Merge tag '6.10-rc6-smb3-server-fixes' of git://git.samba.org/ksmbd
[linux.git] / drivers / hid / hid-core.c
blob74efda212c55f53cbb6e05adb9cb5c8bf7e67cc2
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
36 #include "hid-ids.h"
39 * Version Information
42 #define DRIVER_DESC "HID core driver"
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
49 * Register a new report for a device.
52 struct hid_report *hid_register_report(struct hid_device *device,
53 enum hid_report_type type, unsigned int id,
54 unsigned int application)
56 struct hid_report_enum *report_enum = device->report_enum + type;
57 struct hid_report *report;
59 if (id >= HID_MAX_IDS)
60 return NULL;
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
68 if (id != 0)
69 report_enum->numbered = 1;
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report->application = application;
76 report_enum->report_id_hash[id] = report;
78 list_add_tail(&report->list, &report_enum->report_list);
79 INIT_LIST_HEAD(&report->field_entry_list);
81 return report;
83 EXPORT_SYMBOL_GPL(hid_register_report);
86 * Register a new field for this report.
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
91 struct hid_field *field;
93 if (report->maxfield == HID_MAX_FIELDS) {
94 hid_err(report->device, "too many fields in report\n");
95 return NULL;
98 field = kzalloc((sizeof(struct hid_field) +
99 usages * sizeof(struct hid_usage) +
100 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 if (!field)
102 return NULL;
104 field->index = report->maxfield++;
105 report->field[field->index] = field;
106 field->usage = (struct hid_usage *)(field + 1);
107 field->value = (s32 *)(field->usage + usages);
108 field->new_value = (s32 *)(field->value + usages);
109 field->usages_priorities = (s32 *)(field->new_value + usages);
110 field->report = report;
112 return field;
116 * Open a collection. The type/usage is pushed on the stack.
119 static int open_collection(struct hid_parser *parser, unsigned type)
121 struct hid_collection *collection;
122 unsigned usage;
123 int collection_index;
125 usage = parser->local.usage[0];
127 if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 unsigned int *collection_stack;
129 unsigned int new_size = parser->collection_stack_size +
130 HID_COLLECTION_STACK_SIZE;
132 collection_stack = krealloc(parser->collection_stack,
133 new_size * sizeof(unsigned int),
134 GFP_KERNEL);
135 if (!collection_stack)
136 return -ENOMEM;
138 parser->collection_stack = collection_stack;
139 parser->collection_stack_size = new_size;
142 if (parser->device->maxcollection == parser->device->collection_size) {
143 collection = kmalloc(
144 array3_size(sizeof(struct hid_collection),
145 parser->device->collection_size,
147 GFP_KERNEL);
148 if (collection == NULL) {
149 hid_err(parser->device, "failed to reallocate collection array\n");
150 return -ENOMEM;
152 memcpy(collection, parser->device->collection,
153 sizeof(struct hid_collection) *
154 parser->device->collection_size);
155 memset(collection + parser->device->collection_size, 0,
156 sizeof(struct hid_collection) *
157 parser->device->collection_size);
158 kfree(parser->device->collection);
159 parser->device->collection = collection;
160 parser->device->collection_size *= 2;
163 parser->collection_stack[parser->collection_stack_ptr++] =
164 parser->device->maxcollection;
166 collection_index = parser->device->maxcollection++;
167 collection = parser->device->collection + collection_index;
168 collection->type = type;
169 collection->usage = usage;
170 collection->level = parser->collection_stack_ptr - 1;
171 collection->parent_idx = (collection->level == 0) ? -1 :
172 parser->collection_stack[collection->level - 1];
174 if (type == HID_COLLECTION_APPLICATION)
175 parser->device->maxapplication++;
177 return 0;
181 * Close a collection.
184 static int close_collection(struct hid_parser *parser)
186 if (!parser->collection_stack_ptr) {
187 hid_err(parser->device, "collection stack underflow\n");
188 return -EINVAL;
190 parser->collection_stack_ptr--;
191 return 0;
195 * Climb up the stack, search for the specified collection type
196 * and return the usage.
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
201 struct hid_collection *collection = parser->device->collection;
202 int n;
204 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 unsigned index = parser->collection_stack[n];
206 if (collection[index].type == type)
207 return collection[index].usage;
209 return 0; /* we know nothing about this usage type */
213 * Concatenate usage which defines 16 bits or less with the
214 * currently defined usage page to form a 32 bit usage
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
219 parser->local.usage[index] &= 0xFFFF;
220 parser->local.usage[index] |=
221 (parser->global.usage_page & 0xFFFF) << 16;
225 * Add a usage to the temporary parser table.
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
230 if (parser->local.usage_index >= HID_MAX_USAGES) {
231 hid_err(parser->device, "usage index exceeded\n");
232 return -1;
234 parser->local.usage[parser->local.usage_index] = usage;
237 * If Usage item only includes usage id, concatenate it with
238 * currently defined usage page
240 if (size <= 2)
241 complete_usage(parser, parser->local.usage_index);
243 parser->local.usage_size[parser->local.usage_index] = size;
244 parser->local.collection_index[parser->local.usage_index] =
245 parser->collection_stack_ptr ?
246 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 parser->local.usage_index++;
248 return 0;
252 * Register a new field for this report.
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
257 struct hid_report *report;
258 struct hid_field *field;
259 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260 unsigned int usages;
261 unsigned int offset;
262 unsigned int i;
263 unsigned int application;
265 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267 report = hid_register_report(parser->device, report_type,
268 parser->global.report_id, application);
269 if (!report) {
270 hid_err(parser->device, "hid_register_report failed\n");
271 return -1;
274 /* Handle both signed and unsigned cases properly */
275 if ((parser->global.logical_minimum < 0 &&
276 parser->global.logical_maximum <
277 parser->global.logical_minimum) ||
278 (parser->global.logical_minimum >= 0 &&
279 (__u32)parser->global.logical_maximum <
280 (__u32)parser->global.logical_minimum)) {
281 dbg_hid("logical range invalid 0x%x 0x%x\n",
282 parser->global.logical_minimum,
283 parser->global.logical_maximum);
284 return -1;
287 offset = report->size;
288 report->size += parser->global.report_size * parser->global.report_count;
290 if (parser->device->ll_driver->max_buffer_size)
291 max_buffer_size = parser->device->ll_driver->max_buffer_size;
293 /* Total size check: Allow for possible report index byte */
294 if (report->size > (max_buffer_size - 1) << 3) {
295 hid_err(parser->device, "report is too long\n");
296 return -1;
299 if (!parser->local.usage_index) /* Ignore padding fields */
300 return 0;
302 usages = max_t(unsigned, parser->local.usage_index,
303 parser->global.report_count);
305 field = hid_register_field(report, usages);
306 if (!field)
307 return 0;
309 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 field->application = application;
313 for (i = 0; i < usages; i++) {
314 unsigned j = i;
315 /* Duplicate the last usage we parsed if we have excess values */
316 if (i >= parser->local.usage_index)
317 j = parser->local.usage_index - 1;
318 field->usage[i].hid = parser->local.usage[j];
319 field->usage[i].collection_index =
320 parser->local.collection_index[j];
321 field->usage[i].usage_index = i;
322 field->usage[i].resolution_multiplier = 1;
325 field->maxusage = usages;
326 field->flags = flags;
327 field->report_offset = offset;
328 field->report_type = report_type;
329 field->report_size = parser->global.report_size;
330 field->report_count = parser->global.report_count;
331 field->logical_minimum = parser->global.logical_minimum;
332 field->logical_maximum = parser->global.logical_maximum;
333 field->physical_minimum = parser->global.physical_minimum;
334 field->physical_maximum = parser->global.physical_maximum;
335 field->unit_exponent = parser->global.unit_exponent;
336 field->unit = parser->global.unit;
338 return 0;
342 * Read data value from item.
345 static u32 item_udata(struct hid_item *item)
347 switch (item->size) {
348 case 1: return item->data.u8;
349 case 2: return item->data.u16;
350 case 4: return item->data.u32;
352 return 0;
355 static s32 item_sdata(struct hid_item *item)
357 switch (item->size) {
358 case 1: return item->data.s8;
359 case 2: return item->data.s16;
360 case 4: return item->data.s32;
362 return 0;
366 * Process a global item.
