perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR
[linux-stable.git] / kernel / events / core.c
blobce64f3fed5c64e9f258ce6a97a8cb6b66a8c3fc6
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
54 #include "internal.h"
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f)(void *);
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
67 static void remote_function(void *data)
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
87 tfc->ret = tfc->func(tfc->info);
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
112 int ret;
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
120 return ret;
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
141 smp_call_function_single(cpu, remote_function, &data, 1);
143 return data.ret;
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event *event)
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
203 static int event_function(void *info)
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
212 WARN_ON_ONCE(!irqs_disabled());
214 perf_ctx_lock(cpuctx, task_ctx);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx->is_active);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
246 return ret;
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
259 if (!event->parent) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx->mutex);
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
273 if (task == TASK_TOMBSTONE)
274 return;
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
280 raw_spin_lock_irq(&ctx->lock);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
309 WARN_ON_ONCE(!irqs_disabled());
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
315 task_ctx = ctx;
318 perf_ctx_lock(cpuctx, task_ctx);
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
324 if (task) {
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly = 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp = perf_sample_period_ns;
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
441 if (ret || !write)
442 return ret;
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
455 return 0;
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 if (ret || !write)
467 return ret;
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
478 return 0;
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
490 static u64 __report_avg;
491 static u64 __report_allowed;
493 static void perf_duration_warn(struct irq_work *w)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 void perf_sample_event_took(u64 sample_len_ns)
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
511 if (max_len == 0)
512 return;
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
529 __report_avg = avg_len;
530 __report_allowed = max_len;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
556 static atomic64_t perf_event_id;
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
568 void __weak perf_event_print_debug(void) { }
570 extern __weak const char *perf_pmu_name(void)
572 return "pmu";
575 static inline u64 perf_clock(void)
577 return local_clock();
580 static inline u64 perf_event_clock(struct perf_event *event)
582 return event->clock();
585 #ifdef CONFIG_CGROUP_PERF
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
611 static inline void perf_detach_cgroup(struct perf_event *event)
613 css_put(&event->cgrp->css);
614 event->cgrp = NULL;
617 static inline int is_cgroup_event(struct perf_event *event)
619 return event->cgrp != NULL;
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
624 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
632 struct perf_cgroup_info *info;
633 u64 now;
635 now = perf_clock();
637 info = this_cpu_ptr(cgrp->info);
639 info->time += now - info->timestamp;
640 info->timestamp = now;
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
652 struct perf_cgroup *cgrp;
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
658 if (!is_cgroup_event(event))
659 return;
661 cgrp = perf_cgroup_from_task(current, event->ctx);
663 * Do not update time when cgroup is not active
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
681 if (!task || !ctx->nr_cgroups)
682 return;
684 cgrp = perf_cgroup_from_task(task, ctx);
685 info = this_cpu_ptr(cgrp->info);
686 info->timestamp = ctx->timestamp;
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
695 * reschedule events based on the cgroup constraint of task.
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
702 struct perf_cpu_context *cpuctx;
703 struct list_head *list;
704 unsigned long flags;
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
710 local_irq_save(flags);
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
725 cpuctx->cgrp = NULL;
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
745 local_irq_restore(flags);
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
754 rcu_read_lock();
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
760 cgrp1 = perf_cgroup_from_task(task, NULL);
761 cgrp2 = perf_cgroup_from_task(next, NULL);
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
771 rcu_read_unlock();
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
780 rcu_read_lock();
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
786 cgrp1 = perf_cgroup_from_task(task, NULL);
787 cgrp2 = perf_cgroup_from_task(prev, NULL);
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
797 rcu_read_unlock();
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
806 struct fd f = fdget(fd);
807 int ret = 0;
809 if (!f.file)
810 return -EBADF;
812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 &perf_event_cgrp_subsys);
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
831 out:
832 fdput(f);
833 return ret;
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
864 if (!event->cgrp_defer_enabled)
865 return;
867 event->cgrp_defer_enabled = 0;
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
886 struct perf_cpu_context *cpuctx;
887 struct list_head *cpuctx_entry;
889 if (!is_cgroup_event(event))
890 return;
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
900 cpuctx = __get_cpu_context(ctx);
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
909 cpuctx->cgrp = NULL;
913 #else /* !CONFIG_CGROUP_PERF */
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
918 return true;
921 static inline void perf_detach_cgroup(struct perf_event *event)
924 static inline int is_cgroup_event(struct perf_event *event)
926 return 0;
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
951 return -EINVAL;
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
972 return 0;
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
992 #endif
995 * set default to be dependent on timer tick just
996 * like original code
998 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 * function must be called with interrupts disabled
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1007 WARN_ON(!irqs_disabled());
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1065 return 0;
1068 void perf_pmu_disable(struct pmu *pmu)
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1075 void perf_pmu_enable(struct pmu *pmu)
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1094 WARN_ON(!irqs_disabled());
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1098 list_add(&ctx->active_ctx_list, head);
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1103 WARN_ON(!irqs_disabled());
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1107 list_del_init(&ctx->active_ctx_list);
1110 static void get_ctx(struct perf_event_context *ctx)
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 static void free_ctx(struct rcu_head *head)
1117 struct perf_event_context *ctx;
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1124 static void put_ctx(struct perf_event_context *ctx)
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1171 * The places that change perf_event::ctx will issue:
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1199 struct perf_event_context *ctx;
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1208 rcu_read_unlock();
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1217 return ctx;
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1223 return perf_event_ctx_lock_nested(event, 0);
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1243 lockdep_assert_held(&ctx->lock);
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1249 return parent_ctx;
1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
1255 u32 nr;
1257 * only top level events have the pid namespace they were created in
1259 if (event->parent)
1260 event = event->parent;
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
1280 * If we inherit events we want to return the parent event id
1281 * to userspace.
1283 static u64 primary_event_id(struct perf_event *event)
1285 u64 id = event->id;
1287 if (event->parent)
1288 id = event->parent->id;
1290 return id;
1294 * Get the perf_event_context for a task and lock it.
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1299 static struct perf_event_context *
1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1302 struct perf_event_context *ctx;
1304 retry:
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308 * part of the read side critical section was irqs-enabled -- see
1309 * rcu_read_unlock_special().
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
1312 * side critical section has interrupts disabled.
1314 local_irq_save(*flags);
1315 rcu_read_lock();
1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317 if (ctx) {
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
1321 * perf_event_task_sched_out, though the
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1328 raw_spin_lock(&ctx->lock);
1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330 raw_spin_unlock(&ctx->lock);
1331 rcu_read_unlock();
1332 local_irq_restore(*flags);
1333 goto retry;
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
1338 raw_spin_unlock(&ctx->lock);
1339 ctx = NULL;
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
1344 rcu_read_unlock();
1345 if (!ctx)
1346 local_irq_restore(*flags);
1347 return ctx;
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1355 static struct perf_event_context *
1356 perf_pin_task_context(struct task_struct *task, int ctxn)
1358 struct perf_event_context *ctx;
1359 unsigned long flags;
1361 ctx = perf_lock_task_context(task, ctxn, &flags);
1362 if (ctx) {
1363 ++ctx->pin_count;
1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1366 return ctx;
1369 static void perf_unpin_context(struct perf_event_context *ctx)
1371 unsigned long flags;
1373 raw_spin_lock_irqsave(&ctx->lock, flags);
1374 --ctx->pin_count;
1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 * Update the record of the current time in a context.
1381 static void update_context_time(struct perf_event_context *ctx)
1383 u64 now = perf_clock();
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1389 static u64 perf_event_time(struct perf_event *event)
1391 struct perf_event_context *ctx = event->ctx;
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1396 return ctx ? ctx->time : 0;
1400 * Update the total_time_enabled and total_time_running fields for a event.
1402 static void update_event_times(struct perf_event *event)
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1407 lockdep_assert_held(&ctx->lock);
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1420 * That is why we treat cgroup events differently
1421 * here.
1423 if (is_cgroup_event(event))
1424 run_end = perf_cgroup_event_time(event);
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
1427 else
1428 run_end = event->tstamp_stopped;
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
1435 run_end = perf_event_time(event);
1437 event->total_time_running = run_end - event->tstamp_running;
1442 * Update total_time_enabled and total_time_running for all events in a group.
1444 static void update_group_times(struct perf_event *leader)
1446 struct perf_event *event;
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1453 static enum event_type_t get_event_type(struct perf_event *event)
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1458 lockdep_assert_held(&ctx->lock);
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1471 return event_type;
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1484 * Add a event from the lists for its context.
1485 * Must be called with ctx->mutex and ctx->lock held.
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1490 lockdep_assert_held(&ctx->lock);
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
1500 if (event->group_leader == event) {
1501 struct list_head *list;
1503 event->group_caps = event->event_caps;
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
1509 list_update_cgroup_event(event, ctx, true);
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
1514 ctx->nr_stat++;
1516 ctx->generation++;
1520 * Initialize event state based on the perf_event_attr::disabled.
1522 static inline void perf_event__state_init(struct perf_event *event)
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1544 nr += nr_siblings;
1545 size += sizeof(u64);
1548 size += entry * nr;
1549 event->read_size = size;
1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1554 struct perf_sample_data *data;
1555 u16 size = 0;
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1581 event->header_size = size;
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1588 static void perf_event__header_size(struct perf_event *event)
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1595 static void perf_event__id_header_size(struct perf_event *event)
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1619 event->id_header_size = size;
1622 static bool perf_event_validate_size(struct perf_event *event)
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1640 return true;
1643 static void perf_group_attach(struct perf_event *event)
1645 struct perf_event *group_leader = event->group_leader, *pos;
1647 lockdep_assert_held(&event->ctx->lock);
1650 * We can have double attach due to group movement in perf_event_open.
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1655 event->attach_state |= PERF_ATTACH_GROUP;
1657 if (group_leader == event)
1658 return;
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1662 group_leader->group_caps &= event->event_caps;
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
1667 perf_event__header_size(group_leader);
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
1674 * Remove a event from the lists for its context.
1675 * Must be called with ctx->mutex and ctx->lock held.
1677 static void
1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1684 * We can have double detach due to exit/hot-unplug + close.
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687 return;
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1691 list_update_cgroup_event(event, ctx, false);
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
1695 ctx->nr_stat--;
1697 list_del_rcu(&event->event_entry);
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
1702 update_group_times(event);
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
1714 ctx->generation++;
1717 static void perf_group_detach(struct perf_event *event)
1719 struct perf_event *sibling, *tmp;
1720 struct list_head *list = NULL;
1722 lockdep_assert_held(&event->ctx->lock);
1725 * We can have double detach due to exit/hot-unplug + close.
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1733 * If this is a sibling, remove it from its group.
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
1738 goto out;
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
1747 * to whatever list we are on.
1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
1752 sibling->group_leader = sibling;
1754 /* Inherit group flags from the previous leader */
1755 sibling->group_caps = event->group_caps;
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
1760 out:
1761 perf_event__header_size(event->group_leader);
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
1767 static bool is_orphaned_event(struct perf_event *event)
1769 return event->state == PERF_EVENT_STATE_DEAD;
1772 static inline int __pmu_filter_match(struct perf_event *event)
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1784 static inline int pmu_filter_match(struct perf_event *event)
1786 struct perf_event *child;
1788 if (!__pmu_filter_match(event))
1789 return 0;
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1796 return 1;
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
1806 static void
1807 event_sched_out(struct perf_event *event,
1808 struct perf_cpu_context *cpuctx,
1809 struct perf_event_context *ctx)
1811 u64 tstamp = perf_event_time(event);
1812 u64 delta;
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
1825 delta = tstamp - event->tstamp_stopped;
1826 event->tstamp_running += delta;
1827 event->tstamp_stopped = tstamp;
1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
1831 return;
1833 perf_pmu_disable(event->pmu);
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
1844 if (!is_software_event(event))
1845 cpuctx->active_oncpu--;
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
1851 cpuctx->exclusive = 0;
1853 perf_pmu_enable(event->pmu);
1856 static void
1857 group_sched_out(struct perf_event *group_event,
1858 struct perf_cpu_context *cpuctx,
1859 struct perf_event_context *ctx)
1861 struct perf_event *event;
1862 int state = group_event->state;
1864 perf_pmu_disable(ctx->pmu);
1866 event_sched_out(group_event, cpuctx, ctx);
1869 * Schedule out siblings (if any):
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
1874 perf_pmu_enable(ctx->pmu);
1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877 cpuctx->exclusive = 0;
1880 #define DETACH_GROUP 0x01UL
1883 * Cross CPU call to remove a performance event
1885 * We disable the event on the hardware level first. After that we
1886 * remove it from the context list.
1888 static void
1889 __perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
1894 unsigned long flags = (unsigned long)info;
1896 event_sched_out(event, cpuctx, ctx);
1897 if (flags & DETACH_GROUP)
1898 perf_group_detach(event);
1899 list_del_event(event, ctx);
1901 if (!ctx->nr_events && ctx->is_active) {
1902 ctx->is_active = 0;
1903 if (ctx->task) {
1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 cpuctx->task_ctx = NULL;
1911 * Remove the event from a task's (or a CPU's) list of events.
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
1915 * remains valid. This is OK when called from perf_release since
1916 * that only calls us on the top-level context, which can't be a clone.
1917 * When called from perf_event_exit_task, it's OK because the
1918 * context has been detached from its task.
1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1922 struct perf_event_context *ctx = event->ctx;
1924 lockdep_assert_held(&ctx->mutex);
1926 event_function_call(event, __perf_remove_from_context, (void *)flags);
1929 * The above event_function_call() can NO-OP when it hits
1930 * TASK_TOMBSTONE. In that case we must already have been detached
1931 * from the context (by perf_event_exit_event()) but the grouping
1932 * might still be in-tact.
1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 if ((flags & DETACH_GROUP) &&
1936 (event->attach_state & PERF_ATTACH_GROUP)) {
1938 * Since in that case we cannot possibly be scheduled, simply
1939 * detach now.
1941 raw_spin_lock_irq(&ctx->lock);
1942 perf_group_detach(event);
1943 raw_spin_unlock_irq(&ctx->lock);
1948 * Cross CPU call to disable a performance event
1950 static void __perf_event_disable(struct perf_event *event,
1951 struct perf_cpu_context *cpuctx,
1952 struct perf_event_context *ctx,
1953 void *info)
1955 if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 return;
1958 update_context_time(ctx);
1959 update_cgrp_time_from_event(event);
1960 update_group_times(event);
1961 if (event == event->group_leader)
1962 group_sched_out(event, cpuctx, ctx);
1963 else
1964 event_sched_out(event, cpuctx, ctx);
1965 event->state = PERF_EVENT_STATE_OFF;
1969 * Disable a event.
1971 * If event->ctx is a cloned context, callers must make sure that
1972 * every task struct that event->ctx->task could possibly point to
1973 * remains valid. This condition is satisifed when called through
1974 * perf_event_for_each_child or perf_event_for_each because they
1975 * hold the top-level event's child_mutex, so any descendant that
1976 * goes to exit will block in perf_event_exit_event().
1978 * When called from perf_pending_event it's OK because event->ctx
1979 * is the current context on this CPU and preemption is disabled,
1980 * hence we can't get into perf_event_task_sched_out for this context.
1982 static void _perf_event_disable(struct perf_event *event)
1984 struct perf_event_context *ctx = event->ctx;
1986 raw_spin_lock_irq(&ctx->lock);
1987 if (event->state <= PERF_EVENT_STATE_OFF) {
1988 raw_spin_unlock_irq(&ctx->lock);
1989 return;
1991 raw_spin_unlock_irq(&ctx->lock);
1993 event_function_call(event, __perf_event_disable, NULL);
1996 void perf_event_disable_local(struct perf_event *event)
1998 event_function_local(event, __perf_event_disable, NULL);
2002 * Strictly speaking kernel users cannot create groups and therefore this
2003 * interface does not need the perf_event_ctx_lock() magic.
2005 void perf_event_disable(struct perf_event *event)
2007 struct perf_event_context *ctx;
2009 ctx = perf_event_ctx_lock(event);
2010 _perf_event_disable(event);
2011 perf_event_ctx_unlock(event, ctx);
2013 EXPORT_SYMBOL_GPL(perf_event_disable);
2015 void perf_event_disable_inatomic(struct perf_event *event)
2017 event->pending_disable = 1;
2018 irq_work_queue(&event->pending);
2021 static void perf_set_shadow_time(struct perf_event *event,
2022 struct perf_event_context *ctx,
2023 u64 tstamp)
2026 * use the correct time source for the time snapshot
2028 * We could get by without this by leveraging the
2029 * fact that to get to this function, the caller
2030 * has most likely already called update_context_time()
2031 * and update_cgrp_time_xx() and thus both timestamp
2032 * are identical (or very close). Given that tstamp is,
2033 * already adjusted for cgroup, we could say that:
2034 * tstamp - ctx->timestamp
2035 * is equivalent to
2036 * tstamp - cgrp->timestamp.
2038 * Then, in perf_output_read(), the calculation would
2039 * work with no changes because:
2040 * - event is guaranteed scheduled in
2041 * - no scheduled out in between
2042 * - thus the timestamp would be the same
2044 * But this is a bit hairy.
2046 * So instead, we have an explicit cgroup call to remain
2047 * within the time time source all along. We believe it
2048 * is cleaner and simpler to understand.
2050 if (is_cgroup_event(event))
2051 perf_cgroup_set_shadow_time(event, tstamp);
2052 else
2053 event->shadow_ctx_time = tstamp - ctx->timestamp;
2056 #define MAX_INTERRUPTS (~0ULL)
2058 static void perf_log_throttle(struct perf_event *event, int enable);
2059 static void perf_log_itrace_start(struct perf_event *event);
2061 static int
2062 event_sched_in(struct perf_event *event,
2063 struct perf_cpu_context *cpuctx,
2064 struct perf_event_context *ctx)
2066 u64 tstamp = perf_event_time(event);
2067 int ret = 0;
2069 lockdep_assert_held(&ctx->lock);
2071 if (event->state <= PERF_EVENT_STATE_OFF)
2072 return 0;
2074 WRITE_ONCE(event->oncpu, smp_processor_id());
2076 * Order event::oncpu write to happen before the ACTIVE state
2077 * is visible.
2079 smp_wmb();
2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083 * Unthrottle events, since we scheduled we might have missed several
2084 * ticks already, also for a heavily scheduling task there is little
2085 * guarantee it'll get a tick in a timely manner.
2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 perf_log_throttle(event, 1);
2089 event->hw.interrupts = 0;
2093 * The new state must be visible before we turn it on in the hardware:
2095 smp_wmb();
2097 perf_pmu_disable(event->pmu);
2099 perf_set_shadow_time(event, ctx, tstamp);
2101 perf_log_itrace_start(event);
2103 if (event->pmu->add(event, PERF_EF_START)) {
2104 event->state = PERF_EVENT_STATE_INACTIVE;
2105 event->oncpu = -1;
2106 ret = -EAGAIN;
2107 goto out;
2110 event->tstamp_running += tstamp - event->tstamp_stopped;
2112 if (!is_software_event(event))
2113 cpuctx->active_oncpu++;
2114 if (!ctx->nr_active++)
2115 perf_event_ctx_activate(ctx);
2116 if (event->attr.freq && event->attr.sample_freq)
2117 ctx->nr_freq++;
2119 if (event->attr.exclusive)
2120 cpuctx->exclusive = 1;
2122 out:
2123 perf_pmu_enable(event->pmu);
2125 return ret;
2128 static int
2129 group_sched_in(struct perf_event *group_event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx)
2133 struct perf_event *event, *partial_group = NULL;
2134 struct pmu *pmu = ctx->pmu;
2135 u64 now = ctx->time;
2136 bool simulate = false;
2138 if (group_event->state == PERF_EVENT_STATE_OFF)
2139 return 0;
2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2143 if (event_sched_in(group_event, cpuctx, ctx)) {
2144 pmu->cancel_txn(pmu);
2145 perf_mux_hrtimer_restart(cpuctx);
2146 return -EAGAIN;
2150 * Schedule in siblings as one group (if any):
2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153 if (event_sched_in(event, cpuctx, ctx)) {
2154 partial_group = event;
2155 goto group_error;
2159 if (!pmu->commit_txn(pmu))
2160 return 0;
2162 group_error:
2164 * Groups can be scheduled in as one unit only, so undo any
2165 * partial group before returning:
2166 * The events up to the failed event are scheduled out normally,
2167 * tstamp_stopped will be updated.
2169 * The failed events and the remaining siblings need to have
2170 * their timings updated as if they had gone thru event_sched_in()
2171 * and event_sched_out(). This is required to get consistent timings
2172 * across the group. This also takes care of the case where the group
2173 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 * the time the event was actually stopped, such that time delta
2175 * calculation in update_event_times() is correct.
2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 if (event == partial_group)
2179 simulate = true;
2181 if (simulate) {
2182 event->tstamp_running += now - event->tstamp_stopped;
2183 event->tstamp_stopped = now;
2184 } else {
2185 event_sched_out(event, cpuctx, ctx);
2188 event_sched_out(group_event, cpuctx, ctx);
2190 pmu->cancel_txn(pmu);
2192 perf_mux_hrtimer_restart(cpuctx);
2194 return -EAGAIN;
2198 * Work out whether we can put this event group on the CPU now.
2200 static int group_can_go_on(struct perf_event *event,
2201 struct perf_cpu_context *cpuctx,
2202 int can_add_hw)
2205 * Groups consisting entirely of software events can always go on.
2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208 return 1;
2210 * If an exclusive group is already on, no other hardware
2211 * events can go on.
2213 if (cpuctx->exclusive)
2214 return 0;
2216 * If this group is exclusive and there are already
2217 * events on the CPU, it can't go on.
2219 if (event->attr.exclusive && cpuctx->active_oncpu)
2220 return 0;
2222 * Otherwise, try to add it if all previous groups were able
2223 * to go on.
2225 return can_add_hw;
2229 * Complement to update_event_times(). This computes the tstamp_* values to
2230 * continue 'enabled' state from @now, and effectively discards the time
2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232 * just switched (context) time base).
2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235 * cannot have been scheduled in yet. And going into INACTIVE state means
2236 * '@event->tstamp_stopped = @now'.
2238 * Thus given the rules of update_event_times():
2240 * total_time_enabled = tstamp_stopped - tstamp_enabled
2241 * total_time_running = tstamp_stopped - tstamp_running
2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244 * tstamp_* values.
2246 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2250 event->tstamp_stopped = now;
2251 event->tstamp_enabled = now - event->total_time_enabled;
2252 event->tstamp_running = now - event->total_time_running;
2255 static void add_event_to_ctx(struct perf_event *event,
2256 struct perf_event_context *ctx)
2258 u64 tstamp = perf_event_time(event);
2260 list_add_event(event, ctx);
2261 perf_group_attach(event);
2263 * We can be called with event->state == STATE_OFF when we create with
2264 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2266 if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 __perf_event_enable_time(event, tstamp);
2270 static void ctx_sched_out(struct perf_event_context *ctx,
2271 struct perf_cpu_context *cpuctx,
2272 enum event_type_t event_type);
2273 static void
2274 ctx_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type,
2277 struct task_struct *task);
2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280 struct perf_event_context *ctx,
2281 enum event_type_t event_type)
2283 if (!cpuctx->task_ctx)
2284 return;
2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 return;
2289 ctx_sched_out(ctx, cpuctx, event_type);
2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 struct perf_event_context *ctx,
2294 struct task_struct *task)
2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 if (ctx)
2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 if (ctx)
2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2305 * We want to maintain the following priority of scheduling:
2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307 * - task pinned (EVENT_PINNED)
2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309 * - task flexible (EVENT_FLEXIBLE).
2311 * In order to avoid unscheduling and scheduling back in everything every
2312 * time an event is added, only do it for the groups of equal priority and
2313 * below.
2315 * This can be called after a batch operation on task events, in which case
2316 * event_type is a bit mask of the types of events involved. For CPU events,
2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2319 static void ctx_resched(struct perf_cpu_context *cpuctx,
2320 struct perf_event_context *task_ctx,
2321 enum event_type_t event_type)
2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 bool cpu_event = !!(event_type & EVENT_CPU);
2327 * If pinned groups are involved, flexible groups also need to be
2328 * scheduled out.
2330 if (event_type & EVENT_PINNED)
2331 event_type |= EVENT_FLEXIBLE;
2333 perf_pmu_disable(cpuctx->ctx.pmu);
2334 if (task_ctx)
2335 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338 * Decide which cpu ctx groups to schedule out based on the types
2339 * of events that caused rescheduling:
2340 * - EVENT_CPU: schedule out corresponding groups;
2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 * - otherwise, do nothing more.
2344 if (cpu_event)
2345 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 else if (ctx_event_type & EVENT_PINNED)
2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2349 perf_event_sched_in(cpuctx, task_ctx, current);
2350 perf_pmu_enable(cpuctx->ctx.pmu);
2354 * Cross CPU call to install and enable a performance event
2356 * Very similar to remote_function() + event_function() but cannot assume that
2357 * things like ctx->is_active and cpuctx->task_ctx are set.
2359 static int __perf_install_in_context(void *info)
2361 struct perf_event *event = info;
2362 struct perf_event_context *ctx = event->ctx;
2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365 bool reprogram = true;
2366 int ret = 0;
2368 raw_spin_lock(&cpuctx->ctx.lock);
2369 if (ctx->task) {
2370 raw_spin_lock(&ctx->lock);
2371 task_ctx = ctx;
2373 reprogram = (ctx->task == current);
2376 * If the task is running, it must be running on this CPU,
2377 * otherwise we cannot reprogram things.
2379 * If its not running, we don't care, ctx->lock will
2380 * serialize against it becoming runnable.
2382 if (task_curr(ctx->task) && !reprogram) {
2383 ret = -ESRCH;
2384 goto unlock;
2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388 } else if (task_ctx) {
2389 raw_spin_lock(&task_ctx->lock);
2392 if (reprogram) {
2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 add_event_to_ctx(event, ctx);
2395 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396 } else {
2397 add_event_to_ctx(event, ctx);
2400 unlock:
2401 perf_ctx_unlock(cpuctx, task_ctx);
2403 return ret;
2407 * Attach a performance event to a context.
2409 * Very similar to event_function_call, see comment there.
2411 static void
2412 perf_install_in_context(struct perf_event_context *ctx,
2413 struct perf_event *event,
2414 int cpu)
2416 struct task_struct *task = READ_ONCE(ctx->task);
2418 lockdep_assert_held(&ctx->mutex);
2420 if (event->cpu != -1)
2421 event->cpu = cpu;
2424 * Ensures that if we can observe event->ctx, both the event and ctx
2425 * will be 'complete'. See perf_iterate_sb_cpu().
2427 smp_store_release(&event->ctx, ctx);
2429 if (!task) {
2430 cpu_function_call(cpu, __perf_install_in_context, event);
2431 return;
2435 * Should not happen, we validate the ctx is still alive before calling.
2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 return;
2441 * Installing events is tricky because we cannot rely on ctx->is_active
2442 * to be set in case this is the nr_events 0 -> 1 transition.
2444 * Instead we use task_curr(), which tells us if the task is running.
2445 * However, since we use task_curr() outside of rq::lock, we can race
2446 * against the actual state. This means the result can be wrong.
2448 * If we get a false positive, we retry, this is harmless.
2450 * If we get a false negative, things are complicated. If we are after
2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 * value must be correct. If we're before, it doesn't matter since
2453 * perf_event_context_sched_in() will program the counter.
2455 * However, this hinges on the remote context switch having observed
2456 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 * ctx::lock in perf_event_context_sched_in().
2459 * We do this by task_function_call(), if the IPI fails to hit the task
2460 * we know any future context switch of task must see the
2461 * perf_event_ctpx[] store.
2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 * task_cpu() load, such that if the IPI then does not find the task
2467 * running, a future context switch of that task must observe the
2468 * store.
2470 smp_mb();
2471 again:
2472 if (!task_function_call(task, __perf_install_in_context, event))
2473 return;
2475 raw_spin_lock_irq(&ctx->lock);
2476 task = ctx->task;
2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2479 * Cannot happen because we already checked above (which also
2480 * cannot happen), and we hold ctx->mutex, which serializes us
2481 * against perf_event_exit_task_context().
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2487 * If the task is not running, ctx->lock will avoid it becoming so,
2488 * thus we can safely install the event.
2490 if (task_curr(task)) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 goto again;
2494 add_event_to_ctx(event, ctx);
2495 raw_spin_unlock_irq(&ctx->lock);
2499 * Put a event into inactive state and update time fields.
2500 * Enabling the leader of a group effectively enables all
2501 * the group members that aren't explicitly disabled, so we
2502 * have to update their ->tstamp_enabled also.
2503 * Note: this works for group members as well as group leaders
2504 * since the non-leader members' sibling_lists will be empty.
2506 static void __perf_event_mark_enabled(struct perf_event *event)
2508 struct perf_event *sub;
2509 u64 tstamp = perf_event_time(event);
2511 event->state = PERF_EVENT_STATE_INACTIVE;
2512 __perf_event_enable_time(event, tstamp);
2513 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514 /* XXX should not be > INACTIVE if event isn't */
2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516 __perf_event_enable_time(sub, tstamp);
2521 * Cross CPU call to enable a performance event
2523 static void __perf_event_enable(struct perf_event *event,
2524 struct perf_cpu_context *cpuctx,
2525 struct perf_event_context *ctx,
2526 void *info)
2528 struct perf_event *leader = event->group_leader;
2529 struct perf_event_context *task_ctx;
2531 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 event->state <= PERF_EVENT_STATE_ERROR)
2533 return;
2535 if (ctx->is_active)
2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2538 __perf_event_mark_enabled(event);
2540 if (!ctx->is_active)
2541 return;
2543 if (!event_filter_match(event)) {
2544 if (is_cgroup_event(event))
2545 perf_cgroup_defer_enabled(event);
2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547 return;
2551 * If the event is in a group and isn't the group leader,
2552 * then don't put it on unless the group is on.
2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556 return;
2559 task_ctx = cpuctx->task_ctx;
2560 if (ctx->task)
2561 WARN_ON_ONCE(task_ctx != ctx);
2563 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2567 * Enable a event.
2569 * If event->ctx is a cloned context, callers must make sure that
2570 * every task struct that event->ctx->task could possibly point to
2571 * remains valid. This condition is satisfied when called through
2572 * perf_event_for_each_child or perf_event_for_each as described
2573 * for perf_event_disable.
2575 static void _perf_event_enable(struct perf_event *event)
2577 struct perf_event_context *ctx = event->ctx;
2579 raw_spin_lock_irq(&ctx->lock);
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 event->state < PERF_EVENT_STATE_ERROR) {
2582 raw_spin_unlock_irq(&ctx->lock);
2583 return;
2587 * If the event is in error state, clear that first.
2589 * That way, if we see the event in error state below, we know that it
2590 * has gone back into error state, as distinct from the task having
2591 * been scheduled away before the cross-call arrived.
