, "%5dmA %5dmA ",
6097 c->min_uA / 1000, c->max_uA / 1000);
6098 break;
6102 seq_puts(s, "\n");
6104 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6105 if (consumer->dev && consumer->dev->class == &regulator_class)
6106 continue;
6108 seq_printf(s, "%*s%-*s ",
6109 (level + 1) * 3 + 1, "",
6110 30 - (level + 1) * 3,
6111 consumer->supply_name ? consumer->supply_name :
6112 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6114 switch (rdev->desc->type) {
6115 case REGULATOR_VOLTAGE:
6116 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6117 consumer->enable_count,
6118 consumer->uA_load / 1000,
6119 consumer->uA_load && !consumer->enable_count ?
6120 '*' : ' ',
6121 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6122 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6123 break;
6124 case REGULATOR_CURRENT:
6125 break;
6128 seq_puts(s, "\n");
6131 summary_data.s = s;
6132 summary_data.level = level;
6133 summary_data.parent = rdev;
6135 class_for_each_device(&regulator_class, NULL, &summary_data,
6136 regulator_summary_show_children);
6139 struct summary_lock_data {
6140 struct ww_acquire_ctx *ww_ctx;
6141 struct regulator_dev **new_contended_rdev;
6142 struct regulator_dev **old_contended_rdev;
6145 static int regulator_summary_lock_one(struct device *dev, void *data)
6147 struct regulator_dev *rdev = dev_to_rdev(dev);
6148 struct summary_lock_data *lock_data = data;
6149 int ret = 0;
6151 if (rdev != *lock_data->old_contended_rdev) {
6152 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6154 if (ret == -EDEADLK)
6155 *lock_data->new_contended_rdev = rdev;
6156 else
6157 WARN_ON_ONCE(ret);
6158 } else {
6159 *lock_data->old_contended_rdev = NULL;
6162 return ret;
6165 static int regulator_summary_unlock_one(struct device *dev, void *data)
6167 struct regulator_dev *rdev = dev_to_rdev(dev);
6168 struct summary_lock_data *lock_data = data;
6170 if (lock_data) {
6171 if (rdev == *lock_data->new_contended_rdev)
6172 return -EDEADLK;
6175 regulator_unlock(rdev);
6177 return 0;
6180 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6181 struct regulator_dev **new_contended_rdev,
6182 struct regulator_dev **old_contended_rdev)
6184 struct summary_lock_data lock_data;
6185 int ret;
6187 lock_data.ww_ctx = ww_ctx;
6188 lock_data.new_contended_rdev = new_contended_rdev;
6189 lock_data.old_contended_rdev = old_contended_rdev;
6191 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
6192 regulator_summary_lock_one);
6193 if (ret)
6194 class_for_each_device(&regulator_class, NULL, &lock_data,
6195 regulator_summary_unlock_one);
6197 return ret;
6200 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6202 struct regulator_dev *new_contended_rdev = NULL;
6203 struct regulator_dev *old_contended_rdev = NULL;
6204 int err;
6206 mutex_lock(&regulator_list_mutex);
6208 ww_acquire_init(ww_ctx, &regulator_ww_class);
6210 do {
6211 if (new_contended_rdev) {
6212 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6213 old_contended_rdev = new_contended_rdev;
6214 old_contended_rdev->ref_cnt++;
6215 old_contended_rdev->mutex_owner = current;
6218 err = regulator_summary_lock_all(ww_ctx,
6219 &new_contended_rdev,
6220 &old_contended_rdev);
6222 if (old_contended_rdev)
6223 regulator_unlock(old_contended_rdev);
6225 } while (err == -EDEADLK);
6227 ww_acquire_done(ww_ctx);
6230 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6232 class_for_each_device(&regulator_class, NULL, NULL,
6233 regulator_summary_unlock_one);
6234 ww_acquire_fini(ww_ctx);
6236 mutex_unlock(&regulator_list_mutex);
6239 static int regulator_summary_show_roots(struct device *dev, void *data)
6241 struct regulator_dev *rdev = dev_to_rdev(dev);
6242 struct seq_file *s = data;
6244 if (!rdev->supply)
6245 regulator_summary_show_subtree(s, rdev, 0);
6247 return 0;
6250 static int regulator_summary_show(struct seq_file *s, void *data)
6252 struct ww_acquire_ctx ww_ctx;
6254 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6255 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6257 regulator_summary_lock(&ww_ctx);
6259 class_for_each_device(&regulator_class, NULL, s,
6260 regulator_summary_show_roots);
6262 regulator_summary_unlock(&ww_ctx);
6264 return 0;