369 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371 __s32 raw_value;
372 switch (item->tag) {
373 case HID_GLOBAL_ITEM_TAG_PUSH:
375 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 hid_err(parser->device, "global environment stack overflow\n");
377 return -1;
380 memcpy(parser->global_stack + parser->global_stack_ptr++,
381 &parser->global, sizeof(struct hid_global));
382 return 0;
384 case HID_GLOBAL_ITEM_TAG_POP:
386 if (!parser->global_stack_ptr) {
387 hid_err(parser->device, "global environment stack underflow\n");
388 return -1;
391 memcpy(&parser->global, parser->global_stack +
392 --parser->global_stack_ptr, sizeof(struct hid_global));
393 return 0;
395 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 parser->global.usage_page = item_udata(item);
397 return 0;
399 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 parser->global.logical_minimum = item_sdata(item);
401 return 0;
403 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 if (parser->global.logical_minimum < 0)
405 parser->global.logical_maximum = item_sdata(item);
406 else
407 parser->global.logical_maximum = item_udata(item);
408 return 0;
410 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 parser->global.physical_minimum = item_sdata(item);
412 return 0;
414 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 if (parser->global.physical_minimum < 0)
416 parser->global.physical_maximum = item_sdata(item);
417 else
418 parser->global.physical_maximum = item_udata(item);
419 return 0;
421 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 /* Many devices provide unit exponent as a two's complement
423 * nibble due to the common misunderstanding of HID
424 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 * both this and the standard encoding. */
426 raw_value = item_sdata(item);
427 if (!(raw_value & 0xfffffff0))
428 parser->global.unit_exponent = hid_snto32(raw_value, 4);
429 else
430 parser->global.unit_exponent = raw_value;
431 return 0;
433 case HID_GLOBAL_ITEM_TAG_UNIT:
434 parser->global.unit = item_udata(item);
435 return 0;
437 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 parser->global.report_size = item_udata(item);
439 if (parser->global.report_size > 256) {
440 hid_err(parser->device, "invalid report_size %d\n",
441 parser->global.report_size);
442 return -1;
444 return 0;
446 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 parser->global.report_count = item_udata(item);
448 if (parser->global.report_count > HID_MAX_USAGES) {
449 hid_err(parser->device, "invalid report_count %d\n",
450 parser->global.report_count);
451 return -1;
453 return 0;
455 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 parser->global.report_id = item_udata(item);
457 if (parser->global.report_id == 0 ||
458 parser->global.report_id >= HID_MAX_IDS) {
459 hid_err(parser->device, "report_id %u is invalid\n",
460 parser->global.report_id);
461 return -1;
463 return 0;
465 default:
466 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467 return -1;
472 * Process a local item.
475 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477 __u32 data;
478 unsigned n;
479 __u32 count;
481 data = item_udata(item);
483 switch (item->tag) {
484 case HID_LOCAL_ITEM_TAG_DELIMITER:
486 if (data) {
488 * We treat items before the first delimiter
489 * as global to all usage sets (branch 0).
490 * In the moment we process only these global
491 * items and the first delimiter set.
493 if (parser->local.delimiter_depth != 0) {
494 hid_err(parser->device, "nested delimiters\n");
495 return -1;
497 parser->local.delimiter_depth++;
498 parser->local.delimiter_branch++;
499 } else {
500 if (parser->local.delimiter_depth < 1) {
501 hid_err(parser->device, "bogus close delimiter\n");
502 return -1;
504 parser->local.delimiter_depth--;
506 return 0;
508 case HID_LOCAL_ITEM_TAG_USAGE:
510 if (parser->local.delimiter_branch > 1) {
511 dbg_hid("alternative usage ignored\n");
512 return 0;
515 return hid_add_usage(parser, data, item->size);
517 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519 if (parser->local.delimiter_branch > 1) {
520 dbg_hid("alternative usage ignored\n");
521 return 0;
524 parser->local.usage_minimum = data;
525 return 0;
527 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529 if (parser->local.delimiter_branch > 1) {
530 dbg_hid("alternative usage ignored\n");
531 return 0;
534 count = data - parser->local.usage_minimum;
535 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 * We do not warn if the name is not set, we are
538 * actually pre-scanning the device.
540 if (dev_name(&parser->device->dev))
541 hid_warn(parser->device,
542 "ignoring exceeding usage max\n");
543 data = HID_MAX_USAGES - parser->local.usage_index +
544 parser->local.usage_minimum - 1;
545 if (data <= 0) {
546 hid_err(parser->device,
547 "no more usage index available\n");
548 return -1;
552 for (n = parser->local.usage_minimum; n <= data; n++)
553 if (hid_add_usage(parser, n, item->size)) {
554 dbg_hid("hid_add_usage failed\n");
555 return -1;
557 return 0;
559 default:
561 dbg_hid("unknown local item tag 0x%x\n", item->tag);
562 return 0;
564 return 0;
568 * Concatenate Usage Pages into Usages where relevant:
569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 * concatenates the last declared Usage Page with a Usage to form a complete
571 * usage value."
574 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576 int i;
577 unsigned int usage_page;
578 unsigned int current_page;
580 if (!parser->local.usage_index)
581 return;
583 usage_page = parser->global.usage_page;
586 * Concatenate usage page again only if last declared Usage Page
587 * has not been already used in previous usages concatenation
589 for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 if (parser->local.usage_size[i] > 2)
591 /* Ignore extended usages */
592 continue;
594 current_page = parser->local.usage[i] >> 16;
595 if (current_page == usage_page)
596 break;
598 complete_usage(parser, i);
603 * Process a main item.
606 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608 __u32 data;
609 int ret;
611 hid_concatenate_last_usage_page(parser);
613 data = item_udata(item);
615 switch (item->tag) {
616 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 ret = open_collection(parser, data & 0xff);
618 break;
619 case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 ret = close_collection(parser);
621 break;
622 case HID_MAIN_ITEM_TAG_INPUT:
623 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624 break;
625 case HID_MAIN_ITEM_TAG_OUTPUT:
626 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627 break;
628 case HID_MAIN_ITEM_TAG_FEATURE:
629 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630 break;
631 default:
632 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633 ret = 0;
636 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
638 return ret;
642 * Process a reserved item.
645 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648 return 0;
652 * Free a report and all registered fields. The field->usage and
653 * field->value table's are allocated behind the field, so we need
654 * only to free(field) itself.
657 static void hid_free_report(struct hid_report *report)
659 unsigned n;
661 kfree(report->field_entries);
663 for (n = 0; n < report->maxfield; n++)
664 kfree(report->field[n]);
665 kfree(report);
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
672 static void hid_close_report(struct hid_device *device)
674 unsigned i, j;
676 for (i = 0; i < HID_REPORT_TYPES; i++) {
677 struct hid_report_enum *report_enum = device->report_enum + i;
679 for (j = 0; j < HID_MAX_IDS; j++) {
680 struct hid_report *report = report_enum->report_id_hash[j];
681 if (report)
682 hid_free_report(report);
684 memset(report_enum, 0, sizeof(*report_enum));
685 INIT_LIST_HEAD(&report_enum->report_list);
688 kfree(device->rdesc);
689 device->rdesc = NULL;
690 device->rsize = 0;
692 kfree(device->collection);
693 device->collection = NULL;
694 device->collection_size = 0;
695 device->maxcollection = 0;
696 device->maxapplication = 0;
698 device->status &= ~HID_STAT_PARSED;
702 * Free a device structure, all reports, and all fields.
705 void hiddev_free(struct kref *ref)
707 struct hid_device *hid = container_of(ref, struct hid_device, ref);
709 hid_close_report(hid);
710 kfree(hid->dev_rdesc);
711 kfree(hid);
714 static void hid_device_release(struct device *dev)
716 struct hid_device *hid = to_hid_device(dev);
718 kref_put(&hid->ref, hiddev_free);
722 * Fetch a report description item from the data stream. We support long
723 * items, though they are not used yet.
726 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
728 u8 b;
730 if ((end - start) <= 0)
731 return NULL;
733 b = *start++;
735 item->type = (b >> 2) & 3;
736 item->tag = (b >> 4) & 15;
738 if (item->tag == HID_ITEM_TAG_LONG) {
740 item->format = HID_ITEM_FORMAT_LONG;
742 if ((end - start) < 2)
743 return NULL;
745 item->size = *start++;
746 item->tag = *start++;
748 if ((end - start) < item->size)
749 return NULL;
751 item->data.longdata = start;
752 start += item->size;
753 return start;
756 item->format = HID_ITEM_FORMAT_SHORT;
757 item->size = b & 3;
759 switch (item->size) {
760 case 0:
761 return start;
763 case 1:
764 if ((end - start) < 1)
765 return NULL;
766 item->data.u8 = *start++;
767 return start;
769 case 2:
770 if ((end - start) < 2)
771 return NULL;
772 item->data.u16 = get_unaligned_le16(start);
773 start = (__u8 *)((__le16 *)start + 1);
774 return start;
776 case 3:
777 item->size++;
778 if ((end - start) < 4)
779 return NULL;
780 item->data.u32 = get_unaligned_le32(start);
781 start = (__u8 *)((__le32 *)start + 1);
782 return start;
785 return NULL;
788 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
790 struct hid_device *hid = parser->device;
792 if (usage == HID_DG_CONTACTID)
793 hid->group = HID_GROUP_MULTITOUCH;
796 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
798 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
799 parser->global.report_size == 8)
800 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
802 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
803 parser->global.report_size == 8)
804 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
807 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
809 struct hid_device *hid = parser->device;
810 int i;
812 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
813 (type == HID_COLLECTION_PHYSICAL ||
814 type == HID_COLLECTION_APPLICATION))
815 hid->group = HID_GROUP_SENSOR_HUB;
817 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
818 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
819 hid->group == HID_GROUP_MULTITOUCH)
820 hid->group = HID_GROUP_GENERIC;
822 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
823 for (i = 0; i < parser->local.usage_index; i++)
824 if (parser->local.usage[i] == HID_GD_POINTER)
825 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
827 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
828 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
830 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
831 for (i = 0; i < parser->local.usage_index; i++)
832 if (parser->local.usage[i] ==
833 (HID_UP_GOOGLEVENDOR | 0x0001))
834 parser->device->group =
835 HID_GROUP_VIVALDI;
838 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
840 __u32 data;
841 int i;
843 hid_concatenate_last_usage_page(parser);
845 data = item_udata(item);
847 switch (item->tag) {
848 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
849 hid_scan_collection(parser, data & 0xff);
850 break;
851 case HID_MAIN_ITEM_TAG_END_COLLECTION:
852 break;
853 case HID_MAIN_ITEM_TAG_INPUT:
854 /* ignore constant inputs, they will be ignored by hid-input */
855 if (data & HID_MAIN_ITEM_CONSTANT)
856 break;
857 for (i = 0; i < parser->local.usage_index; i++)
858 hid_scan_input_usage(parser, parser->local.usage[i]);
859 break;
860 case HID_MAIN_ITEM_TAG_OUTPUT:
861 break;
862 case HID_MAIN_ITEM_TAG_FEATURE:
863 for (i = 0; i < parser->local.usage_index; i++)
864 hid_scan_feature_usage(parser, parser->local.usage[i]);
865 break;
868 /* Reset the local parser environment */
869 memset(&parser->local, 0, sizeof(parser->local));
871 return 0;
875 * Scan a report descriptor before the device is added to the bus.
