Merge tag 'powerpc-6.12-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux.git] / drivers / powercap / dtpm_cpu.c
blob6b6f51b215501b36c7cd08871c3ec7f50e13cf37
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Linaro Limited
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
7 * The DTPM CPU is based on the energy model. It hooks the CPU in the
8 * DTPM tree which in turns update the power number by propagating the
9 * power number from the CPU energy model information to the parents.
11 * The association between the power and the performance state, allows
12 * to set the power of the CPU at the OPP granularity.
14 * The CPU hotplug is supported and the power numbers will be updated
15 * if a CPU is hot plugged / unplugged.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/cpumask.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/dtpm.h>
23 #include <linux/energy_model.h>
24 #include <linux/of.h>
25 #include <linux/pm_qos.h>
26 #include <linux/slab.h>
28 struct dtpm_cpu {
29 struct dtpm dtpm;
30 struct freq_qos_request qos_req;
31 int cpu;
34 static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
36 static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
38 return container_of(dtpm, struct dtpm_cpu, dtpm);
41 static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
43 struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
44 struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
45 struct em_perf_state *table;
46 unsigned long freq;
47 u64 power;
48 int i, nr_cpus;
50 nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(pd->cpus));
52 rcu_read_lock();
53 table = em_perf_state_from_pd(pd);
54 for (i = 0; i < pd->nr_perf_states; i++) {
56 power = table[i].power * nr_cpus;
58 if (power > power_limit)
59 break;
62 freq = table[i - 1].frequency;
63 power_limit = table[i - 1].power * nr_cpus;
64 rcu_read_unlock();
66 freq_qos_update_request(&dtpm_cpu->qos_req, freq);
68 return power_limit;
71 static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
73 unsigned long max, sum_util = 0;
74 int cpu;
77 * The capacity is the same for all CPUs belonging to
78 * the same perf domain.
80 max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
82 for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
83 sum_util += sched_cpu_util(cpu);
85 return (power * ((sum_util << 10) / max)) >> 10;
88 static u64 get_pd_power_uw(struct dtpm *dtpm)
90 struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
91 struct em_perf_state *table;
92 struct em_perf_domain *pd;
93 struct cpumask *pd_mask;
94 unsigned long freq;
95 u64 power = 0;
96 int i;
98 pd = em_cpu_get(dtpm_cpu->cpu);
100 pd_mask = em_span_cpus(pd);
102 freq = cpufreq_quick_get(dtpm_cpu->cpu);
104 rcu_read_lock();
105 table = em_perf_state_from_pd(pd);
106 for (i = 0; i < pd->nr_perf_states; i++) {
108 if (table[i].frequency < freq)
109 continue;
111 power = scale_pd_power_uw(pd_mask, table[i].power);
112 break;
114 rcu_read_unlock();
116 return power;
119 static int update_pd_power_uw(struct dtpm *dtpm)
121 struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
122 struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
123 struct em_perf_state *table;
124 int nr_cpus;
126 nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(em->cpus));
128 rcu_read_lock();
129 table = em_perf_state_from_pd(em);
131 dtpm->power_min = table[0].power;
132 dtpm->power_min *= nr_cpus;
134 dtpm->power_max = table[em->nr_perf_states - 1].power;
135 dtpm->power_max *= nr_cpus;
137 rcu_read_unlock();
139 return 0;
142 static void pd_release(struct dtpm *dtpm)
144 struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
145 struct cpufreq_policy *policy;
147 if (freq_qos_request_active(&dtpm_cpu->qos_req))
148 freq_qos_remove_request(&dtpm_cpu->qos_req);
150 policy = cpufreq_cpu_get(dtpm_cpu->cpu);
151 if (policy) {
152 for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