6266 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6267 #endif /* CONFIG_DEBUG_FS */
6269 static int __init regulator_init(void)
6271 int ret;
6273 ret = class_register(&regulator_class);
6275 debugfs_root = debugfs_create_dir("regulator", NULL);
6276 if (IS_ERR(debugfs_root))
6277 pr_debug("regulator: Failed to create debugfs directory\n");
6279 #ifdef CONFIG_DEBUG_FS
6280 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6281 &supply_map_fops);
6283 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6284 NULL, &regulator_summary_fops);
6285 #endif
6286 regulator_dummy_init();
6288 regulator_coupler_register(&generic_regulator_coupler);
6290 return ret;
6293 /* init early to allow our consumers to complete system booting */
6294 core_initcall(regulator_init);
6296 static int regulator_late_cleanup(struct device *dev, void *data)
6298 struct regulator_dev *rdev = dev_to_rdev(dev);
6299 struct regulation_constraints *c = rdev->constraints;
6300 int ret;
6302 if (c && c->always_on)
6303 return 0;
6305 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6306 return 0;
6308 regulator_lock(rdev);
6310 if (rdev->use_count)
6311 goto unlock;
6313 /* If reading the status failed, assume that it's off. */
6314 if (_regulator_is_enabled(rdev) <= 0)
6315 goto unlock;
6317 if (have_full_constraints()) {
6318 /* We log since this may kill the system if it goes
6319 * wrong.
6321 rdev_info(rdev, "disabling\n");
6322 ret = _regulator_do_disable(rdev);
6323 if (ret != 0)
6324 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6325 } else {
6326 /* The intention is that in future we will
6327 * assume that full constraints are provided
6328 * so warn even if we aren't going to do
6329 * anything here.
6331 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6334 unlock:
6335 regulator_unlock(rdev);
6337 return 0;
6340 static bool regulator_ignore_unused;
6341 static int __init regulator_ignore_unused_setup(char *__unused)
6343 regulator_ignore_unused = true;
6344 return 1;
6346 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6348 static void regulator_init_complete_work_function(struct work_struct *work)
6351 * Regulators may had failed to resolve their input supplies
6352 * when were registered, either because the input supply was
6353 * not registered yet or because its parent device was not
6354 * bound yet. So attempt to resolve the input supplies for
6355 * pending regulators before trying to disable unused ones.
6357 class_for_each_device(&regulator_class, NULL, NULL,
6358 regulator_register_resolve_supply);
6361 * For debugging purposes, it may be useful to prevent unused
6362 * regulators from being disabled.
6364 if (regulator_ignore_unused) {
6365 pr_warn("regulator: Not disabling unused regulators\n");
6366 return;
6369 /* If we have a full configuration then disable any regulators
6370 * we have permission to change the status for and which are
6371 * not in use or always_on. This is effectively the default
6372 * for DT and ACPI as they have full constraints.
6374 class_for_each_device(&regulator_class, NULL, NULL,
6375 regulator_late_cleanup);
6378 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6379 regulator_init_complete_work_function);
6381 static int __init regulator_init_complete(void)
6384 * Since DT doesn't provide an idiomatic mechanism for
6385 * enabling full constraints and since it's much more natural
6386 * with DT to provide them just assume that a DT enabled
6387 * system has full constraints.
6389 if (of_have_populated_dt())
6390 has_full_constraints = true;
6393 * We punt completion for an arbitrary amount of time since
6394 * systems like distros will load many drivers from userspace
6395 * so consumers might not always be ready yet, this is
6396 * particularly an issue with laptops where this might bounce
6397 * the display off then on. Ideally we'd get a notification
6398 * from userspace when this happens but we don't so just wait
6399 * a bit and hope we waited long enough. It'd be better if
6400 * we'd only do this on systems that need it, and a kernel
6401 * command line option might be useful.
6403 schedule_delayed_work(&regulator_init_complete_work,
6404 msecs_to_jiffies(30000));
6406 return 0;
6408 late_initcall_sync(regulator_init_complete);