Merge tag 'net-6.12-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / drivers / firmware / tegra / ivc.c
blob8c9aff9804c0dc0f27d92e8a76ae6f9af78f6902
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
4 */
6 #include <soc/tegra/ivc.h>
8 #define TEGRA_IVC_ALIGN 64
11 * IVC channel reset protocol.
13 * Each end uses its tx_channel.state to indicate its synchronization state.
15 enum tegra_ivc_state {
17 * This value is zero for backwards compatibility with services that
18 * assume channels to be initially zeroed. Such channels are in an
19 * initially valid state, but cannot be asynchronously reset, and must
20 * maintain a valid state at all times.
22 * The transmitting end can enter the established state from the sync or
23 * ack state when it observes the receiving endpoint in the ack or
24 * established state, indicating that has cleared the counters in our
25 * rx_channel.
27 TEGRA_IVC_STATE_ESTABLISHED = 0,
30 * If an endpoint is observed in the sync state, the remote endpoint is
31 * allowed to clear the counters it owns asynchronously with respect to
32 * the current endpoint. Therefore, the current endpoint is no longer
33 * allowed to communicate.
35 TEGRA_IVC_STATE_SYNC,
38 * When the transmitting end observes the receiving end in the sync
39 * state, it can clear the w_count and r_count and transition to the ack
40 * state. If the remote endpoint observes us in the ack state, it can
41 * return to the established state once it has cleared its counters.
43 TEGRA_IVC_STATE_ACK
47 * This structure is divided into two-cache aligned parts, the first is only
48 * written through the tx.channel pointer, while the second is only written
49 * through the rx.channel pointer. This delineates ownership of the cache
50 * lines, which is critical to performance and necessary in non-cache coherent
51 * implementations.
53 struct tegra_ivc_header {
54 union {
55 struct {
56 /* fields owned by the transmitting end */
57 u32 count;
58 u32 state;
61 u8 pad[TEGRA_IVC_ALIGN];
62 } tx;
64 union {
65 /* fields owned by the receiving end */
66 u32 count;
67 u8 pad[TEGRA_IVC_ALIGN];
68 } rx;
71 #define tegra_ivc_header_read_field(hdr, field) \
72 iosys_map_rd_field(hdr, 0, struct tegra_ivc_header, field)
74 #define tegra_ivc_header_write_field(hdr, field, value) \
75 iosys_map_wr_field(hdr, 0, struct tegra_ivc_header, field, value)
77 static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys)
79 if (!ivc->peer)
80 return;
82 dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN,
83 DMA_FROM_DEVICE);
86 static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys)
88 if (!ivc->peer)
89 return;
91 dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN,
92 DMA_TO_DEVICE);
95 static inline bool tegra_ivc_empty(struct tegra_ivc *ivc, struct iosys_map *map)
98 * This function performs multiple checks on the same values with
99 * security implications, so create snapshots with READ_ONCE() to
100 * ensure that these checks use the same values.
102 u32 tx = tegra_ivc_header_read_field(map, tx.count);
103 u32 rx = tegra_ivc_header_read_field(map, rx.count);
106 * Perform an over-full check to prevent denial of service attacks
107 * where a server could be easily fooled into believing that there's
108 * an extremely large number of frames ready, since receivers are not
109 * expected to check for full or over-full conditions.
111 * Although the channel isn't empty, this is an invalid case caused by
112 * a potentially malicious peer, so returning empty is safer, because
113 * it gives the impression that the channel has gone silent.
115 if (tx - rx > ivc->num_frames)
116 return true;
118 return tx == rx;
121 static inline bool tegra_ivc_full(struct tegra_ivc *ivc, struct iosys_map *map)
123 u32 tx = tegra_ivc_header_read_field(map, tx.count);
124 u32 rx = tegra_ivc_header_read_field(map, rx.count);
127 * Invalid cases where the counters indicate that the queue is over
128 * capacity also appear full.