2593 if (event->state == PERF_EVENT_STATE_ERROR)
2594 event->state = PERF_EVENT_STATE_OFF;
2595 raw_spin_unlock_irq(&ctx->lock);
2597 event_function_call(event, __perf_event_enable, NULL);
2601 * See perf_event_disable();
2603 void perf_event_enable(struct perf_event *event)
2605 struct perf_event_context *ctx;
2607 ctx = perf_event_ctx_lock(event);
2608 _perf_event_enable(event);
2609 perf_event_ctx_unlock(event, ctx);
2611 EXPORT_SYMBOL_GPL(perf_event_enable);
2613 struct stop_event_data {
2614 struct perf_event *event;
2615 unsigned int restart;
2618 static int __perf_event_stop(void *info)
2620 struct stop_event_data *sd = info;
2621 struct perf_event *event = sd->event;
2623 /* if it's already INACTIVE, do nothing */
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2631 * There is a window with interrupts enabled before we get here,
2632 * so we need to check again lest we try to stop another CPU's event.
2634 if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 return -EAGAIN;
2637 event->pmu->stop(event, PERF_EF_UPDATE);
2640 * May race with the actual stop (through perf_pmu_output_stop()),
2641 * but it is only used for events with AUX ring buffer, and such
2642 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 * see comments in perf_aux_output_begin().
2645 * Since this is happening on a event-local CPU, no trace is lost
2646 * while restarting.
2648 if (sd->restart)
2649 event->pmu->start(event, 0);
2651 return 0;
2654 static int perf_event_stop(struct perf_event *event, int restart)
2656 struct stop_event_data sd = {
2657 .event = event,
2658 .restart = restart,
2660 int ret = 0;
2662 do {
2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 return 0;
2666 /* matches smp_wmb() in event_sched_in() */
2667 smp_rmb();
2670 * We only want to restart ACTIVE events, so if the event goes
2671 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 * fall through with ret==-ENXIO.
2674 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 __perf_event_stop, &sd);
2676 } while (ret == -EAGAIN);
2678 return ret;
2682 * In order to contain the amount of racy and tricky in the address filter
2683 * configuration management, it is a two part process:
2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686 * we update the addresses of corresponding vmas in
2687 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2688 * (p2) when an event is scheduled in (pmu::add), it calls
2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690 * if the generation has changed since the previous call.
2692 * If (p1) happens while the event is active, we restart it to force (p2).
2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2696 * ioctl;
2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2699 * for reading;
2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701 * of exec.
2703 void perf_event_addr_filters_sync(struct perf_event *event)
2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2707 if (!has_addr_filter(event))
2708 return;
2710 raw_spin_lock(&ifh->lock);
2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 event->pmu->addr_filters_sync(event);
2713 event->hw.addr_filters_gen = event->addr_filters_gen;
2715 raw_spin_unlock(&ifh->lock);
2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2719 static int _perf_event_refresh(struct perf_event *event, int refresh)
2722 * not supported on inherited events
2724 if (event->attr.inherit || !is_sampling_event(event))
2725 return -EINVAL;
2727 atomic_add(refresh, &event->event_limit);
2728 _perf_event_enable(event);
2730 return 0;
2734 * See perf_event_disable()
2736 int perf_event_refresh(struct perf_event *event, int refresh)
2738 struct perf_event_context *ctx;
2739 int ret;
2741 ctx = perf_event_ctx_lock(event);
2742 ret = _perf_event_refresh(event, refresh);
2743 perf_event_ctx_unlock(event, ctx);
2745 return ret;
2747 EXPORT_SYMBOL_GPL(perf_event_refresh);
2749 static void ctx_sched_out(struct perf_event_context *ctx,
2750 struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type)
2753 int is_active = ctx->is_active;
2754 struct perf_event *event;
2756 lockdep_assert_held(&ctx->lock);
2758 if (likely(!ctx->nr_events)) {
2760 * See __perf_remove_from_context().
2762 WARN_ON_ONCE(ctx->is_active);
2763 if (ctx->task)
2764 WARN_ON_ONCE(cpuctx->task_ctx);
2765 return;
2768 ctx->is_active &= ~event_type;
2769 if (!(ctx->is_active & EVENT_ALL))
2770 ctx->is_active = 0;
2772 if (ctx->task) {
2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 if (!ctx->is_active)
2775 cpuctx->task_ctx = NULL;
2779 * Always update time if it was set; not only when it changes.
2780 * Otherwise we can 'forget' to update time for any but the last
2781 * context we sched out. For example:
2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 * ctx_sched_out(.event_type = EVENT_PINNED)
2786 * would only update time for the pinned events.
2788 if (is_active & EVENT_TIME) {
2789 /* update (and stop) ctx time */
2790 update_context_time(ctx);
2791 update_cgrp_time_from_cpuctx(cpuctx);
2794 is_active ^= ctx->is_active; /* changed bits */
2796 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797 return;
2799 perf_pmu_disable(ctx->pmu);
2800 if (is_active & EVENT_PINNED) {
2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 group_sched_out(event, cpuctx, ctx);
2805 if (is_active & EVENT_FLEXIBLE) {
2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807 group_sched_out(event, cpuctx, ctx);
2809 perf_pmu_enable(ctx->pmu);
2813 * Test whether two contexts are equivalent, i.e. whether they have both been
2814 * cloned from the same version of the same context.
2816 * Equivalence is measured using a generation number in the context that is
2817 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818 * and list_del_event().
2820 static int context_equiv(struct perf_event_context *ctx1,
2821 struct perf_event_context *ctx2)
2823 lockdep_assert_held(&ctx1->lock);
2824 lockdep_assert_held(&ctx2->lock);
2826 /* Pinning disables the swap optimization */
2827 if (ctx1->pin_count || ctx2->pin_count)
2828 return 0;
2830 /* If ctx1 is the parent of ctx2 */
2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 return 1;
2834 /* If ctx2 is the parent of ctx1 */
2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 return 1;
2839 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 * hierarchy, see perf_event_init_context().
2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 ctx1->parent_gen == ctx2->parent_gen)
2844 return 1;
2846 /* Unmatched */
2847 return 0;
2850 static void __perf_event_sync_stat(struct perf_event *event,
2851 struct perf_event *next_event)
2853 u64 value;
2855 if (!event->attr.inherit_stat)
2856 return;
2859 * Update the event value, we cannot use perf_event_read()
2860 * because we're in the middle of a context switch and have IRQs
2861 * disabled, which upsets smp_call_function_single(), however
2862 * we know the event must be on the current CPU, therefore we
2863 * don't need to use it.
2865 switch (event->state) {
2866 case PERF_EVENT_STATE_ACTIVE:
2867 event->pmu->read(event);
2868 /* fall-through */
2870 case PERF_EVENT_STATE_INACTIVE:
2871 update_event_times(event);
2872 break;
2874 default:
2875 break;
2879 * In order to keep per-task stats reliable we need to flip the event
2880 * values when we flip the contexts.
2882 value = local64_read(&next_event->count);
2883 value = local64_xchg(&event->count, value);
2884 local64_set(&next_event->count, value);
2886 swap(event->total_time_enabled, next_event->total_time_enabled);
2887 swap(event->total_time_running, next_event->total_time_running);
2890 * Since we swizzled the values, update the user visible data too.
2892 perf_event_update_userpage(event);
2893 perf_event_update_userpage(next_event);
2896 static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 struct perf_event_context *next_ctx)
2899 struct perf_event *event, *next_event;
2901 if (!ctx->nr_stat)
2902 return;
2904 update_context_time(ctx);
2906 event = list_first_entry(&ctx->event_list,
2907 struct perf_event, event_entry);
2909 next_event = list_first_entry(&next_ctx->event_list,
2910 struct perf_event, event_entry);
2912 while (&event->event_entry != &ctx->event_list &&
2913 &next_event->event_entry != &next_ctx->event_list) {
2915 __perf_event_sync_stat(event, next_event);
2917 event = list_next_entry(event, event_entry);
2918 next_event = list_next_entry(next_event, event_entry);
2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 struct task_struct *next)
2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926 struct perf_event_context *next_ctx;
2927 struct perf_event_context *parent, *next_parent;
2928 struct perf_cpu_context *cpuctx;
2929 int do_switch = 1;
2931 if (likely(!ctx))
2932 return;
2934 cpuctx = __get_cpu_context(ctx);
2935 if (!cpuctx->task_ctx)
2936 return;
2938 rcu_read_lock();
2939 next_ctx = next->perf_event_ctxp[ctxn];
2940 if (!next_ctx)
2941 goto unlock;
2943 parent = rcu_dereference(ctx->parent_ctx);
2944 next_parent = rcu_dereference(next_ctx->parent_ctx);
2946 /* If neither context have a parent context; they cannot be clones. */
2947 if (!parent && !next_parent)
2948 goto unlock;
2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2952 * Looks like the two contexts are clones, so we might be
2953 * able to optimize the context switch. We lock both
2954 * contexts and check that they are clones under the
2955 * lock (including re-checking that neither has been
2956 * uncloned in the meantime). It doesn't matter which
2957 * order we take the locks because no other cpu could
2958 * be trying to lock both of these tasks.
2960 raw_spin_lock(&ctx->lock);
2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962 if (context_equiv(ctx, next_ctx)) {
2963 WRITE_ONCE(ctx->task, next);
2964 WRITE_ONCE(next_ctx->task, task);
2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969 * RCU_INIT_POINTER here is safe because we've not
2970 * modified the ctx and the above modification of
2971 * ctx->task and ctx->task_ctx_data are immaterial
2972 * since those values are always verified under
2973 * ctx->lock which we're now holding.
2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2978 do_switch = 0;
2980 perf_event_sync_stat(ctx, next_ctx);
2982 raw_spin_unlock(&next_ctx->lock);
2983 raw_spin_unlock(&ctx->lock);
2985 unlock:
2986 rcu_read_unlock();
2988 if (do_switch) {
2989 raw_spin_lock(&ctx->lock);
2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991 raw_spin_unlock(&ctx->lock);
2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2997 void perf_sched_cb_dec(struct pmu *pmu)
2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3001 this_cpu_dec(perf_sched_cb_usages);
3003 if (!--cpuctx->sched_cb_usage)
3004 list_del(&cpuctx->sched_cb_entry);
3008 void perf_sched_cb_inc(struct pmu *pmu)
3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3012 if (!cpuctx->sched_cb_usage++)
3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3015 this_cpu_inc(perf_sched_cb_usages);
3019 * This function provides the context switch callback to the lower code
3020 * layer. It is invoked ONLY when the context switch callback is enabled.
3022 * This callback is relevant even to per-cpu events; for example multi event
3023 * PEBS requires this to provide PID/TID information. This requires we flush
3024 * all queued PEBS records before we context switch to a new task.
3026 static void perf_pmu_sched_task(struct task_struct *prev,
3027 struct task_struct *next,
3028 bool sched_in)
3030 struct perf_cpu_context *cpuctx;
3031 struct pmu *pmu;
3033 if (prev == next)
3034 return;
3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3039 if (WARN_ON_ONCE(!pmu->sched_task))
3040 continue;
3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 perf_pmu_disable(pmu);
3045 pmu->sched_task(cpuctx->task_ctx, sched_in);
3047 perf_pmu_enable(pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3052 static void perf_event_switch(struct task_struct *task,
3053 struct task_struct *next_prev, bool sched_in);
3055 #define for_each_task_context_nr(ctxn) \
3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059 * Called from scheduler to remove the events of the current task,
3060 * with interrupts disabled.
3062 * We stop each event and update the event value in event->count.
3064 * This does not protect us against NMI, but disable()
3065 * sets the disabled bit in the control field of event _before_
3066 * accessing the event control register. If a NMI hits, then it will
3067 * not restart the event.
3069 void __perf_event_task_sched_out(struct task_struct *task,
3070 struct task_struct *next)
3072 int ctxn;
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(task, next, false);
3077 if (atomic_read(&nr_switch_events))
3078 perf_event_switch(task, next, false);
3080 for_each_task_context_nr(ctxn)
3081 perf_event_context_sched_out(task, ctxn, next);
3084 * if cgroup events exist on this CPU, then we need
3085 * to check if we have to switch out PMU state.
3086 * cgroup event are system-wide mode only
3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089 perf_cgroup_sched_out(task, next);
3093 * Called with IRQs disabled
3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 enum event_type_t event_type)
3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 static void
3102 ctx_pinned_sched_in(struct perf_event_context *ctx,
3103 struct perf_cpu_context *cpuctx)
3105 struct perf_event *event;
3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 if (event->state <= PERF_EVENT_STATE_OFF)
3109 continue;
3110 if (!event_filter_match(event))
3111 continue;
3113 /* may need to reset tstamp_enabled */
3114 if (is_cgroup_event(event))
3115 perf_cgroup_mark_enabled(event, ctx);
3117 if (group_can_go_on(event, cpuctx, 1))
3118 group_sched_in(event, cpuctx, ctx);
3121 * If this pinned group hasn't been scheduled,
3122 * put it in error state.
3124 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 update_group_times(event);
3126 event->state = PERF_EVENT_STATE_ERROR;
3131 static void
3132 ctx_flexible_sched_in(struct perf_event_context *ctx,
3133 struct perf_cpu_context *cpuctx)
3135 struct perf_event *event;
3136 int can_add_hw = 1;
3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 /* Ignore events in OFF or ERROR state */
3140 if (event->state <= PERF_EVENT_STATE_OFF)
3141 continue;
3143 * Listen to the 'cpu' scheduling filter constraint
3144 * of events:
3146 if (!event_filter_match(event))
3147 continue;
3149 /* may need to reset tstamp_enabled */
3150 if (is_cgroup_event(event))
3151 perf_cgroup_mark_enabled(event, ctx);
3153 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154 if (group_sched_in(event, cpuctx, ctx))
3155 can_add_hw = 0;
3160 static void
3161 ctx_sched_in(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
3163 enum event_type_t event_type,
3164 struct task_struct *task)
3166 int is_active = ctx->is_active;
3167 u64 now;
3169 lockdep_assert_held(&ctx->lock);
3171 if (likely(!ctx->nr_events))
3172 return;
3174 ctx->is_active |= (event_type | EVENT_TIME);
3175 if (ctx->task) {
3176 if (!is_active)
3177 cpuctx->task_ctx = ctx;
3178 else
3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182 is_active ^= ctx->is_active; /* changed bits */
3184 if (is_active & EVENT_TIME) {
3185 /* start ctx time */
3186 now = perf_clock();
3187 ctx->timestamp = now;
3188 perf_cgroup_set_timestamp(task, ctx);
3192 * First go through the list and put on any pinned groups
3193 * in order to give them the best chance of going on.
3195 if (is_active & EVENT_PINNED)
3196 ctx_pinned_sched_in(ctx, cpuctx);
3198 /* Then walk through the lower prio flexible groups */
3199 if (is_active & EVENT_FLEXIBLE)
3200 ctx_flexible_sched_in(ctx, cpuctx);
3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3204 enum event_type_t event_type,
3205 struct task_struct *task)
3207 struct perf_event_context *ctx = &cpuctx->ctx;
3209 ctx_sched_in(ctx, cpuctx, event_type, task);
3212 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 struct task_struct *task)
3215 struct perf_cpu_context *cpuctx;
3217 cpuctx = __get_cpu_context(ctx);
3218 if (cpuctx->task_ctx == ctx)
3219 return;
3221 perf_ctx_lock(cpuctx, ctx);
3223 * We must check ctx->nr_events while holding ctx->lock, such
3224 * that we serialize against perf_install_in_context().
3226 if (!ctx->nr_events)
3227 goto unlock;
3229 perf_pmu_disable(ctx->pmu);
3231 * We want to keep the following priority order:
3232 * cpu pinned (that don't need to move), task pinned,
3233 * cpu flexible, task flexible.
3235 * However, if task's ctx is not carrying any pinned
3236 * events, no need to flip the cpuctx's events around.
3238 if (!list_empty(&ctx->pinned_groups))
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240 perf_event_sched_in(cpuctx, ctx, task);
3241 perf_pmu_enable(ctx->pmu);
3243 unlock:
3244 perf_ctx_unlock(cpuctx, ctx);
3248 * Called from scheduler to add the events of the current task
3249 * with interrupts disabled.
3251 * We restore the event value and then enable it.
3253 * This does not protect us against NMI, but enable()
3254 * sets the enabled bit in the control field of event _before_
3255 * accessing the event control register. If a NMI hits, then it will
3256 * keep the event running.
3258 void __perf_event_task_sched_in(struct task_struct *prev,
3259 struct task_struct *task)
3261 struct perf_event_context *ctx;
3262 int ctxn;
3265 * If cgroup events exist on this CPU, then we need to check if we have
3266 * to switch in PMU state; cgroup event are system-wide mode only.
3268 * Since cgroup events are CPU events, we must schedule these in before
3269 * we schedule in the task events.
3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 perf_cgroup_sched_in(prev, task);
3274 for_each_task_context_nr(ctxn) {
3275 ctx = task->perf_event_ctxp[ctxn];
3276 if (likely(!ctx))
3277 continue;
3279 perf_event_context_sched_in(ctx, task);
3282 if (atomic_read(&nr_switch_events))
3283 perf_event_switch(task, prev, true);
3285 if (__this_cpu_read(perf_sched_cb_usages))
3286 perf_pmu_sched_task(prev, task, true);
3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3291 u64 frequency = event->attr.sample_freq;
3292 u64 sec = NSEC_PER_SEC;
3293 u64 divisor, dividend;
3295 int count_fls, nsec_fls, frequency_fls, sec_fls;
3297 count_fls = fls64(count);
3298 nsec_fls = fls64(nsec);
3299 frequency_fls = fls64(frequency);
3300 sec_fls = 30;
3303 * We got @count in @nsec, with a target of sample_freq HZ
3304 * the target period becomes:
3306 * @count * 10^9
3307 * period = -------------------
3308 * @nsec * sample_freq
3313 * Reduce accuracy by one bit such that @a and @b converge
3314 * to a similar magnitude.
3316 #define REDUCE_FLS(a, b) \
3317 do { \
3318 if (a##_fls > b##_fls) { \
3319 a >>= 1; \
3320 a##_fls--; \
3321 } else { \
3322 b >>= 1; \
3323 b##_fls--; \
3325 } while (0)
3328 * Reduce accuracy until either term fits in a u64, then proceed with
3329 * the other, so that finally we can do a u64/u64 division.
3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 REDUCE_FLS(sec, count);
3336 if (count_fls + sec_fls > 64) {
3337 divisor = nsec * frequency;
3339 while (count_fls + sec_fls > 64) {
3340 REDUCE_FLS(count, sec);
3341 divisor >>= 1;
3344 dividend = count * sec;
3345 } else {
3346 dividend = count * sec;
3348 while (nsec_fls + frequency_fls > 64) {
3349 REDUCE_FLS(nsec, frequency);
3350 dividend >>= 1;
3353 divisor = nsec * frequency;
3356 if (!divisor)
3357 return dividend;
3359 return div64_u64(dividend, divisor);
3362 static DEFINE_PER_CPU(int, perf_throttled_count);
3363 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3367 struct hw_perf_event *hwc = &event->hw;
3368 s64 period, sample_period;
3369 s64 delta;
3371 period = perf_calculate_period(event, nsec, count);
3373 delta = (s64)(period - hwc->sample_period);
3374 delta = (delta + 7) / 8; /* low pass filter */
3376 sample_period = hwc->sample_period + delta;
3378 if (!sample_period)
3379 sample_period = 1;
3381 hwc->sample_period = sample_period;
3383 if (local64_read(&hwc->period_left) > 8*sample_period) {
3384 if (disable)
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3387 local64_set(&hwc->period_left, 0);
3389 if (disable)
3390 event->pmu->start(event, PERF_EF_RELOAD);
3395 * combine freq adjustment with unthrottling to avoid two passes over the
3396 * events. At the same time, make sure, having freq events does not change
3397 * the rate of unthrottling as that would introduce bias.
3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 int needs_unthr)
3402 struct perf_event *event;
3403 struct hw_perf_event *hwc;
3404 u64 now, period = TICK_NSEC;
3405 s64 delta;
3408 * only need to iterate over all events iff:
3409 * - context have events in frequency mode (needs freq adjust)
3410 * - there are events to unthrottle on this cpu
3412 if (!(ctx->nr_freq || needs_unthr))
3413 return;
3415 raw_spin_lock(&ctx->lock);
3416 perf_pmu_disable(ctx->pmu);
3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419 if (event->state != PERF_EVENT_STATE_ACTIVE)
3420 continue;
3422 if (!event_filter_match(event))
3423 continue;
3425 perf_pmu_disable(event->pmu);
3427 hwc = &event->hw;
3429 if (hwc->interrupts == MAX_INTERRUPTS) {
3430 hwc->interrupts = 0;
3431 perf_log_throttle(event, 1);
3432 event->pmu->start(event, 0);
3435 if (!event->attr.freq || !event->attr.sample_freq)
3436 goto next;
3439 * stop the event and update event->count
3441 event->pmu->stop(event, PERF_EF_UPDATE);
3443 now = local64_read(&event->count);
3444 delta = now - hwc->freq_count_stamp;
3445 hwc->freq_count_stamp = now;
3448 * restart the event
3449 * reload only if value has changed
3450 * we have stopped the event so tell that
3451 * to perf_adjust_period() to avoid stopping it
3452 * twice.
3454 if (delta > 0)
3455 perf_adjust_period(event, period, delta, false);
3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458 next:
3459 perf_pmu_enable(event->pmu);
3462 perf_pmu_enable(ctx->pmu);
3463 raw_spin_unlock(&ctx->lock);
3467 * Round-robin a context's events:
3469 static void rotate_ctx(struct perf_event_context *ctx)
3472 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 * disabled by the inheritance code.
3475 if (!ctx->rotate_disable)
3476 list_rotate_left(&ctx->flexible_groups);
3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3481 struct perf_event_context *ctx = NULL;
3482 int rotate = 0;
3484 if (cpuctx->ctx.nr_events) {
3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 rotate = 1;
3489 ctx = cpuctx->task_ctx;
3490 if (ctx && ctx->nr_events) {
3491 if (ctx->nr_events != ctx->nr_active)
3492 rotate = 1;
3495 if (!rotate)
3496 goto done;
3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3499 perf_pmu_disable(cpuctx->ctx.pmu);
3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 if (ctx)
3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3505 rotate_ctx(&cpuctx->ctx);
3506 if (ctx)
3507 rotate_ctx(ctx);
3509 perf_event_sched_in(cpuctx, ctx, current);
3511 perf_pmu_enable(cpuctx->ctx.pmu);
3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513 done:
3515 return rotate;
3518 void perf_event_task_tick(void)
3520 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 struct perf_event_context *ctx, *tmp;
3522 int throttled;
3524 WARN_ON(!irqs_disabled());
3526 __this_cpu_inc(perf_throttled_seq);
3527 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531 perf_adjust_freq_unthr_context(ctx, throttled);
3534 static int event_enable_on_exec(struct perf_event *event,
3535 struct perf_event_context *ctx)
3537 if (!event->attr.enable_on_exec)
3538 return 0;
3540 event->attr.enable_on_exec = 0;
3541 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 return 0;
3544 __perf_event_mark_enabled(event);
3546 return 1;
3550 * Enable all of a task's events that have been marked enable-on-exec.
3551 * This expects task == current.
3553 static void perf_event_enable_on_exec(int ctxn)
3555 struct perf_event_context *ctx, *clone_ctx = NULL;
3556 enum event_type_t event_type = 0;
3557 struct perf_cpu_context *cpuctx;
3558 struct perf_event *event;
3559 unsigned long flags;
3560 int enabled = 0;
3562 local_irq_save(flags);
3563 ctx = current->perf_event_ctxp[ctxn];
3564 if (!ctx || !ctx->nr_events)
3565 goto out;
3567 cpuctx = __get_cpu_context(ctx);
3568 perf_ctx_lock(cpuctx, ctx);
3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570 list_for_each_entry(event, &ctx->event_list, event_entry) {
3571 enabled |= event_enable_on_exec(event, ctx);
3572 event_type |= get_event_type(event);
3576 * Unclone and reschedule this context if we enabled any event.
3578 if (enabled) {
3579 clone_ctx = unclone_ctx(ctx);
3580 ctx_resched(cpuctx, ctx, event_type);
3581 } else {
3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3584 perf_ctx_unlock(cpuctx, ctx);
3586 out:
3587 local_irq_restore(flags);
3589 if (clone_ctx)
3590 put_ctx(clone_ctx);
3593 struct perf_read_data {
3594 struct perf_event *event;
3595 bool group;
3596 int ret;
3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3601 u16 local_pkg, event_pkg;
3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604 int local_cpu = smp_processor_id();
3606 event_pkg = topology_physical_package_id(event_cpu);
3607 local_pkg = topology_physical_package_id(local_cpu);
3609 if (event_pkg == local_pkg)
3610 return local_cpu;
3613 return event_cpu;
3617 * Cross CPU call to read the hardware event
3619 static void __perf_event_read(void *info)
3621 struct perf_read_data *data = info;
3622 struct perf_event *sub, *event = data->event;
3623 struct perf_event_context *ctx = event->ctx;
3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625 struct pmu *pmu = event->pmu;
3628 * If this is a task context, we need to check whether it is
3629 * the current task context of this cpu. If not it has been
3630 * scheduled out before the smp call arrived. In that case
3631 * event->count would have been updated to a recent sample
3632 * when the event was scheduled out.
3634 if (ctx->task && cpuctx->task_ctx != ctx)
3635 return;
3637 raw_spin_lock(&ctx->lock);
3638 if (ctx->is_active) {
3639 update_context_time(ctx);
3640 update_cgrp_time_from_event(event);
3643 update_event_times(event);
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 goto unlock;
3647 if (!data->group) {
3648 pmu->read(event);
3649 data->ret = 0;
3650 goto unlock;
3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3655 pmu->read(event);
3657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 update_event_times(sub);
3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3661 * Use sibling's PMU rather than @event's since
3662 * sibling could be on different (eg: software) PMU.
3664 sub->pmu->read(sub);
3668 data->ret = pmu->commit_txn(pmu);
3670 unlock:
3671 raw_spin_unlock(&ctx->lock);
3674 static inline u64 perf_event_count(struct perf_event *event)
3676 if (event->pmu->count)
3677 return event->pmu->count(event);
3679 return __perf_event_count(event);
3683 * NMI-safe method to read a local event, that is an event that
3684 * is:
3685 * - either for the current task, or for this CPU
3686 * - does not have inherit set, for inherited task events
3687 * will not be local and we cannot read them atomically
3688 * - must not have a pmu::count method
3690 int perf_event_read_local(struct perf_event *event, u64 *value)
3692 unsigned long flags;
3693 int ret = 0;
3696 * Disabling interrupts avoids all counter scheduling (context
3697 * switches, timer based rotation and IPIs).
3699 local_irq_save(flags);
3702 * It must not be an event with inherit set, we cannot read
3703 * all child counters from atomic context.
3705 if (event->attr.inherit) {
3706 ret = -EOPNOTSUPP;
3707 goto out;
3711 * It must not have a pmu::count method, those are not
3712 * NMI safe.
3714 if (event->pmu->count) {
3715 ret = -EOPNOTSUPP;
3716 goto out;
3719 /* If this is a per-task event, it must be for current */
3720 if ((event->attach_state & PERF_ATTACH_TASK) &&
3721 event->hw.target != current) {
3722 ret = -EINVAL;
3723 goto out;
3726 /* If this is a per-CPU event, it must be for this CPU */
3727 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3728 event->cpu != smp_processor_id()) {
3729 ret = -EINVAL;
3730 goto out;
3734 * If the event is currently on this CPU, its either a per-task event,
3735 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3736 * oncpu == -1).
3738 if (event->oncpu == smp_processor_id())
3739 event->pmu->read(event);
3741 *value = local64_read(&event->count);
3742 out:
3743 local_irq_restore(flags);
3745 return ret;
3748 static int perf_event_read(struct perf_event *event, bool group)
3750 int event_cpu, ret = 0;
3753 * If event is enabled and currently active on a CPU, update the
3754 * value in the event structure:
3756 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3757 struct perf_read_data data = {
3758 .event = event,
3759 .group = group,
3760 .ret = 0,
3763 event_cpu = READ_ONCE(event->oncpu);
3764 if ((unsigned)event_cpu >= nr_cpu_ids)
3765 return 0;
3767 preempt_disable();
3768 event_cpu = __perf_event_read_cpu(event, event_cpu);
3771 * Purposely ignore the smp_call_function_single() return
3772 * value.
3774 * If event_cpu isn't a valid CPU it means the event got
3775 * scheduled out and that will have updated the event count.
3777 * Therefore, either way, we'll have an up-to-date event count
3778 * after this.
3780 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3781 preempt_enable();
3782 ret = data.ret;
3783 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3784 struct perf_event_context *ctx = event->ctx;
3785 unsigned long flags;
3787 raw_spin_lock_irqsave(&ctx->lock, flags);
3789 * may read while context is not active
3790 * (e.g., thread is blocked), in that case
3791 * we cannot update context time
3793 if (ctx->is_active) {
3794 update_context_time(ctx);
3795 update_cgrp_time_from_event(event);
3797 if (group)
3798 update_group_times(event);
3799 else
3800 update_event_times(event);
3801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3804 return ret;
3808 * Initialize the perf_event context in a task_struct:
3810 static void __perf_event_init_context(struct perf_event_context *ctx)
3812 raw_spin_lock_init(&ctx->lock);
3813 mutex_init(&ctx->mutex);
3814 INIT_LIST_HEAD(&ctx->active_ctx_list);
3815 INIT_LIST_HEAD(&ctx->pinned_groups);
3816 INIT_LIST_HEAD(&ctx->flexible_groups);
3817 INIT_LIST_HEAD(&ctx->event_list);
3818 atomic_set(&ctx->refcount, 1);
3821 static struct perf_event_context *
3822 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3824 struct perf_event_context *ctx;
3826 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3827 if (!ctx)
3828 return NULL;
3830 __perf_event_init_context(ctx);
3831 if (task) {
3832 ctx->task = task;
3833 get_task_struct(task);
3835 ctx->pmu = pmu;
3837 return ctx;
3840 static struct task_struct *
3841 find_lively_task_by_vpid(pid_t vpid)
3843 struct task_struct *task;
3845 rcu_read_lock();
3846 if (!vpid)
3847 task = current;
3848 else
3849 task = find_task_by_vpid(vpid);
3850 if (task)
3851 get_task_struct(task);
3852 rcu_read_unlock();
3854 if (!task)
3855 return ERR_PTR(-ESRCH);
3857 return task;
3861 * Returns a matching context with refcount and pincount.
