Merge tag 'mm-hotfixes-stable-2024-06-26-17-28' of git://git.kernel.org/pub/scm/linux...
[linux.git] / drivers / edac / igen6_edac.c
blobdbe9fe5f2ca6c35615563834a7e6553e35329f41
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for Intel client SoC with integrated memory controller using IBECC
5 * Copyright (C) 2020 Intel Corporation
7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8 * regions of the physical memory space. It's used for memory controllers
9 * that don't support the out-of-band ECC which often needs an additional
10 * storage device to each channel for storing ECC data.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
27 #include "edac_mc.h"
28 #include "edac_module.h"
30 #define IGEN6_REVISION "v2.5.1"
32 #define EDAC_MOD_STR "igen6_edac"
33 #define IGEN6_NMI_NAME "igen6_ibecc"
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...) \
37 edac_printk(level, "igen6", fmt, ##arg)
39 #define igen6_mc_printk(mci, level, fmt, arg...) \
40 edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
44 #define NUM_IMC 2 /* Max memory controllers */
45 #define NUM_CHANNELS 2 /* Max channels */
46 #define NUM_DIMMS 2 /* Max DIMMs per channel */
48 #define _4GB BIT_ULL(32)
50 /* Size of physical memory */
51 #define TOM_OFFSET 0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET 0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET 0xec
56 #define CAPID_C_IBECC BIT(15)
58 /* Capability register E */
59 #define CAPID_E_OFFSET 0xf0
60 #define CAPID_E_IBECC BIT(12)
61 #define CAPID_E_IBECC_BIT18 BIT(18)
63 /* Error Status */
64 #define ERRSTS_OFFSET 0xc8
65 #define ERRSTS_CE BIT_ULL(6)
66 #define ERRSTS_UE BIT_ULL(7)
68 /* Error Command */
69 #define ERRCMD_OFFSET 0xca
70 #define ERRCMD_CE BIT_ULL(6)
71 #define ERRCMD_UE BIT_ULL(7)
73 /* IBECC MMIO base address */
74 #define IBECC_BASE (res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET IBECC_BASE
76 #define IBECC_ACTIVATE_EN BIT(0)
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT 5
83 #define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v) GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61)
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET 0x48
89 #define MCHBAR_EN BIT_ULL(0)
90 #define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE 0x10000
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE (res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29)
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0)
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25)
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3)
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28)
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
128 static struct res_config {
129 bool machine_check;
130 int num_imc;
131 u32 imc_base;
132 u32 cmf_base;
133 u32 cmf_size;
134 u32 ms_hash_offset;
135 u32 ibecc_base;
136 u32 ibecc_error_log_offset;
137 bool (*ibecc_available)(struct pci_dev *pdev);
138 /* Extract error address logged in IBECC */
139 u64 (*err_addr)(u64 ecclog);
140 /* Convert error address logged in IBECC to system physical address */
141 u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
142 /* Convert error address logged in IBECC to integrated memory controller address */
143 u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
144 } *res_cfg;
146 struct igen6_imc {
147 int mc;
148 struct mem_ctl_info *mci;
149 struct pci_dev *pdev;
150 struct device dev;
151 void __iomem *window;
152 u64 size;
153 u64 ch_s_size;
154 int ch_l_map;
155 u64 dimm_s_size[NUM_CHANNELS];
156 u64 dimm_l_size[NUM_CHANNELS];
157 int dimm_l_map[NUM_CHANNELS];
160 static struct igen6_pvt {
161 struct igen6_imc imc[NUM_IMC];
162 u64 ms_hash;
163 u64 ms_s_size;
164 int ms_l_map;
165 } *igen6_pvt;
167 /* The top of low usable DRAM */
168 static u32 igen6_tolud;
169 /* The size of physical memory */
170 static u64 igen6_tom;
172 struct decoded_addr {
173 int mc;
174 u64 imc_addr;
175 u64 sys_addr;
176 int channel_idx;
177 u64 channel_addr;
178 int sub_channel_idx;
179 u64 sub_channel_addr;
182 struct ecclog_node {
183 struct llist_node llnode;
184 int mc;
185 u64 ecclog;
189 * In the NMI handler, the driver uses the lock-less memory allocator
190 * to allocate memory to store the IBECC error logs and links the logs
191 * to the lock-less list. Delay printk() and the work of error reporting
192 * to EDAC core in a worker.