876 * Sets device groups and other properties that determine what driver
877 * to load.
879 static int hid_scan_report(struct hid_device *hid)
881 struct hid_parser *parser;
882 struct hid_item item;
883 __u8 *start = hid->dev_rdesc;
884 __u8 *end = start + hid->dev_rsize;
885 static int (*dispatch_type[])(struct hid_parser *parser,
886 struct hid_item *item) = {
887 hid_scan_main,
888 hid_parser_global,
889 hid_parser_local,
890 hid_parser_reserved
893 parser = vzalloc(sizeof(struct hid_parser));
894 if (!parser)
895 return -ENOMEM;
897 parser->device = hid;
898 hid->group = HID_GROUP_GENERIC;
901 * The parsing is simpler than the one in hid_open_report() as we should
902 * be robust against hid errors. Those errors will be raised by
903 * hid_open_report() anyway.
905 while ((start = fetch_item(start, end, &item)) != NULL)
906 dispatch_type[item.type](parser, &item);
909 * Handle special flags set during scanning.
911 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
912 (hid->group == HID_GROUP_MULTITOUCH))
913 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
916 * Vendor specific handlings
918 switch (hid->vendor) {
919 case USB_VENDOR_ID_WACOM:
920 hid->group = HID_GROUP_WACOM;
921 break;
922 case USB_VENDOR_ID_SYNAPTICS:
923 if (hid->group == HID_GROUP_GENERIC)
924 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
925 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
927 * hid-rmi should take care of them,
928 * not hid-generic
930 hid->group = HID_GROUP_RMI;
931 break;
934 kfree(parser->collection_stack);
935 vfree(parser);
936 return 0;
940 * hid_parse_report - parse device report
942 * @hid: hid device
943 * @start: report start
944 * @size: report size
946 * Allocate the device report as read by the bus driver. This function should
947 * only be called from parse() in ll drivers.
949 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
951 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
952 if (!hid->dev_rdesc)
953 return -ENOMEM;
954 hid->dev_rsize = size;
955 return 0;
957 EXPORT_SYMBOL_GPL(hid_parse_report);
959 static const char * const hid_report_names[] = {
960 "HID_INPUT_REPORT",
961 "HID_OUTPUT_REPORT",
962 "HID_FEATURE_REPORT",
965 * hid_validate_values - validate existing device report's value indexes
967 * @hid: hid device
968 * @type: which report type to examine
969 * @id: which report ID to examine (0 for first)
970 * @field_index: which report field to examine
971 * @report_counts: expected number of values
973 * Validate the number of values in a given field of a given report, after
974 * parsing.
976 struct hid_report *hid_validate_values(struct hid_device *hid,
977 enum hid_report_type type, unsigned int id,
978 unsigned int field_index,
979 unsigned int report_counts)
981 struct hid_report *report;
983 if (type > HID_FEATURE_REPORT) {
984 hid_err(hid, "invalid HID report type %u\n", type);
985 return NULL;
988 if (id >= HID_MAX_IDS) {
989 hid_err(hid, "invalid HID report id %u\n", id);
990 return NULL;
994 * Explicitly not using hid_get_report() here since it depends on
995 * ->numbered being checked, which may not always be the case when
996 * drivers go to access report values.
998 if (id == 0) {
1000 * Validating on id 0 means we should examine the first
1001 * report in the list.
1003 report = list_first_entry_or_null(
1004 &hid->report_enum[type].report_list,
1005 struct hid_report, list);
1006 } else {
1007 report = hid->report_enum[type].report_id_hash[id];
1009 if (!report) {
1010 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1011 return NULL;
1013 if (report->maxfield <= field_index) {
1014 hid_err(hid, "not enough fields in %s %u\n",
1015 hid_report_names[type], id);
1016 return NULL;
1018 if (report->field[field_index]->report_count < report_counts) {
1019 hid_err(hid, "not enough values in %s %u field %u\n",
1020 hid_report_names[type], id, field_index);
1021 return NULL;
1023 return report;
1025 EXPORT_SYMBOL_GPL(hid_validate_values);
1027 static int hid_calculate_multiplier(struct hid_device *hid,
1028 struct hid_field *multiplier)
1030 int m;
1031 __s32 v = *multiplier->value;
1032 __s32 lmin = multiplier->logical_minimum;
1033 __s32 lmax = multiplier->logical_maximum;
1034 __s32 pmin = multiplier->physical_minimum;
1035 __s32 pmax = multiplier->physical_maximum;
1038 * "Because OS implementations will generally divide the control's
1039 * reported count by the Effective Resolution Multiplier, designers
1040 * should take care not to establish a potential Effective
1041 * Resolution Multiplier of zero."
1042 * HID Usage Table, v1.12, Section 4.3.1, p31
1044 if (lmax - lmin == 0)
1045 return 1;
1047 * Handling the unit exponent is left as an exercise to whoever
1048 * finds a device where that exponent is not 0.
1050 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1051 if (unlikely(multiplier->unit_exponent != 0)) {
1052 hid_warn(hid,
1053 "unsupported Resolution Multiplier unit exponent %d\n",
1054 multiplier->unit_exponent);
1057 /* There are no devices with an effective multiplier > 255 */
1058 if (unlikely(m == 0 || m > 255 || m < -255)) {
1059 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1060 m = 1;
1063 return m;
1066 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1067 struct hid_field *field,
1068 struct hid_collection *multiplier_collection,
1069 int effective_multiplier)
1071 struct hid_collection *collection;
1072 struct hid_usage *usage;
1073 int i;
1076 * If multiplier_collection is NULL, the multiplier applies
1077 * to all fields in the report.
1078 * Otherwise, it is the Logical Collection the multiplier applies to
1079 * but our field may be in a subcollection of that collection.
1081 for (i = 0; i < field->maxusage; i++) {
1082 usage = &field->usage[i];
1084 collection = &hid->collection[usage->collection_index];
1085 while (collection->parent_idx != -1 &&
1086 collection != multiplier_collection)
1087 collection = &hid->collection[collection->parent_idx];
1089 if (collection->parent_idx != -1 ||
1090 multiplier_collection == NULL)
1091 usage->resolution_multiplier = effective_multiplier;
1096 static void hid_apply_multiplier(struct hid_device *hid,
1097 struct hid_field *multiplier)
1099 struct hid_report_enum *rep_enum;
1100 struct hid_report *rep;
1101 struct hid_field *field;
1102 struct hid_collection *multiplier_collection;
1103 int effective_multiplier;
1104 int i;
1107 * "The Resolution Multiplier control must be contained in the same
1108 * Logical Collection as the control(s) to which it is to be applied.
1109 * If no Resolution Multiplier is defined, then the Resolution
1110 * Multiplier defaults to 1. If more than one control exists in a
1111 * Logical Collection, the Resolution Multiplier is associated with
1112 * all controls in the collection. If no Logical Collection is
1113 * defined, the Resolution Multiplier is associated with all
1114 * controls in the report."
1115 * HID Usage Table, v1.12, Section 4.3.1, p30
1117 * Thus, search from the current collection upwards until we find a
1118 * logical collection. Then search all fields for that same parent
1119 * collection. Those are the fields the multiplier applies to.
1121 * If we have more than one multiplier, it will overwrite the
1122 * applicable fields later.
1124 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1125 while (multiplier_collection->parent_idx != -1 &&
1126 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1127 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1129 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1131 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1132 list_for_each_entry(rep, &rep_enum->report_list, list) {
1133 for (i = 0; i < rep->maxfield; i++) {
1134 field = rep->field[i];
1135 hid_apply_multiplier_to_field(hid, field,
1136 multiplier_collection,
1137 effective_multiplier);
1143 * hid_setup_resolution_multiplier - set up all resolution multipliers
1145 * @device: hid device
1147 * Search for all Resolution Multiplier Feature Reports and apply their
1148 * value to all matching Input items. This only updates the internal struct
1149 * fields.
1151 * The Resolution Multiplier is applied by the hardware. If the multiplier
1152 * is anything other than 1, the hardware will send pre-multiplied events
1153 * so that the same physical interaction generates an accumulated
1154 * accumulated_value = value * * multiplier
1155 * This may be achieved by sending
1156 * - "value * multiplier" for each event, or
1157 * - "value" but "multiplier" times as frequently, or
1158 * - a combination of the above
1159 * The only guarantee is that the same physical interaction always generates
1160 * an accumulated 'value * multiplier'.
1162 * This function must be called before any event processing and after
1163 * any SetRequest to the Resolution Multiplier.
1165 void hid_setup_resolution_multiplier(struct hid_device *hid)
1167 struct hid_report_enum *rep_enum;
1168 struct hid_report *rep;
1169 struct hid_usage *usage;
1170 int i, j;
1172 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1173 list_for_each_entry(rep, &rep_enum->report_list, list) {
1174 for (i = 0; i < rep->maxfield; i++) {
1175 /* Ignore if report count is out of bounds. */
1176 if (rep->field[i]->report_count < 1)
1177 continue;
1179 for (j = 0; j < rep->field[i]->maxusage; j++) {
1180 usage = &rep->field[i]->usage[j];
1181 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1182 hid_apply_multiplier(hid,
1183 rep->field[i]);
1188 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1191 * hid_open_report - open a driver-specific device report
1193 * @device: hid device
1195 * Parse a report description into a hid_device structure. Reports are
1196 * enumerated, fields are attached to these reports.
