Merge tag 'net-6.12-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / drivers / edac / al_mc_edac.c
blob178b9e581a72788de2c546bdd8b2cc5b6af25361
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 */
5 #include <linux/bitfield.h>
6 #include <linux/bitops.h>
7 #include <linux/edac.h>
8 #include <linux/of_irq.h>
9 #include <linux/platform_device.h>
10 #include <linux/spinlock.h>
11 #include "edac_module.h"
13 /* Registers Offset */
14 #define AL_MC_ECC_CFG 0x70
15 #define AL_MC_ECC_CLEAR 0x7c
16 #define AL_MC_ECC_ERR_COUNT 0x80
17 #define AL_MC_ECC_CE_ADDR0 0x84
18 #define AL_MC_ECC_CE_ADDR1 0x88
19 #define AL_MC_ECC_UE_ADDR0 0xa4
20 #define AL_MC_ECC_UE_ADDR1 0xa8
21 #define AL_MC_ECC_CE_SYND0 0x8c
22 #define AL_MC_ECC_CE_SYND1 0x90
23 #define AL_MC_ECC_CE_SYND2 0x94
24 #define AL_MC_ECC_UE_SYND0 0xac
25 #define AL_MC_ECC_UE_SYND1 0xb0
26 #define AL_MC_ECC_UE_SYND2 0xb4
28 /* Registers Fields */
29 #define AL_MC_ECC_CFG_SCRUB_DISABLED BIT(4)
31 #define AL_MC_ECC_CLEAR_UE_COUNT BIT(3)
32 #define AL_MC_ECC_CLEAR_CE_COUNT BIT(2)
33 #define AL_MC_ECC_CLEAR_UE_ERR BIT(1)
34 #define AL_MC_ECC_CLEAR_CE_ERR BIT(0)
36 #define AL_MC_ECC_ERR_COUNT_UE GENMASK(31, 16)
37 #define AL_MC_ECC_ERR_COUNT_CE GENMASK(15, 0)
39 #define AL_MC_ECC_CE_ADDR0_RANK GENMASK(25, 24)
40 #define AL_MC_ECC_CE_ADDR0_ROW GENMASK(17, 0)
42 #define AL_MC_ECC_CE_ADDR1_BG GENMASK(25, 24)
43 #define AL_MC_ECC_CE_ADDR1_BANK GENMASK(18, 16)
44 #define AL_MC_ECC_CE_ADDR1_COLUMN GENMASK(11, 0)
46 #define AL_MC_ECC_UE_ADDR0_RANK GENMASK(25, 24)
47 #define AL_MC_ECC_UE_ADDR0_ROW GENMASK(17, 0)
49 #define AL_MC_ECC_UE_ADDR1_BG GENMASK(25, 24)
50 #define AL_MC_ECC_UE_ADDR1_BANK GENMASK(18, 16)
51 #define AL_MC_ECC_UE_ADDR1_COLUMN GENMASK(11, 0)
53 #define DRV_NAME "al_mc_edac"
54 #define AL_MC_EDAC_MSG_MAX 256
56 struct al_mc_edac {
57 void __iomem *mmio_base;
58 spinlock_t lock;
59 int irq_ce;
60 int irq_ue;
63 static void prepare_msg(char *message, size_t buffer_size,
64 enum hw_event_mc_err_type type,
65 u8 rank, u32 row, u8 bg, u8 bank, u16 column,
66 u32 syn0, u32 syn1, u32 syn2)
68 snprintf(message, buffer_size,
69 "%s rank=0x%x row=0x%x bg=0x%x bank=0x%x col=0x%x syn0: 0x%x syn1: 0x%x syn2: 0x%x",
70 type == HW_EVENT_ERR_UNCORRECTED ? "UE" : "CE",
71 rank, row, bg, bank, column, syn0, syn1, syn2);
74 static int handle_ce(struct mem_ctl_info *mci)
76 u32 eccerrcnt, ecccaddr0, ecccaddr1, ecccsyn0, ecccsyn1, ecccsyn2, row;
77 struct al_mc_edac *al_mc = mci->pvt_info;
78 char msg[AL_MC_EDAC_MSG_MAX];
79 u16 ce_count, column;
80 unsigned long flags;
81 u8 rank, bg, bank;
83 eccerrcnt = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_ERR_COUNT);
84 ce_count = FIELD_GET(AL_MC_ECC_ERR_COUNT_CE, eccerrcnt);
85 if (!ce_count)
86 return 0;
88 ecccaddr0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_ADDR0);
89 ecccaddr1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_ADDR1);
90 ecccsyn0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND0);
91 ecccsyn1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND1);
92 ecccsyn2 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_CE_SYND2);
94 writel_relaxed(AL_MC_ECC_CLEAR_CE_COUNT | AL_MC_ECC_CLEAR_CE_ERR,
95 al_mc->mmio_base + AL_MC_ECC_CLEAR);
97 dev_dbg(mci->pdev, "eccuaddr0=0x%08x eccuaddr1=0x%08x\n",
98 ecccaddr0, ecccaddr1);
100 rank = FIELD_GET(AL_MC_ECC_CE_ADDR0_RANK, ecccaddr0);