194 #define ECCLOG_POOL_SIZE PAGE_SIZE
195 static LLIST_HEAD(ecclog_llist);
196 static struct gen_pool *ecclog_pool;
197 static char ecclog_buf[ECCLOG_POOL_SIZE];
198 static struct irq_work ecclog_irq_work;
199 static struct work_struct ecclog_work;
201 /* Compute die IDs for Elkhart Lake with IBECC */
202 #define DID_EHL_SKU5 0x4514
203 #define DID_EHL_SKU6 0x4528
204 #define DID_EHL_SKU7 0x452a
205 #define DID_EHL_SKU8 0x4516
206 #define DID_EHL_SKU9 0x452c
207 #define DID_EHL_SKU10 0x452e
208 #define DID_EHL_SKU11 0x4532
209 #define DID_EHL_SKU12 0x4518
210 #define DID_EHL_SKU13 0x451a
211 #define DID_EHL_SKU14 0x4534
212 #define DID_EHL_SKU15 0x4536
214 /* Compute die IDs for ICL-NNPI with IBECC */
215 #define DID_ICL_SKU8 0x4581
216 #define DID_ICL_SKU10 0x4585
217 #define DID_ICL_SKU11 0x4589
218 #define DID_ICL_SKU12 0x458d
220 /* Compute die IDs for Tiger Lake with IBECC */
221 #define DID_TGL_SKU 0x9a14
223 /* Compute die IDs for Alder Lake with IBECC */
224 #define DID_ADL_SKU1 0x4601
225 #define DID_ADL_SKU2 0x4602
226 #define DID_ADL_SKU3 0x4621
227 #define DID_ADL_SKU4 0x4641
229 /* Compute die IDs for Alder Lake-N with IBECC */
230 #define DID_ADL_N_SKU1 0x4614
231 #define DID_ADL_N_SKU2 0x4617
232 #define DID_ADL_N_SKU3 0x461b
233 #define DID_ADL_N_SKU4 0x461c
234 #define DID_ADL_N_SKU5 0x4673
235 #define DID_ADL_N_SKU6 0x4674
236 #define DID_ADL_N_SKU7 0x4675
237 #define DID_ADL_N_SKU8 0x4677
238 #define DID_ADL_N_SKU9 0x4678
239 #define DID_ADL_N_SKU10 0x4679
240 #define DID_ADL_N_SKU11 0x467c
241 #define DID_ADL_N_SKU12 0x4632
243 /* Compute die IDs for Raptor Lake-P with IBECC */
244 #define DID_RPL_P_SKU1 0xa706
245 #define DID_RPL_P_SKU2 0xa707
246 #define DID_RPL_P_SKU3 0xa708
247 #define DID_RPL_P_SKU4 0xa716
248 #define DID_RPL_P_SKU5 0xa718
250 /* Compute die IDs for Meteor Lake-PS with IBECC */
251 #define DID_MTL_PS_SKU1 0x7d21
252 #define DID_MTL_PS_SKU2 0x7d22
253 #define DID_MTL_PS_SKU3 0x7d23
254 #define DID_MTL_PS_SKU4 0x7d24
256 /* Compute die IDs for Meteor Lake-P with IBECC */
257 #define DID_MTL_P_SKU1 0x7d01
258 #define DID_MTL_P_SKU2 0x7d02
259 #define DID_MTL_P_SKU3 0x7d14
261 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
263 union {
264 u64 v;
265 struct {
266 u32 v_lo;
267 u32 v_hi;
269 } u;
271 if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
272 igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
273 return -ENODEV;
276 if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
277 igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
278 return -ENODEV;
281 if (!(u.v & MCHBAR_EN)) {
282 igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
283 return -ENODEV;
286 *mchbar = MCHBAR_BASE(u.v);
288 return 0;
291 static bool ehl_ibecc_available(struct pci_dev *pdev)
293 u32 v;
295 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
296 return false;
298 return !!(CAPID_C_IBECC & v);
301 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
303 return eaddr;
306 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
308 if (eaddr < igen6_tolud)
309 return eaddr;
311 if (igen6_tom <= _4GB)
312 return eaddr + igen6_tolud - _4GB;
314 if (eaddr < _4GB)
315 return eaddr + igen6_tolud - igen6_tom;
317 return eaddr;
320 static bool icl_ibecc_available(struct pci_dev *pdev)
322 u32 v;
324 if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
325 return false;
327 return !(CAPID_C_IBECC & v) &&
328 (boot_cpu_data.x86_stepping >= 1);
331 static bool tgl_ibecc_available(struct pci_dev *pdev)
333 u32 v;
335 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
336 return false;
338 return !(CAPID_E_IBECC & v);
341 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
343 u32 v;
345 if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
346 return false;
348 return !(CAPID_E_IBECC_BIT18 & v);
351 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
353 #define MCHBAR_MEMSS_IBECCDIS 0x13c00
354 void __iomem *window;
355 u64 mchbar;
356 u32 val;
358 if (get_mchbar(pdev, &mchbar))
359 return false;
361 window = ioremap(mchbar, MCHBAR_SIZE * 2);
362 if (!window) {
363 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
364 return false;
367 val = readl(window + MCHBAR_MEMSS_IBECCDIS);
368 iounmap(window);
370 /* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
371 return !GET_BITFIELD(val, 6, 6);
374 static u64 mem_addr_to_sys_addr(u64 maddr)
376 if (maddr < igen6_tolud)
377 return maddr;
379 if (igen6_tom <= _4GB)
380 return maddr - igen6_tolud + _4GB;
382 if (maddr < _4GB)
383 return maddr - igen6_tolud + igen6_tom;
385 return maddr;
388 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
390 u64 hash_addr = addr & mask, hash = hash_init;
391 u64 intlv = (addr >> intlv_bit) & 1;
392 int i;
394 for (i = 6; i < 20; i++)
395 hash ^= (hash_addr >> i) & 1;
397 return hash ^ intlv;
400 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
402 u64 maddr, hash, mask, ms_s_size;
403 int intlv_bit;
404 u32 ms_hash;
406 ms_s_size = igen6_pvt->ms_s_size;
407 if (eaddr >= ms_s_size)
408 return eaddr + ms_s_size;
410 ms_hash = igen6_pvt->ms_hash;
412 mask = MEM_SLICE_HASH_MASK(ms_hash);
413 intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
415 maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