1197 * 0 returned on success, otherwise nonzero error value.
1199 * This function (or the equivalent hid_parse() macro) should only be
1200 * called from probe() in drivers, before starting the device.
1202 int hid_open_report(struct hid_device *device)
1204 struct hid_parser *parser;
1205 struct hid_item item;
1206 unsigned int size;
1207 __u8 *start;
1208 __u8 *buf;
1209 __u8 *end;
1210 __u8 *next;
1211 int ret;
1212 int i;
1213 static int (*dispatch_type[])(struct hid_parser *parser,
1214 struct hid_item *item) = {
1215 hid_parser_main,
1216 hid_parser_global,
1217 hid_parser_local,
1218 hid_parser_reserved
1221 if (WARN_ON(device->status & HID_STAT_PARSED))
1222 return -EBUSY;
1224 start = device->dev_rdesc;
1225 if (WARN_ON(!start))
1226 return -ENODEV;
1227 size = device->dev_rsize;
1229 /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1230 buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1231 if (buf == NULL)
1232 return -ENOMEM;
1234 if (device->driver->report_fixup)
1235 start = device->driver->report_fixup(device, buf, &size);
1236 else
1237 start = buf;
1239 start = kmemdup(start, size, GFP_KERNEL);
1240 kfree(buf);
1241 if (start == NULL)
1242 return -ENOMEM;
1244 device->rdesc = start;
1245 device->rsize = size;
1247 parser = vzalloc(sizeof(struct hid_parser));
1248 if (!parser) {
1249 ret = -ENOMEM;
1250 goto alloc_err;
1253 parser->device = device;
1255 end = start + size;
1257 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1258 sizeof(struct hid_collection), GFP_KERNEL);
1259 if (!device->collection) {
1260 ret = -ENOMEM;
1261 goto err;
1263 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1264 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1265 device->collection[i].parent_idx = -1;
1267 ret = -EINVAL;
1268 while ((next = fetch_item(start, end, &item)) != NULL) {
1269 start = next;
1271 if (item.format != HID_ITEM_FORMAT_SHORT) {
1272 hid_err(device, "unexpected long global item\n");
1273 goto err;
1276 if (dispatch_type[item.type](parser, &item)) {
1277 hid_err(device, "item %u %u %u %u parsing failed\n",
1278 item.format, (unsigned)item.size,
1279 (unsigned)item.type, (unsigned)item.tag);
1280 goto err;
1283 if (start == end) {
1284 if (parser->collection_stack_ptr) {
1285 hid_err(device, "unbalanced collection at end of report description\n");
1286 goto err;
1288 if (parser->local.delimiter_depth) {
1289 hid_err(device, "unbalanced delimiter at end of report description\n");
1290 goto err;
1294 * fetch initial values in case the device's
1295 * default multiplier isn't the recommended 1
1297 hid_setup_resolution_multiplier(device);
1299 kfree(parser->collection_stack);
1300 vfree(parser);
1301 device->status |= HID_STAT_PARSED;
1303 return 0;
1307 hid_err(device, "item fetching failed at offset %u/%u\n",
1308 size - (unsigned int)(end - start), size);
1309 err:
1310 kfree(parser->collection_stack);
1311 alloc_err:
1312 vfree(parser);
1313 hid_close_report(device);
1314 return ret;
1316 EXPORT_SYMBOL_GPL(hid_open_report);
1319 * Convert a signed n-bit integer to signed 32-bit integer. Common
1320 * cases are done through the compiler, the screwed things has to be
1321 * done by hand.
1324 static s32 snto32(__u32 value, unsigned n)
1326 if (!value || !n)
1327 return 0;
1329 if (n > 32)
1330 n = 32;
1332 switch (n) {
1333 case 8: return ((__s8)value);
1334 case 16: return ((__s16)value);
1335 case 32: return ((__s32)value);
1337 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1340 s32 hid_snto32(__u32 value, unsigned n)
1342 return snto32(value, n);
1344 EXPORT_SYMBOL_GPL(hid_snto32);
1347 * Convert a signed 32-bit integer to a signed n-bit integer.
1350 static u32 s32ton(__s32 value, unsigned n)
1352 s32 a = value >> (n - 1);
1353 if (a && a != -1)
1354 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1355 return value & ((1 << n) - 1);
1359 * Extract/implement a data field from/to a little endian report (bit array).
1361 * Code sort-of follows HID spec:
1362 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1364 * While the USB HID spec allows unlimited length bit fields in "report
1365 * descriptors", most devices never use more than 16 bits.
1366 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1367 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1370 static u32 __extract(u8 *report, unsigned offset, int n)
1372 unsigned int idx = offset / 8;
1373 unsigned int bit_nr = 0;
1374 unsigned int bit_shift = offset % 8;
1375 int bits_to_copy = 8 - bit_shift;
1376 u32 value = 0;
1377 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1379 while (n > 0) {
1380 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1381 n -= bits_to_copy;
1382 bit_nr += bits_to_copy;
1383 bits_to_copy = 8;
1384 bit_shift = 0;
1385 idx++;
1388 return value & mask;
1391 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1392 unsigned offset, unsigned n)
1394 if (n > 32) {
1395 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1396 __func__, n, current->comm);
1397 n = 32;
1400 return __extract(report, offset, n);
1402 EXPORT_SYMBOL_GPL(hid_field_extract);
1405 * "implement" : set bits in a little endian bit stream.
1406 * Same concepts as "extract" (see comments above).
1407 * The data mangled in the bit stream remains in little endian
1408 * order the whole time. It make more sense to talk about
1409 * endianness of register values by considering a register
1410 * a "cached" copy of the little endian bit stream.
1413 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1415 unsigned int idx = offset / 8;
1416 unsigned int bit_shift = offset % 8;
1417 int bits_to_set = 8 - bit_shift;
1419 while (n - bits_to_set >= 0) {
1420 report[idx] &= ~(0xff << bit_shift);
1421 report[idx] |= value << bit_shift;
1422 value >>= bits_to_set;
1423 n -= bits_to_set;
1424 bits_to_set = 8;
1425 bit_shift = 0;
1426 idx++;
1429 /* last nibble */
1430 if (n) {
1431 u8 bit_mask = ((1U << n) - 1);
1432 report[idx] &= ~(bit_mask << bit_shift);
1433 report[idx] |= value << bit_shift;
1437 static void implement(const struct hid_device *hid, u8 *report,
1438 unsigned offset, unsigned n, u32 value)
1440 if (unlikely(n > 32)) {
1441 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1442 __func__, n, current->comm);
1443 n = 32;
1444 } else if (n < 32) {
1445 u32 m = (1U << n) - 1;
1447 if (unlikely(value > m)) {
1448 hid_warn(hid,
1449 "%s() called with too large value %d (n: %d)! (%s)\n",
1450 __func__, value, n, current->comm);
1451 value &= m;
1455 __implement(report, offset, n, value);
1459 * Search an array for a value.
1462 static int search(__s32 *array, __s32 value, unsigned n)
1464 while (n--) {
1465 if (*array++ == value)
1466 return 0;
1468 return -1;
1472 * hid_match_report - check if driver's raw_event should be called
1474 * @hid: hid device
1475 * @report: hid report to match against
1477 * compare hid->driver->report_table->report_type to report->type
1479 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1481 const struct hid_report_id *id = hid->driver->report_table;
1483 if (!id) /* NULL means all */
1484 return 1;
1486 for (; id->report_type != HID_TERMINATOR; id++)
1487 if (id->report_type == HID_ANY_ID ||
1488 id->report_type == report->type)
1489 return 1;
1490 return 0;
1494 * hid_match_usage - check if driver's event should be called
1496 * @hid: hid device
1497 * @usage: usage to match against
1499 * compare hid->driver->usage_table->usage_{type,code} to
1500 * usage->usage_{type,code}
1502 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1504 const struct hid_usage_id *id = hid->driver->usage_table;
1506 if (!id) /* NULL means all */
1507 return 1;
1509 for (; id->usage_type != HID_ANY_ID - 1; id++)
1510 if ((id->usage_hid == HID_ANY_ID ||
1511 id->usage_hid == usage->hid) &&
1512 (id->usage_type == HID_ANY_ID ||
1513 id->usage_type == usage->type) &&
1514 (id->usage_code == HID_ANY_ID ||
1515 id->usage_code == usage->code))
1516 return 1;
1517 return 0;
1520 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1521 struct hid_usage *usage, __s32 value, int interrupt)
1523 struct hid_driver *hdrv = hid->driver;
1524 int ret;
1526 if (!list_empty(&hid->debug_list))
1527 hid_dump_input(hid, usage, value);
1529 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1530 ret = hdrv->event(hid, field, usage, value);
1531 if (ret != 0) {
1532 if (ret < 0)
1533 hid_err(hid, "%s's event failed with %d\n",
1534 hdrv->name, ret);
1535 return;
1539 if (hid->claimed & HID_CLAIMED_INPUT)
1540 hidinput_hid_event(hid, field, usage, value);
1541 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1542 hid->hiddev_hid_event(hid, field, usage, value);
1546 * Checks if the given value is valid within this field
1548 static inline int hid_array_value_is_valid(struct hid_field *field,
1549 __s32 value)
1551 __s32 min = field->logical_minimum;
1554 * Value needs to be between logical min and max, and
1555 * (value - min) is used as an index in the usage array.