3863 static struct perf_event_context *
3864 find_get_context(struct pmu *pmu, struct task_struct *task,
3865 struct perf_event *event)
3867 struct perf_event_context *ctx, *clone_ctx = NULL;
3868 struct perf_cpu_context *cpuctx;
3869 void *task_ctx_data = NULL;
3870 unsigned long flags;
3871 int ctxn, err;
3872 int cpu = event->cpu;
3874 if (!task) {
3875 /* Must be root to operate on a CPU event: */
3876 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3877 return ERR_PTR(-EACCES);
3879 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3880 ctx = &cpuctx->ctx;
3881 get_ctx(ctx);
3882 ++ctx->pin_count;
3884 return ctx;
3887 err = -EINVAL;
3888 ctxn = pmu->task_ctx_nr;
3889 if (ctxn < 0)
3890 goto errout;
3892 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3893 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3894 if (!task_ctx_data) {
3895 err = -ENOMEM;
3896 goto errout;
3900 retry:
3901 ctx = perf_lock_task_context(task, ctxn, &flags);
3902 if (ctx) {
3903 clone_ctx = unclone_ctx(ctx);
3904 ++ctx->pin_count;
3906 if (task_ctx_data && !ctx->task_ctx_data) {
3907 ctx->task_ctx_data = task_ctx_data;
3908 task_ctx_data = NULL;
3910 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3912 if (clone_ctx)
3913 put_ctx(clone_ctx);
3914 } else {
3915 ctx = alloc_perf_context(pmu, task);
3916 err = -ENOMEM;
3917 if (!ctx)
3918 goto errout;
3920 if (task_ctx_data) {
3921 ctx->task_ctx_data = task_ctx_data;
3922 task_ctx_data = NULL;
3925 err = 0;
3926 mutex_lock(&task->perf_event_mutex);
3928 * If it has already passed perf_event_exit_task().
3929 * we must see PF_EXITING, it takes this mutex too.
3931 if (task->flags & PF_EXITING)
3932 err = -ESRCH;
3933 else if (task->perf_event_ctxp[ctxn])
3934 err = -EAGAIN;
3935 else {
3936 get_ctx(ctx);
3937 ++ctx->pin_count;
3938 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3940 mutex_unlock(&task->perf_event_mutex);
3942 if (unlikely(err)) {
3943 put_ctx(ctx);
3945 if (err == -EAGAIN)
3946 goto retry;
3947 goto errout;
3951 kfree(task_ctx_data);
3952 return ctx;
3954 errout:
3955 kfree(task_ctx_data);
3956 return ERR_PTR(err);
3959 static void perf_event_free_filter(struct perf_event *event);
3960 static void perf_event_free_bpf_prog(struct perf_event *event);
3962 static void free_event_rcu(struct rcu_head *head)
3964 struct perf_event *event;
3966 event = container_of(head, struct perf_event, rcu_head);
3967 if (event->ns)
3968 put_pid_ns(event->ns);
3969 perf_event_free_filter(event);
3970 kfree(event);
3973 static void ring_buffer_attach(struct perf_event *event,
3974 struct ring_buffer *rb);
3976 static void detach_sb_event(struct perf_event *event)
3978 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3980 raw_spin_lock(&pel->lock);
3981 list_del_rcu(&event->sb_list);
3982 raw_spin_unlock(&pel->lock);
3985 static bool is_sb_event(struct perf_event *event)
3987 struct perf_event_attr *attr = &event->attr;
3989 if (event->parent)
3990 return false;
3992 if (event->attach_state & PERF_ATTACH_TASK)
3993 return false;
3995 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3996 attr->comm || attr->comm_exec ||
3997 attr->task ||
3998 attr->context_switch)
3999 return true;
4000 return false;
4003 static void unaccount_pmu_sb_event(struct perf_event *event)
4005 if (is_sb_event(event))
4006 detach_sb_event(event);
4009 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4011 if (event->parent)
4012 return;
4014 if (is_cgroup_event(event))
4015 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4018 #ifdef CONFIG_NO_HZ_FULL
4019 static DEFINE_SPINLOCK(nr_freq_lock);
4020 #endif
4022 static void unaccount_freq_event_nohz(void)
4024 #ifdef CONFIG_NO_HZ_FULL
4025 spin_lock(&nr_freq_lock);
4026 if (atomic_dec_and_test(&nr_freq_events))
4027 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4028 spin_unlock(&nr_freq_lock);
4029 #endif
4032 static void unaccount_freq_event(void)
4034 if (tick_nohz_full_enabled())
4035 unaccount_freq_event_nohz();
4036 else
4037 atomic_dec(&nr_freq_events);
4040 static void unaccount_event(struct perf_event *event)
4042 bool dec = false;
4044 if (event->parent)
4045 return;
4047 if (event->attach_state & PERF_ATTACH_TASK)
4048 dec = true;
4049 if (event->attr.mmap || event->attr.mmap_data)
4050 atomic_dec(&nr_mmap_events);
4051 if (event->attr.comm)
4052 atomic_dec(&nr_comm_events);
4053 if (event->attr.namespaces)
4054 atomic_dec(&nr_namespaces_events);
4055 if (event->attr.task)
4056 atomic_dec(&nr_task_events);
4057 if (event->attr.freq)
4058 unaccount_freq_event();
4059 if (event->attr.context_switch) {
4060 dec = true;
4061 atomic_dec(&nr_switch_events);
4063 if (is_cgroup_event(event))
4064 dec = true;
4065 if (has_branch_stack(event))
4066 dec = true;
4068 if (dec) {
4069 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4070 schedule_delayed_work(&perf_sched_work, HZ);
4073 unaccount_event_cpu(event, event->cpu);
4075 unaccount_pmu_sb_event(event);
4078 static void perf_sched_delayed(struct work_struct *work)
4080 mutex_lock(&perf_sched_mutex);
4081 if (atomic_dec_and_test(&perf_sched_count))
4082 static_branch_disable(&perf_sched_events);
4083 mutex_unlock(&perf_sched_mutex);
4087 * The following implement mutual exclusion of events on "exclusive" pmus
4088 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4089 * at a time, so we disallow creating events that might conflict, namely:
4091 * 1) cpu-wide events in the presence of per-task events,
4092 * 2) per-task events in the presence of cpu-wide events,
4093 * 3) two matching events on the same context.
4095 * The former two cases are handled in the allocation path (perf_event_alloc(),
4096 * _free_event()), the latter -- before the first perf_install_in_context().
4098 static int exclusive_event_init(struct perf_event *event)
4100 struct pmu *pmu = event->pmu;
4102 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4103 return 0;
4106 * Prevent co-existence of per-task and cpu-wide events on the
4107 * same exclusive pmu.
4109 * Negative pmu::exclusive_cnt means there are cpu-wide
4110 * events on this "exclusive" pmu, positive means there are
4111 * per-task events.
4113 * Since this is called in perf_event_alloc() path, event::ctx
4114 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4115 * to mean "per-task event", because unlike other attach states it
4116 * never gets cleared.
4118 if (event->attach_state & PERF_ATTACH_TASK) {
4119 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4120 return -EBUSY;
4121 } else {
4122 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4123 return -EBUSY;
4126 return 0;
4129 static void exclusive_event_destroy(struct perf_event *event)
4131 struct pmu *pmu = event->pmu;
4133 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4134 return;
4136 /* see comment in exclusive_event_init() */
4137 if (event->attach_state & PERF_ATTACH_TASK)
4138 atomic_dec(&pmu->exclusive_cnt);
4139 else
4140 atomic_inc(&pmu->exclusive_cnt);
4143 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4145 if ((e1->pmu == e2->pmu) &&
4146 (e1->cpu == e2->cpu ||
4147 e1->cpu == -1 ||
4148 e2->cpu == -1))
4149 return true;
4150 return false;
4153 /* Called under the same ctx::mutex as perf_install_in_context() */
4154 static bool exclusive_event_installable(struct perf_event *event,
4155 struct perf_event_context *ctx)
4157 struct perf_event *iter_event;
4158 struct pmu *pmu = event->pmu;
4160 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4161 return true;
4163 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4164 if (exclusive_event_match(iter_event, event))
4165 return false;
4168 return true;
4171 static void perf_addr_filters_splice(struct perf_event *event,
4172 struct list_head *head);
4174 static void _free_event(struct perf_event *event)
4176 irq_work_sync(&event->pending);
4178 unaccount_event(event);
4180 if (event->rb) {
4182 * Can happen when we close an event with re-directed output.
4184 * Since we have a 0 refcount, perf_mmap_close() will skip
4185 * over us; possibly making our ring_buffer_put() the last.
4187 mutex_lock(&event->mmap_mutex);
4188 ring_buffer_attach(event, NULL);
4189 mutex_unlock(&event->mmap_mutex);
4192 if (is_cgroup_event(event))
4193 perf_detach_cgroup(event);
4195 if (!event->parent) {
4196 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4197 put_callchain_buffers();
4200 perf_event_free_bpf_prog(event);
4201 perf_addr_filters_splice(event, NULL);
4202 kfree(event->addr_filters_offs);
4204 if (event->destroy)
4205 event->destroy(event);
4207 if (event->ctx)
4208 put_ctx(event->ctx);
4210 exclusive_event_destroy(event);
4211 module_put(event->pmu->module);
4213 call_rcu(&event->rcu_head, free_event_rcu);
4217 * Used to free events which have a known refcount of 1, such as in error paths
4218 * where the event isn't exposed yet and inherited events.
4220 static void free_event(struct perf_event *event)
4222 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4223 "unexpected event refcount: %ld; ptr=%p\n",
4224 atomic_long_read(&event->refcount), event)) {
4225 /* leak to avoid use-after-free */
4226 return;
4229 _free_event(event);
4233 * Remove user event from the owner task.
4235 static void perf_remove_from_owner(struct perf_event *event)
4237 struct task_struct *owner;
4239 rcu_read_lock();
4241 * Matches the smp_store_release() in perf_event_exit_task(). If we
4242 * observe !owner it means the list deletion is complete and we can
4243 * indeed free this event, otherwise we need to serialize on
4244 * owner->perf_event_mutex.
4246 owner = lockless_dereference(event->owner);
4247 if (owner) {
4249 * Since delayed_put_task_struct() also drops the last
4250 * task reference we can safely take a new reference
4251 * while holding the rcu_read_lock().
4253 get_task_struct(owner);
4255 rcu_read_unlock();
4257 if (owner) {
4259 * If we're here through perf_event_exit_task() we're already
4260 * holding ctx->mutex which would be an inversion wrt. the
4261 * normal lock order.
4263 * However we can safely take this lock because its the child
4264 * ctx->mutex.
4266 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4269 * We have to re-check the event->owner field, if it is cleared
4270 * we raced with perf_event_exit_task(), acquiring the mutex
4271 * ensured they're done, and we can proceed with freeing the
4272 * event.
4274 if (event->owner) {
4275 list_del_init(&event->owner_entry);
4276 smp_store_release(&event->owner, NULL);
4278 mutex_unlock(&owner->perf_event_mutex);
4279 put_task_struct(owner);
4283 static void put_event(struct perf_event *event)
4285 if (!atomic_long_dec_and_test(&event->refcount))
4286 return;
4288 _free_event(event);
4292 * Kill an event dead; while event:refcount will preserve the event
4293 * object, it will not preserve its functionality. Once the last 'user'
4294 * gives up the object, we'll destroy the thing.
4296 int perf_event_release_kernel(struct perf_event *event)
4298 struct perf_event_context *ctx = event->ctx;
4299 struct perf_event *child, *tmp;
4302 * If we got here through err_file: fput(event_file); we will not have
4303 * attached to a context yet.
4305 if (!ctx) {
4306 WARN_ON_ONCE(event->attach_state &
4307 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4308 goto no_ctx;
4311 if (!is_kernel_event(event))
4312 perf_remove_from_owner(event);
4314 ctx = perf_event_ctx_lock(event);
4315 WARN_ON_ONCE(ctx->parent_ctx);
4316 perf_remove_from_context(event, DETACH_GROUP);
4318 raw_spin_lock_irq(&ctx->lock);
4320 * Mark this event as STATE_DEAD, there is no external reference to it
4321 * anymore.
4323 * Anybody acquiring event->child_mutex after the below loop _must_
4324 * also see this, most importantly inherit_event() which will avoid
4325 * placing more children on the list.
4327 * Thus this guarantees that we will in fact observe and kill _ALL_
4328 * child events.
4330 event->state = PERF_EVENT_STATE_DEAD;
4331 raw_spin_unlock_irq(&ctx->lock);
4333 perf_event_ctx_unlock(event, ctx);
4335 again:
4336 mutex_lock(&event->child_mutex);
4337 list_for_each_entry(child, &event->child_list, child_list) {
4340 * Cannot change, child events are not migrated, see the
4341 * comment with perf_event_ctx_lock_nested().
4343 ctx = lockless_dereference(child->ctx);
4345 * Since child_mutex nests inside ctx::mutex, we must jump
4346 * through hoops. We start by grabbing a reference on the ctx.
4348 * Since the event cannot get freed while we hold the
4349 * child_mutex, the context must also exist and have a !0
4350 * reference count.
4352 get_ctx(ctx);
4355 * Now that we have a ctx ref, we can drop child_mutex, and
4356 * acquire ctx::mutex without fear of it going away. Then we
4357 * can re-acquire child_mutex.
4359 mutex_unlock(&event->child_mutex);
4360 mutex_lock(&ctx->mutex);
4361 mutex_lock(&event->child_mutex);
4364 * Now that we hold ctx::mutex and child_mutex, revalidate our
4365 * state, if child is still the first entry, it didn't get freed
4366 * and we can continue doing so.
4368 tmp = list_first_entry_or_null(&event->child_list,
4369 struct perf_event, child_list);
4370 if (tmp == child) {
4371 perf_remove_from_context(child, DETACH_GROUP);
4372 list_del(&child->child_list);
4373 free_event(child);
4375 * This matches the refcount bump in inherit_event();
4376 * this can't be the last reference.
4378 put_event(event);
4381 mutex_unlock(&event->child_mutex);
4382 mutex_unlock(&ctx->mutex);
4383 put_ctx(ctx);
4384 goto again;
4386 mutex_unlock(&event->child_mutex);
4388 no_ctx:
4389 put_event(event); /* Must be the 'last' reference */
4390 return 0;
4392 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4395 * Called when the last reference to the file is gone.
4397 static int perf_release(struct inode *inode, struct file *file)
4399 perf_event_release_kernel(file->private_data);
4400 return 0;
4403 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4405 struct perf_event *child;
4406 u64 total = 0;
4408 *enabled = 0;
4409 *running = 0;
4411 mutex_lock(&event->child_mutex);
4413 (void)perf_event_read(event, false);
4414 total += perf_event_count(event);
4416 *enabled += event->total_time_enabled +
4417 atomic64_read(&event->child_total_time_enabled);
4418 *running += event->total_time_running +
4419 atomic64_read(&event->child_total_time_running);
4421 list_for_each_entry(child, &event->child_list, child_list) {
4422 (void)perf_event_read(child, false);
4423 total += perf_event_count(child);
4424 *enabled += child->total_time_enabled;
4425 *running += child->total_time_running;
4427 mutex_unlock(&event->child_mutex);
4429 return total;
4431 EXPORT_SYMBOL_GPL(perf_event_read_value);
4433 static int __perf_read_group_add(struct perf_event *leader,
4434 u64 read_format, u64 *values)
4436 struct perf_event_context *ctx = leader->ctx;
4437 struct perf_event *sub;
4438 unsigned long flags;
4439 int n = 1; /* skip @nr */
4440 int ret;
4442 ret = perf_event_read(leader, true);
4443 if (ret)
4444 return ret;
4447 * Since we co-schedule groups, {enabled,running} times of siblings
4448 * will be identical to those of the leader, so we only publish one
4449 * set.
4451 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4452 values[n++] += leader->total_time_enabled +
4453 atomic64_read(&leader->child_total_time_enabled);
4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4457 values[n++] += leader->total_time_running +
4458 atomic64_read(&leader->child_total_time_running);
4462 * Write {count,id} tuples for every sibling.
4464 values[n++] += perf_event_count(leader);
4465 if (read_format & PERF_FORMAT_ID)
4466 values[n++] = primary_event_id(leader);
4468 raw_spin_lock_irqsave(&ctx->lock, flags);
4470 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4471 values[n++] += perf_event_count(sub);
4472 if (read_format & PERF_FORMAT_ID)
4473 values[n++] = primary_event_id(sub);
4476 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4477 return 0;
4480 static int perf_read_group(struct perf_event *event,
4481 u64 read_format, char __user *buf)
4483 struct perf_event *leader = event->group_leader, *child;
4484 struct perf_event_context *ctx = leader->ctx;
4485 int ret;
4486 u64 *values;
4488 lockdep_assert_held(&ctx->mutex);
4490 values = kzalloc(event->read_size, GFP_KERNEL);
4491 if (!values)
4492 return -ENOMEM;
4494 values[0] = 1 + leader->nr_siblings;
4497 * By locking the child_mutex of the leader we effectively
4498 * lock the child list of all siblings.. XXX explain how.
4500 mutex_lock(&leader->child_mutex);
4502 ret = __perf_read_group_add(leader, read_format, values);
4503 if (ret)
4504 goto unlock;
4506 list_for_each_entry(child, &leader->child_list, child_list) {
4507 ret = __perf_read_group_add(child, read_format, values);
4508 if (ret)
4509 goto unlock;
4512 mutex_unlock(&leader->child_mutex);
4514 ret = event->read_size;
4515 if (copy_to_user(buf, values, event->read_size))
4516 ret = -EFAULT;
4517 goto out;
4519 unlock:
4520 mutex_unlock(&leader->child_mutex);
4521 out:
4522 kfree(values);
4523 return ret;
4526 static int perf_read_one(struct perf_event *event,
4527 u64 read_format, char __user *buf)
4529 u64 enabled, running;
4530 u64 values[4];
4531 int n = 0;
4533 values[n++] = perf_event_read_value(event, &enabled, &running);
4534 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4535 values[n++] = enabled;
4536 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4537 values[n++] = running;
4538 if (read_format & PERF_FORMAT_ID)
4539 values[n++] = primary_event_id(event);
4541 if (copy_to_user(buf, values, n * sizeof(u64)))
4542 return -EFAULT;
4544 return n * sizeof(u64);
4547 static bool is_event_hup(struct perf_event *event)
4549 bool no_children;
4551 if (event->state > PERF_EVENT_STATE_EXIT)
4552 return false;
4554 mutex_lock(&event->child_mutex);
4555 no_children = list_empty(&event->child_list);
4556 mutex_unlock(&event->child_mutex);
4557 return no_children;
4561 * Read the performance event - simple non blocking version for now
4563 static ssize_t
4564 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4566 u64 read_format = event->attr.read_format;
4567 int ret;
4570 * Return end-of-file for a read on a event that is in
4571 * error state (i.e. because it was pinned but it couldn't be
4572 * scheduled on to the CPU at some point).
4574 if (event->state == PERF_EVENT_STATE_ERROR)
4575 return 0;
4577 if (count < event->read_size)
4578 return -ENOSPC;
4580 WARN_ON_ONCE(event->ctx->parent_ctx);
4581 if (read_format & PERF_FORMAT_GROUP)
4582 ret = perf_read_group(event, read_format, buf);
4583 else
4584 ret = perf_read_one(event, read_format, buf);
4586 return ret;
4589 static ssize_t
4590 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4592 struct perf_event *event = file->private_data;
4593 struct perf_event_context *ctx;
4594 int ret;
4596 ctx = perf_event_ctx_lock(event);
4597 ret = __perf_read(event, buf, count);
4598 perf_event_ctx_unlock(event, ctx);
4600 return ret;
4603 static unsigned int perf_poll(struct file *file, poll_table *wait)
4605 struct perf_event *event = file->private_data;
4606 struct ring_buffer *rb;
4607 unsigned int events = POLLHUP;
4609 poll_wait(file, &event->waitq, wait);
4611 if (is_event_hup(event))
4612 return events;
4615 * Pin the event->rb by taking event->mmap_mutex; otherwise
4616 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4618 mutex_lock(&event->mmap_mutex);
4619 rb = event->rb;
4620 if (rb)
4621 events = atomic_xchg(&rb->poll, 0);
4622 mutex_unlock(&event->mmap_mutex);
4623 return events;
4626 static void _perf_event_reset(struct perf_event *event)
4628 (void)perf_event_read(event, false);
4629 local64_set(&event->count, 0);
4630 perf_event_update_userpage(event);
4634 * Holding the top-level event's child_mutex means that any
4635 * descendant process that has inherited this event will block
4636 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4637 * task existence requirements of perf_event_enable/disable.
4639 static void perf_event_for_each_child(struct perf_event *event,
4640 void (*func)(struct perf_event *))
4642 struct perf_event *child;
4644 WARN_ON_ONCE(event->ctx->parent_ctx);
4646 mutex_lock(&event->child_mutex);
4647 func(event);
4648 list_for_each_entry(child, &event->child_list, child_list)
4649 func(child);
4650 mutex_unlock(&event->child_mutex);
4653 static void perf_event_for_each(struct perf_event *event,
4654 void (*func)(struct perf_event *))
4656 struct perf_event_context *ctx = event->ctx;
4657 struct perf_event *sibling;
4659 lockdep_assert_held(&ctx->mutex);
4661 event = event->group_leader;
4663 perf_event_for_each_child(event, func);
4664 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4665 perf_event_for_each_child(sibling, func);
4668 static void __perf_event_period(struct perf_event *event,
4669 struct perf_cpu_context *cpuctx,
4670 struct perf_event_context *ctx,
4671 void *info)
4673 u64 value = *((u64 *)info);
4674 bool active;
4676 if (event->attr.freq) {
4677 event->attr.sample_freq = value;
4678 } else {
4679 event->attr.sample_period = value;
4680 event->hw.sample_period = value;
4683 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4684 if (active) {
4685 perf_pmu_disable(ctx->pmu);
4687 * We could be throttled; unthrottle now to avoid the tick
4688 * trying to unthrottle while we already re-started the event.
4690 if (event->hw.interrupts == MAX_INTERRUPTS) {
4691 event->hw.interrupts = 0;
4692 perf_log_throttle(event, 1);
4694 event->pmu->stop(event, PERF_EF_UPDATE);
4697 local64_set(&event->hw.period_left, 0);
4699 if (active) {
4700 event->pmu->start(event, PERF_EF_RELOAD);
4701 perf_pmu_enable(ctx->pmu);
4705 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4707 u64 value;
4709 if (!is_sampling_event(event))
4710 return -EINVAL;
4712 if (copy_from_user(&value, arg, sizeof(value)))
4713 return -EFAULT;
4715 if (!value)
4716 return -EINVAL;
4718 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4719 return -EINVAL;
4721 event_function_call(event, __perf_event_period, &value);
4723 return 0;
4726 static const struct file_operations perf_fops;
4728 static inline int perf_fget_light(int fd, struct fd *p)
4730 struct fd f = fdget(fd);
4731 if (!f.file)
4732 return -EBADF;
4734 if (f.file->f_op != &perf_fops) {
4735 fdput(f);
4736 return -EBADF;
4738 *p = f;
4739 return 0;
4742 static int perf_event_set_output(struct perf_event *event,
4743 struct perf_event *output_event);
4744 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4745 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4747 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4749 void (*func)(struct perf_event *);
4750 u32 flags = arg;
4752 switch (cmd) {
4753 case PERF_EVENT_IOC_ENABLE:
4754 func = _perf_event_enable;
4755 break;
4756 case PERF_EVENT_IOC_DISABLE:
4757 func = _perf_event_disable;
4758 break;
4759 case PERF_EVENT_IOC_RESET:
4760 func = _perf_event_reset;
4761 break;
4763 case PERF_EVENT_IOC_REFRESH:
4764 return _perf_event_refresh(event, arg);
4766 case PERF_EVENT_IOC_PERIOD:
4767 return perf_event_period(event, (u64 __user *)arg);
4769 case PERF_EVENT_IOC_ID:
4771 u64 id = primary_event_id(event);
4773 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4774 return -EFAULT;
4775 return 0;
4778 case PERF_EVENT_IOC_SET_OUTPUT:
4780 int ret;
4781 if (arg != -1) {
4782 struct perf_event *output_event;
4783 struct fd output;
4784 ret = perf_fget_light(arg, &output);
4785 if (ret)
4786 return ret;
4787 output_event = output.file->private_data;
4788 ret = perf_event_set_output(event, output_event);
4789 fdput(output);
4790 } else {
4791 ret = perf_event_set_output(event, NULL);
4793 return ret;
4796 case PERF_EVENT_IOC_SET_FILTER:
4797 return perf_event_set_filter(event, (void __user *)arg);
4799 case PERF_EVENT_IOC_SET_BPF:
4800 return perf_event_set_bpf_prog(event, arg);
4802 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4803 struct ring_buffer *rb;
4805 rcu_read_lock();
4806 rb = rcu_dereference(event->rb);
4807 if (!rb || !rb->nr_pages) {
4808 rcu_read_unlock();
4809 return -EINVAL;
4811 rb_toggle_paused(rb, !!arg);
4812 rcu_read_unlock();
4813 return 0;
4815 default:
4816 return -ENOTTY;
4819 if (flags & PERF_IOC_FLAG_GROUP)
4820 perf_event_for_each(event, func);
4821 else
4822 perf_event_for_each_child(event, func);
4824 return 0;
4827 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4829 struct perf_event *event = file->private_data;
4830 struct perf_event_context *ctx;
4831 long ret;
4833 ctx = perf_event_ctx_lock(event);
4834 ret = _perf_ioctl(event, cmd, arg);
4835 perf_event_ctx_unlock(event, ctx);
4837 return ret;
4840 #ifdef CONFIG_COMPAT
4841 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4842 unsigned long arg)
4844 switch (_IOC_NR(cmd)) {
4845 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4846 case _IOC_NR(PERF_EVENT_IOC_ID):
4847 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4848 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4849 cmd &= ~IOCSIZE_MASK;
4850 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4852 break;
4854 return perf_ioctl(file, cmd, arg);
4856 #else
4857 # define perf_compat_ioctl NULL
4858 #endif
4860 int perf_event_task_enable(void)
4862 struct perf_event_context *ctx;
4863 struct perf_event *event;
4865 mutex_lock(&current->perf_event_mutex);
4866 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4867 ctx = perf_event_ctx_lock(event);
4868 perf_event_for_each_child(event, _perf_event_enable);
4869 perf_event_ctx_unlock(event, ctx);
4871 mutex_unlock(&current->perf_event_mutex);
4873 return 0;
4876 int perf_event_task_disable(void)
4878 struct perf_event_context *ctx;
4879 struct perf_event *event;
4881 mutex_lock(&current->perf_event_mutex);
4882 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4883 ctx = perf_event_ctx_lock(event);
4884 perf_event_for_each_child(event, _perf_event_disable);
4885 perf_event_ctx_unlock(event, ctx);
4887 mutex_unlock(&current->perf_event_mutex);
4889 return 0;
4892 static int perf_event_index(struct perf_event *event)
4894 if (event->hw.state & PERF_HES_STOPPED)
4895 return 0;
4897 if (event->state != PERF_EVENT_STATE_ACTIVE)
4898 return 0;
4900 return event->pmu->event_idx(event);
4903 static void calc_timer_values(struct perf_event *event,
4904 u64 *now,
4905 u64 *enabled,
4906 u64 *running)
4908 u64 ctx_time;
4910 *now = perf_clock();
4911 ctx_time = event->shadow_ctx_time + *now;
4912 *enabled = ctx_time - event->tstamp_enabled;
4913 *running = ctx_time - event->tstamp_running;
4916 static void perf_event_init_userpage(struct perf_event *event)
4918 struct perf_event_mmap_page *userpg;
4919 struct ring_buffer *rb;
4921 rcu_read_lock();
4922 rb = rcu_dereference(event->rb);
4923 if (!rb)
4924 goto unlock;
4926 userpg = rb->user_page;
4928 /* Allow new userspace to detect that bit 0 is deprecated */
4929 userpg->cap_bit0_is_deprecated = 1;
4930 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4931 userpg->data_offset = PAGE_SIZE;
4932 userpg->data_size = perf_data_size(rb);
4934 unlock:
4935 rcu_read_unlock();
4938 void __weak arch_perf_update_userpage(
4939 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4944 * Callers need to ensure there can be no nesting of this function, otherwise
4945 * the seqlock logic goes bad. We can not serialize this because the arch
4946 * code calls this from NMI context.
4948 void perf_event_update_userpage(struct perf_event *event)
4950 struct perf_event_mmap_page *userpg;
4951 struct ring_buffer *rb;
4952 u64 enabled, running, now;
4954 rcu_read_lock();
4955 rb = rcu_dereference(event->rb);
4956 if (!rb)
4957 goto unlock;
4960 * compute total_time_enabled, total_time_running
4961 * based on snapshot values taken when the event
4962 * was last scheduled in.
4964 * we cannot simply called update_context_time()
4965 * because of locking issue as we can be called in
4966 * NMI context
4968 calc_timer_values(event, &now, &enabled, &running);
4970 userpg = rb->user_page;
4972 * Disable preemption so as to not let the corresponding user-space
4973 * spin too long if we get preempted.
4975 preempt_disable();
4976 ++userpg->lock;
4977 barrier();
4978 userpg->index = perf_event_index(event);
4979 userpg->offset = perf_event_count(event);
4980 if (userpg->index)
4981 userpg->offset -= local64_read(&event->hw.prev_count);
4983 userpg->time_enabled = enabled +
4984 atomic64_read(&event->child_total_time_enabled);
4986 userpg->time_running = running +
4987 atomic64_read(&event->child_total_time_running);
4989 arch_perf_update_userpage(event, userpg, now);
4991 barrier();
4992 ++userpg->lock;
4993 preempt_enable();
4994 unlock:
4995 rcu_read_unlock();
4998 static int perf_mmap_fault(struct vm_fault *vmf)
5000 struct perf_event *event = vmf->vma->vm_file->private_data;
5001 struct ring_buffer *rb;
5002 int ret = VM_FAULT_SIGBUS;
5004 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5005 if (vmf->pgoff == 0)
5006 ret = 0;
5007 return ret;
5010 rcu_read_lock();
5011 rb = rcu_dereference(event->rb);
5012 if (!rb)
5013 goto unlock;
5015 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5016 goto unlock;
5018 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5019 if (!vmf->page)
5020 goto unlock;
5022 get_page(vmf->page);
5023 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5024 vmf->page->index = vmf->pgoff;
5026 ret = 0;
5027 unlock:
5028 rcu_read_unlock();
5030 return ret;
5033 static void ring_buffer_attach(struct perf_event *event,
5034 struct ring_buffer *rb)
5036 struct ring_buffer *old_rb = NULL;
5037 unsigned long flags;
5039 if (event->rb) {
5041 * Should be impossible, we set this when removing
5042 * event->rb_entry and wait/clear when adding event->rb_entry.
5044 WARN_ON_ONCE(event->rcu_pending);
5046 old_rb = event->rb;
5047 spin_lock_irqsave(&old_rb->event_lock, flags);
5048 list_del_rcu(&event->rb_entry);
5049 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5051 event->rcu_batches = get_state_synchronize_rcu();
5052 event->rcu_pending = 1;
5055 if (rb) {
5056 if (event->rcu_pending) {
5057 cond_synchronize_rcu(event->rcu_batches);
5058 event->rcu_pending = 0;
5061 spin_lock_irqsave(&rb->event_lock, flags);
5062 list_add_rcu(&event->rb_entry, &rb->event_list);
5063 spin_unlock_irqrestore(&rb->event_lock, flags);
5067 * Avoid racing with perf_mmap_close(AUX): stop the event
5068 * before swizzling the event::rb pointer; if it's getting
5069 * unmapped, its aux_mmap_count will be 0 and it won't
5070 * restart. See the comment in __perf_pmu_output_stop().
5072 * Data will inevitably be lost when set_output is done in
5073 * mid-air, but then again, whoever does it like this is
5074 * not in for the data anyway.