416 GET_BITFIELD(eaddr, 0, intlv_bit - 1);
418 hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
420 return maddr | (hash << intlv_bit);
423 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
425 u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
427 return mem_addr_to_sys_addr(maddr);
430 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
432 return eaddr;
435 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
437 return mem_addr_to_sys_addr(eaddr);
440 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
442 u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
443 struct igen6_imc *imc = &igen6_pvt->imc[mc];
444 int intlv_bit;
445 u32 mc_hash;
447 if (eaddr >= 2 * ms_s_size)
448 return eaddr - ms_s_size;
450 mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
452 intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
454 imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
455 GET_BITFIELD(eaddr, 0, intlv_bit - 1);
457 return imc_addr;
460 static u64 rpl_p_err_addr(u64 ecclog)
462 return ECC_ERROR_LOG_ADDR45(ecclog);
465 static struct res_config ehl_cfg = {
466 .num_imc = 1,
467 .imc_base = 0x5000,
468 .ibecc_base = 0xdc00,
469 .ibecc_available = ehl_ibecc_available,
470 .ibecc_error_log_offset = 0x170,
471 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
472 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
475 static struct res_config icl_cfg = {
476 .num_imc = 1,
477 .imc_base = 0x5000,
478 .ibecc_base = 0xd800,
479 .ibecc_error_log_offset = 0x170,
480 .ibecc_available = icl_ibecc_available,
481 .err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
482 .err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
485 static struct res_config tgl_cfg = {
486 .machine_check = true,
487 .num_imc = 2,
488 .imc_base = 0x5000,
489 .cmf_base = 0x11000,
490 .cmf_size = 0x800,
491 .ms_hash_offset = 0xac,
492 .ibecc_base = 0xd400,
493 .ibecc_error_log_offset = 0x170,
494 .ibecc_available = tgl_ibecc_available,
495 .err_addr_to_sys_addr = tgl_err_addr_to_sys_addr,
496 .err_addr_to_imc_addr = tgl_err_addr_to_imc_addr,
499 static struct res_config adl_cfg = {
500 .machine_check = true,
501 .num_imc = 2,
502 .imc_base = 0xd800,
503 .ibecc_base = 0xd400,
504 .ibecc_error_log_offset = 0x68,
505 .ibecc_available = tgl_ibecc_available,
506 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
507 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
510 static struct res_config adl_n_cfg = {
511 .machine_check = true,
512 .num_imc = 1,
513 .imc_base = 0xd800,
514 .ibecc_base = 0xd400,
515 .ibecc_error_log_offset = 0x68,
516 .ibecc_available = tgl_ibecc_available,
517 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
518 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
521 static struct res_config rpl_p_cfg = {
522 .machine_check = true,
523 .num_imc = 2,
524 .imc_base = 0xd800,
525 .ibecc_base = 0xd400,
526 .ibecc_error_log_offset = 0x68,
527 .ibecc_available = tgl_ibecc_available,
528 .err_addr = rpl_p_err_addr,
529 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
530 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
533 static struct res_config mtl_ps_cfg = {
534 .machine_check = true,
535 .num_imc = 2,
536 .imc_base = 0xd800,
537 .ibecc_base = 0xd400,
538 .ibecc_error_log_offset = 0x170,
539 .ibecc_available = mtl_ps_ibecc_available,
540 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
541 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
544 static struct res_config mtl_p_cfg = {
545 .machine_check = true,
546 .num_imc = 2,
547 .imc_base = 0xd800,
548 .ibecc_base = 0xd400,
549 .ibecc_error_log_offset = 0x170,
550 .ibecc_available = mtl_p_ibecc_available,
551 .err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
552 .err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
555 static const struct pci_device_id igen6_pci_tbl[] = {
556 { PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
557 { PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
558 { PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
559 { PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
560 { PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
561 { PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
562 { PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
563 { PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
564 { PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
565 { PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
566 { PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
567 { PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
568 { PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
569 { PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
570 { PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
571 { PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
572 { PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
573 { PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
574 { PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
575 { PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
576 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
577 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