130 return tx - rx >= ivc->num_frames;
133 static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, struct iosys_map *map)
135 u32 tx = tegra_ivc_header_read_field(map, tx.count);
136 u32 rx = tegra_ivc_header_read_field(map, rx.count);
139 * This function isn't expected to be used in scenarios where an
140 * over-full situation can lead to denial of service attacks. See the
141 * comment in tegra_ivc_empty() for an explanation about special
142 * over-full considerations.
144 return tx - rx;
147 static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
149 unsigned int count = tegra_ivc_header_read_field(&ivc->tx.map, tx.count);
151 tegra_ivc_header_write_field(&ivc->tx.map, tx.count, count + 1);
153 if (ivc->tx.position == ivc->num_frames - 1)
154 ivc->tx.position = 0;
155 else
156 ivc->tx.position++;
159 static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
161 unsigned int count = tegra_ivc_header_read_field(&ivc->rx.map, rx.count);
163 tegra_ivc_header_write_field(&ivc->rx.map, rx.count, count + 1);
165 if (ivc->rx.position == ivc->num_frames - 1)
166 ivc->rx.position = 0;
167 else
168 ivc->rx.position++;
171 static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
173 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
174 unsigned int state;
177 * tx.channel->state is set locally, so it is not synchronized with
178 * state from the remote peer. The remote peer cannot reset its
179 * transmit counters until we've acknowledged its synchronization
180 * request, so no additional synchronization is required because an
181 * asynchronous transition of rx.channel->state to
182 * TEGRA_IVC_STATE_ACK is not allowed.
184 state = tegra_ivc_header_read_field(&ivc->tx.map, tx.state);
185 if (state != TEGRA_IVC_STATE_ESTABLISHED)
186 return -ECONNRESET;
189 * Avoid unnecessary invalidations when performing repeated accesses
190 * to an IVC channel by checking the old queue pointers first.
192 * Synchronization is only necessary when these pointers indicate
193 * empty or full.
195 if (!tegra_ivc_empty(ivc, &ivc->rx.map))
196 return 0;
198 tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
200 if (tegra_ivc_empty(ivc, &ivc->rx.map))
201 return -ENOSPC;
203 return 0;
206 static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
208 unsigned int offset = offsetof(struct tegra_ivc_header, rx.count);
209 unsigned int state;
211 state = tegra_ivc_header_read_field(&ivc->tx.map, tx.state);
212 if (state != TEGRA_IVC_STATE_ESTABLISHED)
213 return -ECONNRESET;
215 if (!tegra_ivc_full(ivc, &ivc->tx.map))
216 return 0;
218 tegra_ivc_invalidate(ivc, ivc->tx.phys + offset);
220 if (tegra_ivc_full(ivc, &ivc->tx.map))
221 return -ENOSPC;
223 return 0;
226 static int tegra_ivc_frame_virt(struct tegra_ivc *ivc, const struct iosys_map *header,
227 unsigned int frame, struct iosys_map *map)
229 size_t offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;
231 if (WARN_ON(frame >= ivc->num_frames))
232 return -EINVAL;
234 *map = IOSYS_MAP_INIT_OFFSET(header, offset);
236 return 0;
239 static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc,
240 dma_addr_t phys,
241 unsigned int frame)
243 unsigned long offset;
245 offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;
247 return phys + offset;
250 static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
251 dma_addr_t phys,
252 unsigned int frame,
253 unsigned int offset,
254 size_t size)
256 if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
257 return;
259 phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
261 dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE);
264 static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
265 dma_addr_t phys,
266 unsigned int frame,
267 unsigned int offset,
268 size_t size)
270 if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
271 return;
273 phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
275 dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE);
278 /* directly peek at the next frame rx'ed */
279 int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, struct iosys_map *map)
281 int err;
283 if (WARN_ON(ivc == NULL))
284 return -EINVAL;
286 err = tegra_ivc_check_read(ivc);
287 if (err < 0)
288 return err;
291 * Order observation of ivc->rx.position potentially indicating new
292 * data before data read.
294 smp_rmb();
296 tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0,
297 ivc->frame_size);
299 return tegra_ivc_frame_virt(ivc, &ivc->rx.map, ivc->rx.position, map);
301 EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
303 int tegra_ivc_read_advance(struct tegra_ivc *ivc)
305 unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
306 unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
307 int err;
310 * No read barriers or synchronization here: the caller is expected to
311 * have already observed the channel non-empty. This check is just to
312 * catch programming errors.