5076 if (has_aux(event))
5077 perf_event_stop(event, 0);
5079 rcu_assign_pointer(event->rb, rb);
5081 if (old_rb) {
5082 ring_buffer_put(old_rb);
5084 * Since we detached before setting the new rb, so that we
5085 * could attach the new rb, we could have missed a wakeup.
5086 * Provide it now.
5088 wake_up_all(&event->waitq);
5092 static void ring_buffer_wakeup(struct perf_event *event)
5094 struct ring_buffer *rb;
5096 rcu_read_lock();
5097 rb = rcu_dereference(event->rb);
5098 if (rb) {
5099 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5100 wake_up_all(&event->waitq);
5102 rcu_read_unlock();
5105 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5107 struct ring_buffer *rb;
5109 rcu_read_lock();
5110 rb = rcu_dereference(event->rb);
5111 if (rb) {
5112 if (!atomic_inc_not_zero(&rb->refcount))
5113 rb = NULL;
5115 rcu_read_unlock();
5117 return rb;
5120 void ring_buffer_put(struct ring_buffer *rb)
5122 if (!atomic_dec_and_test(&rb->refcount))
5123 return;
5125 WARN_ON_ONCE(!list_empty(&rb->event_list));
5127 call_rcu(&rb->rcu_head, rb_free_rcu);
5130 static void perf_mmap_open(struct vm_area_struct *vma)
5132 struct perf_event *event = vma->vm_file->private_data;
5134 atomic_inc(&event->mmap_count);
5135 atomic_inc(&event->rb->mmap_count);
5137 if (vma->vm_pgoff)
5138 atomic_inc(&event->rb->aux_mmap_count);
5140 if (event->pmu->event_mapped)
5141 event->pmu->event_mapped(event, vma->vm_mm);
5144 static void perf_pmu_output_stop(struct perf_event *event);
5147 * A buffer can be mmap()ed multiple times; either directly through the same
5148 * event, or through other events by use of perf_event_set_output().
5150 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5151 * the buffer here, where we still have a VM context. This means we need
5152 * to detach all events redirecting to us.
5154 static void perf_mmap_close(struct vm_area_struct *vma)
5156 struct perf_event *event = vma->vm_file->private_data;
5158 struct ring_buffer *rb = ring_buffer_get(event);
5159 struct user_struct *mmap_user = rb->mmap_user;
5160 int mmap_locked = rb->mmap_locked;
5161 unsigned long size = perf_data_size(rb);
5163 if (event->pmu->event_unmapped)
5164 event->pmu->event_unmapped(event, vma->vm_mm);
5167 * rb->aux_mmap_count will always drop before rb->mmap_count and
5168 * event->mmap_count, so it is ok to use event->mmap_mutex to
5169 * serialize with perf_mmap here.
5171 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5172 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5174 * Stop all AUX events that are writing to this buffer,
5175 * so that we can free its AUX pages and corresponding PMU
5176 * data. Note that after rb::aux_mmap_count dropped to zero,
5177 * they won't start any more (see perf_aux_output_begin()).
5179 perf_pmu_output_stop(event);
5181 /* now it's safe to free the pages */
5182 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5183 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5185 /* this has to be the last one */
5186 rb_free_aux(rb);
5187 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5189 mutex_unlock(&event->mmap_mutex);
5192 atomic_dec(&rb->mmap_count);
5194 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5195 goto out_put;
5197 ring_buffer_attach(event, NULL);
5198 mutex_unlock(&event->mmap_mutex);
5200 /* If there's still other mmap()s of this buffer, we're done. */
5201 if (atomic_read(&rb->mmap_count))
5202 goto out_put;
5205 * No other mmap()s, detach from all other events that might redirect
5206 * into the now unreachable buffer. Somewhat complicated by the
5207 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5209 again:
5210 rcu_read_lock();
5211 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5212 if (!atomic_long_inc_not_zero(&event->refcount)) {
5214 * This event is en-route to free_event() which will
5215 * detach it and remove it from the list.
5217 continue;
5219 rcu_read_unlock();
5221 mutex_lock(&event->mmap_mutex);
5223 * Check we didn't race with perf_event_set_output() which can
5224 * swizzle the rb from under us while we were waiting to
5225 * acquire mmap_mutex.
5227 * If we find a different rb; ignore this event, a next
5228 * iteration will no longer find it on the list. We have to
5229 * still restart the iteration to make sure we're not now
5230 * iterating the wrong list.
5232 if (event->rb == rb)
5233 ring_buffer_attach(event, NULL);
5235 mutex_unlock(&event->mmap_mutex);
5236 put_event(event);
5239 * Restart the iteration; either we're on the wrong list or
5240 * destroyed its integrity by doing a deletion.
5242 goto again;
5244 rcu_read_unlock();
5247 * It could be there's still a few 0-ref events on the list; they'll
5248 * get cleaned up by free_event() -- they'll also still have their
5249 * ref on the rb and will free it whenever they are done with it.
5251 * Aside from that, this buffer is 'fully' detached and unmapped,
5252 * undo the VM accounting.
5255 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5256 vma->vm_mm->pinned_vm -= mmap_locked;
5257 free_uid(mmap_user);
5259 out_put:
5260 ring_buffer_put(rb); /* could be last */
5263 static const struct vm_operations_struct perf_mmap_vmops = {
5264 .open = perf_mmap_open,
5265 .close = perf_mmap_close, /* non mergable */
5266 .fault = perf_mmap_fault,
5267 .page_mkwrite = perf_mmap_fault,
5270 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5272 struct perf_event *event = file->private_data;
5273 unsigned long user_locked, user_lock_limit;
5274 struct user_struct *user = current_user();
5275 unsigned long locked, lock_limit;
5276 struct ring_buffer *rb = NULL;
5277 unsigned long vma_size;
5278 unsigned long nr_pages;
5279 long user_extra = 0, extra = 0;
5280 int ret = 0, flags = 0;
5283 * Don't allow mmap() of inherited per-task counters. This would
5284 * create a performance issue due to all children writing to the
5285 * same rb.
5287 if (event->cpu == -1 && event->attr.inherit)
5288 return -EINVAL;
5290 if (!(vma->vm_flags & VM_SHARED))
5291 return -EINVAL;
5293 vma_size = vma->vm_end - vma->vm_start;
5295 if (vma->vm_pgoff == 0) {
5296 nr_pages = (vma_size / PAGE_SIZE) - 1;
5297 } else {
5299 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5300 * mapped, all subsequent mappings should have the same size
5301 * and offset. Must be above the normal perf buffer.
5303 u64 aux_offset, aux_size;
5305 if (!event->rb)
5306 return -EINVAL;
5308 nr_pages = vma_size / PAGE_SIZE;
5310 mutex_lock(&event->mmap_mutex);
5311 ret = -EINVAL;
5313 rb = event->rb;
5314 if (!rb)
5315 goto aux_unlock;
5317 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5318 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5320 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5321 goto aux_unlock;
5323 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5324 goto aux_unlock;
5326 /* already mapped with a different offset */
5327 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5328 goto aux_unlock;
5330 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5331 goto aux_unlock;
5333 /* already mapped with a different size */
5334 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5335 goto aux_unlock;
5337 if (!is_power_of_2(nr_pages))
5338 goto aux_unlock;
5340 if (!atomic_inc_not_zero(&rb->mmap_count))
5341 goto aux_unlock;
5343 if (rb_has_aux(rb)) {
5344 atomic_inc(&rb->aux_mmap_count);
5345 ret = 0;
5346 goto unlock;
5349 atomic_set(&rb->aux_mmap_count, 1);
5350 user_extra = nr_pages;
5352 goto accounting;
5356 * If we have rb pages ensure they're a power-of-two number, so we
5357 * can do bitmasks instead of modulo.
5359 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5360 return -EINVAL;
5362 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5363 return -EINVAL;
5365 WARN_ON_ONCE(event->ctx->parent_ctx);
5366 again:
5367 mutex_lock(&event->mmap_mutex);
5368 if (event->rb) {
5369 if (event->rb->nr_pages != nr_pages) {
5370 ret = -EINVAL;
5371 goto unlock;
5374 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5376 * Raced against perf_mmap_close() through
5377 * perf_event_set_output(). Try again, hope for better
5378 * luck.
5380 mutex_unlock(&event->mmap_mutex);
5381 goto again;
5384 goto unlock;
5387 user_extra = nr_pages + 1;
5389 accounting:
5390 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5393 * Increase the limit linearly with more CPUs:
5395 user_lock_limit *= num_online_cpus();
5397 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5399 if (user_locked > user_lock_limit)
5400 extra = user_locked - user_lock_limit;
5402 lock_limit = rlimit(RLIMIT_MEMLOCK);
5403 lock_limit >>= PAGE_SHIFT;
5404 locked = vma->vm_mm->pinned_vm + extra;
5406 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5407 !capable(CAP_IPC_LOCK)) {
5408 ret = -EPERM;
5409 goto unlock;
5412 WARN_ON(!rb && event->rb);
5414 if (vma->vm_flags & VM_WRITE)
5415 flags |= RING_BUFFER_WRITABLE;
5417 if (!rb) {
5418 rb = rb_alloc(nr_pages,
5419 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5420 event->cpu, flags);
5422 if (!rb) {
5423 ret = -ENOMEM;
5424 goto unlock;
5427 atomic_set(&rb->mmap_count, 1);
5428 rb->mmap_user = get_current_user();
5429 rb->mmap_locked = extra;
5431 ring_buffer_attach(event, rb);
5433 perf_event_init_userpage(event);
5434 perf_event_update_userpage(event);
5435 } else {
5436 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5437 event->attr.aux_watermark, flags);
5438 if (!ret)
5439 rb->aux_mmap_locked = extra;
5442 unlock:
5443 if (!ret) {
5444 atomic_long_add(user_extra, &user->locked_vm);
5445 vma->vm_mm->pinned_vm += extra;
5447 atomic_inc(&event->mmap_count);
5448 } else if (rb) {
5449 atomic_dec(&rb->mmap_count);
5451 aux_unlock:
5452 mutex_unlock(&event->mmap_mutex);
5455 * Since pinned accounting is per vm we cannot allow fork() to copy our
5456 * vma.
5458 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5459 vma->vm_ops = &perf_mmap_vmops;
5461 if (event->pmu->event_mapped)
5462 event->pmu->event_mapped(event, vma->vm_mm);
5464 return ret;
5467 static int perf_fasync(int fd, struct file *filp, int on)
5469 struct inode *inode = file_inode(filp);
5470 struct perf_event *event = filp->private_data;
5471 int retval;
5473 inode_lock(inode);
5474 retval = fasync_helper(fd, filp, on, &event->fasync);
5475 inode_unlock(inode);
5477 if (retval < 0)
5478 return retval;
5480 return 0;
5483 static const struct file_operations perf_fops = {
5484 .llseek = no_llseek,
5485 .release = perf_release,
5486 .read = perf_read,
5487 .poll = perf_poll,
5488 .unlocked_ioctl = perf_ioctl,
5489 .compat_ioctl = perf_compat_ioctl,
5490 .mmap = perf_mmap,
5491 .fasync = perf_fasync,
5495 * Perf event wakeup
5497 * If there's data, ensure we set the poll() state and publish everything
5498 * to user-space before waking everybody up.
5501 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5503 /* only the parent has fasync state */
5504 if (event->parent)
5505 event = event->parent;
5506 return &event->fasync;
5509 void perf_event_wakeup(struct perf_event *event)
5511 ring_buffer_wakeup(event);
5513 if (event->pending_kill) {
5514 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5515 event->pending_kill = 0;
5519 static void perf_pending_event(struct irq_work *entry)
5521 struct perf_event *event = container_of(entry,
5522 struct perf_event, pending);
5523 int rctx;
5525 rctx = perf_swevent_get_recursion_context();
5527 * If we 'fail' here, that's OK, it means recursion is already disabled
5528 * and we won't recurse 'further'.
5531 if (event->pending_disable) {
5532 event->pending_disable = 0;
5533 perf_event_disable_local(event);
5536 if (event->pending_wakeup) {
5537 event->pending_wakeup = 0;
5538 perf_event_wakeup(event);
5541 if (rctx >= 0)
5542 perf_swevent_put_recursion_context(rctx);
5546 * We assume there is only KVM supporting the callbacks.
5547 * Later on, we might change it to a list if there is
5548 * another virtualization implementation supporting the callbacks.
5550 struct perf_guest_info_callbacks *perf_guest_cbs;
5552 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5554 perf_guest_cbs = cbs;
5555 return 0;
5557 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5559 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5561 perf_guest_cbs = NULL;
5562 return 0;
5564 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5566 static void
5567 perf_output_sample_regs(struct perf_output_handle *handle,
5568 struct pt_regs *regs, u64 mask)
5570 int bit;
5571 DECLARE_BITMAP(_mask, 64);
5573 bitmap_from_u64(_mask, mask);
5574 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5575 u64 val;
5577 val = perf_reg_value(regs, bit);
5578 perf_output_put(handle, val);
5582 static void perf_sample_regs_user(struct perf_regs *regs_user,
5583 struct pt_regs *regs,
5584 struct pt_regs *regs_user_copy)
5586 if (user_mode(regs)) {
5587 regs_user->abi = perf_reg_abi(current);
5588 regs_user->regs = regs;
5589 } else if (current->mm) {
5590 perf_get_regs_user(regs_user, regs, regs_user_copy);
5591 } else {
5592 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5593 regs_user->regs = NULL;
5597 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5598 struct pt_regs *regs)
5600 regs_intr->regs = regs;
5601 regs_intr->abi = perf_reg_abi(current);
5606 * Get remaining task size from user stack pointer.
5608 * It'd be better to take stack vma map and limit this more
5609 * precisly, but there's no way to get it safely under interrupt,
5610 * so using TASK_SIZE as limit.
5612 static u64 perf_ustack_task_size(struct pt_regs *regs)
5614 unsigned long addr = perf_user_stack_pointer(regs);
5616 if (!addr || addr >= TASK_SIZE)
5617 return 0;
5619 return TASK_SIZE - addr;
5622 static u16
5623 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5624 struct pt_regs *regs)
5626 u64 task_size;
5628 /* No regs, no stack pointer, no dump. */
5629 if (!regs)
5630 return 0;
5633 * Check if we fit in with the requested stack size into the:
5634 * - TASK_SIZE
5635 * If we don't, we limit the size to the TASK_SIZE.
5637 * - remaining sample size
5638 * If we don't, we customize the stack size to
5639 * fit in to the remaining sample size.
5642 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5643 stack_size = min(stack_size, (u16) task_size);
5645 /* Current header size plus static size and dynamic size. */
5646 header_size += 2 * sizeof(u64);
5648 /* Do we fit in with the current stack dump size? */
5649 if ((u16) (header_size + stack_size) < header_size) {
5651 * If we overflow the maximum size for the sample,
5652 * we customize the stack dump size to fit in.
5654 stack_size = USHRT_MAX - header_size - sizeof(u64);
5655 stack_size = round_up(stack_size, sizeof(u64));
5658 return stack_size;
5661 static void
5662 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5663 struct pt_regs *regs)
5665 /* Case of a kernel thread, nothing to dump */
5666 if (!regs) {
5667 u64 size = 0;
5668 perf_output_put(handle, size);
5669 } else {
5670 unsigned long sp;
5671 unsigned int rem;
5672 u64 dyn_size;
5675 * We dump:
5676 * static size
5677 * - the size requested by user or the best one we can fit
5678 * in to the sample max size
5679 * data
5680 * - user stack dump data
5681 * dynamic size
5682 * - the actual dumped size
5685 /* Static size. */
5686 perf_output_put(handle, dump_size);
5688 /* Data. */
5689 sp = perf_user_stack_pointer(regs);
5690 rem = __output_copy_user(handle, (void *) sp, dump_size);
5691 dyn_size = dump_size - rem;
5693 perf_output_skip(handle, rem);
5695 /* Dynamic size. */
5696 perf_output_put(handle, dyn_size);
5700 static void __perf_event_header__init_id(struct perf_event_header *header,
5701 struct perf_sample_data *data,
5702 struct perf_event *event)
5704 u64 sample_type = event->attr.sample_type;
5706 data->type = sample_type;
5707 header->size += event->id_header_size;
5709 if (sample_type & PERF_SAMPLE_TID) {
5710 /* namespace issues */
5711 data->tid_entry.pid = perf_event_pid(event, current);
5712 data->tid_entry.tid = perf_event_tid(event, current);
5715 if (sample_type & PERF_SAMPLE_TIME)
5716 data->time = perf_event_clock(event);
5718 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5719 data->id = primary_event_id(event);
5721 if (sample_type & PERF_SAMPLE_STREAM_ID)
5722 data->stream_id = event->id;
5724 if (sample_type & PERF_SAMPLE_CPU) {
5725 data->cpu_entry.cpu = raw_smp_processor_id();
5726 data->cpu_entry.reserved = 0;
5730 void perf_event_header__init_id(struct perf_event_header *header,
5731 struct perf_sample_data *data,
5732 struct perf_event *event)
5734 if (event->attr.sample_id_all)
5735 __perf_event_header__init_id(header, data, event);
5738 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5739 struct perf_sample_data *data)
5741 u64 sample_type = data->type;
5743 if (sample_type & PERF_SAMPLE_TID)
5744 perf_output_put(handle, data->tid_entry);
5746 if (sample_type & PERF_SAMPLE_TIME)
5747 perf_output_put(handle, data->time);
5749 if (sample_type & PERF_SAMPLE_ID)
5750 perf_output_put(handle, data->id);
5752 if (sample_type & PERF_SAMPLE_STREAM_ID)
5753 perf_output_put(handle, data->stream_id);
5755 if (sample_type & PERF_SAMPLE_CPU)
5756 perf_output_put(handle, data->cpu_entry);
5758 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5759 perf_output_put(handle, data->id);
5762 void perf_event__output_id_sample(struct perf_event *event,
5763 struct perf_output_handle *handle,
5764 struct perf_sample_data *sample)
5766 if (event->attr.sample_id_all)
5767 __perf_event__output_id_sample(handle, sample);
5770 static void perf_output_read_one(struct perf_output_handle *handle,
5771 struct perf_event *event,
5772 u64 enabled, u64 running)
5774 u64 read_format = event->attr.read_format;
5775 u64 values[4];
5776 int n = 0;
5778 values[n++] = perf_event_count(event);
5779 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5780 values[n++] = enabled +
5781 atomic64_read(&event->child_total_time_enabled);
5783 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5784 values[n++] = running +
5785 atomic64_read(&event->child_total_time_running);
5787 if (read_format & PERF_FORMAT_ID)
5788 values[n++] = primary_event_id(event);
5790 __output_copy(handle, values, n * sizeof(u64));
5793 static void perf_output_read_group(struct perf_output_handle *handle,
5794 struct perf_event *event,
5795 u64 enabled, u64 running)
5797 struct perf_event *leader = event->group_leader, *sub;
5798 u64 read_format = event->attr.read_format;
5799 u64 values[5];
5800 int n = 0;
5802 values[n++] = 1 + leader->nr_siblings;
5804 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5805 values[n++] = enabled;
5807 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5808 values[n++] = running;
5810 if (leader != event)
5811 leader->pmu->read(leader);
5813 values[n++] = perf_event_count(leader);
5814 if (read_format & PERF_FORMAT_ID)
5815 values[n++] = primary_event_id(leader);
5817 __output_copy(handle, values, n * sizeof(u64));
5819 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5820 n = 0;
5822 if ((sub != event) &&
5823 (sub->state == PERF_EVENT_STATE_ACTIVE))
5824 sub->pmu->read(sub);
5826 values[n++] = perf_event_count(sub);
5827 if (read_format & PERF_FORMAT_ID)
5828 values[n++] = primary_event_id(sub);
5830 __output_copy(handle, values, n * sizeof(u64));
5834 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5835 PERF_FORMAT_TOTAL_TIME_RUNNING)
5838 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5840 * The problem is that its both hard and excessively expensive to iterate the
5841 * child list, not to mention that its impossible to IPI the children running
5842 * on another CPU, from interrupt/NMI context.
5844 static void perf_output_read(struct perf_output_handle *handle,
5845 struct perf_event *event)
5847 u64 enabled = 0, running = 0, now;
5848 u64 read_format = event->attr.read_format;
5851 * compute total_time_enabled, total_time_running
5852 * based on snapshot values taken when the event
5853 * was last scheduled in.
5855 * we cannot simply called update_context_time()
5856 * because of locking issue as we are called in
5857 * NMI context
5859 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5860 calc_timer_values(event, &now, &enabled, &running);
5862 if (event->attr.read_format & PERF_FORMAT_GROUP)
5863 perf_output_read_group(handle, event, enabled, running);
5864 else
5865 perf_output_read_one(handle, event, enabled, running);
5868 void perf_output_sample(struct perf_output_handle *handle,
5869 struct perf_event_header *header,
5870 struct perf_sample_data *data,
5871 struct perf_event *event)
5873 u64 sample_type = data->type;
5875 perf_output_put(handle, *header);
5877 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5878 perf_output_put(handle, data->id);
5880 if (sample_type & PERF_SAMPLE_IP)
5881 perf_output_put(handle, data->ip);
5883 if (sample_type & PERF_SAMPLE_TID)
5884 perf_output_put(handle, data->tid_entry);
5886 if (sample_type & PERF_SAMPLE_TIME)
5887 perf_output_put(handle, data->time);
5889 if (sample_type & PERF_SAMPLE_ADDR)
5890 perf_output_put(handle, data->addr);
5892 if (sample_type & PERF_SAMPLE_ID)
5893 perf_output_put(handle, data->id);
5895 if (sample_type & PERF_SAMPLE_STREAM_ID)
5896 perf_output_put(handle, data->stream_id);
5898 if (sample_type & PERF_SAMPLE_CPU)
5899 perf_output_put(handle, data->cpu_entry);
5901 if (sample_type & PERF_SAMPLE_PERIOD)
5902 perf_output_put(handle, data->period);
5904 if (sample_type & PERF_SAMPLE_READ)
5905 perf_output_read(handle, event);
5907 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5908 if (data->callchain) {
5909 int size = 1;
5911 if (data->callchain)
5912 size += data->callchain->nr;
5914 size *= sizeof(u64);
5916 __output_copy(handle, data->callchain, size);
5917 } else {
5918 u64 nr = 0;
5919 perf_output_put(handle, nr);
5923 if (sample_type & PERF_SAMPLE_RAW) {
5924 struct perf_raw_record *raw = data->raw;
5926 if (raw) {
5927 struct perf_raw_frag *frag = &raw->frag;
5929 perf_output_put(handle, raw->size);
5930 do {
5931 if (frag->copy) {
5932 __output_custom(handle, frag->copy,
5933 frag->data, frag->size);
5934 } else {
5935 __output_copy(handle, frag->data,
5936 frag->size);
5938 if (perf_raw_frag_last(frag))
5939 break;
5940 frag = frag->next;
5941 } while (1);
5942 if (frag->pad)
5943 __output_skip(handle, NULL, frag->pad);
5944 } else {
5945 struct {
5946 u32 size;
5947 u32 data;
5948 } raw = {
5949 .size = sizeof(u32),
5950 .data = 0,
5952 perf_output_put(handle, raw);
5956 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5957 if (data->br_stack) {
5958 size_t size;
5960 size = data->br_stack->nr
5961 * sizeof(struct perf_branch_entry);
5963 perf_output_put(handle, data->br_stack->nr);
5964 perf_output_copy(handle, data->br_stack->entries, size);
5965 } else {
5967 * we always store at least the value of nr
5969 u64 nr = 0;
5970 perf_output_put(handle, nr);
5974 if (sample_type & PERF_SAMPLE_REGS_USER) {
5975 u64 abi = data->regs_user.abi;
5978 * If there are no regs to dump, notice it through
5979 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5981 perf_output_put(handle, abi);
5983 if (abi) {
5984 u64 mask = event->attr.sample_regs_user;
5985 perf_output_sample_regs(handle,
5986 data->regs_user.regs,
5987 mask);
5991 if (sample_type & PERF_SAMPLE_STACK_USER) {
5992 perf_output_sample_ustack(handle,
5993 data->stack_user_size,
5994 data->regs_user.regs);
5997 if (sample_type & PERF_SAMPLE_WEIGHT)
5998 perf_output_put(handle, data->weight);
6000 if (sample_type & PERF_SAMPLE_DATA_SRC)
6001 perf_output_put(handle, data->data_src.val);
6003 if (sample_type & PERF_SAMPLE_TRANSACTION)
6004 perf_output_put(handle, data->txn);
6006 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6007 u64 abi = data->regs_intr.abi;
6009 * If there are no regs to dump, notice it through
6010 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6012 perf_output_put(handle, abi);
6014 if (abi) {
6015 u64 mask = event->attr.sample_regs_intr;
6017 perf_output_sample_regs(handle,
6018 data->regs_intr.regs,
6019 mask);
6023 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6024 perf_output_put(handle, data->phys_addr);
6026 if (!event->attr.watermark) {
6027 int wakeup_events = event->attr.wakeup_events;
6029 if (wakeup_events) {
6030 struct ring_buffer *rb = handle->rb;
6031 int events = local_inc_return(&rb->events);
6033 if (events >= wakeup_events) {
6034 local_sub(wakeup_events, &rb->events);
6035 local_inc(&rb->wakeup);
6041 static u64 perf_virt_to_phys(u64 virt)
6043 u64 phys_addr = 0;
6044 struct page *p = NULL;
6046 if (!virt)
6047 return 0;
6049 if (virt >= TASK_SIZE) {
6050 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6051 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6052 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6053 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6054 } else {
6056 * Walking the pages tables for user address.
6057 * Interrupts are disabled, so it prevents any tear down
6058 * of the page tables.
6059 * Try IRQ-safe __get_user_pages_fast first.
6060 * If failed, leave phys_addr as 0.
6062 if ((current->mm != NULL) &&
6063 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6064 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6066 if (p)
6067 put_page(p);
6070 return phys_addr;
6073 void perf_prepare_sample(struct perf_event_header *header,
6074 struct perf_sample_data *data,
6075 struct perf_event *event,
6076 struct pt_regs *regs)
6078 u64 sample_type = event->attr.sample_type;
6080 header->type = PERF_RECORD_SAMPLE;
6081 header->size = sizeof(*header) + event->header_size;
6083 header->misc = 0;
6084 header->misc |= perf_misc_flags(regs);
6086 __perf_event_header__init_id(header, data, event);
6088 if (sample_type & PERF_SAMPLE_IP)
6089 data->ip = perf_instruction_pointer(regs);
6091 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6092 int size = 1;
6094 data->callchain = perf_callchain(event, regs);
6096 if (data->callchain)
6097 size += data->callchain->nr;
6099 header->size += size * sizeof(u64);
6102 if (sample_type & PERF_SAMPLE_RAW) {
6103 struct perf_raw_record *raw = data->raw;
6104 int size;
6106 if (raw) {
6107 struct perf_raw_frag *frag = &raw->frag;
6108 u32 sum = 0;
6110 do {
6111 sum += frag->size;
6112 if (perf_raw_frag_last(frag))
6113 break;
6114 frag = frag->next;
6115 } while (1);
6117 size = round_up(sum + sizeof(u32), sizeof(u64));
6118 raw->size = size - sizeof(u32);
6119 frag->pad = raw->size - sum;
6120 } else {
6121 size = sizeof(u64);
6124 header->size += size;
6127 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6128 int size = sizeof(u64); /* nr */
6129 if (data->br_stack) {
6130 size += data->br_stack->nr
6131 * sizeof(struct perf_branch_entry);
6133 header->size += size;
6136 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6137 perf_sample_regs_user(&data->regs_user, regs,
6138 &data->regs_user_copy);
6140 if (sample_type & PERF_SAMPLE_REGS_USER) {
6141 /* regs dump ABI info */
6142 int size = sizeof(u64);
6144 if (data->regs_user.regs) {
6145 u64 mask = event->attr.sample_regs_user;
6146 size += hweight64(mask) * sizeof(u64);
6149 header->size += size;
6152 if (sample_type & PERF_SAMPLE_STACK_USER) {
6154 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6155 * processed as the last one or have additional check added
6156 * in case new sample type is added, because we could eat
6157 * up the rest of the sample size.
6159 u16 stack_size = event->attr.sample_stack_user;
6160 u16 size = sizeof(u64);
6162 stack_size = perf_sample_ustack_size(stack_size, header->size,
6163 data->regs_user.regs);
6166 * If there is something to dump, add space for the dump
6167 * itself and for the field that tells the dynamic size,
6168 * which is how many have been actually dumped.
6170 if (stack_size)
6171 size += sizeof(u64) + stack_size;
6173 data->stack_user_size = stack_size;
6174 header->size += size;
6177 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6178 /* regs dump ABI info */
6179 int size = sizeof(u64);
6181 perf_sample_regs_intr(&data->regs_intr, regs);
6183 if (data->regs_intr.regs) {
6184 u64 mask = event->attr.sample_regs_intr;
6186 size += hweight64(mask) * sizeof(u64);
6189 header->size += size;
6192 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6193 data->phys_addr = perf_virt_to_phys(data->addr);
6196 static void __always_inline
6197 __perf_event_output(struct perf_event *event,
6198 struct perf_sample_data *data,
6199 struct pt_regs *regs,
6200 int (*output_begin)(struct perf_output_handle *,
6201 struct perf_event *,
6202 unsigned int))
6204 struct perf_output_handle handle;
6205 struct perf_event_header header;
6207 /* protect the callchain buffers */
6208 rcu_read_lock();
6210 perf_prepare_sample(&header, data, event, regs);
6212 if (output_begin(&handle, event, header.size))
6213 goto exit;
6215 perf_output_sample(&handle, &header, data, event);
6217 perf_output_end(&handle);
6219 exit:
6220 rcu_read_unlock();
6223 void
6224 perf_event_output_forward(struct perf_event *event,
6225 struct perf_sample_data *data,
6226 struct pt_regs *regs)
6228 __perf_event_output(event, data, regs, perf_output_begin_forward);
6231 void
6232 perf_event_output_backward(struct perf_event *event,
6233 struct perf_sample_data *data,
6234 struct pt_regs *regs)
6236 __perf_event_output(event, data, regs, perf_output_begin_backward);
6239 void
6240 perf_event_output(struct perf_event *event,
6241 struct perf_sample_data *data,
6242 struct pt_regs *regs)
6244 __perf_event_output(event, data, regs, perf_output_begin);
6248 * read event_id
6251 struct perf_read_event {
6252 struct perf_event_header header;
6254 u32 pid;
6255 u32 tid;
6258 static void
6259 perf_event_read_event(struct perf_event *event,
6260 struct task_struct *task)
6262 struct perf_output_handle handle;
6263 struct perf_sample_data sample;
6264 struct perf_read_event read_event = {
6265 .header = {
6266 .type = PERF_RECORD_READ,
6267 .misc = 0,
6268 .size = sizeof(read_event) + event->read_size,
6270 .pid = perf_event_pid(event, task),
6271 .tid = perf_event_tid(event, task),
6273 int ret;
6275 perf_event_header__init_id(&read_event.header, &sample, event);
6276 ret = perf_output_begin(&handle, event, read_event.header.size);
6277 if (ret)
6278 return;
6280 perf_output_put(&handle, read_event);
6281 perf_output_read(&handle, event);
6282 perf_event__output_id_sample(event, &handle, &sample);
6284 perf_output_end(&handle);
6287 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6289 static void
6290 perf_iterate_ctx(struct perf_event_context *ctx,
6291 perf_iterate_f output,
6292 void *data, bool all)
6294 struct perf_event *event;
6296 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6297 if (!all) {
6298 if (event->state < PERF_EVENT_STATE_INACTIVE)
6299 continue;
6300 if (!event_filter_match(event))
6301 continue;
6304 output(event, data);
6308 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6310 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6311 struct perf_event *event;
6313 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6315 * Skip events that are not fully formed yet; ensure that
6316 * if we observe event->ctx, both event and ctx will be
6317 * complete enough. See perf_install_in_context().