101 row = FIELD_GET(AL_MC_ECC_CE_ADDR0_ROW, ecccaddr0);
103 bg = FIELD_GET(AL_MC_ECC_CE_ADDR1_BG, ecccaddr1);
104 bank = FIELD_GET(AL_MC_ECC_CE_ADDR1_BANK, ecccaddr1);
105 column = FIELD_GET(AL_MC_ECC_CE_ADDR1_COLUMN, ecccaddr1);
107 prepare_msg(msg, sizeof(msg), HW_EVENT_ERR_CORRECTED,
108 rank, row, bg, bank, column,
109 ecccsyn0, ecccsyn1, ecccsyn2);
111 spin_lock_irqsave(&al_mc->lock, flags);
112 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
113 ce_count, 0, 0, 0, 0, 0, -1, mci->ctl_name, msg);
114 spin_unlock_irqrestore(&al_mc->lock, flags);
116 return ce_count;
119 static int handle_ue(struct mem_ctl_info *mci)
121 u32 eccerrcnt, eccuaddr0, eccuaddr1, eccusyn0, eccusyn1, eccusyn2, row;
122 struct al_mc_edac *al_mc = mci->pvt_info;
123 char msg[AL_MC_EDAC_MSG_MAX];
124 u16 ue_count, column;
125 unsigned long flags;
126 u8 rank, bg, bank;
128 eccerrcnt = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_ERR_COUNT);
129 ue_count = FIELD_GET(AL_MC_ECC_ERR_COUNT_UE, eccerrcnt);
130 if (!ue_count)
131 return 0;
133 eccuaddr0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_ADDR0);
134 eccuaddr1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_ADDR1);
135 eccusyn0 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND0);
136 eccusyn1 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND1);
137 eccusyn2 = readl_relaxed(al_mc->mmio_base + AL_MC_ECC_UE_SYND2);
139 writel_relaxed(AL_MC_ECC_CLEAR_UE_COUNT | AL_MC_ECC_CLEAR_UE_ERR,
140 al_mc->mmio_base + AL_MC_ECC_CLEAR);
142 dev_dbg(mci->pdev, "eccuaddr0=0x%08x eccuaddr1=0x%08x\n",
143 eccuaddr0, eccuaddr1);
145 rank = FIELD_GET(AL_MC_ECC_UE_ADDR0_RANK, eccuaddr0);
146 row = FIELD_GET(AL_MC_ECC_UE_ADDR0_ROW, eccuaddr0);
148 bg = FIELD_GET(AL_MC_ECC_UE_ADDR1_BG, eccuaddr1);
149 bank = FIELD_GET(AL_MC_ECC_UE_ADDR1_BANK, eccuaddr1);
150 column = FIELD_GET(AL_MC_ECC_UE_ADDR1_COLUMN, eccuaddr1);
152 prepare_msg(msg, sizeof(msg), HW_EVENT_ERR_UNCORRECTED,
153 rank, row, bg, bank, column,
154 eccusyn0, eccusyn1, eccusyn2);
156 spin_lock_irqsave(&al_mc->lock, flags);
157 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
158 ue_count, 0, 0, 0, 0, 0, -1, mci->ctl_name, msg);
159 spin_unlock_irqrestore(&al_mc->lock, flags);
161 return ue_count;
164 static void al_mc_edac_check(struct mem_ctl_info *mci)
166 struct al_mc_edac *al_mc = mci->pvt_info;
168 if (al_mc->irq_ue <= 0)
169 handle_ue(mci);
171 if (al_mc->irq_ce <= 0)
172 handle_ce(mci);
175 static irqreturn_t al_mc_edac_irq_handler_ue(int irq, void *info)
177 struct platform_device *pdev = info;
178 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
180 if (handle_ue(mci))
181 return IRQ_HANDLED;
182 return IRQ_NONE;
185 static irqreturn_t al_mc_edac_irq_handler_ce(int irq, void *info)
187 struct platform_device *pdev = info;
188 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
190 if (handle_ce(mci))
191 return IRQ_HANDLED;
192 return IRQ_NONE;
195 static enum scrub_type get_scrub_mode(void __iomem *mmio_base)
197 u32 ecccfg0;
199 ecccfg0 = readl(mmio_base + AL_MC_ECC_CFG);
201 if (FIELD_GET(AL_MC_ECC_CFG_SCRUB_DISABLED, ecccfg0))
202 return SCRUB_NONE;
203 else
204 return SCRUB_HW_SRC;
207 static void devm_al_mc_edac_free(void *data)
209 edac_mc_free(data);
212 static void devm_al_mc_edac_del(void *data)
214 edac_mc_del_mc(data);
217 static int al_mc_edac_probe(struct platform_device *pdev)
