2 * Handle caching attributes in page tables (PAT)
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/ioport.h>
14 #include <linux/kernel.h>
15 #include <linux/pfn_t.h>
16 #include <linux/slab.h>
19 #include <linux/rbtree.h>
21 #include <asm/cacheflush.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/x86_init.h>
25 #include <asm/pgtable.h>
26 #include <asm/fcntl.h>
27 #include <asm/e820/api.h>
34 #include "pat_internal.h"
35 #include "mm_internal.h"
38 #define pr_fmt(fmt) "" fmt
40 static bool __read_mostly boot_cpu_done
;
41 static bool __read_mostly pat_disabled
= !IS_ENABLED(CONFIG_X86_PAT
);
42 static bool __read_mostly pat_initialized
;
43 static bool __read_mostly init_cm_done
;
45 void pat_disable(const char *reason
)
51 WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
56 pr_info("x86/PAT: %s\n", reason
);
59 static int __init
nopat(char *str
)
61 pat_disable("PAT support disabled.");
64 early_param("nopat", nopat
);
66 bool pat_enabled(void)
68 return pat_initialized
;
70 EXPORT_SYMBOL_GPL(pat_enabled
);
74 static int __init
pat_debug_setup(char *str
)
79 __setup("debugpat", pat_debug_setup
);
83 * X86 PAT uses page flags arch_1 and uncached together to keep track of
84 * memory type of pages that have backing page struct.
86 * X86 PAT supports 4 different memory types:
87 * - _PAGE_CACHE_MODE_WB
88 * - _PAGE_CACHE_MODE_WC
89 * - _PAGE_CACHE_MODE_UC_MINUS
90 * - _PAGE_CACHE_MODE_WT
92 * _PAGE_CACHE_MODE_WB is the default type.
96 #define _PGMT_WC (1UL << PG_arch_1)
97 #define _PGMT_UC_MINUS (1UL << PG_uncached)
98 #define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
99 #define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
100 #define _PGMT_CLEAR_MASK (~_PGMT_MASK)
102 static inline enum page_cache_mode
get_page_memtype(struct page
*pg
)
104 unsigned long pg_flags
= pg
->flags
& _PGMT_MASK
;
106 if (pg_flags
== _PGMT_WB
)
107 return _PAGE_CACHE_MODE_WB
;
108 else if (pg_flags
== _PGMT_WC
)
109 return _PAGE_CACHE_MODE_WC
;
110 else if (pg_flags
== _PGMT_UC_MINUS
)
111 return _PAGE_CACHE_MODE_UC_MINUS
;
113 return _PAGE_CACHE_MODE_WT
;
116 static inline void set_page_memtype(struct page
*pg
,
117 enum page_cache_mode memtype
)
119 unsigned long memtype_flags
;
120 unsigned long old_flags
;
121 unsigned long new_flags
;
124 case _PAGE_CACHE_MODE_WC
:
125 memtype_flags
= _PGMT_WC
;
127 case _PAGE_CACHE_MODE_UC_MINUS
:
128 memtype_flags
= _PGMT_UC_MINUS
;
130 case _PAGE_CACHE_MODE_WT
:
131 memtype_flags
= _PGMT_WT
;
133 case _PAGE_CACHE_MODE_WB
:
135 memtype_flags
= _PGMT_WB
;
140 old_flags
= pg
->flags
;
141 new_flags
= (old_flags
& _PGMT_CLEAR_MASK
) | memtype_flags
;
142 } while (cmpxchg(&pg
->flags
, old_flags
, new_flags
) != old_flags
);
145 static inline enum page_cache_mode
get_page_memtype(struct page
*pg
)
149 static inline void set_page_memtype(struct page
*pg
,
150 enum page_cache_mode memtype
)
156 PAT_UC
= 0, /* uncached */
157 PAT_WC
= 1, /* Write combining */
158 PAT_WT
= 4, /* Write Through */
159 PAT_WP
= 5, /* Write Protected */
160 PAT_WB