6319 if (!smp_load_acquire(&event->ctx))
6320 continue;
6322 if (event->state < PERF_EVENT_STATE_INACTIVE)
6323 continue;
6324 if (!event_filter_match(event))
6325 continue;
6326 output(event, data);
6331 * Iterate all events that need to receive side-band events.
6333 * For new callers; ensure that account_pmu_sb_event() includes
6334 * your event, otherwise it might not get delivered.
6336 static void
6337 perf_iterate_sb(perf_iterate_f output, void *data,
6338 struct perf_event_context *task_ctx)
6340 struct perf_event_context *ctx;
6341 int ctxn;
6343 rcu_read_lock();
6344 preempt_disable();
6347 * If we have task_ctx != NULL we only notify the task context itself.
6348 * The task_ctx is set only for EXIT events before releasing task
6349 * context.
6351 if (task_ctx) {
6352 perf_iterate_ctx(task_ctx, output, data, false);
6353 goto done;
6356 perf_iterate_sb_cpu(output, data);
6358 for_each_task_context_nr(ctxn) {
6359 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6360 if (ctx)
6361 perf_iterate_ctx(ctx, output, data, false);
6363 done:
6364 preempt_enable();
6365 rcu_read_unlock();
6369 * Clear all file-based filters at exec, they'll have to be
6370 * re-instated when/if these objects are mmapped again.
6372 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6374 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6375 struct perf_addr_filter *filter;
6376 unsigned int restart = 0, count = 0;
6377 unsigned long flags;
6379 if (!has_addr_filter(event))
6380 return;
6382 raw_spin_lock_irqsave(&ifh->lock, flags);
6383 list_for_each_entry(filter, &ifh->list, entry) {
6384 if (filter->inode) {
6385 event->addr_filters_offs[count] = 0;
6386 restart++;
6389 count++;
6392 if (restart)
6393 event->addr_filters_gen++;
6394 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6396 if (restart)
6397 perf_event_stop(event, 1);
6400 void perf_event_exec(void)
6402 struct perf_event_context *ctx;
6403 int ctxn;
6405 rcu_read_lock();
6406 for_each_task_context_nr(ctxn) {
6407 ctx = current->perf_event_ctxp[ctxn];
6408 if (!ctx)
6409 continue;
6411 perf_event_enable_on_exec(ctxn);
6413 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6414 true);
6416 rcu_read_unlock();
6419 struct remote_output {
6420 struct ring_buffer *rb;
6421 int err;
6424 static void __perf_event_output_stop(struct perf_event *event, void *data)
6426 struct perf_event *parent = event->parent;
6427 struct remote_output *ro = data;
6428 struct ring_buffer *rb = ro->rb;
6429 struct stop_event_data sd = {
6430 .event = event,
6433 if (!has_aux(event))
6434 return;
6436 if (!parent)
6437 parent = event;
6440 * In case of inheritance, it will be the parent that links to the
6441 * ring-buffer, but it will be the child that's actually using it.
6443 * We are using event::rb to determine if the event should be stopped,
6444 * however this may race with ring_buffer_attach() (through set_output),
6445 * which will make us skip the event that actually needs to be stopped.
6446 * So ring_buffer_attach() has to stop an aux event before re-assigning
6447 * its rb pointer.
6449 if (rcu_dereference(parent->rb) == rb)
6450 ro->err = __perf_event_stop(&sd);
6453 static int __perf_pmu_output_stop(void *info)
6455 struct perf_event *event = info;
6456 struct pmu *pmu = event->pmu;
6457 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6458 struct remote_output ro = {
6459 .rb = event->rb,
6462 rcu_read_lock();
6463 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6464 if (cpuctx->task_ctx)
6465 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6466 &ro, false);
6467 rcu_read_unlock();
6469 return ro.err;
6472 static void perf_pmu_output_stop(struct perf_event *event)
6474 struct perf_event *iter;
6475 int err, cpu;
6477 restart:
6478 rcu_read_lock();
6479 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6481 * For per-CPU events, we need to make sure that neither they
6482 * nor their children are running; for cpu==-1 events it's
6483 * sufficient to stop the event itself if it's active, since
6484 * it can't have children.
6486 cpu = iter->cpu;
6487 if (cpu == -1)
6488 cpu = READ_ONCE(iter->oncpu);
6490 if (cpu == -1)
6491 continue;
6493 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6494 if (err == -EAGAIN) {
6495 rcu_read_unlock();
6496 goto restart;
6499 rcu_read_unlock();
6503 * task tracking -- fork/exit
6505 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6508 struct perf_task_event {
6509 struct task_struct *task;
6510 struct perf_event_context *task_ctx;
6512 struct {
6513 struct perf_event_header header;
6515 u32 pid;
6516 u32 ppid;
6517 u32 tid;
6518 u32 ptid;
6519 u64 time;
6520 } event_id;
6523 static int perf_event_task_match(struct perf_event *event)
6525 return event->attr.comm || event->attr.mmap ||
6526 event->attr.mmap2 || event->attr.mmap_data ||
6527 event->attr.task;
6530 static void perf_event_task_output(struct perf_event *event,
6531 void *data)
6533 struct perf_task_event *task_event = data;
6534 struct perf_output_handle handle;
6535 struct perf_sample_data sample;
6536 struct task_struct *task = task_event->task;
6537 int ret, size = task_event->event_id.header.size;
6539 if (!perf_event_task_match(event))
6540 return;
6542 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6544 ret = perf_output_begin(&handle, event,
6545 task_event->event_id.header.size);
6546 if (ret)
6547 goto out;
6549 task_event->event_id.pid = perf_event_pid(event, task);
6550 task_event->event_id.ppid = perf_event_pid(event, current);
6552 task_event->event_id.tid = perf_event_tid(event, task);
6553 task_event->event_id.ptid = perf_event_tid(event, current);
6555 task_event->event_id.time = perf_event_clock(event);
6557 perf_output_put(&handle, task_event->event_id);
6559 perf_event__output_id_sample(event, &handle, &sample);
6561 perf_output_end(&handle);
6562 out:
6563 task_event->event_id.header.size = size;
6566 static void perf_event_task(struct task_struct *task,
6567 struct perf_event_context *task_ctx,
6568 int new)
6570 struct perf_task_event task_event;
6572 if (!atomic_read(&nr_comm_events) &&
6573 !atomic_read(&nr_mmap_events) &&
6574 !atomic_read(&nr_task_events))
6575 return;
6577 task_event = (struct perf_task_event){
6578 .task = task,
6579 .task_ctx = task_ctx,
6580 .event_id = {
6581 .header = {
6582 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6583 .misc = 0,
6584 .size = sizeof(task_event.event_id),
6586 /* .pid */
6587 /* .ppid */
6588 /* .tid */
6589 /* .ptid */
6590 /* .time */
6594 perf_iterate_sb(perf_event_task_output,
6595 &task_event,
6596 task_ctx);
6599 void perf_event_fork(struct task_struct *task)
6601 perf_event_task(task, NULL, 1);
6602 perf_event_namespaces(task);
6606 * comm tracking
6609 struct perf_comm_event {
6610 struct task_struct *task;
6611 char *comm;
6612 int comm_size;
6614 struct {
6615 struct perf_event_header header;
6617 u32 pid;
6618 u32 tid;
6619 } event_id;
6622 static int perf_event_comm_match(struct perf_event *event)
6624 return event->attr.comm;
6627 static void perf_event_comm_output(struct perf_event *event,
6628 void *data)
6630 struct perf_comm_event *comm_event = data;
6631 struct perf_output_handle handle;
6632 struct perf_sample_data sample;
6633 int size = comm_event->event_id.header.size;
6634 int ret;
6636 if (!perf_event_comm_match(event))
6637 return;
6639 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6640 ret = perf_output_begin(&handle, event,
6641 comm_event->event_id.header.size);
6643 if (ret)
6644 goto out;
6646 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6647 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6649 perf_output_put(&handle, comm_event->event_id);
6650 __output_copy(&handle, comm_event->comm,
6651 comm_event->comm_size);
6653 perf_event__output_id_sample(event, &handle, &sample);
6655 perf_output_end(&handle);
6656 out:
6657 comm_event->event_id.header.size = size;
6660 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6662 char comm[TASK_COMM_LEN];
6663 unsigned int size;
6665 memset(comm, 0, sizeof(comm));
6666 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6667 size = ALIGN(strlen(comm)+1, sizeof(u64));
6669 comm_event->comm = comm;
6670 comm_event->comm_size = size;
6672 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6674 perf_iterate_sb(perf_event_comm_output,
6675 comm_event,
6676 NULL);
6679 void perf_event_comm(struct task_struct *task, bool exec)
6681 struct perf_comm_event comm_event;
6683 if (!atomic_read(&nr_comm_events))
6684 return;
6686 comm_event = (struct perf_comm_event){
6687 .task = task,
6688 /* .comm */
6689 /* .comm_size */
6690 .event_id = {
6691 .header = {
6692 .type = PERF_RECORD_COMM,
6693 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6694 /* .size */
6696 /* .pid */
6697 /* .tid */
6701 perf_event_comm_event(&comm_event);
6705 * namespaces tracking
6708 struct perf_namespaces_event {
6709 struct task_struct *task;
6711 struct {
6712 struct perf_event_header header;
6714 u32 pid;
6715 u32 tid;
6716 u64 nr_namespaces;
6717 struct perf_ns_link_info link_info[NR_NAMESPACES];
6718 } event_id;
6721 static int perf_event_namespaces_match(struct perf_event *event)
6723 return event->attr.namespaces;
6726 static void perf_event_namespaces_output(struct perf_event *event,
6727 void *data)
6729 struct perf_namespaces_event *namespaces_event = data;
6730 struct perf_output_handle handle;
6731 struct perf_sample_data sample;
6732 int ret;
6734 if (!perf_event_namespaces_match(event))
6735 return;
6737 perf_event_header__init_id(&namespaces_event->event_id.header,
6738 &sample, event);
6739 ret = perf_output_begin(&handle, event,
6740 namespaces_event->event_id.header.size);
6741 if (ret)
6742 return;
6744 namespaces_event->event_id.pid = perf_event_pid(event,
6745 namespaces_event->task);
6746 namespaces_event->event_id.tid = perf_event_tid(event,
6747 namespaces_event->task);
6749 perf_output_put(&handle, namespaces_event->event_id);
6751 perf_event__output_id_sample(event, &handle, &sample);
6753 perf_output_end(&handle);
6756 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6757 struct task_struct *task,
6758 const struct proc_ns_operations *ns_ops)
6760 struct path ns_path;
6761 struct inode *ns_inode;
6762 void *error;
6764 error = ns_get_path(&ns_path, task, ns_ops);
6765 if (!error) {
6766 ns_inode = ns_path.dentry->d_inode;
6767 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6768 ns_link_info->ino = ns_inode->i_ino;
6772 void perf_event_namespaces(struct task_struct *task)
6774 struct perf_namespaces_event namespaces_event;
6775 struct perf_ns_link_info *ns_link_info;
6777 if (!atomic_read(&nr_namespaces_events))
6778 return;
6780 namespaces_event = (struct perf_namespaces_event){
6781 .task = task,
6782 .event_id = {
6783 .header = {
6784 .type = PERF_RECORD_NAMESPACES,
6785 .misc = 0,
6786 .size = sizeof(namespaces_event.event_id),
6788 /* .pid */
6789 /* .tid */
6790 .nr_namespaces = NR_NAMESPACES,
6791 /* .link_info[NR_NAMESPACES] */
6795 ns_link_info = namespaces_event.event_id.link_info;
6797 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6798 task, &mntns_operations);
6800 #ifdef CONFIG_USER_NS
6801 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6802 task, &userns_operations);
6803 #endif
6804 #ifdef CONFIG_NET_NS
6805 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6806 task, &netns_operations);
6807 #endif
6808 #ifdef CONFIG_UTS_NS
6809 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6810 task, &utsns_operations);
6811 #endif
6812 #ifdef CONFIG_IPC_NS
6813 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6814 task, &ipcns_operations);
6815 #endif
6816 #ifdef CONFIG_PID_NS
6817 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6818 task, &pidns_operations);
6819 #endif
6820 #ifdef CONFIG_CGROUPS
6821 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6822 task, &cgroupns_operations);
6823 #endif
6825 perf_iterate_sb(perf_event_namespaces_output,
6826 &namespaces_event,
6827 NULL);
6831 * mmap tracking
6834 struct perf_mmap_event {
6835 struct vm_area_struct *vma;
6837 const char *file_name;
6838 int file_size;
6839 int maj, min;
6840 u64 ino;
6841 u64 ino_generation;
6842 u32 prot, flags;
6844 struct {
6845 struct perf_event_header header;
6847 u32 pid;
6848 u32 tid;
6849 u64 start;
6850 u64 len;
6851 u64 pgoff;
6852 } event_id;
6855 static int perf_event_mmap_match(struct perf_event *event,
6856 void *data)
6858 struct perf_mmap_event *mmap_event = data;
6859 struct vm_area_struct *vma = mmap_event->vma;
6860 int executable = vma->vm_flags & VM_EXEC;
6862 return (!executable && event->attr.mmap_data) ||
6863 (executable && (event->attr.mmap || event->attr.mmap2));
6866 static void perf_event_mmap_output(struct perf_event *event,
6867 void *data)
6869 struct perf_mmap_event *mmap_event = data;
6870 struct perf_output_handle handle;
6871 struct perf_sample_data sample;
6872 int size = mmap_event->event_id.header.size;
6873 int ret;
6875 if (!perf_event_mmap_match(event, data))
6876 return;
6878 if (event->attr.mmap2) {
6879 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6880 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6881 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6882 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6883 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6884 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6885 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6888 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6889 ret = perf_output_begin(&handle, event,
6890 mmap_event->event_id.header.size);
6891 if (ret)
6892 goto out;
6894 mmap_event->event_id.pid = perf_event_pid(event, current);
6895 mmap_event->event_id.tid = perf_event_tid(event, current);
6897 perf_output_put(&handle, mmap_event->event_id);
6899 if (event->attr.mmap2) {
6900 perf_output_put(&handle, mmap_event->maj);
6901 perf_output_put(&handle, mmap_event->min);
6902 perf_output_put(&handle, mmap_event->ino);
6903 perf_output_put(&handle, mmap_event->ino_generation);
6904 perf_output_put(&handle, mmap_event->prot);
6905 perf_output_put(&handle, mmap_event->flags);
6908 __output_copy(&handle, mmap_event->file_name,
6909 mmap_event->file_size);
6911 perf_event__output_id_sample(event, &handle, &sample);
6913 perf_output_end(&handle);
6914 out:
6915 mmap_event->event_id.header.size = size;
6918 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6920 struct vm_area_struct *vma = mmap_event->vma;
6921 struct file *file = vma->vm_file;
6922 int maj = 0, min = 0;
6923 u64 ino = 0, gen = 0;
6924 u32 prot = 0, flags = 0;
6925 unsigned int size;
6926 char tmp[16];
6927 char *buf = NULL;
6928 char *name;
6930 if (vma->vm_flags & VM_READ)
6931 prot |= PROT_READ;
6932 if (vma->vm_flags & VM_WRITE)
6933 prot |= PROT_WRITE;
6934 if (vma->vm_flags & VM_EXEC)
6935 prot |= PROT_EXEC;
6937 if (vma->vm_flags & VM_MAYSHARE)
6938 flags = MAP_SHARED;
6939 else
6940 flags = MAP_PRIVATE;
6942 if (vma->vm_flags & VM_DENYWRITE)
6943 flags |= MAP_DENYWRITE;
6944 if (vma->vm_flags & VM_MAYEXEC)
6945 flags |= MAP_EXECUTABLE;
6946 if (vma->vm_flags & VM_LOCKED)
6947 flags |= MAP_LOCKED;
6948 if (vma->vm_flags & VM_HUGETLB)
6949 flags |= MAP_HUGETLB;
6951 if (file) {
6952 struct inode *inode;
6953 dev_t dev;
6955 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6956 if (!buf) {
6957 name = "//enomem";
6958 goto cpy_name;
6961 * d_path() works from the end of the rb backwards, so we
6962 * need to add enough zero bytes after the string to handle
6963 * the 64bit alignment we do later.
6965 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6966 if (IS_ERR(name)) {
6967 name = "//toolong";
6968 goto cpy_name;
6970 inode = file_inode(vma->vm_file);
6971 dev = inode->i_sb->s_dev;
6972 ino = inode->i_ino;
6973 gen = inode->i_generation;
6974 maj = MAJOR(dev);
6975 min = MINOR(dev);
6977 goto got_name;
6978 } else {
6979 if (vma->vm_ops && vma->vm_ops->name) {
6980 name = (char *) vma->vm_ops->name(vma);
6981 if (name)
6982 goto cpy_name;
6985 name = (char *)arch_vma_name(vma);
6986 if (name)
6987 goto cpy_name;
6989 if (vma->vm_start <= vma->vm_mm->start_brk &&
6990 vma->vm_end >= vma->vm_mm->brk) {
6991 name = "[heap]";
6992 goto cpy_name;
6994 if (vma->vm_start <= vma->vm_mm->start_stack &&
6995 vma->vm_end >= vma->vm_mm->start_stack) {
6996 name = "[stack]";
6997 goto cpy_name;
7000 name = "//anon";
7001 goto cpy_name;
7004 cpy_name:
7005 strlcpy(tmp, name, sizeof(tmp));
7006 name = tmp;
7007 got_name:
7009 * Since our buffer works in 8 byte units we need to align our string
7010 * size to a multiple of 8. However, we must guarantee the tail end is
7011 * zero'd out to avoid leaking random bits to userspace.
7013 size = strlen(name)+1;
7014 while (!IS_ALIGNED(size, sizeof(u64)))
7015 name[size++] = '\0';
7017 mmap_event->file_name = name;
7018 mmap_event->file_size = size;
7019 mmap_event->maj = maj;
7020 mmap_event->min = min;
7021 mmap_event->ino = ino;
7022 mmap_event->ino_generation = gen;
7023 mmap_event->prot = prot;
7024 mmap_event->flags = flags;
7026 if (!(vma->vm_flags & VM_EXEC))
7027 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7029 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7031 perf_iterate_sb(perf_event_mmap_output,
7032 mmap_event,
7033 NULL);
7035 kfree(buf);
7039 * Check whether inode and address range match filter criteria.
7041 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7042 struct file *file, unsigned long offset,
7043 unsigned long size)
7045 if (filter->inode != file_inode(file))
7046 return false;
7048 if (filter->offset > offset + size)
7049 return false;
7051 if (filter->offset + filter->size < offset)
7052 return false;
7054 return true;
7057 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7059 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7060 struct vm_area_struct *vma = data;
7061 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7062 struct file *file = vma->vm_file;
7063 struct perf_addr_filter *filter;
7064 unsigned int restart = 0, count = 0;
7066 if (!has_addr_filter(event))
7067 return;
7069 if (!file)
7070 return;
7072 raw_spin_lock_irqsave(&ifh->lock, flags);
7073 list_for_each_entry(filter, &ifh->list, entry) {
7074 if (perf_addr_filter_match(filter, file, off,
7075 vma->vm_end - vma->vm_start)) {
7076 event->addr_filters_offs[count] = vma->vm_start;
7077 restart++;
7080 count++;
7083 if (restart)
7084 event->addr_filters_gen++;
7085 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7087 if (restart)
7088 perf_event_stop(event, 1);
7092 * Adjust all task's events' filters to the new vma
7094 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7096 struct perf_event_context *ctx;
7097 int ctxn;
7100 * Data tracing isn't supported yet and as such there is no need
7101 * to keep track of anything that isn't related to executable code:
7103 if (!(vma->vm_flags & VM_EXEC))
7104 return;
7106 rcu_read_lock();
7107 for_each_task_context_nr(ctxn) {
7108 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7109 if (!ctx)
7110 continue;
7112 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7114 rcu_read_unlock();
7117 void perf_event_mmap(struct vm_area_struct *vma)
7119 struct perf_mmap_event mmap_event;
7121 if (!atomic_read(&nr_mmap_events))
7122 return;
7124 mmap_event = (struct perf_mmap_event){
7125 .vma = vma,
7126 /* .file_name */
7127 /* .file_size */
7128 .event_id = {
7129 .header = {
7130 .type = PERF_RECORD_MMAP,
7131 .misc = PERF_RECORD_MISC_USER,
7132 /* .size */
7134 /* .pid */
7135 /* .tid */
7136 .start = vma->vm_start,
7137 .len = vma->vm_end - vma->vm_start,
7138 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7140 /* .maj (attr_mmap2 only) */
7141 /* .min (attr_mmap2 only) */
7142 /* .ino (attr_mmap2 only) */
7143 /* .ino_generation (attr_mmap2 only) */
7144 /* .prot (attr_mmap2 only) */
7145 /* .flags (attr_mmap2 only) */
7148 perf_addr_filters_adjust(vma);
7149 perf_event_mmap_event(&mmap_event);
7152 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7153 unsigned long size, u64 flags)
7155 struct perf_output_handle handle;
7156 struct perf_sample_data sample;
7157 struct perf_aux_event {
7158 struct perf_event_header header;
7159 u64 offset;
7160 u64 size;
7161 u64 flags;
7162 } rec = {
7163 .header = {
7164 .type = PERF_RECORD_AUX,
7165 .misc = 0,
7166 .size = sizeof(rec),
7168 .offset = head,
7169 .size = size,
7170 .flags = flags,
7172 int ret;
7174 perf_event_header__init_id(&rec.header, &sample, event);
7175 ret = perf_output_begin(&handle, event, rec.header.size);
7177 if (ret)
7178 return;
7180 perf_output_put(&handle, rec);
7181 perf_event__output_id_sample(event, &handle, &sample);
7183 perf_output_end(&handle);
7187 * Lost/dropped samples logging
7189 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7191 struct perf_output_handle handle;
7192 struct perf_sample_data sample;
7193 int ret;
7195 struct {
7196 struct perf_event_header header;
7197 u64 lost;
7198 } lost_samples_event = {
7199 .header = {
7200 .type = PERF_RECORD_LOST_SAMPLES,
7201 .misc = 0,
7202 .size = sizeof(lost_samples_event),
7204 .lost = lost,
7207 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7209 ret = perf_output_begin(&handle, event,
7210 lost_samples_event.header.size);
7211 if (ret)
7212 return;
7214 perf_output_put(&handle, lost_samples_event);
7215 perf_event__output_id_sample(event, &handle, &sample);
7216 perf_output_end(&handle);
7220 * context_switch tracking
7223 struct perf_switch_event {
7224 struct task_struct *task;
7225 struct task_struct *next_prev;
7227 struct {
7228 struct perf_event_header header;
7229 u32 next_prev_pid;
7230 u32 next_prev_tid;
7231 } event_id;
7234 static int perf_event_switch_match(struct perf_event *event)
7236 return event->attr.context_switch;
7239 static void perf_event_switch_output(struct perf_event *event, void *data)
7241 struct perf_switch_event *se = data;
7242 struct perf_output_handle handle;
7243 struct perf_sample_data sample;
7244 int ret;
7246 if (!perf_event_switch_match(event))
7247 return;
7249 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7250 if (event->ctx->task) {
7251 se->event_id.header.type = PERF_RECORD_SWITCH;
7252 se->event_id.header.size = sizeof(se->event_id.header);
7253 } else {
7254 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7255 se->event_id.header.size = sizeof(se->event_id);
7256 se->event_id.next_prev_pid =
7257 perf_event_pid(event, se->next_prev);
7258 se->event_id.next_prev_tid =
7259 perf_event_tid(event, se->next_prev);
7262 perf_event_header__init_id(&se->event_id.header, &sample, event);
7264 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7265 if (ret)
7266 return;
7268 if (event->ctx->task)
7269 perf_output_put(&handle, se->event_id.header);
7270 else
7271 perf_output_put(&handle, se->event_id);
7273 perf_event__output_id_sample(event, &handle, &sample);
7275 perf_output_end(&handle);
7278 static void perf_event_switch(struct task_struct *task,
7279 struct task_struct *next_prev, bool sched_in)
7281 struct perf_switch_event switch_event;
7283 /* N.B. caller checks nr_switch_events != 0 */
7285 switch_event = (struct perf_switch_event){
7286 .task = task,
7287 .next_prev = next_prev,
7288 .event_id = {
7289 .header = {
7290 /* .type */
7291 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7292 /* .size */
7294 /* .next_prev_pid */
7295 /* .next_prev_tid */
7299 perf_iterate_sb(perf_event_switch_output,
7300 &switch_event,
7301 NULL);
7305 * IRQ throttle logging
7308 static void perf_log_throttle(struct perf_event *event, int enable)
7310 struct perf_output_handle handle;
7311 struct perf_sample_data sample;
7312 int ret;
7314 struct {
7315 struct perf_event_header header;
7316 u64 time;
7317 u64 id;
7318 u64 stream_id;
7319 } throttle_event = {
7320 .header = {
7321 .type = PERF_RECORD_THROTTLE,
7322 .misc = 0,
7323 .size = sizeof(throttle_event),
7325 .time = perf_event_clock(event),
7326 .id = primary_event_id(event),
7327 .stream_id = event->id,
7330 if (enable)
7331 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7333 perf_event_header__init_id(&throttle_event.header, &sample, event);
7335 ret = perf_output_begin(&handle, event,
7336 throttle_event.header.size);
7337 if (ret)
7338 return;
7340 perf_output_put(&handle, throttle_event);
7341 perf_event__output_id_sample(event, &handle, &sample);
7342 perf_output_end(&handle);
7345 void perf_event_itrace_started(struct perf_event *event)
7347 event->attach_state |= PERF_ATTACH_ITRACE;
7350 static void perf_log_itrace_start(struct perf_event *event)
7352 struct perf_output_handle handle;
7353 struct perf_sample_data sample;
7354 struct perf_aux_event {
7355 struct perf_event_header header;
7356 u32 pid;
7357 u32 tid;
7358 } rec;
7359 int ret;
7361 if (event->parent)
7362 event = event->parent;
7364 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7365 event->attach_state & PERF_ATTACH_ITRACE)
7366 return;
7368 rec.header.type = PERF_RECORD_ITRACE_START;
7369 rec.header.misc = 0;
7370 rec.header.size = sizeof(rec);
7371 rec.pid = perf_event_pid(event, current);
7372 rec.tid = perf_event_tid(event, current);
7374 perf_event_header__init_id(&rec.header, &sample, event);
7375 ret = perf_output_begin(&handle, event, rec.header.size);
7377 if (ret)
7378 return;
7380 perf_output_put(&handle, rec);
7381 perf_event__output_id_sample(event, &handle, &sample);
7383 perf_output_end(&handle);
7386 static int
7387 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7389 struct hw_perf_event *hwc = &event->hw;
7390 int ret = 0;
7391 u64 seq;
7393 seq = __this_cpu_read(perf_throttled_seq);
7394 if (seq != hwc->interrupts_seq) {
7395 hwc->interrupts_seq = seq;
7396 hwc->interrupts = 1;
7397 } else {
7398 hwc->interrupts++;
7399 if (unlikely(throttle
7400 && hwc->interrupts >= max_samples_per_tick)) {
7401 __this_cpu_inc(perf_throttled_count);
7402 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7403 hwc->interrupts = MAX_INTERRUPTS;
7404 perf_log_throttle(event, 0);
7405 ret = 1;
7409 if (event->attr.freq) {
7410 u64 now = perf_clock();
7411 s64 delta = now - hwc->freq_time_stamp;
7413 hwc->freq_time_stamp = now;
7415 if (delta > 0 && delta < 2*TICK_NSEC)
7416 perf_adjust_period(event, delta, hwc->last_period, true);
7419 return ret;
7422 int perf_event_account_interrupt(struct perf_event *event)
7424 return __perf_event_account_interrupt(event, 1);
7428 * Generic event overflow handling, sampling.
7431 static int __perf_event_overflow(struct perf_event *event,
7432 int throttle, struct perf_sample_data *data,
7433 struct pt_regs *regs)
7435 int events = atomic_read(&event->event_limit);
7436 int ret = 0;
7439 * Non-sampling counters might still use the PMI to fold short
7440 * hardware counters, ignore those.
7442 if (unlikely(!is_sampling_event(event)))
7443 return 0;
7445 ret = __perf_event_account_interrupt(event, throttle);
7448 * XXX event_limit might not quite work as expected on inherited
7449 * events
7452 event->pending_kill = POLL_IN;
7453 if (events && atomic_dec_and_test(&event->event_limit)) {
7454 ret = 1;
7455 event->pending_kill = POLL_HUP;
7457 perf_event_disable_inatomic(event);
7460 READ_ONCE(event->overflow_handler)(event, data, regs);
7462 if (*perf_event_fasync(event) && event->pending_kill) {
7463 event->pending_wakeup = 1;
7464 irq_work_queue(&event->pending);
7467 return ret;
7470 int perf_event_overflow(struct perf_event *event,
7471 struct perf_sample_data *data,
7472 struct pt_regs *regs)
7474 return __perf_event_overflow(event, 1, data, regs);
7478 * Generic software event infrastructure
7481 struct swevent_htable {
7482 struct swevent_hlist *swevent_hlist;
7483 struct mutex hlist_mutex;
7484 int hlist_refcount;
7486 /* Recursion avoidance in each contexts */
7487 int recursion[PERF_NR_CONTEXTS];
7490 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7493 * We directly increment event->count and keep a second value in
7494 * event->hw.period_left to count intervals. This period event
7495 * is kept in the range [-sample_period, 0] so that we can use the
7496 * sign as trigger.
7499 u64 perf_swevent_set_period(struct perf_event *event)
7501 struct hw_perf_event *hwc = &event->hw;
7502 u64 period = hwc->last_period;
7503 u64 nr, offset;
7504 s64 old, val;
7506 hwc->last_period = hwc->sample_period;
7508 again:
7509 old = val = local64_read(&hwc->period_left);
7510 if (val < 0)
7511 return 0;
7513 nr = div64_u64(period + val, period);
7514 offset = nr * period;
7515 val -= offset;
7516 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7517 goto again;
7519 return nr;
7522 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7523 struct perf_sample_data *data,
7524 struct pt_regs *regs)
7526 struct hw_perf_event *hwc = &event->hw;
7527 int throttle = 0;
7529 if (!overflow)
7530 overflow = perf_swevent_set_period(event);
7532 if (hwc->interrupts == MAX_INTERRUPTS)
7533 return;
7535 for (; overflow; overflow--) {
7536 if (__perf_event_overflow(event, throttle,
7537 data, regs)) {
7539 * We inhibit the overflow from happening when
7540 * hwc->interrupts == MAX_INTERRUPTS.