1556 * This array is of size field->maxusage
1558 return value >= min &&
1559 value <= field->logical_maximum &&
1560 value - min < field->maxusage;
1564 * Fetch the field from the data. The field content is stored for next
1565 * report processing (we do differential reporting to the layer).
1567 static void hid_input_fetch_field(struct hid_device *hid,
1568 struct hid_field *field,
1569 __u8 *data)
1571 unsigned n;
1572 unsigned count = field->report_count;
1573 unsigned offset = field->report_offset;
1574 unsigned size = field->report_size;
1575 __s32 min = field->logical_minimum;
1576 __s32 *value;
1578 value = field->new_value;
1579 memset(value, 0, count * sizeof(__s32));
1580 field->ignored = false;
1582 for (n = 0; n < count; n++) {
1584 value[n] = min < 0 ?
1585 snto32(hid_field_extract(hid, data, offset + n * size,
1586 size), size) :
1587 hid_field_extract(hid, data, offset + n * size, size);
1589 /* Ignore report if ErrorRollOver */
1590 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1591 hid_array_value_is_valid(field, value[n]) &&
1592 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1593 field->ignored = true;
1594 return;
1600 * Process a received variable field.
1603 static void hid_input_var_field(struct hid_device *hid,
1604 struct hid_field *field,
1605 int interrupt)
1607 unsigned int count = field->report_count;
1608 __s32 *value = field->new_value;
1609 unsigned int n;
1611 for (n = 0; n < count; n++)
1612 hid_process_event(hid,
1613 field,
1614 &field->usage[n],
1615 value[n],
1616 interrupt);
1618 memcpy(field->value, value, count * sizeof(__s32));
1622 * Process a received array field. The field content is stored for
1623 * next report processing (we do differential reporting to the layer).
1626 static void hid_input_array_field(struct hid_device *hid,
1627 struct hid_field *field,
1628 int interrupt)
1630 unsigned int n;
1631 unsigned int count = field->report_count;
1632 __s32 min = field->logical_minimum;
1633 __s32 *value;
1635 value = field->new_value;
1637 /* ErrorRollOver */
1638 if (field->ignored)
1639 return;
1641 for (n = 0; n < count; n++) {
1642 if (hid_array_value_is_valid(field, field->value[n]) &&
1643 search(value, field->value[n], count))
1644 hid_process_event(hid,
1645 field,
1646 &field->usage[field->value[n] - min],
1648 interrupt);
1650 if (hid_array_value_is_valid(field, value[n]) &&
1651 search(field->value, value[n], count))
1652 hid_process_event(hid,
1653 field,
1654 &field->usage[value[n] - min],
1656 interrupt);
1659 memcpy(field->value, value, count * sizeof(__s32));
1663 * Analyse a received report, and fetch the data from it. The field
1664 * content is stored for next report processing (we do differential
1665 * reporting to the layer).
1667 static void hid_process_report(struct hid_device *hid,
1668 struct hid_report *report,
1669 __u8 *data,
1670 int interrupt)
1672 unsigned int a;
1673 struct hid_field_entry *entry;
1674 struct hid_field *field;
1676 /* first retrieve all incoming values in data */
1677 for (a = 0; a < report->maxfield; a++)
1678 hid_input_fetch_field(hid, report->field[a], data);
1680 if (!list_empty(&report->field_entry_list)) {
1681 /* INPUT_REPORT, we have a priority list of fields */
1682 list_for_each_entry(entry,
1683 &report->field_entry_list,
1684 list) {
1685 field = entry->field;
1687 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1688 hid_process_event(hid,
1689 field,
1690 &field->usage[entry->index],
1691 field->new_value[entry->index],
1692 interrupt);
1693 else
1694 hid_input_array_field(hid, field, interrupt);
1697 /* we need to do the memcpy at the end for var items */
1698 for (a = 0; a < report->maxfield; a++) {
1699 field = report->field[a];
1701 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1702 memcpy(field->value, field->new_value,
1703 field->report_count * sizeof(__s32));
1705 } else {
1706 /* FEATURE_REPORT, regular processing */
1707 for (a = 0; a < report->maxfield; a++) {
1708 field = report->field[a];
1710 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1711 hid_input_var_field(hid, field, interrupt);
1712 else
1713 hid_input_array_field(hid, field, interrupt);
1719 * Insert a given usage_index in a field in the list
1720 * of processed usages in the report.
1722 * The elements of lower priority score are processed
1723 * first.
1725 static void __hid_insert_field_entry(struct hid_device *hid,
1726 struct hid_report *report,
1727 struct hid_field_entry *entry,
1728 struct hid_field *field,
1729 unsigned int usage_index)
1731 struct hid_field_entry *next;
1733 entry->field = field;
1734 entry->index = usage_index;
1735 entry->priority = field->usages_priorities[usage_index];
1737 /* insert the element at the correct position */
1738 list_for_each_entry(next,
1739 &report->field_entry_list,
1740 list) {
1742 * the priority of our element is strictly higher
1743 * than the next one, insert it before
1745 if (entry->priority > next->priority) {
1746 list_add_tail(&entry->list, &next->list);
1747 return;
1751 /* lowest priority score: insert at the end */
1752 list_add_tail(&entry->list, &report->field_entry_list);
1755 static void hid_report_process_ordering(struct hid_device *hid,
1756 struct hid_report *report)
1758 struct hid_field *field;
1759 struct hid_field_entry *entries;
1760 unsigned int a, u, usages;
1761 unsigned int count = 0;
1763 /* count the number of individual fields in the report */
1764 for (a = 0; a < report->maxfield; a++) {
1765 field = report->field[a];
1767 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1768 count += field->report_count;
1769 else
1770 count++;
1773 /* allocate the memory to process the fields */
1774 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1775 if (!entries)
1776 return;
1778 report->field_entries = entries;
1781 * walk through all fields in the report and
1782 * store them by priority order in report->field_entry_list
1784 * - Var elements are individualized (field + usage_index)
1785 * - Arrays are taken as one, we can not chose an order for them
1787 usages = 0;
1788 for (a = 0; a < report->maxfield; a++) {
1789 field = report->field[a];
1791 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1792 for (u = 0; u < field->report_count; u++) {
1793 __hid_insert_field_entry(hid, report,
1794 &entries[usages],
1795 field, u);
1796 usages++;
1798 } else {
1799 __hid_insert_field_entry(hid, report, &entries[usages],
1800 field, 0);
1801 usages++;
1806 static void hid_process_ordering(struct hid_device *hid)
1808 struct hid_report *report;
1809 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1811 list_for_each_entry(report, &report_enum->report_list, list)
1812 hid_report_process_ordering(hid, report);
1816 * Output the field into the report.
1819 static void hid_output_field(const struct hid_device *hid,
1820 struct hid_field *field, __u8 *data)
1822 unsigned count = field->report_count;
1823 unsigned offset = field->report_offset;
1824 unsigned size = field->report_size;
1825 unsigned n;
1827 for (n = 0; n < count; n++) {
1828 if (field->logical_minimum < 0) /* signed values */
1829 implement(hid, data, offset + n * size, size,
1830 s32ton(field->value[n], size));
1831 else /* unsigned values */
1832 implement(hid, data, offset + n * size, size,
1833 field->value[n]);
1838 * Compute the size of a report.
1840 static size_t hid_compute_report_size(struct hid_report *report)
1842 if (report->size)
1843 return ((report->size - 1) >> 3) + 1;
1845 return 0;
1849 * Create a report. 'data' has to be allocated using
1850 * hid_alloc_report_buf() so that it has proper size.
1853 void hid_output_report(struct hid_report *report, __u8 *data)
1855 unsigned n;
1857 if (report->id > 0)
1858 *data++ = report->id;
1860 memset(data, 0, hid_compute_report_size(report));
1861 for (n = 0; n < report->maxfield; n++)
1862 hid_output_field(report->device, report->field[n], data);
1864 EXPORT_SYMBOL_GPL(hid_output_report);
1867 * Allocator for buffer that is going to be passed to hid_output_report()
1869 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1872 * 7 extra bytes are necessary to achieve proper functionality
1873 * of implement() working on 8 byte chunks
1876 u32 len = hid_report_len(report) + 7;
1878 return kmalloc(len, flags);
1880 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1883 * Set a field value. The report this field belongs to has to be
1884 * created and transferred to the device, to set this value in the
1885 * device.