= 6, /* Write Back (default) */
161 PAT_UC_MINUS
= 7, /* UC, but can be overridden by MTRR */
164 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
166 static enum page_cache_mode
pat_get_cache_mode(unsigned pat_val
, char *msg
)
168 enum page_cache_mode cache
;
172 case PAT_UC
: cache
= CM(UC
); cache_mode
= "UC "; break;
173 case PAT_WC
: cache
= CM(WC
); cache_mode
= "WC "; break;
174 case PAT_WT
: cache
= CM(WT
); cache_mode
= "WT "; break;
175 case PAT_WP
: cache
= CM(WP
); cache_mode
= "WP "; break;
176 case PAT_WB
: cache
= CM(WB
); cache_mode
= "WB "; break;
177 case PAT_UC_MINUS
: cache
= CM(UC_MINUS
); cache_mode
= "UC- "; break;
178 default: cache
= CM(WB
); cache_mode
= "WB "; break;
181 memcpy(msg
, cache_mode
, 4);
189 * Update the cache mode to pgprot translation tables according to PAT
191 * Using lower indices is preferred, so we start with highest index.
193 static void __init_cache_modes(u64 pat
)
195 enum page_cache_mode cache
;
200 for (i
= 7; i
>= 0; i
--) {
201 cache
= pat_get_cache_mode((pat
>> (i
* 8)) & 7,
203 update_cache_mode_entry(i
, cache
);
205 pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg
);
210 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
212 static void pat_bsp_init(u64 pat
)
216 if (!boot_cpu_has(X86_FEATURE_PAT
)) {
217 pat_disable("PAT not supported by CPU.");
221 rdmsrl(MSR_IA32_CR_PAT
, tmp_pat
);
223 pat_disable("PAT MSR is 0, disabled.");
227 wrmsrl(MSR_IA32_CR_PAT
, pat
);
228 pat_initialized
= true;
230 __init_cache_modes(pat
);
233 static void pat_ap_init(u64 pat
)
235 if (!boot_cpu_has(X86_FEATURE_PAT
)) {
237 * If this happens we are on a secondary CPU, but switched to
238 * PAT on the boot CPU. We have no way to undo PAT.
240 panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
243 wrmsrl(MSR_IA32_CR_PAT
, pat
);
246 void init_cache_modes(void)
253 if (boot_cpu_has(X86_FEATURE_PAT
)) {
255 * CPU supports PAT. Set PAT table to be consistent with
256 * PAT MSR. This case supports "nopat" boot option, and
257 * virtual machine environments which support PAT without
258 * MTRRs. In specific, Xen has unique setup to PAT MSR.
260 * If PAT MSR returns 0, it is considered invalid and emulates
263 rdmsrl(MSR_IA32_CR_PAT
, pat
);
268 * No PAT. Emulate the PAT table that corresponds to the two
269 * cache bits, PWT (Write Through) and PCD (Cache Disable).
270 * This setup is also the same as the BIOS default setup.
277 * 00 0 WB : _PAGE_CACHE_MODE_WB
278 * 01 1 WT : _PAGE_CACHE_MODE_WT
279 * 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
280 * 11 3 UC : _PAGE_CACHE_MODE_UC
282 * NOTE: When WC or WP is used, it is redirected to UC- per
283 * the default setup in __cachemode2pte_tbl[].
285 pat
= PAT(0, WB
) | PAT(1, WT
) | PAT(2, UC_MINUS
) | PAT(3, UC
) |
286 PAT(4, WB
) | PAT(5, WT
) | PAT(6, UC_MINUS
) | PAT(7, UC
);
289 __init_cache_modes(pat
);
293 * pat_init - Initialize PAT MSR and PAT table
295 * This function initializes PAT MSR and PAT table with an OS-defined value
296 * to enable additional cache attributes, WC, WT and WP.