7542 break;
7544 throttle = 1;
7548 static void perf_swevent_event(struct perf_event *event, u64 nr,
7549 struct perf_sample_data *data,
7550 struct pt_regs *regs)
7552 struct hw_perf_event *hwc = &event->hw;
7554 local64_add(nr, &event->count);
7556 if (!regs)
7557 return;
7559 if (!is_sampling_event(event))
7560 return;
7562 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7563 data->period = nr;
7564 return perf_swevent_overflow(event, 1, data, regs);
7565 } else
7566 data->period = event->hw.last_period;
7568 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7569 return perf_swevent_overflow(event, 1, data, regs);
7571 if (local64_add_negative(nr, &hwc->period_left))
7572 return;
7574 perf_swevent_overflow(event, 0, data, regs);
7577 static int perf_exclude_event(struct perf_event *event,
7578 struct pt_regs *regs)
7580 if (event->hw.state & PERF_HES_STOPPED)
7581 return 1;
7583 if (regs) {
7584 if (event->attr.exclude_user && user_mode(regs))
7585 return 1;
7587 if (event->attr.exclude_kernel && !user_mode(regs))
7588 return 1;
7591 return 0;
7594 static int perf_swevent_match(struct perf_event *event,
7595 enum perf_type_id type,
7596 u32 event_id,
7597 struct perf_sample_data *data,
7598 struct pt_regs *regs)
7600 if (event->attr.type != type)
7601 return 0;
7603 if (event->attr.config != event_id)
7604 return 0;
7606 if (perf_exclude_event(event, regs))
7607 return 0;
7609 return 1;
7612 static inline u64 swevent_hash(u64 type, u32 event_id)
7614 u64 val = event_id | (type << 32);
7616 return hash_64(val, SWEVENT_HLIST_BITS);
7619 static inline struct hlist_head *
7620 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7622 u64 hash = swevent_hash(type, event_id);
7624 return &hlist->heads[hash];
7627 /* For the read side: events when they trigger */
7628 static inline struct hlist_head *
7629 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7631 struct swevent_hlist *hlist;
7633 hlist = rcu_dereference(swhash->swevent_hlist);
7634 if (!hlist)
7635 return NULL;
7637 return __find_swevent_head(hlist, type, event_id);
7640 /* For the event head insertion and removal in the hlist */
7641 static inline struct hlist_head *
7642 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7644 struct swevent_hlist *hlist;
7645 u32 event_id = event->attr.config;
7646 u64 type = event->attr.type;
7649 * Event scheduling is always serialized against hlist allocation
7650 * and release. Which makes the protected version suitable here.
7651 * The context lock guarantees that.
7653 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7654 lockdep_is_held(&event->ctx->lock));
7655 if (!hlist)
7656 return NULL;
7658 return __find_swevent_head(hlist, type, event_id);
7661 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7662 u64 nr,
7663 struct perf_sample_data *data,
7664 struct pt_regs *regs)
7666 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7667 struct perf_event *event;
7668 struct hlist_head *head;
7670 rcu_read_lock();
7671 head = find_swevent_head_rcu(swhash, type, event_id);
7672 if (!head)
7673 goto end;
7675 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7676 if (perf_swevent_match(event, type, event_id, data, regs))
7677 perf_swevent_event(event, nr, data, regs);
7679 end:
7680 rcu_read_unlock();
7683 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7685 int perf_swevent_get_recursion_context(void)
7687 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7689 return get_recursion_context(swhash->recursion);
7691 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7693 void perf_swevent_put_recursion_context(int rctx)
7695 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7697 put_recursion_context(swhash->recursion, rctx);
7700 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7702 struct perf_sample_data data;
7704 if (WARN_ON_ONCE(!regs))
7705 return;
7707 perf_sample_data_init(&data, addr, 0);
7708 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7711 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7713 int rctx;
7715 preempt_disable_notrace();
7716 rctx = perf_swevent_get_recursion_context();
7717 if (unlikely(rctx < 0))
7718 goto fail;
7720 ___perf_sw_event(event_id, nr, regs, addr);
7722 perf_swevent_put_recursion_context(rctx);
7723 fail:
7724 preempt_enable_notrace();
7727 static void perf_swevent_read(struct perf_event *event)
7731 static int perf_swevent_add(struct perf_event *event, int flags)
7733 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7734 struct hw_perf_event *hwc = &event->hw;
7735 struct hlist_head *head;
7737 if (is_sampling_event(event)) {
7738 hwc->last_period = hwc->sample_period;
7739 perf_swevent_set_period(event);
7742 hwc->state = !(flags & PERF_EF_START);
7744 head = find_swevent_head(swhash, event);
7745 if (WARN_ON_ONCE(!head))
7746 return -EINVAL;
7748 hlist_add_head_rcu(&event->hlist_entry, head);
7749 perf_event_update_userpage(event);
7751 return 0;
7754 static void perf_swevent_del(struct perf_event *event, int flags)
7756 hlist_del_rcu(&event->hlist_entry);
7759 static void perf_swevent_start(struct perf_event *event, int flags)
7761 event->hw.state = 0;
7764 static void perf_swevent_stop(struct perf_event *event, int flags)
7766 event->hw.state = PERF_HES_STOPPED;
7769 /* Deref the hlist from the update side */
7770 static inline struct swevent_hlist *
7771 swevent_hlist_deref(struct swevent_htable *swhash)
7773 return rcu_dereference_protected(swhash->swevent_hlist,
7774 lockdep_is_held(&swhash->hlist_mutex));
7777 static void swevent_hlist_release(struct swevent_htable *swhash)
7779 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7781 if (!hlist)
7782 return;
7784 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7785 kfree_rcu(hlist, rcu_head);
7788 static void swevent_hlist_put_cpu(int cpu)
7790 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7792 mutex_lock(&swhash->hlist_mutex);
7794 if (!--swhash->hlist_refcount)
7795 swevent_hlist_release(swhash);
7797 mutex_unlock(&swhash->hlist_mutex);
7800 static void swevent_hlist_put(void)
7802 int cpu;
7804 for_each_possible_cpu(cpu)
7805 swevent_hlist_put_cpu(cpu);
7808 static int swevent_hlist_get_cpu(int cpu)
7810 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7811 int err = 0;
7813 mutex_lock(&swhash->hlist_mutex);
7814 if (!swevent_hlist_deref(swhash) &&
7815 cpumask_test_cpu(cpu, perf_online_mask)) {
7816 struct swevent_hlist *hlist;
7818 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7819 if (!hlist) {
7820 err = -ENOMEM;
7821 goto exit;
7823 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7825 swhash->hlist_refcount++;
7826 exit:
7827 mutex_unlock(&swhash->hlist_mutex);
7829 return err;
7832 static int swevent_hlist_get(void)
7834 int err, cpu, failed_cpu;
7836 mutex_lock(&pmus_lock);
7837 for_each_possible_cpu(cpu) {
7838 err = swevent_hlist_get_cpu(cpu);
7839 if (err) {
7840 failed_cpu = cpu;
7841 goto fail;
7844 mutex_unlock(&pmus_lock);
7845 return 0;
7846 fail:
7847 for_each_possible_cpu(cpu) {
7848 if (cpu == failed_cpu)
7849 break;
7850 swevent_hlist_put_cpu(cpu);
7852 mutex_unlock(&pmus_lock);
7853 return err;
7856 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7858 static void sw_perf_event_destroy(struct perf_event *event)
7860 u64 event_id = event->attr.config;
7862 WARN_ON(event->parent);
7864 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7865 swevent_hlist_put();
7868 static int perf_swevent_init(struct perf_event *event)
7870 u64 event_id = event->attr.config;
7872 if (event->attr.type != PERF_TYPE_SOFTWARE)
7873 return -ENOENT;
7876 * no branch sampling for software events
7878 if (has_branch_stack(event))
7879 return -EOPNOTSUPP;
7881 switch (event_id) {
7882 case PERF_COUNT_SW_CPU_CLOCK:
7883 case PERF_COUNT_SW_TASK_CLOCK:
7884 return -ENOENT;
7886 default:
7887 break;
7890 if (event_id >= PERF_COUNT_SW_MAX)
7891 return -ENOENT;
7893 if (!event->parent) {
7894 int err;
7896 err = swevent_hlist_get();
7897 if (err)
7898 return err;
7900 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7901 event->destroy = sw_perf_event_destroy;
7904 return 0;
7907 static struct pmu perf_swevent = {
7908 .task_ctx_nr = perf_sw_context,
7910 .capabilities = PERF_PMU_CAP_NO_NMI,
7912 .event_init = perf_swevent_init,
7913 .add = perf_swevent_add,
7914 .del = perf_swevent_del,
7915 .start = perf_swevent_start,
7916 .stop = perf_swevent_stop,
7917 .read = perf_swevent_read,
7920 #ifdef CONFIG_EVENT_TRACING
7922 static int perf_tp_filter_match(struct perf_event *event,
7923 struct perf_sample_data *data)
7925 void *record = data->raw->frag.data;
7927 /* only top level events have filters set */
7928 if (event->parent)
7929 event = event->parent;
7931 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7932 return 1;
7933 return 0;
7936 static int perf_tp_event_match(struct perf_event *event,
7937 struct perf_sample_data *data,
7938 struct pt_regs *regs)
7940 if (event->hw.state & PERF_HES_STOPPED)
7941 return 0;
7943 * All tracepoints are from kernel-space.
7945 if (event->attr.exclude_kernel)
7946 return 0;
7948 if (!perf_tp_filter_match(event, data))
7949 return 0;
7951 return 1;
7954 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7955 struct trace_event_call *call, u64 count,
7956 struct pt_regs *regs, struct hlist_head *head,
7957 struct task_struct *task)
7959 struct bpf_prog *prog = call->prog;
7961 if (prog) {
7962 *(struct pt_regs **)raw_data = regs;
7963 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7964 perf_swevent_put_recursion_context(rctx);
7965 return;
7968 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7969 rctx, task, NULL);
7971 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7973 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7974 struct pt_regs *regs, struct hlist_head *head, int rctx,
7975 struct task_struct *task, struct perf_event *event)
7977 struct perf_sample_data data;
7979 struct perf_raw_record raw = {
7980 .frag = {
7981 .size = entry_size,
7982 .data = record,
7986 perf_sample_data_init(&data, 0, 0);
7987 data.raw = &raw;
7989 perf_trace_buf_update(record, event_type);
7991 /* Use the given event instead of the hlist */
7992 if (event) {
7993 if (perf_tp_event_match(event, &data, regs))
7994 perf_swevent_event(event, count, &data, regs);
7995 } else {
7996 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7997 if (perf_tp_event_match(event, &data, regs))
7998 perf_swevent_event(event, count, &data, regs);
8003 * If we got specified a target task, also iterate its context and
8004 * deliver this event there too.
8006 if (task && task != current) {
8007 struct perf_event_context *ctx;
8008 struct trace_entry *entry = record;
8010 rcu_read_lock();
8011 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8012 if (!ctx)
8013 goto unlock;
8015 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8016 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8017 continue;
8018 if (event->attr.config != entry->type)
8019 continue;
8020 if (perf_tp_event_match(event, &data, regs))
8021 perf_swevent_event(event, count, &data, regs);
8023 unlock:
8024 rcu_read_unlock();
8027 perf_swevent_put_recursion_context(rctx);
8029 EXPORT_SYMBOL_GPL(perf_tp_event);
8031 static void tp_perf_event_destroy(struct perf_event *event)
8033 perf_trace_destroy(event);
8036 static int perf_tp_event_init(struct perf_event *event)
8038 int err;
8040 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8041 return -ENOENT;
8044 * no branch sampling for tracepoint events
8046 if (has_branch_stack(event))
8047 return -EOPNOTSUPP;
8049 err = perf_trace_init(event);
8050 if (err)
8051 return err;
8053 event->destroy = tp_perf_event_destroy;
8055 return 0;
8058 static struct pmu perf_tracepoint = {
8059 .task_ctx_nr = perf_sw_context,
8061 .event_init = perf_tp_event_init,
8062 .add = perf_trace_add,
8063 .del = perf_trace_del,
8064 .start = perf_swevent_start,
8065 .stop = perf_swevent_stop,
8066 .read = perf_swevent_read,
8069 static inline void perf_tp_register(void)
8071 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8074 static void perf_event_free_filter(struct perf_event *event)
8076 ftrace_profile_free_filter(event);
8079 #ifdef CONFIG_BPF_SYSCALL
8080 static void bpf_overflow_handler(struct perf_event *event,
8081 struct perf_sample_data *data,
8082 struct pt_regs *regs)
8084 struct bpf_perf_event_data_kern ctx = {
8085 .data = data,
8086 .regs = regs,
8088 int ret = 0;
8090 preempt_disable();
8091 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8092 goto out;
8093 rcu_read_lock();
8094 ret = BPF_PROG_RUN(event->prog, &ctx);
8095 rcu_read_unlock();
8096 out:
8097 __this_cpu_dec(bpf_prog_active);
8098 preempt_enable();
8099 if (!ret)
8100 return;
8102 event->orig_overflow_handler(event, data, regs);
8105 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8107 struct bpf_prog *prog;
8109 if (event->overflow_handler_context)
8110 /* hw breakpoint or kernel counter */
8111 return -EINVAL;
8113 if (event->prog)
8114 return -EEXIST;
8116 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8117 if (IS_ERR(prog))
8118 return PTR_ERR(prog);
8120 event->prog = prog;
8121 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8122 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8123 return 0;
8126 static void perf_event_free_bpf_handler(struct perf_event *event)
8128 struct bpf_prog *prog = event->prog;
8130 if (!prog)
8131 return;
8133 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8134 event->prog = NULL;
8135 bpf_prog_put(prog);
8137 #else
8138 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8140 return -EOPNOTSUPP;
8142 static void perf_event_free_bpf_handler(struct perf_event *event)
8145 #endif
8147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8149 bool is_kprobe, is_tracepoint;
8150 struct bpf_prog *prog;
8152 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8153 return perf_event_set_bpf_handler(event, prog_fd);
8155 if (event->tp_event->prog)
8156 return -EEXIST;
8158 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8159 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8160 if (!is_kprobe && !is_tracepoint)
8161 /* bpf programs can only be attached to u/kprobe or tracepoint */
8162 return -EINVAL;
8164 prog = bpf_prog_get(prog_fd);
8165 if (IS_ERR(prog))
8166 return PTR_ERR(prog);
8168 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8169 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8170 /* valid fd, but invalid bpf program type */
8171 bpf_prog_put(prog);
8172 return -EINVAL;
8175 if (is_tracepoint) {
8176 int off = trace_event_get_offsets(event->tp_event);
8178 if (prog->aux->max_ctx_offset > off) {
8179 bpf_prog_put(prog);
8180 return -EACCES;
8183 event->tp_event->prog = prog;
8185 return 0;
8188 static void perf_event_free_bpf_prog(struct perf_event *event)
8190 struct bpf_prog *prog;
8192 perf_event_free_bpf_handler(event);
8194 if (!event->tp_event)
8195 return;
8197 prog = event->tp_event->prog;
8198 if (prog) {
8199 event->tp_event->prog = NULL;
8200 bpf_prog_put(prog);
8204 #else
8206 static inline void perf_tp_register(void)
8210 static void perf_event_free_filter(struct perf_event *event)
8214 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8216 return -ENOENT;
8219 static void perf_event_free_bpf_prog(struct perf_event *event)
8222 #endif /* CONFIG_EVENT_TRACING */
8224 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8225 void perf_bp_event(struct perf_event *bp, void *data)
8227 struct perf_sample_data sample;
8228 struct pt_regs *regs = data;
8230 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8232 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8233 perf_swevent_event(bp, 1, &sample, regs);
8235 #endif
8238 * Allocate a new address filter
8240 static struct perf_addr_filter *
8241 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8243 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8244 struct perf_addr_filter *filter;
8246 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8247 if (!filter)
8248 return NULL;
8250 INIT_LIST_HEAD(&filter->entry);
8251 list_add_tail(&filter->entry, filters);
8253 return filter;
8256 static void free_filters_list(struct list_head *filters)
8258 struct perf_addr_filter *filter, *iter;
8260 list_for_each_entry_safe(filter, iter, filters, entry) {
8261 if (filter->inode)
8262 iput(filter->inode);
8263 list_del(&filter->entry);
8264 kfree(filter);
8269 * Free existing address filters and optionally install new ones
8271 static void perf_addr_filters_splice(struct perf_event *event,
8272 struct list_head *head)
8274 unsigned long flags;
8275 LIST_HEAD(list);
8277 if (!has_addr_filter(event))
8278 return;
8280 /* don't bother with children, they don't have their own filters */
8281 if (event->parent)
8282 return;
8284 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8286 list_splice_init(&event->addr_filters.list, &list);
8287 if (head)
8288 list_splice(head, &event->addr_filters.list);
8290 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8292 free_filters_list(&list);
8296 * Scan through mm's vmas and see if one of them matches the
8297 * @filter; if so, adjust filter's address range.
8298 * Called with mm::mmap_sem down for reading.
8300 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8301 struct mm_struct *mm)
8303 struct vm_area_struct *vma;
8305 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8306 struct file *file = vma->vm_file;
8307 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8308 unsigned long vma_size = vma->vm_end - vma->vm_start;
8310 if (!file)
8311 continue;
8313 if (!perf_addr_filter_match(filter, file, off, vma_size))
8314 continue;
8316 return vma->vm_start;
8319 return 0;
8323 * Update event's address range filters based on the
8324 * task's existing mappings, if any.
8326 static void perf_event_addr_filters_apply(struct perf_event *event)
8328 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8329 struct task_struct *task = READ_ONCE(event->ctx->task);
8330 struct perf_addr_filter *filter;
8331 struct mm_struct *mm = NULL;
8332 unsigned int count = 0;
8333 unsigned long flags;
8336 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8337 * will stop on the parent's child_mutex that our caller is also holding
8339 if (task == TASK_TOMBSTONE)
8340 return;
8342 if (!ifh->nr_file_filters)
8343 return;
8345 mm = get_task_mm(event->ctx->task);
8346 if (!mm)
8347 goto restart;
8349 down_read(&mm->mmap_sem);
8351 raw_spin_lock_irqsave(&ifh->lock, flags);
8352 list_for_each_entry(filter, &ifh->list, entry) {
8353 event->addr_filters_offs[count] = 0;
8356 * Adjust base offset if the filter is associated to a binary
8357 * that needs to be mapped:
8359 if (filter->inode)
8360 event->addr_filters_offs[count] =
8361 perf_addr_filter_apply(filter, mm);
8363 count++;
8366 event->addr_filters_gen++;
8367 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8369 up_read(&mm->mmap_sem);
8371 mmput(mm);
8373 restart:
8374 perf_event_stop(event, 1);
8378 * Address range filtering: limiting the data to certain
8379 * instruction address ranges. Filters are ioctl()ed to us from
8380 * userspace as ascii strings.
8382 * Filter string format:
8384 * ACTION RANGE_SPEC
8385 * where ACTION is one of the
8386 * * "filter": limit the trace to this region
8387 * * "start": start tracing from this address
8388 * * "stop": stop tracing at this address/region;
8389 * RANGE_SPEC is
8390 * * for kernel addresses: <start address>[/<size>]
8391 * * for object files: <start address>[/<size>]@</path/to/object/file>
8393 * if <size> is not specified, the range is treated as a single address.
8395 enum {
8396 IF_ACT_NONE = -1,
8397 IF_ACT_FILTER,
8398 IF_ACT_START,
8399 IF_ACT_STOP,
8400 IF_SRC_FILE,
8401 IF_SRC_KERNEL,
8402 IF_SRC_FILEADDR,
8403 IF_SRC_KERNELADDR,
8406 enum {
8407 IF_STATE_ACTION = 0,
8408 IF_STATE_SOURCE,
8409 IF_STATE_END,
8412 static const match_table_t if_tokens = {
8413 { IF_ACT_FILTER, "filter" },
8414 { IF_ACT_START, "start" },
8415 { IF_ACT_STOP, "stop" },
8416 { IF_SRC_FILE, "%u/%u@%s" },
8417 { IF_SRC_KERNEL, "%u/%u" },
8418 { IF_SRC_FILEADDR, "%u@%s" },
8419 { IF_SRC_KERNELADDR, "%u" },
8420 { IF_ACT_NONE, NULL },
8424 * Address filter string parser
8426 static int
8427 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8428 struct list_head *filters)
8430 struct perf_addr_filter *filter = NULL;
8431 char *start, *orig, *filename = NULL;
8432 struct path path;
8433 substring_t args[MAX_OPT_ARGS];
8434 int state = IF_STATE_ACTION, token;
8435 unsigned int kernel = 0;
8436 int ret = -EINVAL;
8438 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8439 if (!fstr)
8440 return -ENOMEM;
8442 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8443 ret = -EINVAL;
8445 if (!*start)
8446 continue;
8448 /* filter definition begins */
8449 if (state == IF_STATE_ACTION) {
8450 filter = perf_addr_filter_new(event, filters);
8451 if (!filter)
8452 goto fail;
8455 token = match_token(start, if_tokens, args);
8456 switch (token) {
8457 case IF_ACT_FILTER:
8458 case IF_ACT_START:
8459 filter->filter = 1;
8461 case IF_ACT_STOP:
8462 if (state != IF_STATE_ACTION)
8463 goto fail;
8465 state = IF_STATE_SOURCE;
8466 break;
8468 case IF_SRC_KERNELADDR:
8469 case IF_SRC_KERNEL:
8470 kernel = 1;
8472 case IF_SRC_FILEADDR:
8473 case IF_SRC_FILE:
8474 if (state != IF_STATE_SOURCE)
8475 goto fail;
8477 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8478 filter->range = 1;
8480 *args[0].to = 0;
8481 ret = kstrtoul(args[0].from, 0, &filter->offset);
8482 if (ret)
8483 goto fail;
8485 if (filter->range) {
8486 *args[1].to = 0;
8487 ret = kstrtoul(args[1].from, 0, &filter->size);
8488 if (ret)
8489 goto fail;
8492 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8493 int fpos = filter->range ? 2 : 1;
8495 filename = match_strdup(&args[fpos]);
8496 if (!filename) {
8497 ret = -ENOMEM;
8498 goto fail;
8502 state = IF_STATE_END;
8503 break;
8505 default:
8506 goto fail;
8510 * Filter definition is fully parsed, validate and install it.
8511 * Make sure that it doesn't contradict itself or the event's
8512 * attribute.
8514 if (state == IF_STATE_END) {
8515 ret = -EINVAL;
8516 if (kernel && event->attr.exclude_kernel)
8517 goto fail;
8519 if (!kernel) {
8520 if (!filename)
8521 goto fail;
8524 * For now, we only support file-based filters
8525 * in per-task events; doing so for CPU-wide
8526 * events requires additional context switching
8527 * trickery, since same object code will be
8528 * mapped at different virtual addresses in
8529 * different processes.
8531 ret = -EOPNOTSUPP;
8532 if (!event->ctx->task)
8533 goto fail_free_name;
8535 /* look up the path and grab its inode */
8536 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8537 if (ret)
8538 goto fail_free_name;
8540 filter->inode = igrab(d_inode(path.dentry));
8541 path_put(&path);
8542 kfree(filename);
8543 filename = NULL;
8545 ret = -EINVAL;
8546 if (!filter->inode ||
8547 !S_ISREG(filter->inode->i_mode))
8548 /* free_filters_list() will iput() */
8549 goto fail;
8551 event->addr_filters.nr_file_filters++;
8554 /* ready to consume more filters */
8555 state = IF_STATE_ACTION;
8556 filter = NULL;
8560 if (state != IF_STATE_ACTION)
8561 goto fail;
8563 kfree(orig);
8565 return 0;
8567 fail_free_name:
8568 kfree(filename);
8569 fail:
8570 free_filters_list(filters);
8571 kfree(orig);
8573 return ret;
8576 static int
8577 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8579 LIST_HEAD(filters);
8580 int ret;
8583 * Since this is called in perf_ioctl() path, we're already holding
8584 * ctx::mutex.
8586 lockdep_assert_held(&event->ctx->mutex);
8588 if (WARN_ON_ONCE(event->parent))
8589 return -EINVAL;
8591 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8592 if (ret)
8593 goto fail_clear_files;
8595 ret = event->pmu->addr_filters_validate(&filters);
8596 if (ret)
8597 goto fail_free_filters;
8599 /* remove existing filters, if any */
8600 perf_addr_filters_splice(event, &filters);
8602 /* install new filters */
8603 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8605 return ret;
8607 fail_free_filters:
8608 free_filters_list(&filters);
8610 fail_clear_files:
8611 event->addr_filters.nr_file_filters = 0;
8613 return ret;
8616 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8618 char *filter_str;
8619 int ret = -EINVAL;
8621 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8622 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8623 !has_addr_filter(event))
8624 return -EINVAL;
8626 filter_str = strndup_user(arg, PAGE_SIZE);
8627 if (IS_ERR(filter_str))
8628 return PTR_ERR(filter_str);
8630 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8631 event->attr.type == PERF_TYPE_TRACEPOINT)
8632 ret = ftrace_profile_set_filter(event, event->attr.config,
8633 filter_str);
8634 else if (has_addr_filter(event))
8635 ret = perf_event_set_addr_filter(event, filter_str);
8637 kfree(filter_str);
8638 return ret;
8642 * hrtimer based swevent callback
8645 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8647 enum hrtimer_restart ret = HRTIMER_RESTART;
8648 struct perf_sample_data data;
8649 struct pt_regs *regs;
8650 struct perf_event *event;
8651 u64 period;
8653 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8655 if (event->state != PERF_EVENT_STATE_ACTIVE)
8656 return HRTIMER_NORESTART;
8658 event->pmu->read(event);
8660 perf_sample_data_init(&data, 0, event->hw.last_period);
8661 regs = get_irq_regs();
8663 if (regs && !perf_exclude_event(event, regs)) {
8664 if (!(event->attr.exclude_idle && is_idle_task(current)))
8665 if (__perf_event_overflow(event, 1, &data, regs))
8666 ret = HRTIMER_NORESTART;
8669 period = max_t(u64, 10000, event->hw.sample_period);
8670 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8672 return ret;
8675 static void perf_swevent_start_hrtimer(struct perf_event *event)
8677 struct hw_perf_event *hwc = &event->hw;
8678 s64 period;
8680 if (!is_sampling_event(event))
8681 return;
8683 period = local64_read(&hwc->period_left);
8684 if (period) {
8685 if (period < 0)
8686 period = 10000;
8688 local64_set(&hwc->period_left, 0);
8689 } else {
8690 period = max_t(u64, 10000, hwc->sample_period);
8692 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8693 HRTIMER_MODE_REL_PINNED);
8696 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8698 struct hw_perf_event *hwc = &event->hw;
8700 if (is_sampling_event(event)) {
8701 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8702 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8704 hrtimer_cancel(&hwc->hrtimer);
8708 static void perf_swevent_init_hrtimer(struct perf_event *event)
8710 struct hw_perf_event *hwc = &event->hw;
8712 if (!is_sampling_event(event))
8713 return;
8715 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8716 hwc->hrtimer.function = perf_swevent_hrtimer;
8719 * Since hrtimers have a fixed rate, we can do a static freq->period
8720 * mapping and avoid the whole period adjust feedback stuff.
8722 if (event->attr.freq) {
8723 long freq = event->attr.sample_freq;
8725 event->attr.sample_period = NSEC_PER_SEC / freq;
8726 hwc->sample_period = event->attr.sample_period;
8727 local64_set(&hwc->period_left, hwc->sample_period);
8728 hwc->last_period = hwc->sample_period;
8729 event->attr.freq = 0;
8734 * Software event: cpu wall time clock
8737 static void cpu_clock_event_update(struct perf_event *event)
8739 s64 prev;
8740 u64 now;
8742 now = local_clock();
8743 prev = local64_xchg(&event->hw.prev_count, now);
8744 local64_add(now - prev, &event->count);
8747 static void cpu_clock_event_start(struct perf_event *event, int flags)
8749 local64_set(&event->hw.prev_count, local_clock());
8750 perf_swevent_start_hrtimer(event);
8753 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8755 perf_swevent_cancel_hrtimer(event);
8756 cpu_clock_event_update(event);
8759 static int cpu_clock_event_add(struct perf_event *event, int flags)
8761 if (flags & PERF_EF_START)
8762 cpu_clock_event_start(event, flags);
8763 perf_event_update_userpage(event);
8765 return 0;
8768 static void cpu_clock_event_del(struct perf_event *event, int flags)
8770 cpu_clock_event_stop(event, flags);
8773 static void cpu_clock_event_read(struct perf_event *event)
8775 cpu_clock_event_update(event);
8778 static int cpu_clock_event_init(struct perf_event *event)
8780 if (event->attr.type != PERF_TYPE_SOFTWARE)
8781 return -ENOENT;
8783 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8784 return -ENOENT;
8787 * no branch sampling for software events
8789 if (has_branch_stack(event))
8790 return -EOPNOTSUPP;
8792 perf_swevent_init_hrtimer(event);
8794 return 0;
8797 static struct pmu perf_cpu_clock = {
8798 .task_ctx_nr = perf_sw_context,
8800 .capabilities = PERF_PMU_CAP_NO_NMI,
8802 .event_init = cpu_clock_event_init,
8803 .add = cpu_clock_event_add,
8804 .del = cpu_clock_event_del,
8805 .start = cpu_clock_event_start,
8806 .stop = cpu_clock_event_stop,
8807 .read = cpu_clock_event_read,
8811 * Software event: task time clock
8814 static void task_clock_event_update(struct perf_event *event, u64 now)
8816 u64 prev;
8817 s64 delta;
8819 prev = local64_xchg(&event->hw.prev_count, now);
8820 delta = now - prev;
8821 local64_add(delta, &event->count);
8824 static void task_clock_event_start(struct perf_event *event, int flags)
8826 local64_set(&event->hw.prev_count, event->ctx->time);
8827 perf_swevent_start_hrtimer(event);
8830 static void task_clock_event_stop(struct perf_event *event, int flags)
8832 perf_swevent_cancel_hrtimer(event);
8833 task_clock_event_update(event, event->ctx->time);
8836 static int task_clock_event_add(struct perf_event *event, int flags)
8838 if (flags & PERF_EF_START)
8839 task_clock_event_start(event, flags);
8840 perf_event_update_userpage(event);
8842 return 0;
8845 static void task_clock_event_del(struct perf_event *event, int flags)
8847 task_clock_event_stop(event, PERF_EF_UPDATE);
8850 static void task_clock_event_read(struct perf_event *event)
8852 u64 now = perf_clock();
8853 u64 delta = now - event->ctx->timestamp;
8854 u64 time = event->ctx->time + delta;
8856 task_clock_event_update(event, time);
8859 static int task_clock_event_init(struct perf_event *event)
8861 if (event->attr.type != PERF_TYPE_SOFTWARE)
8862 return -ENOENT;
8864 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8865 return -ENOENT;
8868 * no branch sampling for software events
8870 if (has_branch_stack(event))
8871 return -EOPNOTSUPP;
8873 perf_swevent_init_hrtimer(event);
8875 return 0;
8878 static struct pmu perf_task_clock = {
8879 .task_ctx_nr = perf_sw_context,
8881 .capabilities = PERF_PMU_CAP_NO_NMI,
8883 .event_init = task_clock_event_init,
8884 .add = task_clock_event_add,
8885 .del = task_clock_event_del,
8886 .start = task_clock_event_start,
8887 .stop = task_clock_event_stop,
8888 .read = task_clock_event_read,
8891 static void perf_pmu_nop_void(struct pmu *pmu)
8895 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8899 static int perf_pmu_nop_int(struct pmu *pmu)
8901 return 0;
8904 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8906 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8908 __this_cpu_write(nop_txn_flags, flags);
8910 if (flags & ~PERF_PMU_TXN_ADD)
8911 return;
8913 perf_pmu_disable(pmu);
8916 static int perf_pmu_commit_txn(struct pmu *pmu)
8918 unsigned int flags = __this_cpu_read(nop_txn_flags);
8920 __this_cpu_write(nop_txn_flags, 0);
8922 if (flags & ~PERF_PMU_TXN_ADD)
8923 return 0;
8925 perf_pmu_enable(pmu);
8926 return 0;
8929 static void perf_pmu_cancel_txn(struct pmu *pmu)
8931 unsigned int flags = __this_cpu_read(nop_txn_flags);
8933 __this_cpu_write(nop_txn_flags, 0);
8935 if (flags & ~PERF_PMU_TXN_ADD)
8936 return;
8938 perf_pmu_enable(pmu);
8941 static int perf_event_idx_default(struct perf_event *event)
8943 return 0;
8947 * Ensures all contexts with the same task_ctx_nr have the same
8948 * pmu_cpu_context too.