578 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
579 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
580 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
581 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
582 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
583 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
584 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
585 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
586 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
587 { PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
588 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
589 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
590 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
591 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
592 { PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
593 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
594 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
595 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
596 { PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
597 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
598 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
599 { PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
600 { },
602 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
604 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
606 u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
607 MAD_DIMM_CH_DSW(mad_dimm);
609 switch (w) {
610 case 0:
611 return DEV_X8;
612 case 1:
613 return DEV_X16;
614 case 2:
615 return DEV_X32;
616 default:
617 return DEV_UNKNOWN;
621 static enum mem_type get_memory_type(u32 mad_inter)
623 u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
625 switch (t) {
626 case 0:
627 return MEM_DDR4;
628 case 1:
629 return MEM_DDR3;
630 case 2:
631 return MEM_LPDDR3;
632 case 3:
633 return MEM_LPDDR4;
634 case 4:
635 return MEM_WIO2;
636 default:
637 return MEM_UNKNOWN;
641 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
643 u64 hash_addr = addr & mask, hash = 0;
644 u64 intlv = (addr >> intlv_bit) & 1;
645 int i;
647 for (i = 6; i < 20; i++)
648 hash ^= (hash_addr >> i) & 1;
650 return (int)hash ^ intlv;
653 static u64 decode_channel_addr(u64 addr, int intlv_bit)
655 u64 channel_addr;
657 /* Remove the interleave bit and shift upper part down to fill gap */
658 channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
659 channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
661 return channel_addr;
664 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
665 int *idx, u64 *sub_addr)
667 int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
669 if (addr > 2 * s_size) {
670 *sub_addr = addr - s_size;
671 *idx = l_map;
672 return;
675 if (CHANNEL_HASH_MODE(hash)) {
676 *sub_addr = decode_channel_addr(addr, intlv_bit);
677 *idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
678 } else {
679 *sub_addr = decode_channel_addr(addr, 6);
680 *idx = GET_BITFIELD(addr, 6, 6);
684 static int igen6_decode(struct decoded_addr *res)
686 struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
687 u64 addr = res->imc_addr, sub_addr, s_size;
688 int idx, l_map;
689 u32 hash;
691 if (addr >= igen6_tom) {
692 edac_dbg(0, "Address 0x%llx out of range\n", addr);
693 return -EINVAL;
696 /* Decode channel */
697 hash = readl(imc->window + CHANNEL_HASH_OFFSET);
698 s_size = imc->ch_s_size;
699 l_map = imc->ch_l_map;
700 decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
701 res->channel_idx = idx;
702 res->channel_addr = sub_addr;
704 /* Decode sub-channel/DIMM */
705 hash = readl(imc->window + CHANNEL_EHASH_OFFSET);
706 s_size = imc->dimm_s_size[idx];
707 l_map = imc->dimm_l_map[idx];
708 decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
709 res->sub_channel_idx = idx;
710 res->sub_channel_addr = sub_addr;
712 return 0;
715 static void igen6_output_error(struct decoded_addr *res,
716 struct mem_ctl_info *mci, u64 ecclog)
718 enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
719 HW_EVENT_ERR_UNCORRECTED :
720 HW_EVENT_ERR_CORRECTED;
722 edac_mc_handle_error(type, mci, 1,
723 res->sys_addr >> PAGE_SHIFT,
724 res->sys_addr & ~PAGE_MASK,
725 ECC_ERROR_LOG_SYND(ecclog),
726 res->channel_idx, res->sub_channel_idx,
727 -1, "", "");
730 static struct gen_pool *ecclog_gen_pool_create(void)
732 struct gen_pool *pool;
734 pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
735 if (!pool)
736 return NULL;
738 if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
739 gen_pool_destroy(pool);
740 return NULL;
743 return pool;
746 static int ecclog_gen_pool_add(int mc, u64 ecclog)
748 struct ecclog_node *node;
750 node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
751 if (!node)
752 return -ENOMEM;
754 node->mc = mc;
755 node->ecclog = ecclog;
756 llist_add(&node->llnode, &ecclog_llist);
758 return 0;
762 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
763 * configuration space status register ERRSTS can indicate whether a
764 * correctable error or an uncorrectable error occurred. We only use the
765 * ECC_ERROR_LOG register to check error type, but need to clear both
766 * registers to enable future error events.