298 * This function must be called on all CPUs using the specific sequence of
299 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
305 struct cpuinfo_x86
*c
= &boot_cpu_data
;
310 if ((c
->x86_vendor
== X86_VENDOR_INTEL
) &&
311 (((c
->x86
== 0x6) && (c
->x86_model
<= 0xd)) ||
312 ((c
->x86
== 0xf) && (c
->x86_model
<= 0x6)))) {
314 * PAT support with the lower four entries. Intel Pentium 2,
315 * 3, M, and 4 are affected by PAT errata, which makes the
316 * upper four entries unusable. To be on the safe side, we don't
324 * 000 0 WB : _PAGE_CACHE_MODE_WB
325 * 001 1 WC : _PAGE_CACHE_MODE_WC
326 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
327 * 011 3 UC : _PAGE_CACHE_MODE_UC
330 * NOTE: When WT or WP is used, it is redirected to UC- per
331 * the default setup in __cachemode2pte_tbl[].
333 pat
= PAT(0, WB
) | PAT(1, WC
) | PAT(2, UC_MINUS
) | PAT(3, UC
) |
334 PAT(4, WB
) | PAT(5, WC
) | PAT(6, UC_MINUS
) | PAT(7, UC
);
337 * Full PAT support. We put WT in slot 7 to improve
338 * robustness in the presence of errata that might cause
339 * the high PAT bit to be ignored. This way, a buggy slot 7
340 * access will hit slot 3, and slot 3 is UC, so at worst
341 * we lose performance without causing a correctness issue.
342 * Pentium 4 erratum N46 is an example for such an erratum,
343 * although we try not to use PAT at all on affected CPUs.
350 * 000 0 WB : _PAGE_CACHE_MODE_WB
351 * 001 1 WC : _PAGE_CACHE_MODE_WC
352 * 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
353 * 011 3 UC : _PAGE_CACHE_MODE_UC
354 * 100 4 WB : Reserved
355 * 101 5 WP : _PAGE_CACHE_MODE_WP
356 * 110 6 UC-: Reserved
357 * 111 7 WT : _PAGE_CACHE_MODE_WT
359 * The reserved slots are unused, but mapped to their
360 * corresponding types in the presence of PAT errata.
362 pat
= PAT(0, WB
) | PAT(1, WC
) | PAT(2, UC_MINUS
) | PAT(3, UC
) |
363 PAT(4, WB
) | PAT(5, WP
) | PAT(6, UC_MINUS
) | PAT(7, WT
);
366 if (!boot_cpu_done
) {
368 boot_cpu_done
= true;
376 static DEFINE_SPINLOCK(memtype_lock
); /* protects memtype accesses */
379 * Does intersection of PAT memory type and MTRR memory type and returns
380 * the resulting memory type as PAT understands it.
381 * (Type in pat and mtrr will not have same value)
382 * The intersection is based on "Effective Memory Type" tables in IA-32
385 static unsigned long pat_x_mtrr_type(u64 start
, u64 end
,
386 enum page_cache_mode req_type
)
389 * Look for MTRR hint to get the effective type in case where PAT
392 if (req_type
== _PAGE_CACHE_MODE_WB
) {
393 u8 mtrr_type
, uniform
;
395 mtrr_type
= mtrr_type_lookup(start
, end
, &uniform
);
396 if (mtrr_type
!= MTRR_TYPE_WRBACK
)
397 return _PAGE_CACHE_MODE_UC_MINUS
;
399 return _PAGE_CACHE_MODE_WB
;
405 struct pagerange_state
{
406 unsigned long cur_pfn
;
412 pagerange_is_ram_callback(unsigned long initial_pfn
, unsigned long total_nr_pages
, void *arg
)
414 struct pagerange_state
*state
= arg
;
416 state
->not_ram
|= initial_pfn
> state
->cur_pfn
;
417 state
->ram
|= total_nr_pages
> 0;
418 state
->cur_pfn
= initial_pfn
+ total_nr_pages
;
420 return state
->ram
&& state
->not_ram
;
423 static int pat_pagerange_is_ram(resource_size_t start
, resource_size_t end
)
426 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
427 unsigned long end_pfn
= (end
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
428 struct pagerange_state state
= {start_pfn
, 0, 0};
431 * For legacy reasons, physical address range in the legacy ISA
432 * region is tracked as non-RAM. This will allow users of
433 * /dev/mem to map portions of legacy ISA region, even when
434 * some of those portions are listed(or not even listed) with
435 * different e820 types(RAM/reserved/..)