8950 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8952 struct pmu *pmu;
8954 if (ctxn < 0)
8955 return NULL;
8957 list_for_each_entry(pmu, &pmus, entry) {
8958 if (pmu->task_ctx_nr == ctxn)
8959 return pmu->pmu_cpu_context;
8962 return NULL;
8965 static void free_pmu_context(struct pmu *pmu)
8967 mutex_lock(&pmus_lock);
8968 free_percpu(pmu->pmu_cpu_context);
8969 mutex_unlock(&pmus_lock);
8973 * Let userspace know that this PMU supports address range filtering:
8975 static ssize_t nr_addr_filters_show(struct device *dev,
8976 struct device_attribute *attr,
8977 char *page)
8979 struct pmu *pmu = dev_get_drvdata(dev);
8981 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8983 DEVICE_ATTR_RO(nr_addr_filters);
8985 static struct idr pmu_idr;
8987 static ssize_t
8988 type_show(struct device *dev, struct device_attribute *attr, char *page)
8990 struct pmu *pmu = dev_get_drvdata(dev);
8992 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8994 static DEVICE_ATTR_RO(type);
8996 static ssize_t
8997 perf_event_mux_interval_ms_show(struct device *dev,
8998 struct device_attribute *attr,
8999 char *page)
9001 struct pmu *pmu = dev_get_drvdata(dev);
9003 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9006 static DEFINE_MUTEX(mux_interval_mutex);
9008 static ssize_t
9009 perf_event_mux_interval_ms_store(struct device *dev,
9010 struct device_attribute *attr,
9011 const char *buf, size_t count)
9013 struct pmu *pmu = dev_get_drvdata(dev);
9014 int timer, cpu, ret;
9016 ret = kstrtoint(buf, 0, &timer);
9017 if (ret)
9018 return ret;
9020 if (timer < 1)
9021 return -EINVAL;
9023 /* same value, noting to do */
9024 if (timer == pmu->hrtimer_interval_ms)
9025 return count;
9027 mutex_lock(&mux_interval_mutex);
9028 pmu->hrtimer_interval_ms = timer;
9030 /* update all cpuctx for this PMU */
9031 cpus_read_lock();
9032 for_each_online_cpu(cpu) {
9033 struct perf_cpu_context *cpuctx;
9034 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9035 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9037 cpu_function_call(cpu,
9038 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9040 cpus_read_unlock();
9041 mutex_unlock(&mux_interval_mutex);
9043 return count;
9045 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9047 static struct attribute *pmu_dev_attrs[] = {
9048 &dev_attr_type.attr,
9049 &dev_attr_perf_event_mux_interval_ms.attr,
9050 NULL,
9052 ATTRIBUTE_GROUPS(pmu_dev);
9054 static int pmu_bus_running;
9055 static struct bus_type pmu_bus = {
9056 .name = "event_source",
9057 .dev_groups = pmu_dev_groups,
9060 static void pmu_dev_release(struct device *dev)
9062 kfree(dev);
9065 static int pmu_dev_alloc(struct pmu *pmu)
9067 int ret = -ENOMEM;
9069 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9070 if (!pmu->dev)
9071 goto out;
9073 pmu->dev->groups = pmu->attr_groups;
9074 device_initialize(pmu->dev);
9075 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9076 if (ret)
9077 goto free_dev;
9079 dev_set_drvdata(pmu->dev, pmu);
9080 pmu->dev->bus = &pmu_bus;
9081 pmu->dev->release = pmu_dev_release;
9082 ret = device_add(pmu->dev);
9083 if (ret)
9084 goto free_dev;
9086 /* For PMUs with address filters, throw in an extra attribute: */
9087 if (pmu->nr_addr_filters)
9088 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9090 if (ret)
9091 goto del_dev;
9093 out:
9094 return ret;
9096 del_dev:
9097 device_del(pmu->dev);
9099 free_dev:
9100 put_device(pmu->dev);
9101 goto out;
9104 static struct lock_class_key cpuctx_mutex;
9105 static struct lock_class_key cpuctx_lock;
9107 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9109 int cpu, ret;
9111 mutex_lock(&pmus_lock);
9112 ret = -ENOMEM;
9113 pmu->pmu_disable_count = alloc_percpu(int);
9114 if (!pmu->pmu_disable_count)
9115 goto unlock;
9117 pmu->type = -1;
9118 if (!name)
9119 goto skip_type;
9120 pmu->name = name;
9122 if (type < 0) {
9123 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9124 if (type < 0) {
9125 ret = type;
9126 goto free_pdc;
9129 pmu->type = type;
9131 if (pmu_bus_running) {
9132 ret = pmu_dev_alloc(pmu);
9133 if (ret)
9134 goto free_idr;
9137 skip_type:
9138 if (pmu->task_ctx_nr == perf_hw_context) {
9139 static int hw_context_taken = 0;
9142 * Other than systems with heterogeneous CPUs, it never makes
9143 * sense for two PMUs to share perf_hw_context. PMUs which are
9144 * uncore must use perf_invalid_context.
9146 if (WARN_ON_ONCE(hw_context_taken &&
9147 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9148 pmu->task_ctx_nr = perf_invalid_context;
9150 hw_context_taken = 1;
9153 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9154 if (pmu->pmu_cpu_context)
9155 goto got_cpu_context;
9157 ret = -ENOMEM;
9158 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9159 if (!pmu->pmu_cpu_context)
9160 goto free_dev;
9162 for_each_possible_cpu(cpu) {
9163 struct perf_cpu_context *cpuctx;
9165 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9166 __perf_event_init_context(&cpuctx->ctx);
9167 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9168 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9169 cpuctx->ctx.pmu = pmu;
9170 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9172 __perf_mux_hrtimer_init(cpuctx, cpu);
9175 got_cpu_context:
9176 if (!pmu->start_txn) {
9177 if (pmu->pmu_enable) {
9179 * If we have pmu_enable/pmu_disable calls, install
9180 * transaction stubs that use that to try and batch
9181 * hardware accesses.
9183 pmu->start_txn = perf_pmu_start_txn;
9184 pmu->commit_txn = perf_pmu_commit_txn;
9185 pmu->cancel_txn = perf_pmu_cancel_txn;
9186 } else {
9187 pmu->start_txn = perf_pmu_nop_txn;
9188 pmu->commit_txn = perf_pmu_nop_int;
9189 pmu->cancel_txn = perf_pmu_nop_void;
9193 if (!pmu->pmu_enable) {
9194 pmu->pmu_enable = perf_pmu_nop_void;
9195 pmu->pmu_disable = perf_pmu_nop_void;
9198 if (!pmu->event_idx)
9199 pmu->event_idx = perf_event_idx_default;
9201 list_add_rcu(&pmu->entry, &pmus);
9202 atomic_set(&pmu->exclusive_cnt, 0);
9203 ret = 0;
9204 unlock:
9205 mutex_unlock(&pmus_lock);
9207 return ret;
9209 free_dev:
9210 device_del(pmu->dev);
9211 put_device(pmu->dev);
9213 free_idr:
9214 if (pmu->type >= PERF_TYPE_MAX)
9215 idr_remove(&pmu_idr, pmu->type);
9217 free_pdc:
9218 free_percpu(pmu->pmu_disable_count);
9219 goto unlock;
9221 EXPORT_SYMBOL_GPL(perf_pmu_register);
9223 void perf_pmu_unregister(struct pmu *pmu)
9225 int remove_device;
9227 mutex_lock(&pmus_lock);
9228 remove_device = pmu_bus_running;
9229 list_del_rcu(&pmu->entry);
9230 mutex_unlock(&pmus_lock);
9233 * We dereference the pmu list under both SRCU and regular RCU, so
9234 * synchronize against both of those.
9236 synchronize_srcu(&pmus_srcu);
9237 synchronize_rcu();
9239 free_percpu(pmu->pmu_disable_count);
9240 if (pmu->type >= PERF_TYPE_MAX)
9241 idr_remove(&pmu_idr, pmu->type);
9242 if (remove_device) {
9243 if (pmu->nr_addr_filters)
9244 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9245 device_del(pmu->dev);
9246 put_device(pmu->dev);
9248 free_pmu_context(pmu);
9250 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9252 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9254 struct perf_event_context *ctx = NULL;
9255 int ret;
9257 if (!try_module_get(pmu->module))
9258 return -ENODEV;
9260 if (event->group_leader != event) {
9262 * This ctx->mutex can nest when we're called through
9263 * inheritance. See the perf_event_ctx_lock_nested() comment.
9265 ctx = perf_event_ctx_lock_nested(event->group_leader,
9266 SINGLE_DEPTH_NESTING);
9267 BUG_ON(!ctx);
9270 event->pmu = pmu;
9271 ret = pmu->event_init(event);
9273 if (ctx)
9274 perf_event_ctx_unlock(event->group_leader, ctx);
9276 if (ret)
9277 module_put(pmu->module);
9279 return ret;
9282 static struct pmu *perf_init_event(struct perf_event *event)
9284 struct pmu *pmu;
9285 int idx;
9286 int ret;
9288 idx = srcu_read_lock(&pmus_srcu);
9290 /* Try parent's PMU first: */
9291 if (event->parent && event->parent->pmu) {
9292 pmu = event->parent->pmu;
9293 ret = perf_try_init_event(pmu, event);
9294 if (!ret)
9295 goto unlock;
9298 rcu_read_lock();
9299 pmu = idr_find(&pmu_idr, event->attr.type);
9300 rcu_read_unlock();
9301 if (pmu) {
9302 ret = perf_try_init_event(pmu, event);
9303 if (ret)
9304 pmu = ERR_PTR(ret);
9305 goto unlock;
9308 list_for_each_entry_rcu(pmu, &pmus, entry) {
9309 ret = perf_try_init_event(pmu, event);
9310 if (!ret)
9311 goto unlock;
9313 if (ret != -ENOENT) {
9314 pmu = ERR_PTR(ret);
9315 goto unlock;
9318 pmu = ERR_PTR(-ENOENT);
9319 unlock:
9320 srcu_read_unlock(&pmus_srcu, idx);
9322 return pmu;
9325 static void attach_sb_event(struct perf_event *event)
9327 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9329 raw_spin_lock(&pel->lock);
9330 list_add_rcu(&event->sb_list, &pel->list);
9331 raw_spin_unlock(&pel->lock);
9335 * We keep a list of all !task (and therefore per-cpu) events
9336 * that need to receive side-band records.
9338 * This avoids having to scan all the various PMU per-cpu contexts
9339 * looking for them.
9341 static void account_pmu_sb_event(struct perf_event *event)
9343 if (is_sb_event(event))
9344 attach_sb_event(event);
9347 static void account_event_cpu(struct perf_event *event, int cpu)
9349 if (event->parent)
9350 return;
9352 if (is_cgroup_event(event))
9353 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9356 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9357 static void account_freq_event_nohz(void)
9359 #ifdef CONFIG_NO_HZ_FULL
9360 /* Lock so we don't race with concurrent unaccount */
9361 spin_lock(&nr_freq_lock);
9362 if (atomic_inc_return(&nr_freq_events) == 1)
9363 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9364 spin_unlock(&nr_freq_lock);
9365 #endif
9368 static void account_freq_event(void)
9370 if (tick_nohz_full_enabled())
9371 account_freq_event_nohz();
9372 else
9373 atomic_inc(&nr_freq_events);
9377 static void account_event(struct perf_event *event)
9379 bool inc = false;
9381 if (event->parent)
9382 return;
9384 if (event->attach_state & PERF_ATTACH_TASK)
9385 inc = true;
9386 if (event->attr.mmap || event->attr.mmap_data)
9387 atomic_inc(&nr_mmap_events);
9388 if (event->attr.comm)
9389 atomic_inc(&nr_comm_events);
9390 if (event->attr.namespaces)
9391 atomic_inc(&nr_namespaces_events);
9392 if (event->attr.task)
9393 atomic_inc(&nr_task_events);
9394 if (event->attr.freq)
9395 account_freq_event();
9396 if (event->attr.context_switch) {
9397 atomic_inc(&nr_switch_events);
9398 inc = true;
9400 if (has_branch_stack(event))
9401 inc = true;
9402 if (is_cgroup_event(event))
9403 inc = true;
9405 if (inc) {
9406 if (atomic_inc_not_zero(&perf_sched_count))
9407 goto enabled;
9409 mutex_lock(&perf_sched_mutex);
9410 if (!atomic_read(&perf_sched_count)) {
9411 static_branch_enable(&perf_sched_events);
9413 * Guarantee that all CPUs observe they key change and
9414 * call the perf scheduling hooks before proceeding to
9415 * install events that need them.
9417 synchronize_sched();
9420 * Now that we have waited for the sync_sched(), allow further
9421 * increments to by-pass the mutex.
9423 atomic_inc(&perf_sched_count);
9424 mutex_unlock(&perf_sched_mutex);
9426 enabled:
9428 account_event_cpu(event, event->cpu);
9430 account_pmu_sb_event(event);
9434 * Allocate and initialize a event structure
9436 static struct perf_event *
9437 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9438 struct task_struct *task,
9439 struct perf_event *group_leader,
9440 struct perf_event *parent_event,
9441 perf_overflow_handler_t overflow_handler,
9442 void *context, int cgroup_fd)
9444 struct pmu *pmu;
9445 struct perf_event *event;
9446 struct hw_perf_event *hwc;
9447 long err = -EINVAL;
9449 if ((unsigned)cpu >= nr_cpu_ids) {
9450 if (!task || cpu != -1)
9451 return ERR_PTR(-EINVAL);
9454 event = kzalloc(sizeof(*event), GFP_KERNEL);
9455 if (!event)
9456 return ERR_PTR(-ENOMEM);
9459 * Single events are their own group leaders, with an
9460 * empty sibling list:
9462 if (!group_leader)
9463 group_leader = event;
9465 mutex_init(&event->child_mutex);
9466 INIT_LIST_HEAD(&event->child_list);
9468 INIT_LIST_HEAD(&event->group_entry);
9469 INIT_LIST_HEAD(&event->event_entry);
9470 INIT_LIST_HEAD(&event->sibling_list);
9471 INIT_LIST_HEAD(&event->rb_entry);
9472 INIT_LIST_HEAD(&event->active_entry);
9473 INIT_LIST_HEAD(&event->addr_filters.list);
9474 INIT_HLIST_NODE(&event->hlist_entry);
9477 init_waitqueue_head(&event->waitq);
9478 init_irq_work(&event->pending, perf_pending_event);
9480 mutex_init(&event->mmap_mutex);
9481 raw_spin_lock_init(&event->addr_filters.lock);
9483 atomic_long_set(&event->refcount, 1);
9484 event->cpu = cpu;
9485 event->attr = *attr;
9486 event->group_leader = group_leader;
9487 event->pmu = NULL;
9488 event->oncpu = -1;
9490 event->parent = parent_event;
9492 event->ns = get_pid_ns(task_active_pid_ns(current));
9493 event->id = atomic64_inc_return(&perf_event_id);
9495 event->state = PERF_EVENT_STATE_INACTIVE;
9497 if (task) {
9498 event->attach_state = PERF_ATTACH_TASK;
9500 * XXX pmu::event_init needs to know what task to account to
9501 * and we cannot use the ctx information because we need the
9502 * pmu before we get a ctx.
9504 event->hw.target = task;
9507 event->clock = &local_clock;
9508 if (parent_event)
9509 event->clock = parent_event->clock;
9511 if (!overflow_handler && parent_event) {
9512 overflow_handler = parent_event->overflow_handler;
9513 context = parent_event->overflow_handler_context;
9514 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9515 if (overflow_handler == bpf_overflow_handler) {
9516 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9518 if (IS_ERR(prog)) {
9519 err = PTR_ERR(prog);
9520 goto err_ns;
9522 event->prog = prog;
9523 event->orig_overflow_handler =
9524 parent_event->orig_overflow_handler;
9526 #endif
9529 if (overflow_handler) {
9530 event->overflow_handler = overflow_handler;
9531 event->overflow_handler_context = context;
9532 } else if (is_write_backward(event)){
9533 event->overflow_handler = perf_event_output_backward;
9534 event->overflow_handler_context = NULL;
9535 } else {
9536 event->overflow_handler = perf_event_output_forward;
9537 event->overflow_handler_context = NULL;
9540 perf_event__state_init(event);
9542 pmu = NULL;
9544 hwc = &event->hw;
9545 hwc->sample_period = attr->sample_period;
9546 if (attr->freq && attr->sample_freq)
9547 hwc->sample_period = 1;
9548 hwc->last_period = hwc->sample_period;
9550 local64_set(&hwc->period_left, hwc->sample_period);
9553 * We currently do not support PERF_SAMPLE_READ on inherited events.
9554 * See perf_output_read().
9556 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9557 goto err_ns;
9559 if (!has_branch_stack(event))
9560 event->attr.branch_sample_type = 0;
9562 if (cgroup_fd != -1) {
9563 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9564 if (err)
9565 goto err_ns;
9568 pmu = perf_init_event(event);
9569 if (IS_ERR(pmu)) {
9570 err = PTR_ERR(pmu);
9571 goto err_ns;
9574 err = exclusive_event_init(event);
9575 if (err)
9576 goto err_pmu;
9578 if (has_addr_filter(event)) {
9579 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9580 sizeof(unsigned long),
9581 GFP_KERNEL);
9582 if (!event->addr_filters_offs) {
9583 err = -ENOMEM;
9584 goto err_per_task;
9587 /* force hw sync on the address filters */
9588 event->addr_filters_gen = 1;
9591 if (!event->parent) {
9592 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9593 err = get_callchain_buffers(attr->sample_max_stack);
9594 if (err)
9595 goto err_addr_filters;
9599 /* symmetric to unaccount_event() in _free_event() */
9600 account_event(event);
9602 return event;
9604 err_addr_filters:
9605 kfree(event->addr_filters_offs);
9607 err_per_task:
9608 exclusive_event_destroy(event);
9610 err_pmu:
9611 if (event->destroy)
9612 event->destroy(event);
9613 module_put(pmu->module);
9614 err_ns:
9615 if (is_cgroup_event(event))
9616 perf_detach_cgroup(event);
9617 if (event->ns)
9618 put_pid_ns(event->ns);
9619 kfree(event);
9621 return ERR_PTR(err);
9624 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9625 struct perf_event_attr *attr)
9627 u32 size;
9628 int ret;
9630 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9631 return -EFAULT;
9634 * zero the full structure, so that a short copy will be nice.
9636 memset(attr, 0, sizeof(*attr));
9638 ret = get_user(size, &uattr->size);
9639 if (ret)
9640 return ret;
9642 if (size > PAGE_SIZE) /* silly large */
9643 goto err_size;
9645 if (!size) /* abi compat */
9646 size = PERF_ATTR_SIZE_VER0;
9648 if (size < PERF_ATTR_SIZE_VER0)
9649 goto err_size;
9652 * If we're handed a bigger struct than we know of,
9653 * ensure all the unknown bits are 0 - i.e. new
9654 * user-space does not rely on any kernel feature
9655 * extensions we dont know about yet.
9657 if (size > sizeof(*attr)) {
9658 unsigned char __user *addr;
9659 unsigned char __user *end;
9660 unsigned char val;
9662 addr = (void __user *)uattr + sizeof(*attr);
9663 end = (void __user *)uattr + size;
9665 for (; addr < end; addr++) {
9666 ret = get_user(val, addr);
9667 if (ret)
9668 return ret;
9669 if (val)
9670 goto err_size;
9672 size = sizeof(*attr);
9675 ret = copy_from_user(attr, uattr, size);
9676 if (ret)
9677 return -EFAULT;
9679 attr->size = size;
9681 if (attr->__reserved_1)
9682 return -EINVAL;
9684 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9685 return -EINVAL;
9687 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9688 return -EINVAL;
9690 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9691 u64 mask = attr->branch_sample_type;
9693 /* only using defined bits */
9694 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9695 return -EINVAL;
9697 /* at least one branch bit must be set */
9698 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9699 return -EINVAL;
9701 /* propagate priv level, when not set for branch */
9702 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9704 /* exclude_kernel checked on syscall entry */
9705 if (!attr->exclude_kernel)
9706 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9708 if (!attr->exclude_user)
9709 mask |= PERF_SAMPLE_BRANCH_USER;
9711 if (!attr->exclude_hv)
9712 mask |= PERF_SAMPLE_BRANCH_HV;
9714 * adjust user setting (for HW filter setup)
9716 attr->branch_sample_type = mask;
9718 /* privileged levels capture (kernel, hv): check permissions */
9719 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9720 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9721 return -EACCES;
9724 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9725 ret = perf_reg_validate(attr->sample_regs_user);
9726 if (ret)
9727 return ret;
9730 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9731 if (!arch_perf_have_user_stack_dump())
9732 return -ENOSYS;
9735 * We have __u32 type for the size, but so far
9736 * we can only use __u16 as maximum due to the
9737 * __u16 sample size limit.
9739 if (attr->sample_stack_user >= USHRT_MAX)
9740 ret = -EINVAL;
9741 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9742 ret = -EINVAL;
9745 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9746 ret = perf_reg_validate(attr->sample_regs_intr);
9747 out:
9748 return ret;
9750 err_size:
9751 put_user(sizeof(*attr), &uattr->size);
9752 ret = -E2BIG;
9753 goto out;
9756 static int
9757 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9759 struct ring_buffer *rb = NULL;
9760 int ret = -EINVAL;
9762 if (!output_event)
9763 goto set;
9765 /* don't allow circular references */
9766 if (event == output_event)
9767 goto out;
9770 * Don't allow cross-cpu buffers
9772 if (output_event->cpu != event->cpu)
9773 goto out;
9776 * If its not a per-cpu rb, it must be the same task.
9778 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9779 goto out;
9782 * Mixing clocks in the same buffer is trouble you don't need.
9784 if (output_event->clock != event->clock)
9785 goto out;
9788 * Either writing ring buffer from beginning or from end.
9789 * Mixing is not allowed.
9791 if (is_write_backward(output_event) != is_write_backward(event))
9792 goto out;
9795 * If both events generate aux data, they must be on the same PMU
9797 if (has_aux(event) && has_aux(output_event) &&
9798 event->pmu != output_event->pmu)
9799 goto out;
9801 set:
9802 mutex_lock(&event->mmap_mutex);
9803 /* Can't redirect output if we've got an active mmap() */
9804 if (atomic_read(&event->mmap_count))
9805 goto unlock;
9807 if (output_event) {
9808 /* get the rb we want to redirect to */
9809 rb = ring_buffer_get(output_event);
9810 if (!rb)
9811 goto unlock;
9814 ring_buffer_attach(event, rb);
9816 ret = 0;
9817 unlock:
9818 mutex_unlock(&event->mmap_mutex);
9820 out:
9821 return ret;
9824 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9826 if (b < a)
9827 swap(a, b);
9829 mutex_lock(a);
9830 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9833 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9835 bool nmi_safe = false;
9837 switch (clk_id) {
9838 case CLOCK_MONOTONIC:
9839 event->clock = &ktime_get_mono_fast_ns;
9840 nmi_safe = true;
9841 break;
9843 case CLOCK_MONOTONIC_RAW:
9844 event->clock = &ktime_get_raw_fast_ns;
9845 nmi_safe = true;
9846 break;
9848 case CLOCK_REALTIME:
9849 event->clock = &ktime_get_real_ns;
9850 break;
9852 case CLOCK_BOOTTIME:
9853 event->clock = &ktime_get_boot_ns;
9854 break;
9856 case CLOCK_TAI:
9857 event->clock = &ktime_get_tai_ns;
9858 break;
9860 default:
9861 return -EINVAL;
9864 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9865 return -EINVAL;
9867 return 0;
9871 * Variation on perf_event_ctx_lock_nested(), except we take two context
9872 * mutexes.
9874 static struct perf_event_context *
9875 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9876 struct perf_event_context *ctx)
9878 struct perf_event_context *gctx;
9880 again:
9881 rcu_read_lock();
9882 gctx = READ_ONCE(group_leader->ctx);
9883 if (!atomic_inc_not_zero(&gctx->refcount)) {
9884 rcu_read_unlock();
9885 goto again;
9887 rcu_read_unlock();
9889 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9891 if (group_leader->ctx != gctx) {
9892 mutex_unlock(&ctx->mutex);
9893 mutex_unlock(&gctx->mutex);
9894 put_ctx(gctx);
9895 goto again;
9898 return gctx;
9902 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9904 * @attr_uptr: event_id type attributes for monitoring/sampling
9905 * @pid: target pid
9906 * @cpu: target cpu
9907 * @group_fd: group leader event fd
9909 SYSCALL_DEFINE5(perf_event_open,
9910 struct perf_event_attr __user *, attr_uptr,
9911 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9913 struct perf_event *group_leader = NULL, *output_event = NULL;
9914 struct perf_event *event, *sibling;
9915 struct perf_event_attr attr;
9916 struct perf_event_context *ctx, *uninitialized_var(gctx);
9917 struct file *event_file = NULL;
9918 struct fd group = {NULL, 0};
9919 struct task_struct *task = NULL;
9920 struct pmu *pmu;
9921 int event_fd;
9922 int move_group = 0;
9923 int err;
9924 int f_flags = O_RDWR;
9925 int cgroup_fd = -1;
9927 /* for future expandability... */
9928 if (flags & ~PERF_FLAG_ALL)
9929 return -EINVAL;
9931 err = perf_copy_attr(attr_uptr, &attr);
9932 if (err)
9933 return err;
9935 if (!attr.exclude_kernel) {
9936 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9937 return -EACCES;
9940 if (attr.namespaces) {
9941 if (!capable(CAP_SYS_ADMIN))
9942 return -EACCES;
9945 if (attr.freq) {
9946 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9947 return -EINVAL;
9948 } else {
9949 if (attr.sample_period & (1ULL << 63))
9950 return -EINVAL;
9953 /* Only privileged users can get physical addresses */
9954 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9955 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9956 return -EACCES;
9958 if (!attr.sample_max_stack)
9959 attr.sample_max_stack = sysctl_perf_event_max_stack;
9962 * In cgroup mode, the pid argument is used to pass the fd
9963 * opened to the cgroup directory in cgroupfs. The cpu argument
9964 * designates the cpu on which to monitor threads from that
9965 * cgroup.
9967 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9968 return -EINVAL;
9970 if (flags & PERF_FLAG_FD_CLOEXEC)
9971 f_flags |= O_CLOEXEC;
9973 event_fd = get_unused_fd_flags(f_flags);
9974 if (event_fd < 0)
9975 return event_fd;
9977 if (group_fd != -1) {
9978 err = perf_fget_light(group_fd, &group);
9979 if (err)
9980 goto err_fd;
9981 group_leader = group.file->private_data;
9982 if (flags & PERF_FLAG_FD_OUTPUT)
9983 output_event = group_leader;
9984 if (flags & PERF_FLAG_FD_NO_GROUP)
9985 group_leader = NULL;
9988 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9989 task = find_lively_task_by_vpid(pid);
9990 if (IS_ERR(task)) {
9991 err = PTR_ERR(task);
9992 goto err_group_fd;
9996 if (task && group_leader &&
9997 group_leader->attr.inherit != attr.inherit) {
9998 err = -EINVAL;
9999 goto err_task;
10002 if (task) {
10003 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10004 if (err)
10005 goto err_task;
10008 * Reuse ptrace permission checks for now.
10010 * We must hold cred_guard_mutex across this and any potential
10011 * perf_install_in_context() call for this new event to
10012 * serialize against exec() altering our credentials (and the
10013 * perf_event_exit_task() that could imply).
10015 err = -EACCES;
10016 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10017 goto err_cred;
10020 if (flags & PERF_FLAG_PID_CGROUP)
10021 cgroup_fd = pid;
10023 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10024 NULL, NULL, cgroup_fd);
10025 if (IS_ERR(event)) {
10026 err = PTR_ERR(event);
10027 goto err_cred;
10030 if (is_sampling_event(event)) {
10031 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10032 err = -EOPNOTSUPP;
10033 goto err_alloc;
10038 * Special case software events and allow them to be part of
10039 * any hardware group.
10041 pmu = event->pmu;
10043 if (attr.use_clockid) {
10044 err = perf_event_set_clock(event, attr.clockid);
10045 if (err)
10046 goto err_alloc;
10049 if (pmu->task_ctx_nr == perf_sw_context)
10050 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10052 if (group_leader &&
10053 (is_software_event(event) != is_software_event(group_leader))) {
10054 if (is_software_event(event)) {
10056 * If event and group_leader are not both a software
10057 * event, and event is, then group leader is not.
10059 * Allow the addition of software events to !software
10060 * groups, this is safe because software events never
10061 * fail to schedule.
10063 pmu = group_leader->pmu;
10064 } else if (is_software_event(group_leader) &&
10065 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10067 * In case the group is a pure software group, and we
10068 * try to add a hardware event, move the whole group to
10069 * the hardware context.
10071 move_group = 1;
10076 * Get the target context (task or percpu):
10078 ctx = find_get_context(pmu, task, event);
10079 if (IS_ERR(ctx)) {
10080 err = PTR_ERR(ctx);
10081 goto err_alloc;
10084 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10085 err = -EBUSY;
10086 goto err_context;
10090 * Look up the group leader (we will attach this event to it):
10092 if (group_leader) {
10093 err = -EINVAL;
10096 * Do not allow a recursive hierarchy (this new sibling
10097 * becoming part of another group-sibling):
10099 if (group_leader->group_leader != group_leader)
10100 goto err_context;
10102 /* All events in a group should have the same clock */
10103 if (group_leader->clock != event->clock)
10104 goto err_context;
10107 * Make sure we're both events for the same CPU;
10108 * grouping events for different CPUs is broken; since
10109 * you can never concurrently schedule them anyhow.