1888 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1890 unsigned size;
1892 if (!field)
1893 return -1;
1895 size = field->report_size;
1897 hid_dump_input(field->report->device, field->usage + offset, value);
1899 if (offset >= field->report_count) {
1900 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1901 offset, field->report_count);
1902 return -1;
1904 if (field->logical_minimum < 0) {
1905 if (value != snto32(s32ton(value, size), size)) {
1906 hid_err(field->report->device, "value %d is out of range\n", value);
1907 return -1;
1910 field->value[offset] = value;
1911 return 0;
1913 EXPORT_SYMBOL_GPL(hid_set_field);
1915 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1916 const u8 *data)
1918 struct hid_report *report;
1919 unsigned int n = 0; /* Normally report number is 0 */
1921 /* Device uses numbered reports, data[0] is report number */
1922 if (report_enum->numbered)
1923 n = *data;
1925 report = report_enum->report_id_hash[n];
1926 if (report == NULL)
1927 dbg_hid("undefined report_id %u received\n", n);
1929 return report;
1933 * Implement a generic .request() callback, using .raw_request()
1934 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1936 int __hid_request(struct hid_device *hid, struct hid_report *report,
1937 enum hid_class_request reqtype)
1939 char *buf;
1940 int ret;
1941 u32 len;
1943 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1944 if (!buf)
1945 return -ENOMEM;
1947 len = hid_report_len(report);
1949 if (reqtype == HID_REQ_SET_REPORT)
1950 hid_output_report(report, buf);
1952 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1953 report->type, reqtype);
1954 if (ret < 0) {
1955 dbg_hid("unable to complete request: %d\n", ret);
1956 goto out;
1959 if (reqtype == HID_REQ_GET_REPORT)
1960 hid_input_report(hid, report->type, buf, ret, 0);
1962 ret = 0;
1964 out:
1965 kfree(buf);
1966 return ret;
1968 EXPORT_SYMBOL_GPL(__hid_request);
1970 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1971 int interrupt)
1973 struct hid_report_enum *report_enum = hid->report_enum + type;
1974 struct hid_report *report;
1975 struct hid_driver *hdrv;
1976 int max_buffer_size = HID_MAX_BUFFER_SIZE;
1977 u32 rsize, csize = size;
1978 u8 *cdata = data;
1979 int ret = 0;
1981 report = hid_get_report(report_enum, data);
1982 if (!report)
1983 goto out;
1985 if (report_enum->numbered) {
1986 cdata++;
1987 csize--;
1990 rsize = hid_compute_report_size(report);
1992 if (hid->ll_driver->max_buffer_size)
1993 max_buffer_size = hid->ll_driver->max_buffer_size;
1995 if (report_enum->numbered && rsize >= max_buffer_size)
1996 rsize = max_buffer_size - 1;
1997 else if (rsize > max_buffer_size)
1998 rsize = max_buffer_size;
2000 if (csize < rsize) {
2001 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2002 csize, rsize);
2003 memset(cdata + csize, 0, rsize - csize);
2006 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2007 hid->hiddev_report_event(hid, report);
2008 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2009 ret = hidraw_report_event(hid, data, size);
2010 if (ret)
2011 goto out;
2014 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2015 hid_process_report(hid, report, cdata, interrupt);
2016 hdrv = hid->driver;
2017 if (hdrv && hdrv->report)
2018 hdrv->report(hid, report);
2021 if (hid->claimed & HID_CLAIMED_INPUT)
2022 hidinput_report_event(hid, report);
2023 out:
2024 return ret;
2026 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2029 * hid_input_report - report data from lower layer (usb, bt...)
2031 * @hid: hid device
2032 * @type: HID report type (HID_*_REPORT)
2033 * @data: report contents
2034 * @size: size of data parameter
2035 * @interrupt: distinguish between interrupt and control transfers
2037 * This is data entry for lower layers.
2039 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2040 int interrupt)
2042 struct hid_report_enum *report_enum;
2043 struct hid_driver *hdrv;
2044 struct hid_report *report;
2045 int ret = 0;
2047 if (!hid)
2048 return -ENODEV;
2050 if (down_trylock(&hid->driver_input_lock))
2051 return -EBUSY;
2053 if (!hid->driver) {
2054 ret = -ENODEV;
2055 goto unlock;
2057 report_enum = hid->report_enum + type;
2058 hdrv = hid->driver;
2060 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2061 if (IS_ERR(data)) {
2062 ret = PTR_ERR(data);
2063 goto unlock;
2066 if (!size) {
2067 dbg_hid("empty report\n");
2068 ret = -1;
2069 goto unlock;
2072 /* Avoid unnecessary overhead if debugfs is disabled */
2073 if (!list_empty(&hid->debug_list))
2074 hid_dump_report(hid, type, data, size);
2076 report = hid_get_report(report_enum, data);
2078 if (!report) {
2079 ret = -1;
2080 goto unlock;
2083 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2084 ret = hdrv->raw_event(hid, report, data, size);
2085 if (ret < 0)
2086 goto unlock;
2089 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2091 unlock:
2092 up(&hid->driver_input_lock);
2093 return ret;
2095 EXPORT_SYMBOL_GPL(hid_input_report);
2097 bool hid_match_one_id(const struct hid_device *hdev,
2098 const struct hid_device_id *id)
2100 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2101 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2102 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2103 (id->product == HID_ANY_ID || id->product == hdev->product);
2106 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2107 const struct hid_device_id *id)
2109 for (; id->bus; id++)
2110 if (hid_match_one_id(hdev, id))
2111 return id;
2113 return NULL;
2115 EXPORT_SYMBOL_GPL(hid_match_id);
2117 static const struct hid_device_id hid_hiddev_list[] = {
2118 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2119 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2123 static bool hid_hiddev(struct hid_device *hdev)
2125 return !!hid_match_id(hdev, hid_hiddev_list);
2129 static ssize_t
2130 read_report_descriptor(struct file *filp, struct kobject *kobj,
2131 struct bin_attribute *attr,
2132 char *buf, loff_t off, size_t count)
2134 struct device *dev = kobj_to_dev(kobj);
2135 struct hid_device *hdev = to_hid_device(dev);
2137 if (off >= hdev->rsize)
2138 return 0;
2140 if (off + count > hdev->rsize)
2141 count = hdev->rsize - off;
2143 memcpy(buf, hdev->rdesc + off, count);
2145 return count;
2148 static ssize_t
2149 show_country(struct device *dev, struct device_attribute *attr,
2150 char *buf)
2152 struct hid_device *hdev = to_hid_device(dev);
2154 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2157 static struct bin_attribute dev_bin_attr_report_desc = {
2158 .attr = { .name = "report_descriptor", .mode = 0444 },
2159 .read = read_report_descriptor,
2160 .size = HID_MAX_DESCRIPTOR_SIZE,
2163 static const struct device_attribute dev_attr_country = {
2164 .attr = { .name = "country", .mode = 0444 },
2165 .show = show_country,
2168 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2170 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2171 "Joystick", "Gamepad", "Keyboard", "Keypad",
2172 "Multi-Axis Controller"
2174 const char *type, *bus;
2175 char buf[64] = "";
2176 unsigned int i;
2177 int len;
2178 int ret;
2180 ret = hid_bpf_connect_device(hdev);
2181 if (ret)
2182 return ret;
2184 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2185 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2186 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2187 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2188 if (hdev->bus != BUS_USB)
2189 connect_mask &= ~HID_CONNECT_HIDDEV;
2190 if (hid_hiddev(hdev))
2191 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2193 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2194 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2195 hdev->claimed |= HID_CLAIMED_INPUT;
2197 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2198 !hdev->hiddev_connect(hdev,
2199 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2200 hdev->claimed |= HID_CLAIMED_HIDDEV;
2201 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2202 hdev->claimed |= HID_CLAIMED_HIDRAW;
2204 if (connect_mask & HID_CONNECT_DRIVER)
2205 hdev->claimed |= HID_CLAIMED_DRIVER;
2207 /* Drivers with the ->raw_event callback set are not required to connect
2208 * to any other listener. */
2209 if (!hdev->claimed && !hdev->driver->raw_event) {
2210 hid_err(hdev, "device has no listeners, quitting\n");
2211 return -ENODEV;
2214 hid_process_ordering(hdev);
2216 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2217 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2218 hdev->ff_init(hdev);
2220 len = 0;
2221 if (hdev->claimed & HID_CLAIMED_INPUT)
2222 len += sprintf(buf + len, "input");
2223 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2224 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2225 ((struct hiddev *)hdev->hiddev)->minor);
2226 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2227 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2228 ((struct hidraw *)hdev->hidraw)->minor);
2230 type = "Device";
2231 for (i = 0; i < hdev->maxcollection; i++) {
2232 struct hid_collection *col = &hdev->collection[i];
2233 if (col->type == HID_COLLECTION_APPLICATION &&
2234 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2235 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2236 type = types[col->usage & 0xffff];
2237 break;
2241 switch (hdev->bus) {
2242 case BUS_USB:
2243 bus = "USB";
2244 break;
2245 case BUS_BLUETOOTH:
2246 bus = "BLUETOOTH";
2247 break;
2248 case BUS_I2C:
2249 bus = "I2C";
2250 break;
2251 case BUS_VIRTUAL:
2252 bus = "VIRTUAL";
2253 break;
2254 case BUS_INTEL_ISHTP:
2255 case BUS_AMD_SFH:
2256 bus = "SENSOR HUB";
2257 break;
2258 default:
2259 bus = "<UNKNOWN>";
2262 ret = device_create_file(&hdev->dev, &dev_attr_country);
2263 if (ret)
2264 hid_warn(hdev,
2265 "can't create sysfs country code attribute err: %d\n", ret);
2267 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2268 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2269 type, hdev->name, hdev->phys);
2271 return 0;
2273 EXPORT_SYMBOL_GPL(hid_connect);
2275 void hid_disconnect(struct hid_device *hdev)
2277 device_remove_file(&hdev->dev, &dev_attr_country);
2278 if (hdev->claimed & HID_CLAIMED_INPUT)
2279 hidinput_disconnect(hdev);
2280 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2281 hdev->hiddev_disconnect(hdev);
2282 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2283 hidraw_disconnect(hdev);
2284 hdev->claimed = 0;
2286 hid_bpf_disconnect_device(hdev);
2288 EXPORT_SYMBOL_GPL(hid_disconnect);
2291 * hid_hw_start - start underlying HW
2292 * @hdev: hid device
2293 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2295 * Call this in probe function *after* hid_parse. This will setup HW
2296 * buffers and start the device (if not defeirred to device open).
2297 * hid_hw_stop must be called if this was successful.