437 if (start_pfn
< ISA_END_ADDRESS
>> PAGE_SHIFT
)
438 start_pfn
= ISA_END_ADDRESS
>> PAGE_SHIFT
;
440 if (start_pfn
< end_pfn
) {
441 ret
= walk_system_ram_range(start_pfn
, end_pfn
- start_pfn
,
442 &state
, pagerange_is_ram_callback
);
445 return (ret
> 0) ? -1 : (state
.ram
? 1 : 0);
449 * For RAM pages, we use page flags to mark the pages with appropriate type.
450 * The page flags are limited to four types, WB (default), WC, WT and UC-.
451 * WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
452 * a new memory type is only allowed for a page mapped with the default WB
455 * Here we do two passes:
456 * - Find the memtype of all the pages in the range, look for any conflicts.
457 * - In case of no conflicts, set the new memtype for pages in the range.
459 static int reserve_ram_pages_type(u64 start
, u64 end
,
460 enum page_cache_mode req_type
,
461 enum page_cache_mode
*new_type
)
466 if (req_type
== _PAGE_CACHE_MODE_WP
) {
468 *new_type
= _PAGE_CACHE_MODE_UC_MINUS
;
472 if (req_type
== _PAGE_CACHE_MODE_UC
) {
473 /* We do not support strong UC */
475 req_type
= _PAGE_CACHE_MODE_UC_MINUS
;
478 for (pfn
= (start
>> PAGE_SHIFT
); pfn
< (end
>> PAGE_SHIFT
); ++pfn
) {
479 enum page_cache_mode type
;
481 page
= pfn_to_page(pfn
);
482 type
= get_page_memtype(page
);
483 if (type
!= _PAGE_CACHE_MODE_WB
) {
484 pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
485 start
, end
- 1, type
, req_type
);
494 *new_type
= req_type
;
496 for (pfn
= (start
>> PAGE_SHIFT
); pfn
< (end
>> PAGE_SHIFT
); ++pfn
) {
497 page
= pfn_to_page(pfn
);
498 set_page_memtype(page
, req_type
);
503 static int free_ram_pages_type(u64 start
, u64 end
)
508 for (pfn
= (start
>> PAGE_SHIFT
); pfn
< (end
>> PAGE_SHIFT
); ++pfn
) {
509 page
= pfn_to_page(pfn
);
510 set_page_memtype(page
, _PAGE_CACHE_MODE_WB
);
516 * req_type typically has one of the:
517 * - _PAGE_CACHE_MODE_WB
518 * - _PAGE_CACHE_MODE_WC
519 * - _PAGE_CACHE_MODE_UC_MINUS
520 * - _PAGE_CACHE_MODE_UC
521 * - _PAGE_CACHE_MODE_WT
523 * If new_type is NULL, function will return an error if it cannot reserve the
524 * region with req_type. If new_type is non-NULL, function will return
525 * available type in new_type in case of no error. In case of any error
526 * it will return a negative return value.