768 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
770 u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
772 if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
773 /* Clear CE/UE bits by writing 1s */
774 writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
775 return ecclog;
778 return 0;
781 static void errsts_clear(struct igen6_imc *imc)
783 u16 errsts;
785 if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
786 igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
787 return;
790 /* Clear CE/UE bits by writing 1s */
791 if (errsts & (ERRSTS_CE | ERRSTS_UE))
792 pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
795 static int errcmd_enable_error_reporting(bool enable)
797 struct igen6_imc *imc = &igen6_pvt->imc[0];
798 u16 errcmd;
799 int rc;
801 rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
802 if (rc)
803 return pcibios_err_to_errno(rc);
805 if (enable)
806 errcmd |= ERRCMD_CE | ERRSTS_UE;
807 else
808 errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
810 rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
811 if (rc)
812 return pcibios_err_to_errno(rc);
814 return 0;
817 static int ecclog_handler(void)
819 struct igen6_imc *imc;
820 int i, n = 0;
821 u64 ecclog;
823 for (i = 0; i < res_cfg->num_imc; i++) {
824 imc = &igen6_pvt->imc[i];
826 /* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
828 ecclog = ecclog_read_and_clear(imc);
829 if (!ecclog)
830 continue;
832 if (!ecclog_gen_pool_add(i, ecclog))
833 irq_work_queue(&ecclog_irq_work);
835 n++;
838 return n;
841 static void ecclog_work_cb(struct work_struct *work)
843 struct ecclog_node *node, *tmp;
844 struct mem_ctl_info *mci;
845 struct llist_node *head;
846 struct decoded_addr res;
847 u64 eaddr;
849 head = llist_del_all(&ecclog_llist);
850 if (!head)
851 return;
853 llist_for_each_entry_safe(node, tmp, head, llnode) {
854 memset(&res, 0, sizeof(res));
855 if (res_cfg->err_addr)
856 eaddr = res_cfg->err_addr(node->ecclog);
857 else
858 eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
859 ECC_ERROR_LOG_ADDR_SHIFT;
860 res.mc = node->mc;
861 res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
862 res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
864 mci = igen6_pvt->imc[res.mc].mci;
866 edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
867 igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
868 igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
870 if (!igen6_decode(&res))
871 igen6_output_error(&res, mci, node->ecclog);
873 gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
877 static void ecclog_irq_work_cb(struct irq_work *irq_work)
879 int i;
881 for (i = 0; i < res_cfg->num_imc; i++)
882 errsts_clear(&igen6_pvt->imc[i]);
884 if (!llist_empty(&ecclog_llist))
885 schedule_work(&ecclog_work);
888 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
890 unsigned char reason;
892 if (!ecclog_handler())
893 return NMI_DONE;
896 * Both In-Band ECC correctable error and uncorrectable error are
897 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
898 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
899 * re-enable the SERR# NMI after NMI handling. So clear this bit here
900 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
902 reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
903 reason |= NMI_REASON_CLEAR_SERR;
904 outb(reason, NMI_REASON_PORT);
905 reason &= ~NMI_REASON_CLEAR_SERR;
906 outb(reason, NMI_REASON_PORT);
908 return NMI_HANDLED;
911 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
912 void *data)
914 struct mce *mce = (struct mce *)data;
915 char *type;
917 if (mce->kflags & MCE_HANDLED_CEC)
918 return NOTIFY_DONE;
921 * Ignore unless this is a memory related error.
922 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
923 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
925 if ((mce->status & 0xefff) >> 7 != 1)
926 return NOTIFY_DONE;
928 if (mce->mcgstatus & MCG_STATUS_MCIP)
929 type = "Exception";
930 else
931 type = "Event";
933 edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
934 mce->extcpu, type, mce->mcgstatus,
935 mce->bank, mce->status);
936 edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
937 edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
938 edac_dbg(0, "MISC 0x%llx\n", mce->misc);
939 edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
940 mce->cpuvendor, mce->cpuid, mce->time,
941 mce->socketid, mce->apicid);
943 * We just use the Machine Check for the memory error notification.