314 err = tegra_ivc_check_read(ivc);
315 if (err < 0)
316 return err;
318 tegra_ivc_advance_rx(ivc);
320 tegra_ivc_flush(ivc, ivc->rx.phys + rx);
323 * Ensure our write to ivc->rx.position occurs before our read from
324 * ivc->tx.position.
326 smp_mb();
329 * Notify only upon transition from full to non-full. The available
330 * count can only asynchronously increase, so the worst possible
331 * side-effect will be a spurious notification.
333 tegra_ivc_invalidate(ivc, ivc->rx.phys + tx);
335 if (tegra_ivc_available(ivc, &ivc->rx.map) == ivc->num_frames - 1)
336 ivc->notify(ivc, ivc->notify_data);
338 return 0;
340 EXPORT_SYMBOL(tegra_ivc_read_advance);
342 /* directly poke at the next frame to be tx'ed */
343 int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, struct iosys_map *map)
345 int err;
347 err = tegra_ivc_check_write(ivc);
348 if (err < 0)
349 return err;
351 return tegra_ivc_frame_virt(ivc, &ivc->tx.map, ivc->tx.position, map);
353 EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
355 /* advance the tx buffer */
356 int tegra_ivc_write_advance(struct tegra_ivc *ivc)
358 unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
359 unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
360 int err;
362 err = tegra_ivc_check_write(ivc);
363 if (err < 0)
364 return err;
366 tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0,
367 ivc->frame_size);
370 * Order any possible stores to the frame before update of
371 * ivc->tx.position.
373 smp_wmb();
375 tegra_ivc_advance_tx(ivc);
376 tegra_ivc_flush(ivc, ivc->tx.phys + tx);
379 * Ensure our write to ivc->tx.position occurs before our read from
380 * ivc->rx.position.
382 smp_mb();
385 * Notify only upon transition from empty to non-empty. The available
386 * count can only asynchronously decrease, so the worst possible
387 * side-effect will be a spurious notification.
389 tegra_ivc_invalidate(ivc, ivc->tx.phys + rx);
391 if (tegra_ivc_available(ivc, &ivc->tx.map) == 1)
392 ivc->notify(ivc, ivc->notify_data);
394 return 0;
396 EXPORT_SYMBOL(tegra_ivc_write_advance);
398 void tegra_ivc_reset(struct tegra_ivc *ivc)
400 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
402 tegra_ivc_header_write_field(&ivc->tx.map, tx.state, TEGRA_IVC_STATE_SYNC);
403 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
404 ivc->notify(ivc, ivc->notify_data);
406 EXPORT_SYMBOL(tegra_ivc_reset);
409 * =======================================================
410 * IVC State Transition Table - see tegra_ivc_notified()
411 * =======================================================
413 * local remote action
414 * ----- ------ -----------------------------------
415 * SYNC EST <none>
416 * SYNC ACK reset counters; move to EST; notify
417 * SYNC SYNC reset counters; move to ACK; notify
418 * ACK EST move to EST; notify
419 * ACK ACK move to EST; notify
420 * ACK SYNC reset counters; move to ACK; notify
421 * EST EST <none>
422 * EST ACK <none>
423 * EST SYNC reset counters; move to ACK; notify
425 * ===============================================================
428 int tegra_ivc_notified(struct tegra_ivc *ivc)
430 unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
431 enum tegra_ivc_state rx_state, tx_state;
433 /* Copy the receiver's state out of shared memory. */
434 tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
435 rx_state = tegra_ivc_header_read_field(&ivc->rx.map, tx.state);
436 tx_state = tegra_ivc_header_read_field(&ivc->tx.map, tx.state);
438 if (rx_state == TEGRA_IVC_STATE_SYNC) {
439 offset = offsetof(struct tegra_ivc_header, tx.count);
442 * Order observation of TEGRA_IVC_STATE_SYNC before stores
443 * clearing tx.channel.