528 int reserve_memtype(u64 start
, u64 end
, enum page_cache_mode req_type
,
529 enum page_cache_mode
*new_type
)
532 enum page_cache_mode actual_type
;
536 BUG_ON(start
>= end
); /* end is exclusive */
538 if (!pat_enabled()) {
539 /* This is identical to page table setting without PAT */
541 *new_type
= req_type
;
545 /* Low ISA region is always mapped WB in page table. No need to track */
546 if (x86_platform
.is_untracked_pat_range(start
, end
)) {
548 *new_type
= _PAGE_CACHE_MODE_WB
;
553 * Call mtrr_lookup to get the type hint. This is an
554 * optimization for /dev/mem mmap'ers into WB memory (BIOS
555 * tools and ACPI tools). Use WB request for WB memory and use
556 * UC_MINUS otherwise.
558 actual_type
= pat_x_mtrr_type(start
, end
, req_type
);
561 *new_type
= actual_type
;
563 is_range_ram
= pat_pagerange_is_ram(start
, end
);
564 if (is_range_ram
== 1) {
566 err
= reserve_ram_pages_type(start
, end
, req_type
, new_type
);
569 } else if (is_range_ram
< 0) {
573 new = kzalloc(sizeof(struct memtype
), GFP_KERNEL
);
579 new->type
= actual_type
;
581 spin_lock(&memtype_lock
);
583 err
= rbt_memtype_check_insert(new, new_type
);
585 pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
587 cattr_name(new->type
), cattr_name(req_type
));
589 spin_unlock(&memtype_lock
);
594 spin_unlock(&memtype_lock
);
596 dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
597 start
, end
- 1, cattr_name(new->type
), cattr_name(req_type
),
598 new_type
? cattr_name(*new_type
) : "-");
603 int free_memtype(u64 start
, u64 end
)
607 struct memtype
*entry
;
612 /* Low ISA region is always mapped WB. No need to track */
613 if (x86_platform
.is_untracked_pat_range(start
, end
))
616 is_range_ram
= pat_pagerange_is_ram(start
, end
);
617 if (is_range_ram
== 1) {
619 err
= free_ram_pages_type(start
, end
);
622 } else if (is_range_ram
< 0) {
626 spin_lock(&memtype_lock
);
627 entry
= rbt_memtype_erase(start
, end
);
628 spin_unlock(&memtype_lock
);
631 pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
632 current
->comm
, current
->pid
, start
, end
- 1);
638 dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start
, end
- 1);
645 * lookup_memtype - Looksup the memory type for a physical address
646 * @paddr: physical address of which memory type needs to be looked up
648 * Only to be called when PAT is enabled
650 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
651 * or _PAGE_CACHE_MODE_WT.
653 static enum page_cache_mode
lookup_memtype(u64 paddr
)
655 enum page_cache_mode rettype
= _PAGE_CACHE_MODE_WB
;
656 struct memtype
*entry
;
658 if (x86_platform
.is_untracked_pat_range(paddr
, paddr
+ PAGE_SIZE
))
661 if (pat_pagerange_is_ram(paddr
, paddr
+ PAGE_SIZE
)) {
664 page
= pfn_to_page(paddr
>> PAGE_SHIFT
);
665 return get_page_memtype(page
);
668 spin_lock(&memtype_lock
);
670 entry
= rbt_memtype_lookup(paddr
);
672 rettype
= entry
->type
;
674 rettype
= _PAGE_CACHE_MODE_UC_MINUS
;
676 spin_unlock(&memtype_lock
);
681 * io_reserve_memtype - Request a memory type mapping for a region of memory
682 * @start: start (physical address) of the region
683 * @end: end (physical address) of the region
684 * @type: A pointer to memtype, with requested type. On success, requested
685 * or any other compatible type that was available for the region is returned
687 * On success, returns 0
688 * On failure, returns non-zero
690 int io_reserve_memtype(resource_size_t start
, resource_size_t end
,
691 enum page_cache_mode
*type
)
693 resource_size_t size
= end
- start
;
694 enum page_cache_mode req_type