944 * Each memory controller is associated with an IBECC instance.
945 * Directly read and clear the error information(error address and
946 * error type) on all the IBECC instances so that we know on which
947 * memory controller the memory error(s) occurred.
949 if (!ecclog_handler())
950 return NOTIFY_DONE;
952 mce->kflags |= MCE_HANDLED_EDAC;
954 return NOTIFY_DONE;
957 static struct notifier_block ecclog_mce_dec = {
958 .notifier_call = ecclog_mce_handler,
959 .priority = MCE_PRIO_EDAC,
962 static bool igen6_check_ecc(struct igen6_imc *imc)
964 u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
966 return !!(activate & IBECC_ACTIVATE_EN);
969 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
971 struct igen6_imc *imc = mci->pvt_info;
972 u32 mad_inter, mad_intra, mad_dimm;
973 int i, j, ndimms, mc = imc->mc;
974 struct dimm_info *dimm;
975 enum mem_type mtype;
976 enum dev_type dtype;
977 u64 dsize;
978 bool ecc;
980 edac_dbg(2, "\n");
982 mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
983 mtype = get_memory_type(mad_inter);
984 ecc = igen6_check_ecc(imc);
985 imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
986 imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
988 for (i = 0; i < NUM_CHANNELS; i++) {
989 mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
990 mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
992 imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
993 imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
994 imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
995 imc->size += imc->dimm_s_size[i];
996 imc->size += imc->dimm_l_size[i];
997 ndimms = 0;
999 for (j = 0; j < NUM_DIMMS; j++) {
1000 dimm = edac_get_dimm(mci, i, j, 0);
1002 if (j ^ imc->dimm_l_map[i]) {
1003 dtype = get_width(0, mad_dimm);
1004 dsize = imc->dimm_s_size[i];
1005 } else {
1006 dtype = get_width(1, mad_dimm);
1007 dsize = imc->dimm_l_size[i];
1010 if (!dsize)
1011 continue;
1013 dimm->grain = 64;
1014 dimm->mtype = mtype;
1015 dimm->dtype = dtype;
1016 dimm->nr_pages = MiB_TO_PAGES(dsize >> 20);
1017 dimm->edac_mode = EDAC_SECDED;
1018 snprintf(dimm->label, sizeof(dimm->label),
1019 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1020 edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1021 mc, i, j, dsize >> 20, dimm->nr_pages);
1023 ndimms++;
1026 if (ndimms && !ecc) {
1027 igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1028 return -ENODEV;
1032 edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1034 return 0;
1037 #ifdef CONFIG_EDAC_DEBUG
1038 /* Top of upper usable DRAM */
1039 static u64 igen6_touud;
1040 #define TOUUD_OFFSET 0xa8
1042 static void igen6_reg_dump(struct igen6_imc *imc)
1044 int i;
1046 edac_dbg(2, "CHANNEL_HASH : 0x%x\n",
1047 readl(imc->window + CHANNEL_HASH_OFFSET));
1048 edac_dbg(2, "CHANNEL_EHASH : 0x%x\n",
1049 readl(imc->window + CHANNEL_EHASH_OFFSET));
1050 edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1051 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1052 edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n",
1053 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1055 for (i = 0; i < NUM_CHANNELS; i++) {
1056 edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i,
1057 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1058 edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i,
1059 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1061 edac_dbg(2, "TOLUD : 0x%x", igen6_tolud);
1062 edac_dbg(2, "TOUUD : 0x%llx", igen6_touud);
1063 edac_dbg(2, "TOM : 0x%llx", igen6_tom);
1066 static struct dentry *igen6_test;
1068 static int debugfs_u64_set(void *data, u64 val)
1070 u64 ecclog;
1072 if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1073 edac_dbg(0, "Address 0x%llx out of range\n", val);
1074 return 0;
1077 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1079 val >>= ECC_ERROR_LOG_ADDR_SHIFT;
1080 ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1082 if (!ecclog_gen_pool_add(0, ecclog))
1083 irq_work_queue(&ecclog_irq_work);
1085 return 0;
1087 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1089 static void igen6_debug_setup(void)