445 smp_rmb();
448 * Reset tx.channel counters. The remote end is in the SYNC
449 * state and won't make progress until we change our state,
450 * so the counters are not in use at this time.
452 tegra_ivc_header_write_field(&ivc->tx.map, tx.count, 0);
453 tegra_ivc_header_write_field(&ivc->rx.map, rx.count, 0);
455 ivc->tx.position = 0;
456 ivc->rx.position = 0;
459 * Ensure that counters appear cleared before new state can be
460 * observed.
462 smp_wmb();
465 * Move to ACK state. We have just cleared our counters, so it
466 * is now safe for the remote end to start using these values.
468 tegra_ivc_header_write_field(&ivc->tx.map, tx.state, TEGRA_IVC_STATE_ACK);
469 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
472 * Notify remote end to observe state transition.
474 ivc->notify(ivc, ivc->notify_data);
476 } else if (tx_state == TEGRA_IVC_STATE_SYNC &&
477 rx_state == TEGRA_IVC_STATE_ACK) {
478 offset = offsetof(struct tegra_ivc_header, tx.count);
481 * Order observation of ivc_state_sync before stores clearing
482 * tx_channel.
484 smp_rmb();
487 * Reset tx.channel counters. The remote end is in the ACK
488 * state and won't make progress until we change our state,
489 * so the counters are not in use at this time.
491 tegra_ivc_header_write_field(&ivc->tx.map, tx.count, 0);
492 tegra_ivc_header_write_field(&ivc->rx.map, rx.count, 0);
494 ivc->tx.position = 0;
495 ivc->rx.position = 0;
498 * Ensure that counters appear cleared before new state can be
499 * observed.
501 smp_wmb();
504 * Move to ESTABLISHED state. We know that the remote end has
505 * already cleared its counters, so it is safe to start
506 * writing/reading on this channel.
508 tegra_ivc_header_write_field(&ivc->tx.map, tx.state, TEGRA_IVC_STATE_ESTABLISHED);
509 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
512 * Notify remote end to observe state transition.
514 ivc->notify(ivc, ivc->notify_data);
516 } else if (tx_state == TEGRA_IVC_STATE_ACK) {
517 offset = offsetof(struct tegra_ivc_header, tx.count);
520 * At this point, we have observed the peer to be in either
521 * the ACK or ESTABLISHED state. Next, order observation of
522 * peer state before storing to tx.channel.
524 smp_rmb();
527 * Move to ESTABLISHED state. We know that we have previously
528 * cleared our counters, and we know that the remote end has
529 * cleared its counters, so it is safe to start writing/reading
530 * on this channel.
532 tegra_ivc_header_write_field(&ivc->tx.map, tx.state, TEGRA_IVC_STATE_ESTABLISHED);
533 tegra_ivc_flush(ivc, ivc->tx.phys + offset);
536 * Notify remote end to observe state transition.
538 ivc->notify(ivc, ivc->notify_data);
540 } else {
542 * There is no need to handle any further action. Either the
543 * channel is already fully established, or we are waiting for
544 * the remote end to catch up with our current state. Refer
545 * to the diagram in "IVC State Transition Table" above.
549 if (tx_state != TEGRA_IVC_STATE_ESTABLISHED)
550 return -EAGAIN;
552 return 0;
554 EXPORT_SYMBOL(tegra_ivc_notified);
556 size_t tegra_ivc_align(size_t size)
558 return ALIGN(size, TEGRA_IVC_ALIGN);
560 EXPORT_SYMBOL(tegra_ivc_align);
562 unsigned tegra_ivc_total_queue_size(unsigned queue_size)
564 if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) {
565 pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
566 __func__, queue_size, TEGRA_IVC_ALIGN);
567 return 0;
570 return queue_size + sizeof(struct tegra_ivc_header);
572 EXPORT_SYMBOL(tegra_ivc_total_queue_size);
574 static int tegra_ivc_check_params(unsigned long rx, unsigned long tx,
575 unsigned int num_frames, size_t frame_size)
577 BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count),
578 TEGRA_IVC_ALIGN));
579 BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count),
580 TEGRA_IVC_ALIGN));
581 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header),
582 TEGRA_IVC_ALIGN));
584 if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) {
585 pr_err("num_frames * frame_size overflows\n");
586 return -EINVAL;
589 if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) {
590 pr_err("frame size not adequately aligned: %zu\n", frame_size);
591 return -EINVAL;
595 * The headers must at least be aligned enough for counters
596 * to be accessed atomically.