= *type
;
695 enum page_cache_mode new_type
;
698 WARN_ON_ONCE(iomem_map_sanity_check(start
, size
));
700 ret
= reserve_memtype(start
, end
, req_type
, &new_type
);
704 if (!is_new_memtype_allowed(start
, size
, req_type
, new_type
))
707 if (kernel_map_sync_memtype(start
, size
, new_type
) < 0)
714 free_memtype(start
, end
);
721 * io_free_memtype - Release a memory type mapping for a region of memory
722 * @start: start (physical address) of the region
723 * @end: end (physical address) of the region
725 void io_free_memtype(resource_size_t start
, resource_size_t end
)
727 free_memtype(start
, end
);
730 int arch_io_reserve_memtype_wc(resource_size_t start
, resource_size_t size
)
732 enum page_cache_mode type
= _PAGE_CACHE_MODE_WC
;
734 return io_reserve_memtype(start
, start
+ size
, &type
);
736 EXPORT_SYMBOL(arch_io_reserve_memtype_wc
);
738 void arch_io_free_memtype_wc(resource_size_t start
, resource_size_t size
)
740 io_free_memtype(start
, start
+ size
);
742 EXPORT_SYMBOL(arch_io_free_memtype_wc
);
744 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
745 unsigned long size
, pgprot_t vma_prot
)
747 if (!phys_mem_access_encrypted(pfn
<< PAGE_SHIFT
, size
))
748 vma_prot
= pgprot_decrypted(vma_prot
);
753 #ifdef CONFIG_STRICT_DEVMEM
754 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
755 static inline int range_is_allowed(unsigned long pfn
, unsigned long size
)
760 /* This check is needed to avoid cache aliasing when PAT is enabled */
761 static inline int range_is_allowed(unsigned long pfn
, unsigned long size
)
763 u64 from
= ((u64
)pfn
) << PAGE_SHIFT
;
764 u64 to
= from
+ size
;
770 while (cursor
< to
) {
771 if (!devmem_is_allowed(pfn
))
778 #endif /* CONFIG_STRICT_DEVMEM */
780 int phys_mem_access_prot_allowed(struct file
*file
, unsigned long pfn
,
781 unsigned long size
, pgprot_t
*vma_prot
)
783 enum page_cache_mode pcm
= _PAGE_CACHE_MODE_WB
;
785 if (!range_is_allowed(pfn
, size
))
788 if (file
->f_flags
& O_DSYNC
)
789 pcm
= _PAGE_CACHE_MODE_UC_MINUS
;
791 *vma_prot
= __pgprot((pgprot_val(*vma_prot
) & ~_PAGE_CACHE_MASK
) |
792 cachemode2protval(pcm
));
797 * Change the memory type for the physial address range in kernel identity
798 * mapping space if that range is a part of identity map.
800 int kernel_map_sync_memtype(u64 base
, unsigned long size
,
801 enum page_cache_mode pcm
)
805 if (base
> __pa(high_memory
-1))
809 * some areas in the middle of the kernel identity range
810 * are not mapped, like the PCI space.
812 if (!page_is_ram(base
>> PAGE_SHIFT
))
815 id_sz
= (__pa(high_memory
-1) <= base
+ size
) ?
816 __pa(high_memory
) - base
:
819 if (ioremap_change_attr((unsigned long)__va(base
), id_sz
, pcm
) < 0) {
820 pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
821 current
->comm
, current
->pid
,
823 base
, (unsigned long long)(base
+ size
-1));
830 * Internal interface to reserve a range of physical memory with prot.
831 * Reserved non RAM regions only and after successful reserve_memtype,
832 * this func also keeps identity mapping (if any) in sync with this new prot.
834 static int reserve_pfn_range(u64 paddr
, unsigned long size
, pgprot_t
*vma_prot
,
839 enum page_cache_mode want_pcm
= pgprot2cachemode(*vma_prot
);
840 enum page_cache_mode pcm
= want_pcm
;
842 is_ram
= pat_pagerange_is_ram(paddr
, paddr
+ size
);
845 * reserve_pfn_range() for RAM pages. We do not refcount to keep
846 * track of number of mappings of RAM pages. We can assert that
847 * the type requested matches the type of first page in the range.