1091 igen6_test = edac_debugfs_create_dir("igen6_test");
1092 if (!igen6_test)
1093 return;
1095 if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1096 NULL, &fops_u64_wo)) {
1097 debugfs_remove(igen6_test);
1098 igen6_test = NULL;
1102 static void igen6_debug_teardown(void)
1104 debugfs_remove_recursive(igen6_test);
1106 #else
1107 static void igen6_reg_dump(struct igen6_imc *imc) {}
1108 static void igen6_debug_setup(void) {}
1109 static void igen6_debug_teardown(void) {}
1110 #endif
1112 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1114 union {
1115 u64 v;
1116 struct {
1117 u32 v_lo;
1118 u32 v_hi;
1120 } u;
1122 edac_dbg(2, "\n");
1124 if (!res_cfg->ibecc_available(pdev)) {
1125 edac_dbg(2, "No In-Band ECC IP\n");
1126 goto fail;
1129 if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1130 igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1131 goto fail;
1134 igen6_tolud &= GENMASK(31, 20);
1136 if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1137 igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1138 goto fail;
1141 if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1142 igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1143 goto fail;
1146 igen6_tom = u.v & GENMASK_ULL(38, 20);
1148 if (get_mchbar(pdev, mchbar))
1149 goto fail;
1151 #ifdef CONFIG_EDAC_DEBUG
1152 if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1153 edac_dbg(2, "Failed to read lower TOUUD\n");
1154 else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1155 edac_dbg(2, "Failed to read upper TOUUD\n");
1156 else
1157 igen6_touud = u.v & GENMASK_ULL(38, 20);
1158 #endif
1160 return 0;
1161 fail:
1162 return -ENODEV;
1165 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1167 struct edac_mc_layer layers[2];
1168 struct mem_ctl_info *mci;
1169 struct igen6_imc *imc;
1170 void __iomem *window;
1171 int rc;
1173 edac_dbg(2, "\n");
1175 mchbar += mc * MCHBAR_SIZE;
1176 window = ioremap(mchbar, MCHBAR_SIZE);
1177 if (!window) {
1178 igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1179 return -ENODEV;
1182 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1183 layers[0].size = NUM_CHANNELS;
1184 layers[0].is_virt_csrow = false;
1185 layers[1].type = EDAC_MC_LAYER_SLOT;
1186 layers[1].size = NUM_DIMMS;
1187 layers[1].is_virt_csrow = true;
1189 mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1190 if (!mci) {
1191 rc = -ENOMEM;
1192 goto fail;
1195 mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1196 if (!mci->ctl_name) {
1197 rc = -ENOMEM;
1198 goto fail2;
1201 mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1202 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1203 mci->edac_cap = EDAC_FLAG_SECDED;
1204 mci->mod_name = EDAC_MOD_STR;
1205 mci->dev_name = pci_name(pdev);
1206 mci->pvt_info = &igen6_pvt->imc[mc];
1208 imc = mci->pvt_info;
1209 device_initialize(&imc->dev);
1211 * EDAC core uses mci->pdev(pointer of structure device) as
1212 * memory controller ID. The client SoCs attach one or more
1213 * memory controllers to single pci_dev (single pci_dev->dev
1214 * can be for multiple memory controllers).
1216 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1217 * for the first memory controller and assign a unique imc->dev
1218 * to mci->pdev for each non-first memory controller.
1220 mci->pdev = mc ? &imc->dev : &pdev->dev;
1221 imc->mc = mc;
1222 imc->pdev = pdev;
1223 imc->window = window;
1225 igen6_reg_dump(imc);
1227 rc = igen6_get_dimm_config(mci);
1228 if (rc)
1229 goto fail3;
1231 rc = edac_mc_add_mc(mci);
1232 if (rc) {
1233 igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1234 goto fail3;
1237 imc->mci = mci;
1238 return 0;
1239 fail3:
1240 kfree(mci->ctl_name);
1241 fail2:
1242 edac_mc_free(mci);
1243 fail:
1244 iounmap(window);
1245 return rc;
1248 static void igen6_unregister_mcis(void)
1250 struct mem_ctl_info *mci;
1251 struct igen6_imc *imc;
1252 int i;
1254 edac_dbg(2, "\n");
1256 for (i = 0; i < res_cfg->num_imc; i++) {
1257 imc = &igen6_pvt->imc[i];
1258 mci = imc->mci;
1259 if (!mci)
1260 continue;
1262 edac_mc_del_mc(mci->pdev);
1263 kfree(mci->ctl_name);
1264 edac_mc_free(mci);
1265 iounmap(imc->window);