153 per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
155 cpufreq_cpu_put(policy);
158 kfree(dtpm_cpu);
161 static struct dtpm_ops dtpm_ops = {
162 .set_power_uw = set_pd_power_limit,
163 .get_power_uw = get_pd_power_uw,
164 .update_power_uw = update_pd_power_uw,
165 .release = pd_release,
168 static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
170 struct dtpm_cpu *dtpm_cpu;
172 dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
173 if (dtpm_cpu)
174 dtpm_update_power(&dtpm_cpu->dtpm);
176 return 0;
179 static int cpuhp_dtpm_cpu_online(unsigned int cpu)
181 struct dtpm_cpu *dtpm_cpu;
183 dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
184 if (dtpm_cpu)
185 return dtpm_update_power(&dtpm_cpu->dtpm);
187 return 0;
190 static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
192 struct dtpm_cpu *dtpm_cpu;
193 struct cpufreq_policy *policy;
194 struct em_perf_state *table;
195 struct em_perf_domain *pd;
196 char name[CPUFREQ_NAME_LEN];
197 int ret = -ENOMEM;
199 dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
200 if (dtpm_cpu)
201 return 0;
203 policy = cpufreq_cpu_get(cpu);
204 if (!policy)
205 return 0;
207 pd = em_cpu_get(cpu);
208 if (!pd || em_is_artificial(pd)) {
209 ret = -EINVAL;
210 goto release_policy;
213 dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
214 if (!dtpm_cpu) {
215 ret = -ENOMEM;
216 goto release_policy;
219 dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
220 dtpm_cpu->cpu = cpu;
222 for_each_cpu(cpu, policy->related_cpus)
223 per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
225 snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
227 ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
228 if (ret)
229 goto out_kfree_dtpm_cpu;
231 rcu_read_lock();
232 table = em_perf_state_from_pd(pd);
233 ret = freq_qos_add_request(&policy->constraints,
234 &dtpm_cpu->qos_req, FREQ_QOS_MAX,
235 table[pd->nr_perf_states - 1].frequency);
236 rcu_read_unlock();
237 if (ret < 0)
238 goto out_dtpm_unregister;
240 cpufreq_cpu_put(policy);
241 return 0;
243 out_dtpm_unregister:
244 dtpm_unregister(&dtpm_cpu->dtpm);
245 dtpm_cpu = NULL;
247 out_kfree_dtpm_cpu:
248 for_each_cpu(cpu, policy->related_cpus)
249 per_cpu(dtpm_per_cpu, cpu) = NULL;
250 kfree(dtpm_cpu);
252 release_policy:
253 cpufreq_cpu_put(policy);
254 return ret;
257 static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
259 int cpu;
261 cpu = of_cpu_node_to_id(np);
262 if (cpu < 0)
263 return 0;
265 return __dtpm_cpu_setup(cpu, dtpm);
268 static int dtpm_cpu_init(void)
270 int ret;
273 * The callbacks at CPU hotplug time are calling
274 * dtpm_update_power() which in turns calls update_pd_power().
276 * The function update_pd_power() uses the online mask to
277 * figure out the power consumption limits.
279 * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
280 * online mask when the cpuhp_dtpm_cpu_online function is
281 * called, but the CPU is still in the online mask for the
282 * tear down callback. So the power can not be updated when
283 * the CPU is unplugged.
285 * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
286 * above. The CPU online mask is not up to date when the CPU
287 * is plugged in.
289 * For this reason, we need to call the online and offline
290 * callbacks at different moments when the CPU online mask is
291 * consistent with the power numbers we want to update.
293 ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
294 NULL, cpuhp_dtpm_cpu_offline);
295 if (ret < 0)
296 return ret;
298 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
299 cpuhp_dtpm_cpu_online, NULL);
300 if (ret < 0)
301 return ret;
303 return 0;
306 static void dtpm_cpu_exit(void)
308 cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
309 cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
312 struct dtpm_subsys_ops dtpm_cpu_ops = {
313 .name = KBUILD_MODNAME,
314 .init = dtpm_cpu_init,
315 .exit = dtpm_cpu_exit,
316 .setup = dtpm_cpu_setup,