2299 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2301 int error;
2303 error = hdev->ll_driver->start(hdev);
2304 if (error)
2305 return error;
2307 if (connect_mask) {
2308 error = hid_connect(hdev, connect_mask);
2309 if (error) {
2310 hdev->ll_driver->stop(hdev);
2311 return error;
2315 return 0;
2317 EXPORT_SYMBOL_GPL(hid_hw_start);
2320 * hid_hw_stop - stop underlying HW
2321 * @hdev: hid device
2323 * This is usually called from remove function or from probe when something
2324 * failed and hid_hw_start was called already.
2326 void hid_hw_stop(struct hid_device *hdev)
2328 hid_disconnect(hdev);
2329 hdev->ll_driver->stop(hdev);
2331 EXPORT_SYMBOL_GPL(hid_hw_stop);
2334 * hid_hw_open - signal underlying HW to start delivering events
2335 * @hdev: hid device
2337 * Tell underlying HW to start delivering events from the device.
2338 * This function should be called sometime after successful call
2339 * to hid_hw_start().
2341 int hid_hw_open(struct hid_device *hdev)
2343 int ret;
2345 ret = mutex_lock_killable(&hdev->ll_open_lock);
2346 if (ret)
2347 return ret;
2349 if (!hdev->ll_open_count++) {
2350 ret = hdev->ll_driver->open(hdev);
2351 if (ret)
2352 hdev->ll_open_count--;
2355 mutex_unlock(&hdev->ll_open_lock);
2356 return ret;
2358 EXPORT_SYMBOL_GPL(hid_hw_open);
2361 * hid_hw_close - signal underlaying HW to stop delivering events
2363 * @hdev: hid device
2365 * This function indicates that we are not interested in the events
2366 * from this device anymore. Delivery of events may or may not stop,
2367 * depending on the number of users still outstanding.
2369 void hid_hw_close(struct hid_device *hdev)
2371 mutex_lock(&hdev->ll_open_lock);
2372 if (!--hdev->ll_open_count)
2373 hdev->ll_driver->close(hdev);
2374 mutex_unlock(&hdev->ll_open_lock);
2376 EXPORT_SYMBOL_GPL(hid_hw_close);
2379 * hid_hw_request - send report request to device
2381 * @hdev: hid device
2382 * @report: report to send
2383 * @reqtype: hid request type
2385 void hid_hw_request(struct hid_device *hdev,
2386 struct hid_report *report, enum hid_class_request reqtype)
2388 if (hdev->ll_driver->request)
2389 return hdev->ll_driver->request(hdev, report, reqtype);
2391 __hid_request(hdev, report, reqtype);
2393 EXPORT_SYMBOL_GPL(hid_hw_request);
2396 * hid_hw_raw_request - send report request to device
2398 * @hdev: hid device
2399 * @reportnum: report ID
2400 * @buf: in/out data to transfer
2401 * @len: length of buf
2402 * @rtype: HID report type
2403 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2405 * Return: count of data transferred, negative if error
2407 * Same behavior as hid_hw_request, but with raw buffers instead.
2409 int hid_hw_raw_request(struct hid_device *hdev,
2410 unsigned char reportnum, __u8 *buf,
2411 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2413 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2415 if (hdev->ll_driver->max_buffer_size)
2416 max_buffer_size = hdev->ll_driver->max_buffer_size;
2418 if (len < 1 || len > max_buffer_size || !buf)
2419 return -EINVAL;
2421 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2422 rtype, reqtype);
2424 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2427 * hid_hw_output_report - send output report to device
2429 * @hdev: hid device
2430 * @buf: raw data to transfer
2431 * @len: length of buf
2433 * Return: count of data transferred, negative if error
2435 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2437 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2439 if (hdev->ll_driver->max_buffer_size)
2440 max_buffer_size = hdev->ll_driver->max_buffer_size;
2442 if (len < 1 || len > max_buffer_size || !buf)
2443 return -EINVAL;
2445 if (hdev->ll_driver->output_report)
2446 return hdev->ll_driver->output_report(hdev, buf, len);
2448 return -ENOSYS;
2450 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2452 #ifdef CONFIG_PM
2453 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2455 if (hdev->driver && hdev->driver->suspend)
2456 return hdev->driver->suspend(hdev, state);
2458 return 0;
2460 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2462 int hid_driver_reset_resume(struct hid_device *hdev)
2464 if (hdev->driver && hdev->driver->reset_resume)
2465 return hdev->driver->reset_resume(hdev);
2467 return 0;
2469 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2471 int hid_driver_resume(struct hid_device *hdev)
2473 if (hdev->driver && hdev->driver->resume)
2474 return hdev->driver->resume(hdev);
2476 return 0;
2478 EXPORT_SYMBOL_GPL(hid_driver_resume);
2479 #endif /* CONFIG_PM */
2481 struct hid_dynid {
2482 struct list_head list;
2483 struct hid_device_id id;
2487 * new_id_store - add a new HID device ID to this driver and re-probe devices
2488 * @drv: target device driver
2489 * @buf: buffer for scanning device ID data
2490 * @count: input size
2492 * Adds a new dynamic hid device ID to this driver,
2493 * and causes the driver to probe for all devices again.
2495 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2496 size_t count)
2498 struct hid_driver *hdrv = to_hid_driver(drv);
2499 struct hid_dynid *dynid;
2500 __u32 bus, vendor, product;
2501 unsigned long driver_data = 0;
2502 int ret;
2504 ret = sscanf(buf, "%x %x %x %lx",
2505 &bus, &vendor, &product, &driver_data);
2506 if (ret < 3)
2507 return -EINVAL;
2509 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2510 if (!dynid)
2511 return -ENOMEM;
2513 dynid->id.bus = bus;
2514 dynid->id.group = HID_GROUP_ANY;
2515 dynid->id.vendor = vendor;
2516 dynid->id.product = product;
2517 dynid->id.driver_data = driver_data;
2519 spin_lock(&hdrv->dyn_lock);
2520 list_add_tail(&dynid->list, &hdrv->dyn_list);
2521 spin_unlock(&hdrv->dyn_lock);
2523 ret = driver_attach(&hdrv->driver);
2525 return ret ? : count;
2527 static DRIVER_ATTR_WO(new_id);
2529 static struct attribute *hid_drv_attrs[] = {
2530 &driver_attr_new_id.attr,
2531 NULL,
2533 ATTRIBUTE_GROUPS(hid_drv);
2535 static void hid_free_dynids(struct hid_driver *hdrv)
2537 struct hid_dynid *dynid, *n;
2539 spin_lock(&hdrv->dyn_lock);
2540 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2541 list_del(&dynid->list);
2542 kfree(dynid);
2544 spin_unlock(&hdrv->dyn_lock);
2547 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2548 struct hid_driver *hdrv)
2550 struct hid_dynid *dynid;
2552 spin_lock(&hdrv->dyn_lock);
2553 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2554 if (hid_match_one_id(hdev, &dynid->id)) {
2555 spin_unlock(&hdrv->dyn_lock);
2556 return &dynid->id;
2559 spin_unlock(&hdrv->dyn_lock);
2561 return hid_match_id(hdev, hdrv->id_table);
2563 EXPORT_SYMBOL_GPL(hid_match_device);
2565 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2567 struct hid_driver *hdrv = to_hid_driver(drv);
2568 struct hid_device *hdev = to_hid_device(dev);
2570 return hid_match_device(hdev, hdrv) != NULL;
2574 * hid_compare_device_paths - check if both devices share the same path
2575 * @hdev_a: hid device
2576 * @hdev_b: hid device
2577 * @separator: char to use as separator
2579 * Check if two devices share the same path up to the last occurrence of
2580 * the separator char. Both paths must exist (i.e., zero-length paths
2581 * don't match).
2583 bool hid_compare_device_paths(struct hid_device *hdev_a,
2584 struct hid_device *hdev_b, char separator)
2586 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2587 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2589 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2590 return false;
2592 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2594 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2596 static bool hid_check_device_match(struct hid_device *hdev,
2597 struct hid_driver *hdrv,
2598 const struct hid_device_id **id)
2600 *id = hid_match_device(hdev, hdrv);
2601 if (!*id)
2602 return false;
2604 if (hdrv->match)
2605 return hdrv->match(hdev, hid_ignore_special_drivers);
2608 * hid-generic implements .match(), so we must be dealing with a
2609 * different HID driver here, and can simply check if
2610 * hid_ignore_special_drivers is set or not.
2612 return !hid_ignore_special_drivers;
2615 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2617 const struct hid_device_id *id;
2618 int ret;
2620 if (!hid_check_device_match(hdev, hdrv, &id))
2621 return -ENODEV;
2623 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2624 if (!hdev->devres_group_id)
2625 return -ENOMEM;
2627 /* reset the quirks that has been previously set */
2628 hdev->quirks = hid_lookup_quirk(hdev);
2629 hdev->driver = hdrv;
2631 if (hdrv->probe) {
2632 ret = hdrv->probe(hdev, id);
2633 } else { /* default probe */
2634 ret = hid_open_report(hdev);
2635 if (!ret)
2636 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2640 * Note that we are not closing the devres group opened above so
2641 * even resources that were attached to the device after probe is
2642 * run are released when hid_device_remove() is executed. This is
2643 * needed as some drivers would allocate additional resources,
2644 * for example when updating firmware.