1269 static int igen6_mem_slice_setup(u64 mchbar)
1271 struct igen6_imc *imc = &igen6_pvt->imc[0];
1272 u64 base = mchbar + res_cfg->cmf_base;
1273 u32 offset = res_cfg->ms_hash_offset;
1274 u32 size = res_cfg->cmf_size;
1275 u64 ms_s_size, ms_hash;
1276 void __iomem *cmf;
1277 int ms_l_map;
1279 edac_dbg(2, "\n");
1281 if (imc[0].size < imc[1].size) {
1282 ms_s_size = imc[0].size;
1283 ms_l_map = 1;
1284 } else {
1285 ms_s_size = imc[1].size;
1286 ms_l_map = 0;
1289 igen6_pvt->ms_s_size = ms_s_size;
1290 igen6_pvt->ms_l_map = ms_l_map;
1292 edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1293 ms_s_size >> 20, ms_l_map);
1295 if (!size)
1296 return 0;
1298 cmf = ioremap(base, size);
1299 if (!cmf) {
1300 igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1301 return -ENODEV;
1304 ms_hash = readq(cmf + offset);
1305 igen6_pvt->ms_hash = ms_hash;
1307 edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1309 iounmap(cmf);
1311 return 0;
1314 static int register_err_handler(void)
1316 int rc;
1318 if (res_cfg->machine_check) {
1319 mce_register_decode_chain(&ecclog_mce_dec);
1320 return 0;
1323 rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1324 0, IGEN6_NMI_NAME);
1325 if (rc) {
1326 igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1327 return rc;
1330 return 0;
1333 static void unregister_err_handler(void)
1335 if (res_cfg->machine_check) {
1336 mce_unregister_decode_chain(&ecclog_mce_dec);
1337 return;
1340 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1343 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1345 u64 mchbar;
1346 int i, rc;
1348 edac_dbg(2, "\n");
1350 igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1351 if (!igen6_pvt)
1352 return -ENOMEM;
1354 res_cfg = (struct res_config *)ent->driver_data;
1356 rc = igen6_pci_setup(pdev, &mchbar);
1357 if (rc)
1358 goto fail;
1360 for (i = 0; i < res_cfg->num_imc; i++) {
1361 rc = igen6_register_mci(i, mchbar, pdev);
1362 if (rc)
1363 goto fail2;
1366 if (res_cfg->num_imc > 1) {
1367 rc = igen6_mem_slice_setup(mchbar);
1368 if (rc)
1369 goto fail2;
1372 ecclog_pool = ecclog_gen_pool_create();
1373 if (!ecclog_pool) {
1374 rc = -ENOMEM;
1375 goto fail2;
1378 INIT_WORK(&ecclog_work, ecclog_work_cb);
1379 init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1381 rc = register_err_handler();
1382 if (rc)
1383 goto fail3;
1385 /* Enable error reporting */
1386 rc = errcmd_enable_error_reporting(true);
1387 if (rc) {
1388 igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1389 goto fail4;
1392 /* Check if any pending errors before/during the registration of the error handler */
1393 ecclog_handler();
1395 igen6_debug_setup();
1396 return 0;
1397 fail4:
1398 unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1399 fail3:
1400 gen_pool_destroy(ecclog_pool);
1401 fail2:
1402 igen6_unregister_mcis();
1403 fail:
1404 kfree(igen6_pvt);
1405 return rc;
1408 static void igen6_remove(struct pci_dev *pdev)
1410 edac_dbg(2, "\n");
1412 igen6_debug_teardown();
1413 errcmd_enable_error_reporting(false);
1414 unregister_err_handler();
1415 irq_work_sync(&ecclog_irq_work);
1416 flush_work(&ecclog_work);
1417 gen_pool_destroy(ecclog_pool);
1418 igen6_unregister_mcis();
1419 kfree(igen6_pvt);
1422 static struct pci_driver igen6_driver = {
1423 .name = EDAC_MOD_STR,
1424 .probe = igen6_probe,
1425 .remove = igen6_remove,
1426 .id_table = igen6_pci_tbl,
1429 static int __init igen6_init(void)
1431 const char *owner;
1432 int rc;
1434 edac_dbg(2, "\n");
1436 if (ghes_get_devices())
1437 return -EBUSY;
1439 owner = edac_get_owner();
1440 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1441 return -EBUSY;
1443 edac_op_state = EDAC_OPSTATE_NMI;
1445 rc = pci_register_driver(&igen6_driver);
1446 if (rc)
1447 return rc;
1449 igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1451 return 0;
1454 static void __exit igen6_exit(void)
1456 edac_dbg(2, "\n");
1458 pci_unregister_driver(&igen6_driver);
1461 module_init(igen6_init);
1462 module_exit(igen6_exit);
1464 MODULE_LICENSE("GPL v2");
1465 MODULE_AUTHOR("Qiuxu Zhuo");
1466 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");