10111 if (group_leader->cpu != event->cpu)
10112 goto err_context;
10115 * Make sure we're both on the same task, or both
10116 * per-CPU events.
10118 if (group_leader->ctx->task != ctx->task)
10119 goto err_context;
10122 * Do not allow to attach to a group in a different task
10123 * or CPU context. If we're moving SW events, we'll fix
10124 * this up later, so allow that.
10126 if (!move_group && group_leader->ctx != ctx)
10127 goto err_context;
10130 * Only a group leader can be exclusive or pinned
10132 if (attr.exclusive || attr.pinned)
10133 goto err_context;
10136 if (output_event) {
10137 err = perf_event_set_output(event, output_event);
10138 if (err)
10139 goto err_context;
10142 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10143 f_flags);
10144 if (IS_ERR(event_file)) {
10145 err = PTR_ERR(event_file);
10146 event_file = NULL;
10147 goto err_context;
10150 if (move_group) {
10151 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10153 if (gctx->task == TASK_TOMBSTONE) {
10154 err = -ESRCH;
10155 goto err_locked;
10159 * Check if we raced against another sys_perf_event_open() call
10160 * moving the software group underneath us.
10162 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10164 * If someone moved the group out from under us, check
10165 * if this new event wound up on the same ctx, if so
10166 * its the regular !move_group case, otherwise fail.
10168 if (gctx != ctx) {
10169 err = -EINVAL;
10170 goto err_locked;
10171 } else {
10172 perf_event_ctx_unlock(group_leader, gctx);
10173 move_group = 0;
10176 } else {
10177 mutex_lock(&ctx->mutex);
10180 if (ctx->task == TASK_TOMBSTONE) {
10181 err = -ESRCH;
10182 goto err_locked;
10185 if (!perf_event_validate_size(event)) {
10186 err = -E2BIG;
10187 goto err_locked;
10190 if (!task) {
10192 * Check if the @cpu we're creating an event for is online.
10194 * We use the perf_cpu_context::ctx::mutex to serialize against
10195 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10197 struct perf_cpu_context *cpuctx =
10198 container_of(ctx, struct perf_cpu_context, ctx);
10200 if (!cpuctx->online) {
10201 err = -ENODEV;
10202 goto err_locked;
10208 * Must be under the same ctx::mutex as perf_install_in_context(),
10209 * because we need to serialize with concurrent event creation.
10211 if (!exclusive_event_installable(event, ctx)) {
10212 /* exclusive and group stuff are assumed mutually exclusive */
10213 WARN_ON_ONCE(move_group);
10215 err = -EBUSY;
10216 goto err_locked;
10219 WARN_ON_ONCE(ctx->parent_ctx);
10222 * This is the point on no return; we cannot fail hereafter. This is
10223 * where we start modifying current state.
10226 if (move_group) {
10228 * See perf_event_ctx_lock() for comments on the details
10229 * of swizzling perf_event::ctx.
10231 perf_remove_from_context(group_leader, 0);
10232 put_ctx(gctx);
10234 list_for_each_entry(sibling, &group_leader->sibling_list,
10235 group_entry) {
10236 perf_remove_from_context(sibling, 0);
10237 put_ctx(gctx);
10241 * Wait for everybody to stop referencing the events through
10242 * the old lists, before installing it on new lists.
10244 synchronize_rcu();
10247 * Install the group siblings before the group leader.
10249 * Because a group leader will try and install the entire group
10250 * (through the sibling list, which is still in-tact), we can
10251 * end up with siblings installed in the wrong context.
10253 * By installing siblings first we NO-OP because they're not
10254 * reachable through the group lists.
10256 list_for_each_entry(sibling, &group_leader->sibling_list,
10257 group_entry) {
10258 perf_event__state_init(sibling);
10259 perf_install_in_context(ctx, sibling, sibling->cpu);
10260 get_ctx(ctx);
10264 * Removing from the context ends up with disabled
10265 * event. What we want here is event in the initial
10266 * startup state, ready to be add into new context.
10268 perf_event__state_init(group_leader);
10269 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10270 get_ctx(ctx);
10274 * Precalculate sample_data sizes; do while holding ctx::mutex such
10275 * that we're serialized against further additions and before
10276 * perf_install_in_context() which is the point the event is active and
10277 * can use these values.
10279 perf_event__header_size(event);
10280 perf_event__id_header_size(event);
10282 event->owner = current;
10284 perf_install_in_context(ctx, event, event->cpu);
10285 perf_unpin_context(ctx);
10287 if (move_group)
10288 perf_event_ctx_unlock(group_leader, gctx);
10289 mutex_unlock(&ctx->mutex);
10291 if (task) {
10292 mutex_unlock(&task->signal->cred_guard_mutex);
10293 put_task_struct(task);
10296 mutex_lock(&current->perf_event_mutex);
10297 list_add_tail(&event->owner_entry, &current->perf_event_list);
10298 mutex_unlock(&current->perf_event_mutex);
10301 * Drop the reference on the group_event after placing the
10302 * new event on the sibling_list. This ensures destruction
10303 * of the group leader will find the pointer to itself in
10304 * perf_group_detach().
10306 fdput(group);
10307 fd_install(event_fd, event_file);
10308 return event_fd;
10310 err_locked:
10311 if (move_group)
10312 perf_event_ctx_unlock(group_leader, gctx);
10313 mutex_unlock(&ctx->mutex);
10314 /* err_file: */
10315 fput(event_file);
10316 err_context:
10317 perf_unpin_context(ctx);
10318 put_ctx(ctx);
10319 err_alloc:
10321 * If event_file is set, the fput() above will have called ->release()
10322 * and that will take care of freeing the event.
10324 if (!event_file)
10325 free_event(event);
10326 err_cred:
10327 if (task)
10328 mutex_unlock(&task->signal->cred_guard_mutex);
10329 err_task:
10330 if (task)
10331 put_task_struct(task);
10332 err_group_fd:
10333 fdput(group);
10334 err_fd:
10335 put_unused_fd(event_fd);
10336 return err;
10340 * perf_event_create_kernel_counter
10342 * @attr: attributes of the counter to create
10343 * @cpu: cpu in which the counter is bound
10344 * @task: task to profile (NULL for percpu)
10346 struct perf_event *
10347 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10348 struct task_struct *task,
10349 perf_overflow_handler_t overflow_handler,
10350 void *context)
10352 struct perf_event_context *ctx;
10353 struct perf_event *event;
10354 int err;
10357 * Get the target context (task or percpu):
10360 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10361 overflow_handler, context, -1);
10362 if (IS_ERR(event)) {
10363 err = PTR_ERR(event);
10364 goto err;
10367 /* Mark owner so we could distinguish it from user events. */
10368 event->owner = TASK_TOMBSTONE;
10370 ctx = find_get_context(event->pmu, task, event);
10371 if (IS_ERR(ctx)) {
10372 err = PTR_ERR(ctx);
10373 goto err_free;
10376 WARN_ON_ONCE(ctx->parent_ctx);
10377 mutex_lock(&ctx->mutex);
10378 if (ctx->task == TASK_TOMBSTONE) {
10379 err = -ESRCH;
10380 goto err_unlock;
10383 if (!task) {
10385 * Check if the @cpu we're creating an event for is online.
10387 * We use the perf_cpu_context::ctx::mutex to serialize against
10388 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10390 struct perf_cpu_context *cpuctx =
10391 container_of(ctx, struct perf_cpu_context, ctx);
10392 if (!cpuctx->online) {
10393 err = -ENODEV;
10394 goto err_unlock;
10398 if (!exclusive_event_installable(event, ctx)) {
10399 err = -EBUSY;
10400 goto err_unlock;
10403 perf_install_in_context(ctx, event, cpu);
10404 perf_unpin_context(ctx);
10405 mutex_unlock(&ctx->mutex);
10407 return event;
10409 err_unlock:
10410 mutex_unlock(&ctx->mutex);
10411 perf_unpin_context(ctx);
10412 put_ctx(ctx);
10413 err_free:
10414 free_event(event);
10415 err:
10416 return ERR_PTR(err);
10418 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10420 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10422 struct perf_event_context *src_ctx;
10423 struct perf_event_context *dst_ctx;
10424 struct perf_event *event, *tmp;
10425 LIST_HEAD(events);
10427 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10428 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10431 * See perf_event_ctx_lock() for comments on the details
10432 * of swizzling perf_event::ctx.
10434 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10435 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10436 event_entry) {
10437 perf_remove_from_context(event, 0);
10438 unaccount_event_cpu(event, src_cpu);
10439 put_ctx(src_ctx);
10440 list_add(&event->migrate_entry, &events);
10444 * Wait for the events to quiesce before re-instating them.
10446 synchronize_rcu();
10449 * Re-instate events in 2 passes.
10451 * Skip over group leaders and only install siblings on this first
10452 * pass, siblings will not get enabled without a leader, however a
10453 * leader will enable its siblings, even if those are still on the old
10454 * context.
10456 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10457 if (event->group_leader == event)
10458 continue;
10460 list_del(&event->migrate_entry);
10461 if (event->state >= PERF_EVENT_STATE_OFF)
10462 event->state = PERF_EVENT_STATE_INACTIVE;
10463 account_event_cpu(event, dst_cpu);
10464 perf_install_in_context(dst_ctx, event, dst_cpu);
10465 get_ctx(dst_ctx);
10469 * Once all the siblings are setup properly, install the group leaders
10470 * to make it go.
10472 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10473 list_del(&event->migrate_entry);
10474 if (event->state >= PERF_EVENT_STATE_OFF)
10475 event->state = PERF_EVENT_STATE_INACTIVE;
10476 account_event_cpu(event, dst_cpu);
10477 perf_install_in_context(dst_ctx, event, dst_cpu);
10478 get_ctx(dst_ctx);
10480 mutex_unlock(&dst_ctx->mutex);
10481 mutex_unlock(&src_ctx->mutex);
10483 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10485 static void sync_child_event(struct perf_event *child_event,
10486 struct task_struct *child)
10488 struct perf_event *parent_event = child_event->parent;
10489 u64 child_val;
10491 if (child_event->attr.inherit_stat)
10492 perf_event_read_event(child_event, child);
10494 child_val = perf_event_count(child_event);
10497 * Add back the child's count to the parent's count:
10499 atomic64_add(child_val, &parent_event->child_count);
10500 atomic64_add(child_event->total_time_enabled,
10501 &parent_event->child_total_time_enabled);
10502 atomic64_add(child_event->total_time_running,
10503 &parent_event->child_total_time_running);
10506 static void
10507 perf_event_exit_event(struct perf_event *child_event,
10508 struct perf_event_context *child_ctx,
10509 struct task_struct *child)
10511 struct perf_event *parent_event = child_event->parent;
10514 * Do not destroy the 'original' grouping; because of the context
10515 * switch optimization the original events could've ended up in a
10516 * random child task.
10518 * If we were to destroy the original group, all group related
10519 * operations would cease to function properly after this random
10520 * child dies.
10522 * Do destroy all inherited groups, we don't care about those
10523 * and being thorough is better.
10525 raw_spin_lock_irq(&child_ctx->lock);
10526 WARN_ON_ONCE(child_ctx->is_active);
10528 if (parent_event)
10529 perf_group_detach(child_event);
10530 list_del_event(child_event, child_ctx);
10531 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10532 raw_spin_unlock_irq(&child_ctx->lock);
10535 * Parent events are governed by their filedesc, retain them.
10537 if (!parent_event) {
10538 perf_event_wakeup(child_event);
10539 return;
10542 * Child events can be cleaned up.
10545 sync_child_event(child_event, child);
10548 * Remove this event from the parent's list
10550 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10551 mutex_lock(&parent_event->child_mutex);
10552 list_del_init(&child_event->child_list);
10553 mutex_unlock(&parent_event->child_mutex);
10556 * Kick perf_poll() for is_event_hup().
10558 perf_event_wakeup(parent_event);
10559 free_event(child_event);
10560 put_event(parent_event);
10563 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10565 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10566 struct perf_event *child_event, *next;
10568 WARN_ON_ONCE(child != current);
10570 child_ctx = perf_pin_task_context(child, ctxn);
10571 if (!child_ctx)
10572 return;
10575 * In order to reduce the amount of tricky in ctx tear-down, we hold
10576 * ctx::mutex over the entire thing. This serializes against almost
10577 * everything that wants to access the ctx.
10579 * The exception is sys_perf_event_open() /
10580 * perf_event_create_kernel_count() which does find_get_context()
10581 * without ctx::mutex (it cannot because of the move_group double mutex
10582 * lock thing). See the comments in perf_install_in_context().
10584 mutex_lock(&child_ctx->mutex);
10587 * In a single ctx::lock section, de-schedule the events and detach the
10588 * context from the task such that we cannot ever get it scheduled back
10589 * in.
10591 raw_spin_lock_irq(&child_ctx->lock);
10592 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10595 * Now that the context is inactive, destroy the task <-> ctx relation
10596 * and mark the context dead.
10598 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10599 put_ctx(child_ctx); /* cannot be last */
10600 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10601 put_task_struct(current); /* cannot be last */
10603 clone_ctx = unclone_ctx(child_ctx);
10604 raw_spin_unlock_irq(&child_ctx->lock);
10606 if (clone_ctx)
10607 put_ctx(clone_ctx);
10610 * Report the task dead after unscheduling the events so that we
10611 * won't get any samples after PERF_RECORD_EXIT. We can however still
10612 * get a few PERF_RECORD_READ events.
10614 perf_event_task(child, child_ctx, 0);
10616 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10617 perf_event_exit_event(child_event, child_ctx, child);
10619 mutex_unlock(&child_ctx->mutex);
10621 put_ctx(child_ctx);
10625 * When a child task exits, feed back event values to parent events.
10627 * Can be called with cred_guard_mutex held when called from
10628 * install_exec_creds().
10630 void perf_event_exit_task(struct task_struct *child)
10632 struct perf_event *event, *tmp;
10633 int ctxn;
10635 mutex_lock(&child->perf_event_mutex);
10636 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10637 owner_entry) {
10638 list_del_init(&event->owner_entry);
10641 * Ensure the list deletion is visible before we clear
10642 * the owner, closes a race against perf_release() where
10643 * we need to serialize on the owner->perf_event_mutex.
10645 smp_store_release(&event->owner, NULL);
10647 mutex_unlock(&child->perf_event_mutex);
10649 for_each_task_context_nr(ctxn)
10650 perf_event_exit_task_context(child, ctxn);
10653 * The perf_event_exit_task_context calls perf_event_task
10654 * with child's task_ctx, which generates EXIT events for
10655 * child contexts and sets child->perf_event_ctxp[] to NULL.
10656 * At this point we need to send EXIT events to cpu contexts.
10658 perf_event_task(child, NULL, 0);
10661 static void perf_free_event(struct perf_event *event,
10662 struct perf_event_context *ctx)
10664 struct perf_event *parent = event->parent;
10666 if (WARN_ON_ONCE(!parent))
10667 return;
10669 mutex_lock(&parent->child_mutex);
10670 list_del_init(&event->child_list);
10671 mutex_unlock(&parent->child_mutex);
10673 put_event(parent);
10675 raw_spin_lock_irq(&ctx->lock);
10676 perf_group_detach(event);
10677 list_del_event(event, ctx);
10678 raw_spin_unlock_irq(&ctx->lock);
10679 free_event(event);
10683 * Free an unexposed, unused context as created by inheritance by
10684 * perf_event_init_task below, used by fork() in case of fail.
10686 * Not all locks are strictly required, but take them anyway to be nice and
10687 * help out with the lockdep assertions.
10689 void perf_event_free_task(struct task_struct *task)
10691 struct perf_event_context *ctx;
10692 struct perf_event *event, *tmp;
10693 int ctxn;
10695 for_each_task_context_nr(ctxn) {
10696 ctx = task->perf_event_ctxp[ctxn];
10697 if (!ctx)
10698 continue;
10700 mutex_lock(&ctx->mutex);
10701 raw_spin_lock_irq(&ctx->lock);
10703 * Destroy the task <-> ctx relation and mark the context dead.
10705 * This is important because even though the task hasn't been
10706 * exposed yet the context has been (through child_list).
10708 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10709 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10710 put_task_struct(task); /* cannot be last */
10711 raw_spin_unlock_irq(&ctx->lock);
10713 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10714 perf_free_event(event, ctx);
10716 mutex_unlock(&ctx->mutex);
10717 put_ctx(ctx);
10721 void perf_event_delayed_put(struct task_struct *task)
10723 int ctxn;
10725 for_each_task_context_nr(ctxn)
10726 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10729 struct file *perf_event_get(unsigned int fd)
10731 struct file *file;
10733 file = fget_raw(fd);
10734 if (!file)
10735 return ERR_PTR(-EBADF);
10737 if (file->f_op != &perf_fops) {
10738 fput(file);
10739 return ERR_PTR(-EBADF);
10742 return file;
10745 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10747 if (!event)
10748 return ERR_PTR(-EINVAL);
10750 return &event->attr;
10754 * Inherit a event from parent task to child task.
10756 * Returns:
10757 * - valid pointer on success
10758 * - NULL for orphaned events
10759 * - IS_ERR() on error
10761 static struct perf_event *
10762 inherit_event(struct perf_event *parent_event,
10763 struct task_struct *parent,
10764 struct perf_event_context *parent_ctx,
10765 struct task_struct *child,
10766 struct perf_event *group_leader,
10767 struct perf_event_context *child_ctx)
10769 enum perf_event_active_state parent_state = parent_event->state;
10770 struct perf_event *child_event;
10771 unsigned long flags;
10774 * Instead of creating recursive hierarchies of events,
10775 * we link inherited events back to the original parent,
10776 * which has a filp for sure, which we use as the reference
10777 * count:
10779 if (parent_event->parent)
10780 parent_event = parent_event->parent;
10782 child_event = perf_event_alloc(&parent_event->attr,
10783 parent_event->cpu,
10784 child,
10785 group_leader, parent_event,
10786 NULL, NULL, -1);
10787 if (IS_ERR(child_event))
10788 return child_event;
10791 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10792 * must be under the same lock in order to serialize against
10793 * perf_event_release_kernel(), such that either we must observe
10794 * is_orphaned_event() or they will observe us on the child_list.
10796 mutex_lock(&parent_event->child_mutex);
10797 if (is_orphaned_event(parent_event) ||
10798 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10799 mutex_unlock(&parent_event->child_mutex);
10800 free_event(child_event);
10801 return NULL;
10804 get_ctx(child_ctx);
10807 * Make the child state follow the state of the parent event,
10808 * not its attr.disabled bit. We hold the parent's mutex,
10809 * so we won't race with perf_event_{en, dis}able_family.
10811 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10812 child_event->state = PERF_EVENT_STATE_INACTIVE;
10813 else
10814 child_event->state = PERF_EVENT_STATE_OFF;
10816 if (parent_event->attr.freq) {
10817 u64 sample_period = parent_event->hw.sample_period;
10818 struct hw_perf_event *hwc = &child_event->hw;
10820 hwc->sample_period = sample_period;
10821 hwc->last_period = sample_period;
10823 local64_set(&hwc->period_left, sample_period);
10826 child_event->ctx = child_ctx;
10827 child_event->overflow_handler = parent_event->overflow_handler;
10828 child_event->overflow_handler_context
10829 = parent_event->overflow_handler_context;
10832 * Precalculate sample_data sizes
10834 perf_event__header_size(child_event);
10835 perf_event__id_header_size(child_event);
10838 * Link it up in the child's context:
10840 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10841 add_event_to_ctx(child_event, child_ctx);
10842 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10845 * Link this into the parent event's child list
10847 list_add_tail(&child_event->child_list, &parent_event->child_list);
10848 mutex_unlock(&parent_event->child_mutex);
10850 return child_event;
10854 * Inherits an event group.
10856 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10857 * This matches with perf_event_release_kernel() removing all child events.
10859 * Returns:
10860 * - 0 on success
10861 * - <0 on error
10863 static int inherit_group(struct perf_event *parent_event,
10864 struct task_struct *parent,
10865 struct perf_event_context *parent_ctx,
10866 struct task_struct *child,
10867 struct perf_event_context *child_ctx)
10869 struct perf_event *leader;
10870 struct perf_event *sub;
10871 struct perf_event *child_ctr;
10873 leader = inherit_event(parent_event, parent, parent_ctx,
10874 child, NULL, child_ctx);
10875 if (IS_ERR(leader))
10876 return PTR_ERR(leader);
10878 * @leader can be NULL here because of is_orphaned_event(). In this
10879 * case inherit_event() will create individual events, similar to what
10880 * perf_group_detach() would do anyway.
10882 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10883 child_ctr = inherit_event(sub, parent, parent_ctx,
10884 child, leader, child_ctx);
10885 if (IS_ERR(child_ctr))
10886 return PTR_ERR(child_ctr);
10888 return 0;
10892 * Creates the child task context and tries to inherit the event-group.
10894 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10895 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10896 * consistent with perf_event_release_kernel() removing all child events.
10898 * Returns:
10899 * - 0 on success
10900 * - <0 on error
10902 static int
10903 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10904 struct perf_event_context *parent_ctx,
10905 struct task_struct *child, int ctxn,
10906 int *inherited_all)
10908 int ret;
10909 struct perf_event_context *child_ctx;
10911 if (!event->attr.inherit) {
10912 *inherited_all = 0;
10913 return 0;
10916 child_ctx = child->perf_event_ctxp[ctxn];
10917 if (!child_ctx) {
10919 * This is executed from the parent task context, so
10920 * inherit events that have been marked for cloning.
10921 * First allocate and initialize a context for the
10922 * child.
10924 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10925 if (!child_ctx)
10926 return -ENOMEM;
10928 child->perf_event_ctxp[ctxn] = child_ctx;
10931 ret = inherit_group(event, parent, parent_ctx,
10932 child, child_ctx);
10934 if (ret)
10935 *inherited_all = 0;
10937 return ret;
10941 * Initialize the perf_event context in task_struct
10943 static int perf_event_init_context(struct task_struct *child, int ctxn)
10945 struct perf_event_context *child_ctx, *parent_ctx;
10946 struct perf_event_context *cloned_ctx;
10947 struct perf_event *event;
10948 struct task_struct *parent = current;
10949 int inherited_all = 1;
10950 unsigned long flags;
10951 int ret = 0;
10953 if (likely(!parent->perf_event_ctxp[ctxn]))
10954 return 0;
10957 * If the parent's context is a clone, pin it so it won't get
10958 * swapped under us.
10960 parent_ctx = perf_pin_task_context(parent, ctxn);
10961 if (!parent_ctx)
10962 return 0;
10965 * No need to check if parent_ctx != NULL here; since we saw
10966 * it non-NULL earlier, the only reason for it to become NULL
10967 * is if we exit, and since we're currently in the middle of
10968 * a fork we can't be exiting at the same time.
10972 * Lock the parent list. No need to lock the child - not PID
10973 * hashed yet and not running, so nobody can access it.
10975 mutex_lock(&parent_ctx->mutex);
10978 * We dont have to disable NMIs - we are only looking at
10979 * the list, not manipulating it:
10981 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10982 ret = inherit_task_group(event, parent, parent_ctx,
10983 child, ctxn, &inherited_all);
10984 if (ret)
10985 goto out_unlock;
10989 * We can't hold ctx->lock when iterating the ->flexible_group list due
10990 * to allocations, but we need to prevent rotation because
10991 * rotate_ctx() will change the list from interrupt context.
10993 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10994 parent_ctx->rotate_disable = 1;
10995 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10998 ret = inherit_task_group(event, parent, parent_ctx,
10999 child, ctxn, &inherited_all);
11000 if (ret)
11001 goto out_unlock;
11004 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11005 parent_ctx->rotate_disable = 0;
11007 child_ctx = child->perf_event_ctxp[ctxn];
11009 if (child_ctx && inherited_all) {
11011 * Mark the child context as a clone of the parent
11012 * context, or of whatever the parent is a clone of.
11014 * Note that if the parent is a clone, the holding of
11015 * parent_ctx->lock avoids it from being uncloned.
11017 cloned_ctx = parent_ctx->parent_ctx;
11018 if (cloned_ctx) {
11019 child_ctx->parent_ctx = cloned_ctx;
11020 child_ctx->parent_gen = parent_ctx->parent_gen;
11021 } else {
11022 child_ctx->parent_ctx = parent_ctx;
11023 child_ctx->parent_gen = parent_ctx->generation;
11025 get_ctx(child_ctx->parent_ctx);
11028 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11029 out_unlock:
11030 mutex_unlock(&parent_ctx->mutex);
11032 perf_unpin_context(parent_ctx);
11033 put_ctx(parent_ctx);
11035 return ret;
11039 * Initialize the perf_event context in task_struct
11041 int perf_event_init_task(struct task_struct *child)
11043 int ctxn, ret;
11045 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11046 mutex_init(&child->perf_event_mutex);
11047 INIT_LIST_HEAD(&child->perf_event_list);
11049 for_each_task_context_nr(ctxn) {
11050 ret = perf_event_init_context(child, ctxn);
11051 if (ret) {
11052 perf_event_free_task(child);
11053 return ret;
11057 return 0;
11060 static void __init perf_event_init_all_cpus(void)
11062 struct swevent_htable *swhash;
11063 int cpu;
11065 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067 for_each_possible_cpu(cpu) {
11068 swhash = &per_cpu(swevent_htable, cpu);
11069 mutex_init(&swhash->hlist_mutex);
11070 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11073 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075 #ifdef CONFIG_CGROUP_PERF
11076 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11077 #endif
11078 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11082 void perf_swevent_init_cpu(unsigned int cpu)
11084 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11086 mutex_lock(&swhash->hlist_mutex);
11087 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11088 struct swevent_hlist *hlist;
11090 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11091 WARN_ON(!hlist);
11092 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094 mutex_unlock(&swhash->hlist_mutex);
11097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11098 static void __perf_event_exit_context(void *__info)
11100 struct perf_event_context *ctx = __info;
11101 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11102 struct perf_event *event;
11104 raw_spin_lock(&ctx->lock);
11105 list_for_each_entry(event, &ctx->event_list, event_entry)
11106 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11107 raw_spin_unlock(&ctx->lock);
11110 static void perf_event_exit_cpu_context(int cpu)
11112 struct perf_cpu_context *cpuctx;
11113 struct perf_event_context *ctx;
11114 struct pmu *pmu;
11116 mutex_lock(&pmus_lock);
11117 list_for_each_entry(pmu, &pmus, entry) {
11118 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11119 ctx = &cpuctx->ctx;
11121 mutex_lock(&ctx->mutex);
11122 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11123 cpuctx->online = 0;
11124 mutex_unlock(&ctx->mutex);
11126 cpumask_clear_cpu(cpu, perf_online_mask);
11127 mutex_unlock(&pmus_lock);
11129 #else
11131 static void perf_event_exit_cpu_context(int cpu) { }
11133 #endif
11135 int perf_event_init_cpu(unsigned int cpu)
11137 struct perf_cpu_context *cpuctx;
11138 struct perf_event_context *ctx;
11139 struct pmu *pmu;
11141 perf_swevent_init_cpu(cpu);
11143 mutex_lock(&pmus_lock);
11144 cpumask_set_cpu(cpu, perf_online_mask);
11145 list_for_each_entry(pmu, &pmus, entry) {
11146 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11147 ctx = &cpuctx->ctx;
11149 mutex_lock(&ctx->mutex);
11150 cpuctx->online = 1;
11151 mutex_unlock(&ctx->mutex);
11153 mutex_unlock(&pmus_lock);
11155 return 0;
11158 int perf_event_exit_cpu(unsigned int cpu)
11160 perf_event_exit_cpu_context(cpu);
11161 return 0;
11164 static int
11165 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11167 int cpu;
11169 for_each_online_cpu(cpu)
11170 perf_event_exit_cpu(cpu);
11172 return NOTIFY_OK;
11176 * Run the perf reboot notifier at the very last possible moment so that
11177 * the generic watchdog code runs as long as possible.
11179 static struct notifier_block perf_reboot_notifier = {
11180 .notifier_call = perf_reboot,
11181 .priority = INT_MIN,
11184 void __init perf_event_init(void)
11186 int ret;
11188 idr_init(&pmu_idr);
11190 perf_event_init_all_cpus();
11191 init_srcu_struct(&pmus_srcu);
11192 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11193 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11194 perf_pmu_register(&perf_task_clock, NULL, -1);
11195 perf_tp_register();
11196 perf_event_init_cpu(smp_processor_id());
11197 register_reboot_notifier(&perf_reboot_notifier);
11199 ret = init_hw_breakpoint();
11200 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11203 * Build time assertion that we keep the data_head at the intended
11204 * location. IOW, validation we got the __reserved[] size right.
11206 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11207 != 1024);
11210 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11211 char *page)
11213 struct perf_pmu_events_attr *pmu_attr =
11214 container_of(attr, struct perf_pmu_events_attr, attr);
11216 if (pmu_attr->event_str)
11217 return sprintf(page, "%s\n", pmu_attr->event_str);
11219 return 0;
11221 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11223 static int __init perf_event_sysfs_init(void)
11225 struct pmu *pmu;
11226 int ret;
11228 mutex_lock(&pmus_lock);
11230 ret = bus_register(&pmu_bus);
11231 if (ret)
11232 goto unlock;
11234 list_for_each_entry(pmu, &pmus, entry) {
11235 if (!pmu->name || pmu->type < 0)
11236 continue;
11238 ret = pmu_dev_alloc(pmu);
11239 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11241 pmu_bus_running = 1;
11242 ret = 0;
11244 unlock:
11245 mutex_unlock(&pmus_lock);
11247 return ret;
11249 device_initcall(perf_event_sysfs_init);
11251 #ifdef CONFIG_CGROUP_PERF
11252 static struct cgroup_subsys_state *
11253 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11255 struct perf_cgroup *jc;
11257 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11258 if (!jc)
11259 return ERR_PTR(-ENOMEM);
11261 jc->info = alloc_percpu(struct perf_cgroup_info);
11262 if (!jc->info) {
11263 kfree(jc);
11264 return ERR_PTR(-ENOMEM);
11267 return &jc->css;
11270 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11272 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11274 free_percpu(jc->info);
11275 kfree(jc);
11278 static int __perf_cgroup_move(void *info)
11280 struct task_struct *task = info;
11281 rcu_read_lock();
11282 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11283 rcu_read_unlock();
11284 return 0;
11287 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11289 struct task_struct *task;
11290 struct cgroup_subsys_state *css;
11292 cgroup_taskset_for_each(task, css, tset)
11293 task_function_call(task, __perf_cgroup_move, task);
11296 struct cgroup_subsys perf_event_cgrp_subsys = {
11297 .css_alloc = perf_cgroup_css_alloc,
11298 .css_free = perf_cgroup_css_free,
11299 .attach = perf_cgroup_attach,
11301 * Implicitly enable on dfl hierarchy so that perf events can
11302 * always be filtered by cgroup2 path as long as perf_event
11303 * controller is not mounted on a legacy hierarchy.
11305 .implicit_on_dfl = true,
11307 #endif /* CONFIG_CGROUP_PERF */