2647 if (ret) {
2648 devres_release_group(&hdev->dev, hdev->devres_group_id);
2649 hid_close_report(hdev);
2650 hdev->driver = NULL;
2653 return ret;
2656 static int hid_device_probe(struct device *dev)
2658 struct hid_device *hdev = to_hid_device(dev);
2659 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2660 int ret = 0;
2662 if (down_interruptible(&hdev->driver_input_lock))
2663 return -EINTR;
2665 hdev->io_started = false;
2666 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2668 if (!hdev->driver)
2669 ret = __hid_device_probe(hdev, hdrv);
2671 if (!hdev->io_started)
2672 up(&hdev->driver_input_lock);
2674 return ret;
2677 static void hid_device_remove(struct device *dev)
2679 struct hid_device *hdev = to_hid_device(dev);
2680 struct hid_driver *hdrv;
2682 down(&hdev->driver_input_lock);
2683 hdev->io_started = false;
2685 hdrv = hdev->driver;
2686 if (hdrv) {
2687 if (hdrv->remove)
2688 hdrv->remove(hdev);
2689 else /* default remove */
2690 hid_hw_stop(hdev);
2692 /* Release all devres resources allocated by the driver */
2693 devres_release_group(&hdev->dev, hdev->devres_group_id);
2695 hid_close_report(hdev);
2696 hdev->driver = NULL;
2699 if (!hdev->io_started)
2700 up(&hdev->driver_input_lock);
2703 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2704 char *buf)
2706 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2708 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2709 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2711 static DEVICE_ATTR_RO(modalias);
2713 static struct attribute *hid_dev_attrs[] = {
2714 &dev_attr_modalias.attr,
2715 NULL,
2717 static struct bin_attribute *hid_dev_bin_attrs[] = {
2718 &dev_bin_attr_report_desc,
2719 NULL
2721 static const struct attribute_group hid_dev_group = {
2722 .attrs = hid_dev_attrs,
2723 .bin_attrs = hid_dev_bin_attrs,
2725 __ATTRIBUTE_GROUPS(hid_dev);
2727 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2729 const struct hid_device *hdev = to_hid_device(dev);
2731 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2732 hdev->bus, hdev->vendor, hdev->product))
2733 return -ENOMEM;
2735 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2736 return -ENOMEM;
2738 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2739 return -ENOMEM;
2741 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2742 return -ENOMEM;
2744 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2745 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2746 return -ENOMEM;
2748 return 0;
2751 const struct bus_type hid_bus_type = {
2752 .name = "hid",
2753 .dev_groups = hid_dev_groups,
2754 .drv_groups = hid_drv_groups,
2755 .match = hid_bus_match,
2756 .probe = hid_device_probe,
2757 .remove = hid_device_remove,
2758 .uevent = hid_uevent,
2760 EXPORT_SYMBOL(hid_bus_type);
2762 int hid_add_device(struct hid_device *hdev)
2764 static atomic_t id = ATOMIC_INIT(0);
2765 int ret;
2767 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2768 return -EBUSY;
2770 hdev->quirks = hid_lookup_quirk(hdev);
2772 /* we need to kill them here, otherwise they will stay allocated to
2773 * wait for coming driver */
2774 if (hid_ignore(hdev))
2775 return -ENODEV;
2778 * Check for the mandatory transport channel.
2780 if (!hdev->ll_driver->raw_request) {
2781 hid_err(hdev, "transport driver missing .raw_request()\n");
2782 return -EINVAL;
2786 * Read the device report descriptor once and use as template
2787 * for the driver-specific modifications.
2789 ret = hdev->ll_driver->parse(hdev);
2790 if (ret)
2791 return ret;
2792 if (!hdev->dev_rdesc)
2793 return -ENODEV;
2796 * Scan generic devices for group information
2798 if (hid_ignore_special_drivers) {
2799 hdev->group = HID_GROUP_GENERIC;
2800 } else if (!hdev->group &&
2801 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2802 ret = hid_scan_report(hdev);
2803 if (ret)
2804 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2807 hdev->id = atomic_inc_return(&id);
2809 /* XXX hack, any other cleaner solution after the driver core
2810 * is converted to allow more than 20 bytes as the device name? */
2811 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2812 hdev->vendor, hdev->product, hdev->id);
2814 hid_debug_register(hdev, dev_name(&hdev->dev));
2815 ret = device_add(&hdev->dev);
2816 if (!ret)
2817 hdev->status |= HID_STAT_ADDED;
2818 else
2819 hid_debug_unregister(hdev);
2821 return ret;
2823 EXPORT_SYMBOL_GPL(hid_add_device);
2826 * hid_allocate_device - allocate new hid device descriptor
2828 * Allocate and initialize hid device, so that hid_destroy_device might be
2829 * used to free it.
2831 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2832 * error value.
2834 struct hid_device *hid_allocate_device(void)
2836 struct hid_device *hdev;
2837 int ret = -ENOMEM;
2839 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2840 if (hdev == NULL)
2841 return ERR_PTR(ret);
2843 device_initialize(&hdev->dev);
2844 hdev->dev.release = hid_device_release;
2845 hdev->dev.bus = &hid_bus_type;
2846 device_enable_async_suspend(&hdev->dev);
2848 hid_close_report(hdev);
2850 init_waitqueue_head(&hdev->debug_wait);
2851 INIT_LIST_HEAD(&hdev->debug_list);
2852 spin_lock_init(&hdev->debug_list_lock);
2853 sema_init(&hdev->driver_input_lock, 1);
2854 mutex_init(&hdev->ll_open_lock);
2855 kref_init(&hdev->ref);
2857 hid_bpf_device_init(hdev);
2859 return hdev;
2861 EXPORT_SYMBOL_GPL(hid_allocate_device);
2863 static void hid_remove_device(struct hid_device *hdev)
2865 if (hdev->status & HID_STAT_ADDED) {
2866 device_del(&hdev->dev);
2867 hid_debug_unregister(hdev);
2868 hdev->status &= ~HID_STAT_ADDED;
2870 kfree(hdev->dev_rdesc);
2871 hdev->dev_rdesc = NULL;
2872 hdev->dev_rsize = 0;
2876 * hid_destroy_device - free previously allocated device
2878 * @hdev: hid device
2880 * If you allocate hid_device through hid_allocate_device, you should ever
2881 * free by this function.
2883 void hid_destroy_device(struct hid_device *hdev)
2885 hid_bpf_destroy_device(hdev);
2886 hid_remove_device(hdev);
2887 put_device(&hdev->dev);
2889 EXPORT_SYMBOL_GPL(hid_destroy_device);
2892 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2894 struct hid_driver *hdrv = data;
2895 struct hid_device *hdev = to_hid_device(dev);
2897 if (hdev->driver == hdrv &&
2898 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2899 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2900 return device_reprobe(dev);
2902 return 0;
2905 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2907 struct hid_driver *hdrv = to_hid_driver(drv);
2909 if (hdrv->match) {
2910 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2911 __hid_bus_reprobe_drivers);
2914 return 0;
2917 static int __bus_removed_driver(struct device_driver *drv, void *data)
2919 return bus_rescan_devices(&hid_bus_type);
2922 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2923 const char *mod_name)
2925 int ret;
2927 hdrv->driver.name = hdrv->name;
2928 hdrv->driver.bus = &hid_bus_type;
2929 hdrv->driver.owner = owner;
2930 hdrv->driver.mod_name = mod_name;
2932 INIT_LIST_HEAD(&hdrv->dyn_list);
2933 spin_lock_init(&hdrv->dyn_lock);
2935 ret = driver_register(&hdrv->driver);
2937 if (ret == 0)
2938 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2939 __hid_bus_driver_added);
2941 return ret;
2943 EXPORT_SYMBOL_GPL(__hid_register_driver);
2945 void hid_unregister_driver(struct hid_driver *hdrv)
2947 driver_unregister(&hdrv->driver);
2948 hid_free_dynids(hdrv);
2950 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2952 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2954 int hid_check_keys_pressed(struct hid_device *hid)
2956 struct hid_input *hidinput;
2957 int i;
2959 if (!(hid->claimed & HID_CLAIMED_INPUT))
2960 return 0;
2962 list_for_each_entry(hidinput, &hid->inputs, list) {
2963 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2964 if (hidinput->input->key[i])
2965 return 1;
2968 return 0;
2970 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2972 #ifdef CONFIG_HID_BPF
2973 static struct hid_bpf_ops hid_ops = {
2974 .hid_get_report = hid_get_report,
2975 .hid_hw_raw_request = hid_hw_raw_request,
2976 .hid_hw_output_report = hid_hw_output_report,
2977 .hid_input_report = hid_input_report,
2978 .owner = THIS_MODULE,
2979 .bus_type = &hid_bus_type,
2981 #endif
2983 static int __init hid_init(void)
2985 int ret;
2987 ret = bus_register(&hid_bus_type);
2988 if (ret) {
2989 pr_err("can't register hid bus\n");
2990 goto err;
2993 #ifdef CONFIG_HID_BPF
2994 hid_bpf_ops = &hid_ops;
2995 #endif
2997 ret = hidraw_init();
2998 if (ret)
2999 goto err_bus;
3001 hid_debug_init();
3003 return 0;
3004 err_bus:
3005 bus_unregister(&hid_bus_type);
3006 err:
3007 return ret;
3010 static void __exit hid_exit(void)
3012 #ifdef CONFIG_HID_BPF
3013 hid_bpf_ops = NULL;
3014 #endif
3015 hid_debug_exit();
3016 hidraw_exit();
3017 bus_unregister(&hid_bus_type);
3018 hid_quirks_exit(HID_BUS_ANY);
3021 module_init(hid_init);
3022 module_exit(hid_exit);
3024 MODULE_AUTHOR("Andreas Gal");
3025 MODULE_AUTHOR("Vojtech Pavlik");
3026 MODULE_AUTHOR("Jiri Kosina");
3027 MODULE_LICENSE("GPL");