598 if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) {
599 pr_err("IVC channel start not aligned: %#lx\n", rx);
600 return -EINVAL;
603 if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) {
604 pr_err("IVC channel start not aligned: %#lx\n", tx);
605 return -EINVAL;
608 if (rx < tx) {
609 if (rx + frame_size * num_frames > tx) {
610 pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
611 rx, frame_size * num_frames, tx);
612 return -EINVAL;
614 } else {
615 if (tx + frame_size * num_frames > rx) {
616 pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
617 tx, frame_size * num_frames, rx);
618 return -EINVAL;
622 return 0;
625 static inline void iosys_map_copy(struct iosys_map *dst, const struct iosys_map *src)
627 *dst = *src;
630 static inline unsigned long iosys_map_get_address(const struct iosys_map *map)
632 if (map->is_iomem)
633 return (unsigned long)map->vaddr_iomem;
635 return (unsigned long)map->vaddr;
638 static inline void *iosys_map_get_vaddr(const struct iosys_map *map)
640 if (WARN_ON(map->is_iomem))
641 return NULL;
643 return map->vaddr;
646 int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, const struct iosys_map *rx,
647 dma_addr_t rx_phys, const struct iosys_map *tx, dma_addr_t tx_phys,
648 unsigned int num_frames, size_t frame_size,
649 void (*notify)(struct tegra_ivc *ivc, void *data),
650 void *data)
652 size_t queue_size;
653 int err;
655 if (WARN_ON(!ivc || !notify))
656 return -EINVAL;
659 * All sizes that can be returned by communication functions should
660 * fit in an int.
662 if (frame_size > INT_MAX)
663 return -E2BIG;
665 err = tegra_ivc_check_params(iosys_map_get_address(rx), iosys_map_get_address(tx),
666 num_frames, frame_size);
667 if (err < 0)
668 return err;
670 queue_size = tegra_ivc_total_queue_size(num_frames * frame_size);
672 if (peer) {
673 ivc->rx.phys = dma_map_single(peer, iosys_map_get_vaddr(rx), queue_size,
674 DMA_BIDIRECTIONAL);
675 if (dma_mapping_error(peer, ivc->rx.phys))
676 return -ENOMEM;
678 ivc->tx.phys = dma_map_single(peer, iosys_map_get_vaddr(tx), queue_size,
679 DMA_BIDIRECTIONAL);
680 if (dma_mapping_error(peer, ivc->tx.phys)) {
681 dma_unmap_single(peer, ivc->rx.phys, queue_size,
682 DMA_BIDIRECTIONAL);
683 return -ENOMEM;
685 } else {
686 ivc->rx.phys = rx_phys;
687 ivc->tx.phys = tx_phys;
690 iosys_map_copy(&ivc->rx.map, rx);
691 iosys_map_copy(&ivc->tx.map, tx);
692 ivc->peer = peer;
693 ivc->notify = notify;
694 ivc->notify_data = data;
695 ivc->frame_size = frame_size;
696 ivc->num_frames = num_frames;
699 * These values aren't necessarily correct until the channel has been
700 * reset.
702 ivc->tx.position = 0;
703 ivc->rx.position = 0;
705 return 0;
707 EXPORT_SYMBOL(tegra_ivc_init);
709 void tegra_ivc_cleanup(struct tegra_ivc *ivc)
711 if (ivc->peer) {
712 size_t size = tegra_ivc_total_queue_size(ivc->num_frames *
713 ivc->frame_size);
715 dma_unmap_single(ivc->peer, ivc->rx.phys, size,
716 DMA_BIDIRECTIONAL);
717 dma_unmap_single(ivc->peer, ivc->tx.phys, size,
718 DMA_BIDIRECTIONAL);
721 EXPORT_SYMBOL(tegra_ivc_cleanup);