219 struct edac_mc_layer layers[1];
220 struct mem_ctl_info *mci;
221 struct al_mc_edac *al_mc;
222 void __iomem *mmio_base;
223 struct dimm_info *dimm;
224 int ret;
226 mmio_base = devm_platform_ioremap_resource(pdev, 0);
227 if (IS_ERR(mmio_base)) {
228 dev_err(&pdev->dev, "failed to ioremap memory (%ld)\n",
229 PTR_ERR(mmio_base));
230 return PTR_ERR(mmio_base);
233 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
234 layers[0].size = 1;
235 layers[0].is_virt_csrow = false;
236 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
237 sizeof(struct al_mc_edac));
238 if (!mci)
239 return -ENOMEM;
241 ret = devm_add_action_or_reset(&pdev->dev, devm_al_mc_edac_free, mci);
242 if (ret)
243 return ret;
245 platform_set_drvdata(pdev, mci);
246 al_mc = mci->pvt_info;
248 al_mc->mmio_base = mmio_base;
250 al_mc->irq_ue = of_irq_get_byname(pdev->dev.of_node, "ue");
251 if (al_mc->irq_ue <= 0)
252 dev_dbg(&pdev->dev,
253 "no IRQ defined for UE - falling back to polling\n");
255 al_mc->irq_ce = of_irq_get_byname(pdev->dev.of_node, "ce");
256 if (al_mc->irq_ce <= 0)
257 dev_dbg(&pdev->dev,
258 "no IRQ defined for CE - falling back to polling\n");
261 * In case both interrupts (ue/ce) are to be found, use interrupt mode.
262 * In case none of the interrupt are foud, use polling mode.
263 * In case only one interrupt is found, use interrupt mode for it but
264 * keep polling mode enable for the other.
266 if (al_mc->irq_ue <= 0 || al_mc->irq_ce <= 0) {
267 edac_op_state = EDAC_OPSTATE_POLL;
268 mci->edac_check = al_mc_edac_check;
269 } else {
270 edac_op_state = EDAC_OPSTATE_INT;
273 spin_lock_init(&al_mc->lock);
275 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4;
276 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
277 mci->edac_cap = EDAC_FLAG_SECDED;
278 mci->mod_name = DRV_NAME;
279 mci->ctl_name = "al_mc";
280 mci->pdev = &pdev->dev;
281 mci->scrub_mode = get_scrub_mode(mmio_base);
283 dimm = *mci->dimms;
284 dimm->grain = 1;
286 ret = edac_mc_add_mc(mci);
287 if (ret < 0) {
288 dev_err(&pdev->dev,
289 "fail to add memory controller device (%d)\n",
290 ret);
291 return ret;
294 ret = devm_add_action_or_reset(&pdev->dev, devm_al_mc_edac_del, &pdev->dev);
295 if (ret)
296 return ret;
298 if (al_mc->irq_ue > 0) {
299 ret = devm_request_irq(&pdev->dev,
300 al_mc->irq_ue,
301 al_mc_edac_irq_handler_ue,
302 IRQF_SHARED,
303 pdev->name,
304 pdev);
305 if (ret != 0) {
306 dev_err(&pdev->dev,
307 "failed to request UE IRQ %d (%d)\n",
308 al_mc->irq_ue, ret);
309 return ret;
313 if (al_mc->irq_ce > 0) {
314 ret = devm_request_irq(&pdev->dev,
315 al_mc->irq_ce,
316 al_mc_edac_irq_handler_ce,
317 IRQF_SHARED,
318 pdev->name,
319 pdev);
320 if (ret != 0) {
321 dev_err(&pdev->dev,
322 "failed to request CE IRQ %d (%d)\n",
323 al_mc->irq_ce, ret);
324 return ret;
328 return 0;
331 static const struct of_device_id al_mc_edac_of_match[] = {
332 { .compatible = "amazon,al-mc-edac", },
336 MODULE_DEVICE_TABLE(of, al_mc_edac_of_match);
338 static struct platform_driver al_mc_edac_driver = {
339 .probe = al_mc_edac_probe,
340 .driver = {
341 .name = DRV_NAME,
342 .of_match_table = al_mc_edac_of_match,
346 module_platform_driver(al_mc_edac_driver);
348 MODULE_LICENSE("GPL v2");
349 MODULE_AUTHOR("Talel Shenhar");
350 MODULE_DESCRIPTION("Amazon's Annapurna Lab's Memory Controller EDAC Driver");