853 pcm
= lookup_memtype(paddr
);
854 if (want_pcm
!= pcm
) {
855 pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
856 current
->comm
, current
->pid
,
857 cattr_name(want_pcm
),
858 (unsigned long long)paddr
,
859 (unsigned long long)(paddr
+ size
- 1),
861 *vma_prot
= __pgprot((pgprot_val(*vma_prot
) &
862 (~_PAGE_CACHE_MASK
)) |
863 cachemode2protval(pcm
));
868 ret
= reserve_memtype(paddr
, paddr
+ size
, want_pcm
, &pcm
);
872 if (pcm
!= want_pcm
) {
874 !is_new_memtype_allowed(paddr
, size
, want_pcm
, pcm
)) {
875 free_memtype(paddr
, paddr
+ size
);
876 pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
877 current
->comm
, current
->pid
,
878 cattr_name(want_pcm
),
879 (unsigned long long)paddr
,
880 (unsigned long long)(paddr
+ size
- 1),
885 * We allow returning different type than the one requested in
888 *vma_prot
= __pgprot((pgprot_val(*vma_prot
) &
889 (~_PAGE_CACHE_MASK
)) |
890 cachemode2protval(pcm
));
893 if (kernel_map_sync_memtype(paddr
, size
, pcm
) < 0) {
894 free_memtype(paddr
, paddr
+ size
);
901 * Internal interface to free a range of physical memory.
902 * Frees non RAM regions only.
904 static void free_pfn_range(u64 paddr
, unsigned long size
)
908 is_ram
= pat_pagerange_is_ram(paddr
, paddr
+ size
);
910 free_memtype(paddr
, paddr
+ size
);
914 * track_pfn_copy is called when vma that is covering the pfnmap gets
915 * copied through copy_page_range().
917 * If the vma has a linear pfn mapping for the entire range, we get the prot
918 * from pte and reserve the entire vma range with single reserve_pfn_range call.
920 int track_pfn_copy(struct vm_area_struct
*vma
)
922 resource_size_t paddr
;
924 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
927 if (vma
->vm_flags
& VM_PAT
) {
929 * reserve the whole chunk covered by vma. We need the
930 * starting address and protection from pte.
932 if (follow_phys(vma
, vma
->vm_start
, 0, &prot
, &paddr
)) {
936 pgprot
= __pgprot(prot
);
937 return reserve_pfn_range(paddr
, vma_size
, &pgprot
, 1);
944 * prot is passed in as a parameter for the new mapping. If the vma has
945 * a linear pfn mapping for the entire range, or no vma is provided,
946 * reserve the entire pfn + size range with single reserve_pfn_range
949 int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
950 unsigned long pfn
, unsigned long addr
, unsigned long size
)
952 resource_size_t paddr
= (resource_size_t
)pfn
<< PAGE_SHIFT
;
953 enum page_cache_mode pcm
;
955 /* reserve the whole chunk starting from paddr */
956 if (!vma
|| (addr
== vma
->vm_start
957 && size
== (vma
->vm_end
- vma
->vm_start
))) {
960 ret
= reserve_pfn_range(paddr
, size
, prot
, 0);
962 vma
->vm_flags
|= VM_PAT
;
970 * For anything smaller than the vma size we set prot based on the
973 pcm
= lookup_memtype(paddr
);
975 /* Check memtype for the remaining pages */
976 while (size
> PAGE_SIZE
) {
979 if (pcm
!= lookup_memtype(paddr
))
983 *prot
= __pgprot((pgprot_val(*prot
) & (~_PAGE_CACHE_MASK
)) |
984 cachemode2protval(pcm
));
989 void track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
, pfn_t pfn
)
991 enum page_cache_mode pcm
;
996 /* Set prot based on lookup */
997 pcm
= lookup_memtype(pfn_t_to_phys(pfn
));
998 *prot
= __pgprot((pgprot_val(*prot
) & (~_PAGE_CACHE_MASK
)) |
999 cachemode2protval(pcm
));
1003 * untrack_pfn is called while unmapping a pfnmap for a region.
1004 * untrack can be called for a specific region indicated by pfn and size or
1005 * can be for the entire vma (in which case pfn, size are zero).
1007 void untrack_pfn(struct vm_area_struct
*vma
, unsigned long pfn
,
1010 resource_size_t paddr
;
1013 if (vma
&& !(vma
->vm_flags
& VM_PAT
))
1016 /* free the chunk starting from pfn or the whole chunk */
1017 paddr
= (resource_size_t
)pfn
<< PAGE_SHIFT
;
1018 if (!paddr
&& !size
) {
1019 if (follow_phys(vma
, vma
->vm_start
, 0, &prot
, &paddr
)) {
1024 size
= vma
->vm_end
- vma
->vm_start
;
1026 free_pfn_range(paddr
, size
);
1028 vma
->vm_flags
&= ~VM_PAT
;
1032 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1033 * with the old vma after its pfnmap page table has been removed. The new
1034 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1036 void untrack_pfn_moved(struct vm_area_struct
*vma
)
1038 vma
->vm_flags
&= ~VM_PAT
;
1041 pgprot_t
pgprot_writecombine(pgprot_t prot
)
1043 return __pgprot(pgprot_val(prot
) |
1044 cachemode2protval(_PAGE_CACHE_MODE_WC
));
1046 EXPORT_SYMBOL_GPL(pgprot_writecombine
);
1048 pgprot_t
pgprot_writethrough(pgprot_t prot
)
1050 return __pgprot(pgprot_val(prot
) |
1051 cachemode2protval(_PAGE_CACHE_MODE_WT
));
1053 EXPORT_SYMBOL_GPL(pgprot_writethrough
);
1055 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1057 static struct memtype
*memtype_get_idx(loff_t pos
)
1059 struct memtype
*print_entry
;
1062 print_entry
= kzalloc(sizeof(struct memtype
), GFP_KERNEL
);
1066 spin_lock(&memtype_lock
);
1067 ret
= rbt_memtype_copy_nth_element(print_entry
, pos
);
1068 spin_unlock(&memtype_lock
);
1078 static void *memtype_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1082 seq_puts(seq
, "PAT memtype list:\n");
1085 return memtype_get_idx(*pos
);
1088 static void *memtype_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1091 return memtype_get_idx(*pos
);
1094 static void memtype_seq_stop(struct seq_file
*seq
, void *v
)
1098 static int memtype_seq_show(struct seq_file
*seq
, void *v
)
1100 struct memtype
*print_entry
= (struct memtype
*)v
;
1102 seq_printf(seq
, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry
->type
),
1103 print_entry
->start
, print_entry
->end
);
1109 static const struct seq_operations memtype_seq_ops
= {
1110 .start
= memtype_seq_start
,
1111 .next
= memtype_seq_next
,
1112 .stop
= memtype_seq_stop
,
1113 .show
= memtype_seq_show
,
1116 static int memtype_seq_open(struct inode
*inode
, struct file
*file
)
1118 return seq_open(file
, &memtype_seq_ops
);
1121 static const struct file_operations memtype_fops
= {
1122 .open
= memtype_seq_open
,
1124 .llseek
= seq_lseek
,
1125 .release
= seq_release
,
1128 static int __init
pat_memtype_list_init(void)
1130 if (pat_enabled()) {
1131 debugfs_create_file("pat_memtype_list", S_IRUSR
,
1132 arch_debugfs_dir
, NULL
, &memtype_fops
);
1137 late_initcall(pat_memtype_list_init
);
1139 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */