2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
49 * There are three level of locking required by epoll :
53 * 3) ep->lock (spinlock)
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
108 #define EP_UNACTIVE_PTR ((void *) -1L)
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
112 struct epoll_filefd
{
118 * Structure used to track possible nested calls, for too deep recursions
121 struct nested_call_node
{
122 struct list_head llink
;
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
131 struct nested_calls
{
132 struct list_head tasks_call_list
;
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
144 /* RB tree node links this structure to the eventpoll RB tree */
146 /* Used to free the struct epitem */
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink
;
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd
;
162 /* Number of active wait queue attached to poll operations */
165 /* List containing poll wait queues */
166 struct list_head pwqlist
;
168 /* The "container" of this item */
169 struct eventpoll
*ep
;
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink
;
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu
*ws
;
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event
;
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
187 /* Protect the access to this structure */
191 * This mutex is used to ensure that files are not removed
192 * while epoll is using them. This is held during the event
193 * collection loop, the file cleanup path, the epoll file exit
194 * code and the ctl operations.
198 /* Wait queue used by sys_epoll_wait() */
199 wait_queue_head_t wq
;
201 /* Wait queue used by file->poll() */
202 wait_queue_head_t poll_wait
;
204 /* List of ready file descriptors */
205 struct list_head rdllist
;
207 /* RB tree root used to store monitored fd structs */
208 struct rb_root_cached rbr
;
211 * This is a single linked list that chains all the "struct epitem" that
212 * happened while transferring ready events to userspace w/out
215 struct epitem
*ovflist
;
217 /* wakeup_source used when ep_scan_ready_list is running */
218 struct wakeup_source
*ws
;
220 /* The user that created the eventpoll descriptor */
221 struct user_struct
*user
;
225 /* used to optimize loop detection check */
227 struct list_head visited_list_link
;
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id
;
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry
{
237 /* List header used to link this structure to the "struct epitem" */
238 struct list_head llink
;
240 /* The "base" pointer is set to the container "struct epitem" */
244 * Wait queue item that will be linked to the target file wait
247 wait_queue_entry_t wait
;
249 /* The wait queue head that linked the "wait" wait queue item */
250 wait_queue_head_t
*whead
;
253 /* Wrapper struct used by poll queueing */
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data
{
262 struct epoll_event __user
*events
;
266 * Configuration options available inside /proc/sys/fs/epoll/
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly
;
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 static DEFINE_MUTEX(epmutex
);
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls
;
279 /* Used for safe wake up implementation */
280 static struct nested_calls poll_safewake_ncalls
;
282 /* Used to call file's f_op->poll() under the nested calls boundaries */
283 static struct nested_calls poll_readywalk_ncalls
;
285 /* Slab cache used to allocate "struct epitem" */
286 static struct kmem_cache
*epi_cache __read_mostly
;
288 /* Slab cache used to allocate "struct eppoll_entry" */
289 static struct kmem_cache
*pwq_cache __read_mostly
;
291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
292 static LIST_HEAD(visited_list
);
295 * List of files with newly added links, where we may need to limit the number
296 * of emanating paths. Protected by the epmutex.
298 static LIST_HEAD(tfile_check_list
);
302 #include <linux/sysctl.h>
305 static long long_max
= LONG_MAX
;
307 struct ctl_table epoll_table
[] = {
309 .procname
= "max_user_watches",
310 .data
= &max_user_watches
,
311 .maxlen
= sizeof(max_user_watches
),
313 .proc_handler
= proc_doulongvec_minmax
,
319 #endif /* CONFIG_SYSCTL */
321 static const struct file_operations eventpoll_fops
;
323 static inline int is_file_epoll(struct file
*f
)
325 return f
->f_op
== &eventpoll_fops
;
328 /* Setup the structure that is used as key for the RB tree */
329 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
330 struct file
*file
, int fd
)
336 /* Compare RB tree keys */
337 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
338 struct epoll_filefd
*p2
)
340 return (p1
->file
> p2
->file
? +1:
341 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
344 /* Tells us if the item is currently linked */
345 static inline int ep_is_linked(struct list_head
*p
)
347 return !list_empty(p
);
350 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
352 return container_of(p
, struct eppoll_entry
, wait
);
355 /* Get the "struct epitem" from a wait queue pointer */
356 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
358 return container_of(p
, struct eppoll_entry
, wait
)->base
;
361 /* Get the "struct epitem" from an epoll queue wrapper */
362 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
364 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
368 static inline int ep_op_has_event(int op
)
370 return op
!= EPOLL_CTL_DEL
;
373 /* Initialize the poll safe wake up structure */
374 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
376 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
377 spin_lock_init(&ncalls
->lock
);
381 * ep_events_available - Checks if ready events might be available.
383 * @ep: Pointer to the eventpoll context.
385 * Returns: Returns a value different than zero if ready events are available,
388 static inline int ep_events_available(struct eventpoll
*ep
)
390 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
393 #ifdef CONFIG_NET_RX_BUSY_POLL
394 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
396 struct eventpoll
*ep
= p
;
398 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
400 #endif /* CONFIG_NET_RX_BUSY_POLL */
403 * Busy poll if globally on and supporting sockets found && no events,
404 * busy loop will return if need_resched or ep_events_available.
406 * we must do our busy polling with irqs enabled
408 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
413 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
414 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
420 #ifdef CONFIG_NET_RX_BUSY_POLL
427 * Set epoll busy poll NAPI ID from sk.
429 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
431 #ifdef CONFIG_NET_RX_BUSY_POLL
432 struct eventpoll
*ep
;
433 unsigned int napi_id
;
438 if (!net_busy_loop_on())
441 sock
= sock_from_file(epi
->ffd
.file
, &err
);
449 napi_id
= READ_ONCE(sk
->sk_napi_id
);
452 /* Non-NAPI IDs can be rejected
454 * Nothing to do if we already have this ID
456 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
459 /* record NAPI ID for use in next busy poll */
460 ep
->napi_id
= napi_id
;
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @max_nests: Maximum number of allowed nesting calls.
472 * @nproc: Nested call core function pointer.
473 * @priv: Opaque data to be passed to the @nproc callback.
474 * @cookie: Cookie to be used to identify this nested call.
475 * @ctx: This instance context.
477 * Returns: Returns the code returned by the @nproc callback, or -1 if
478 * the maximum recursion limit has been exceeded.
480 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
481 int (*nproc
)(void *, void *, int), void *priv
,
482 void *cookie
, void *ctx
)
484 int error
, call_nests
= 0;
486 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
487 struct nested_call_node
*tncur
;
488 struct nested_call_node tnode
;
490 spin_lock_irqsave(&ncalls
->lock
, flags
);
493 * Try to see if the current task is already inside this wakeup call.
494 * We use a list here, since the population inside this set is always
497 list_for_each_entry(tncur
, lsthead
, llink
) {
498 if (tncur
->ctx
== ctx
&&
499 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
501 * Ops ... loop detected or maximum nest level reached.
502 * We abort this wake by breaking the cycle itself.
509 /* Add the current task and cookie to the list */
511 tnode
.cookie
= cookie
;
512 list_add(&tnode
.llink
, lsthead
);
514 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
516 /* Call the nested function */
517 error
= (*nproc
)(priv
, cookie
, call_nests
);
519 /* Remove the current task from the list */
520 spin_lock_irqsave(&ncalls
->lock
, flags
);
521 list_del(&tnode
.llink
);
523 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
529 * As described in commit 0ccf831cb lockdep: annotate epoll
530 * the use of wait queues used by epoll is done in a very controlled
531 * manner. Wake ups can nest inside each other, but are never done
532 * with the same locking. For example:
535 * efd1 = epoll_create();
536 * efd2 = epoll_create();
537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
540 * When a packet arrives to the device underneath "dfd", the net code will
541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
542 * callback wakeup entry on that queue, and the wake_up() performed by the
543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
544 * (efd1) notices that it may have some event ready, so it needs to wake up
545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
546 * that ends up in another wake_up(), after having checked about the
547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
548 * avoid stack blasting.
550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
551 * this special case of epoll.
553 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
555 unsigned long events
, int subclass
)
559 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
560 wake_up_locked_poll(wqueue
, events
);
561 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
564 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
565 unsigned long events
, int subclass
)
567 wake_up_poll(wqueue
, events
);
571 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
573 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
579 * Perform a safe wake up of the poll wait list. The problem is that
580 * with the new callback'd wake up system, it is possible that the
581 * poll callback is reentered from inside the call to wake_up() done
582 * on the poll wait queue head. The rule is that we cannot reenter the
583 * wake up code from the same task more than EP_MAX_NESTS times,
584 * and we cannot reenter the same wait queue head at all. This will
585 * enable to have a hierarchy of epoll file descriptor of no more than
588 static void ep_poll_safewake(wait_queue_head_t
*wq
)
590 int this_cpu
= get_cpu();
592 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
593 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
598 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
600 wait_queue_head_t
*whead
;
604 * If it is cleared by POLLFREE, it should be rcu-safe.
605 * If we read NULL we need a barrier paired with
606 * smp_store_release() in ep_poll_callback(), otherwise
607 * we rely on whead->lock.
609 whead
= smp_load_acquire(&pwq
->whead
);
611 remove_wait_queue(whead
, &pwq
->wait
);
616 * This function unregisters poll callbacks from the associated file
617 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
620 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
622 struct list_head
*lsthead
= &epi
->pwqlist
;
623 struct eppoll_entry
*pwq
;
625 while (!list_empty(lsthead
)) {
626 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
628 list_del(&pwq
->llink
);
629 ep_remove_wait_queue(pwq
);
630 kmem_cache_free(pwq_cache
, pwq
);
634 /* call only when ep->mtx is held */
635 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
637 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
640 /* call only when ep->mtx is held */
641 static inline void ep_pm_stay_awake(struct epitem
*epi
)
643 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
649 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
651 return rcu_access_pointer(epi
->ws
) ? true : false;
654 /* call when ep->mtx cannot be held (ep_poll_callback) */
655 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
657 struct wakeup_source
*ws
;
660 ws
= rcu_dereference(epi
->ws
);
667 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
668 * the scan code, to call f_op->poll(). Also allows for
669 * O(NumReady) performance.
671 * @ep: Pointer to the epoll private data structure.
672 * @sproc: Pointer to the scan callback.
673 * @priv: Private opaque data passed to the @sproc callback.
674 * @depth: The current depth of recursive f_op->poll calls.
675 * @ep_locked: caller already holds ep->mtx
677 * Returns: The same integer error code returned by the @sproc callback.
679 static int ep_scan_ready_list(struct eventpoll
*ep
,
680 int (*sproc
)(struct eventpoll
*,
681 struct list_head
*, void *),
682 void *priv
, int depth
, bool ep_locked
)
684 int error
, pwake
= 0;
686 struct epitem
*epi
, *nepi
;
690 * We need to lock this because we could be hit by
691 * eventpoll_release_file() and epoll_ctl().
695 mutex_lock_nested(&ep
->mtx
, depth
);
698 * Steal the ready list, and re-init the original one to the
699 * empty list. Also, set ep->ovflist to NULL so that events
700 * happening while looping w/out locks, are not lost. We cannot
701 * have the poll callback to queue directly on ep->rdllist,
702 * because we want the "sproc" callback to be able to do it
705 spin_lock_irqsave(&ep
->lock
, flags
);
706 list_splice_init(&ep
->rdllist
, &txlist
);
708 spin_unlock_irqrestore(&ep
->lock
, flags
);
711 * Now call the callback function.
713 error
= (*sproc
)(ep
, &txlist
, priv
);
715 spin_lock_irqsave(&ep
->lock
, flags
);
717 * During the time we spent inside the "sproc" callback, some
718 * other events might have been queued by the poll callback.
719 * We re-insert them inside the main ready-list here.
721 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
722 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
724 * We need to check if the item is already in the list.
725 * During the "sproc" callback execution time, items are
726 * queued into ->ovflist but the "txlist" might already
727 * contain them, and the list_splice() below takes care of them.
729 if (!ep_is_linked(&epi
->rdllink
)) {
730 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
731 ep_pm_stay_awake(epi
);
735 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
736 * releasing the lock, events will be queued in the normal way inside
739 ep
->ovflist
= EP_UNACTIVE_PTR
;
742 * Quickly re-inject items left on "txlist".
744 list_splice(&txlist
, &ep
->rdllist
);
747 if (!list_empty(&ep
->rdllist
)) {
749 * Wake up (if active) both the eventpoll wait list and
750 * the ->poll() wait list (delayed after we release the lock).
752 if (waitqueue_active(&ep
->wq
))
753 wake_up_locked(&ep
->wq
);
754 if (waitqueue_active(&ep
->poll_wait
))
757 spin_unlock_irqrestore(&ep
->lock
, flags
);
760 mutex_unlock(&ep
->mtx
);
762 /* We have to call this outside the lock */
764 ep_poll_safewake(&ep
->poll_wait
);
769 static void epi_rcu_free(struct rcu_head
*head
)
771 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
772 kmem_cache_free(epi_cache
, epi
);
776 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
777 * all the associated resources. Must be called with "mtx" held.
779 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
782 struct file
*file
= epi
->ffd
.file
;
785 * Removes poll wait queue hooks. We _have_ to do this without holding
786 * the "ep->lock" otherwise a deadlock might occur. This because of the
787 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
788 * queue head lock when unregistering the wait queue. The wakeup callback
789 * will run by holding the wait queue head lock and will call our callback
790 * that will try to get "ep->lock".
792 ep_unregister_pollwait(ep
, epi
);
794 /* Remove the current item from the list of epoll hooks */
795 spin_lock(&file
->f_lock
);
796 list_del_rcu(&epi
->fllink
);
797 spin_unlock(&file
->f_lock
);
799 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
801 spin_lock_irqsave(&ep
->lock
, flags
);
802 if (ep_is_linked(&epi
->rdllink
))
803 list_del_init(&epi
->rdllink
);
804 spin_unlock_irqrestore(&ep
->lock
, flags
);
806 wakeup_source_unregister(ep_wakeup_source(epi
));
808 * At this point it is safe to free the eventpoll item. Use the union
809 * field epi->rcu, since we are trying to minimize the size of
810 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
811 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
812 * use of the rbn field.
814 call_rcu(&epi
->rcu
, epi_rcu_free
);
816 atomic_long_dec(&ep
->user
->epoll_watches
);
821 static void ep_free(struct eventpoll
*ep
)
826 /* We need to release all tasks waiting for these file */
827 if (waitqueue_active(&ep
->poll_wait
))
828 ep_poll_safewake(&ep
->poll_wait
);
831 * We need to lock this because we could be hit by
832 * eventpoll_release_file() while we're freeing the "struct eventpoll".
833 * We do not need to hold "ep->mtx" here because the epoll file
834 * is on the way to be removed and no one has references to it
835 * anymore. The only hit might come from eventpoll_release_file() but
836 * holding "epmutex" is sufficient here.
838 mutex_lock(&epmutex
);
841 * Walks through the whole tree by unregistering poll callbacks.
843 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
844 epi
= rb_entry(rbp
, struct epitem
, rbn
);
846 ep_unregister_pollwait(ep
, epi
);
851 * Walks through the whole tree by freeing each "struct epitem". At this
852 * point we are sure no poll callbacks will be lingering around, and also by
853 * holding "epmutex" we can be sure that no file cleanup code will hit
854 * us during this operation. So we can avoid the lock on "ep->lock".
855 * We do not need to lock ep->mtx, either, we only do it to prevent
858 mutex_lock(&ep
->mtx
);
859 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
860 epi
= rb_entry(rbp
, struct epitem
, rbn
);
864 mutex_unlock(&ep
->mtx
);
866 mutex_unlock(&epmutex
);
867 mutex_destroy(&ep
->mtx
);
869 wakeup_source_unregister(ep
->ws
);
873 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
875 struct eventpoll
*ep
= file
->private_data
;
883 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
885 pt
->_key
= epi
->event
.events
;
887 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
890 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
893 struct epitem
*epi
, *tmp
;
896 init_poll_funcptr(&pt
, NULL
);
898 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
899 if (ep_item_poll(epi
, &pt
))
900 return POLLIN
| POLLRDNORM
;
903 * Item has been dropped into the ready list by the poll
904 * callback, but it's not actually ready, as far as
905 * caller requested events goes. We can remove it here.
907 __pm_relax(ep_wakeup_source(epi
));
908 list_del_init(&epi
->rdllink
);
915 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
918 struct readyevents_arg
{
919 struct eventpoll
*ep
;
923 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
925 struct readyevents_arg
*arg
= priv
;
927 return ep_scan_ready_list(arg
->ep
, ep_read_events_proc
, NULL
,
928 call_nests
+ 1, arg
->locked
);
931 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
934 struct eventpoll
*ep
= file
->private_data
;
935 struct readyevents_arg arg
;
938 * During ep_insert() we already hold the ep->mtx for the tfile.
939 * Prevent re-aquisition.
941 arg
.locked
= wait
&& (wait
->_qproc
== ep_ptable_queue_proc
);
944 /* Insert inside our poll wait queue */
945 poll_wait(file
, &ep
->poll_wait
, wait
);
948 * Proceed to find out if wanted events are really available inside
949 * the ready list. This need to be done under ep_call_nested()
950 * supervision, since the call to f_op->poll() done on listed files
951 * could re-enter here.
953 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
954 ep_poll_readyevents_proc
, &arg
, ep
, current
);
956 return pollflags
!= -1 ? pollflags
: 0;
959 #ifdef CONFIG_PROC_FS
960 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
962 struct eventpoll
*ep
= f
->private_data
;
965 mutex_lock(&ep
->mtx
);
966 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
967 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
968 struct inode
*inode
= file_inode(epi
->ffd
.file
);
970 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
971 " pos:%lli ino:%lx sdev:%x\n",
972 epi
->ffd
.fd
, epi
->event
.events
,
973 (long long)epi
->event
.data
,
974 (long long)epi
->ffd
.file
->f_pos
,
975 inode
->i_ino
, inode
->i_sb
->s_dev
);
976 if (seq_has_overflowed(m
))
979 mutex_unlock(&ep
->mtx
);
983 /* File callbacks that implement the eventpoll file behaviour */
984 static const struct file_operations eventpoll_fops
= {
985 #ifdef CONFIG_PROC_FS
986 .show_fdinfo
= ep_show_fdinfo
,
988 .release
= ep_eventpoll_release
,
989 .poll
= ep_eventpoll_poll
,
990 .llseek
= noop_llseek
,
994 * This is called from eventpoll_release() to unlink files from the eventpoll
995 * interface. We need to have this facility to cleanup correctly files that are
996 * closed without being removed from the eventpoll interface.
998 void eventpoll_release_file(struct file
*file
)
1000 struct eventpoll
*ep
;
1001 struct epitem
*epi
, *next
;
1004 * We don't want to get "file->f_lock" because it is not
1005 * necessary. It is not necessary because we're in the "struct file"
1006 * cleanup path, and this means that no one is using this file anymore.
1007 * So, for example, epoll_ctl() cannot hit here since if we reach this
1008 * point, the file counter already went to zero and fget() would fail.
1009 * The only hit might come from ep_free() but by holding the mutex
1010 * will correctly serialize the operation. We do need to acquire
1011 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1012 * from anywhere but ep_free().
1014 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1016 mutex_lock(&epmutex
);
1017 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
1019 mutex_lock_nested(&ep
->mtx
, 0);
1021 mutex_unlock(&ep
->mtx
);
1023 mutex_unlock(&epmutex
);
1026 static int ep_alloc(struct eventpoll
**pep
)
1029 struct user_struct
*user
;
1030 struct eventpoll
*ep
;
1032 user
= get_current_user();
1034 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1038 spin_lock_init(&ep
->lock
);
1039 mutex_init(&ep
->mtx
);
1040 init_waitqueue_head(&ep
->wq
);
1041 init_waitqueue_head(&ep
->poll_wait
);
1042 INIT_LIST_HEAD(&ep
->rdllist
);
1043 ep
->rbr
= RB_ROOT_CACHED
;
1044 ep
->ovflist
= EP_UNACTIVE_PTR
;
1057 * Search the file inside the eventpoll tree. The RB tree operations
1058 * are protected by the "mtx" mutex, and ep_find() must be called with
1061 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1064 struct rb_node
*rbp
;
1065 struct epitem
*epi
, *epir
= NULL
;
1066 struct epoll_filefd ffd
;
1068 ep_set_ffd(&ffd
, file
, fd
);
1069 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1070 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1071 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1073 rbp
= rbp
->rb_right
;
1085 #ifdef CONFIG_CHECKPOINT_RESTORE
1086 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1088 struct rb_node
*rbp
;
1091 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1092 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1093 if (epi
->ffd
.fd
== tfd
) {
1105 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1108 struct file
*file_raw
;
1109 struct eventpoll
*ep
;
1112 if (!is_file_epoll(file
))
1113 return ERR_PTR(-EINVAL
);
1115 ep
= file
->private_data
;
1117 mutex_lock(&ep
->mtx
);
1118 epi
= ep_find_tfd(ep
, tfd
, toff
);
1120 file_raw
= epi
->ffd
.file
;
1122 file_raw
= ERR_PTR(-ENOENT
);
1123 mutex_unlock(&ep
->mtx
);
1127 #endif /* CONFIG_CHECKPOINT_RESTORE */
1130 * This is the callback that is passed to the wait queue wakeup
1131 * mechanism. It is called by the stored file descriptors when they
1132 * have events to report.
1134 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1137 unsigned long flags
;
1138 struct epitem
*epi
= ep_item_from_wait(wait
);
1139 struct eventpoll
*ep
= epi
->ep
;
1142 spin_lock_irqsave(&ep
->lock
, flags
);
1144 ep_set_busy_poll_napi_id(epi
);
1147 * If the event mask does not contain any poll(2) event, we consider the
1148 * descriptor to be disabled. This condition is likely the effect of the
1149 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1150 * until the next EPOLL_CTL_MOD will be issued.
1152 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1156 * Check the events coming with the callback. At this stage, not
1157 * every device reports the events in the "key" parameter of the
1158 * callback. We need to be able to handle both cases here, hence the
1159 * test for "key" != NULL before the event match test.
1161 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1165 * If we are transferring events to userspace, we can hold no locks
1166 * (because we're accessing user memory, and because of linux f_op->poll()
1167 * semantics). All the events that happen during that period of time are
1168 * chained in ep->ovflist and requeued later on.
1170 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1171 if (epi
->next
== EP_UNACTIVE_PTR
) {
1172 epi
->next
= ep
->ovflist
;
1176 * Activate ep->ws since epi->ws may get
1177 * deactivated at any time.
1179 __pm_stay_awake(ep
->ws
);
1186 /* If this file is already in the ready list we exit soon */
1187 if (!ep_is_linked(&epi
->rdllink
)) {
1188 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1189 ep_pm_stay_awake_rcu(epi
);
1193 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1196 if (waitqueue_active(&ep
->wq
)) {
1197 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1198 !((unsigned long)key
& POLLFREE
)) {
1199 switch ((unsigned long)key
& EPOLLINOUT_BITS
) {
1201 if (epi
->event
.events
& POLLIN
)
1205 if (epi
->event
.events
& POLLOUT
)
1213 wake_up_locked(&ep
->wq
);
1215 if (waitqueue_active(&ep
->poll_wait
))
1219 spin_unlock_irqrestore(&ep
->lock
, flags
);
1221 /* We have to call this outside the lock */
1223 ep_poll_safewake(&ep
->poll_wait
);
1225 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1228 if ((unsigned long)key
& POLLFREE
) {
1230 * If we race with ep_remove_wait_queue() it can miss
1231 * ->whead = NULL and do another remove_wait_queue() after
1232 * us, so we can't use __remove_wait_queue().
1234 list_del_init(&wait
->entry
);
1236 * ->whead != NULL protects us from the race with ep_free()
1237 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1238 * held by the caller. Once we nullify it, nothing protects
1239 * ep/epi or even wait.
1241 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1248 * This is the callback that is used to add our wait queue to the
1249 * target file wakeup lists.
1251 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1254 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1255 struct eppoll_entry
*pwq
;
1257 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1258 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1261 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1262 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1264 add_wait_queue(whead
, &pwq
->wait
);
1265 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1268 /* We have to signal that an error occurred */
1273 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1276 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1277 struct epitem
*epic
;
1278 bool leftmost
= true;
1282 epic
= rb_entry(parent
, struct epitem
, rbn
);
1283 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1285 p
= &parent
->rb_right
;
1288 p
= &parent
->rb_left
;
1290 rb_link_node(&epi
->rbn
, parent
, p
);
1291 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1296 #define PATH_ARR_SIZE 5
1298 * These are the number paths of length 1 to 5, that we are allowing to emanate
1299 * from a single file of interest. For example, we allow 1000 paths of length
1300 * 1, to emanate from each file of interest. This essentially represents the
1301 * potential wakeup paths, which need to be limited in order to avoid massive
1302 * uncontrolled wakeup storms. The common use case should be a single ep which
1303 * is connected to n file sources. In this case each file source has 1 path
1304 * of length 1. Thus, the numbers below should be more than sufficient. These
1305 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1306 * and delete can't add additional paths. Protected by the epmutex.
1308 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1309 static int path_count
[PATH_ARR_SIZE
];
1311 static int path_count_inc(int nests
)
1313 /* Allow an arbitrary number of depth 1 paths */
1317 if (++path_count
[nests
] > path_limits
[nests
])
1322 static void path_count_init(void)
1326 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1330 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1333 struct file
*file
= priv
;
1334 struct file
*child_file
;
1337 /* CTL_DEL can remove links here, but that can't increase our count */
1339 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1340 child_file
= epi
->ep
->file
;
1341 if (is_file_epoll(child_file
)) {
1342 if (list_empty(&child_file
->f_ep_links
)) {
1343 if (path_count_inc(call_nests
)) {
1348 error
= ep_call_nested(&poll_loop_ncalls
,
1350 reverse_path_check_proc
,
1351 child_file
, child_file
,
1357 printk(KERN_ERR
"reverse_path_check_proc: "
1358 "file is not an ep!\n");
1366 * reverse_path_check - The tfile_check_list is list of file *, which have
1367 * links that are proposed to be newly added. We need to
1368 * make sure that those added links don't add too many
1369 * paths such that we will spend all our time waking up
1370 * eventpoll objects.
1372 * Returns: Returns zero if the proposed links don't create too many paths,
1375 static int reverse_path_check(void)
1378 struct file
*current_file
;
1380 /* let's call this for all tfiles */
1381 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1383 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1384 reverse_path_check_proc
, current_file
,
1385 current_file
, current
);
1392 static int ep_create_wakeup_source(struct epitem
*epi
)
1395 struct wakeup_source
*ws
;
1398 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1403 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1404 ws
= wakeup_source_register(name
);
1408 rcu_assign_pointer(epi
->ws
, ws
);
1413 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1414 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1416 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1418 RCU_INIT_POINTER(epi
->ws
, NULL
);
1421 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1422 * used internally by wakeup_source_remove, too (called by
1423 * wakeup_source_unregister), so we cannot use call_rcu
1426 wakeup_source_unregister(ws
);
1430 * Must be called with "mtx" held.
1432 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1433 struct file
*tfile
, int fd
, int full_check
)
1435 int error
, revents
, pwake
= 0;
1436 unsigned long flags
;
1439 struct ep_pqueue epq
;
1441 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1442 if (unlikely(user_watches
>= max_user_watches
))
1444 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1447 /* Item initialization follow here ... */
1448 INIT_LIST_HEAD(&epi
->rdllink
);
1449 INIT_LIST_HEAD(&epi
->fllink
);
1450 INIT_LIST_HEAD(&epi
->pwqlist
);
1452 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1453 epi
->event
= *event
;
1455 epi
->next
= EP_UNACTIVE_PTR
;
1456 if (epi
->event
.events
& EPOLLWAKEUP
) {
1457 error
= ep_create_wakeup_source(epi
);
1459 goto error_create_wakeup_source
;
1461 RCU_INIT_POINTER(epi
->ws
, NULL
);
1464 /* Initialize the poll table using the queue callback */
1466 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1469 * Attach the item to the poll hooks and get current event bits.
1470 * We can safely use the file* here because its usage count has
1471 * been increased by the caller of this function. Note that after
1472 * this operation completes, the poll callback can start hitting
1475 revents
= ep_item_poll(epi
, &epq
.pt
);
1478 * We have to check if something went wrong during the poll wait queue
1479 * install process. Namely an allocation for a wait queue failed due
1480 * high memory pressure.
1484 goto error_unregister
;
1486 /* Add the current item to the list of active epoll hook for this file */
1487 spin_lock(&tfile
->f_lock
);
1488 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1489 spin_unlock(&tfile
->f_lock
);
1492 * Add the current item to the RB tree. All RB tree operations are
1493 * protected by "mtx", and ep_insert() is called with "mtx" held.
1495 ep_rbtree_insert(ep
, epi
);
1497 /* now check if we've created too many backpaths */
1499 if (full_check
&& reverse_path_check())
1500 goto error_remove_epi
;
1502 /* We have to drop the new item inside our item list to keep track of it */
1503 spin_lock_irqsave(&ep
->lock
, flags
);
1505 /* record NAPI ID of new item if present */
1506 ep_set_busy_poll_napi_id(epi
);
1508 /* If the file is already "ready" we drop it inside the ready list */
1509 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1510 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1511 ep_pm_stay_awake(epi
);
1513 /* Notify waiting tasks that events are available */
1514 if (waitqueue_active(&ep
->wq
))
1515 wake_up_locked(&ep
->wq
);
1516 if (waitqueue_active(&ep
->poll_wait
))
1520 spin_unlock_irqrestore(&ep
->lock
, flags
);
1522 atomic_long_inc(&ep
->user
->epoll_watches
);
1524 /* We have to call this outside the lock */
1526 ep_poll_safewake(&ep
->poll_wait
);
1531 spin_lock(&tfile
->f_lock
);
1532 list_del_rcu(&epi
->fllink
);
1533 spin_unlock(&tfile
->f_lock
);
1535 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1538 ep_unregister_pollwait(ep
, epi
);
1541 * We need to do this because an event could have been arrived on some
1542 * allocated wait queue. Note that we don't care about the ep->ovflist
1543 * list, since that is used/cleaned only inside a section bound by "mtx".
1544 * And ep_insert() is called with "mtx" held.
1546 spin_lock_irqsave(&ep
->lock
, flags
);
1547 if (ep_is_linked(&epi
->rdllink
))
1548 list_del_init(&epi
->rdllink
);
1549 spin_unlock_irqrestore(&ep
->lock
, flags
);
1551 wakeup_source_unregister(ep_wakeup_source(epi
));
1553 error_create_wakeup_source
:
1554 kmem_cache_free(epi_cache
, epi
);
1560 * Modify the interest event mask by dropping an event if the new mask
1561 * has a match in the current file status. Must be called with "mtx" held.
1563 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1566 unsigned int revents
;
1569 init_poll_funcptr(&pt
, NULL
);
1572 * Set the new event interest mask before calling f_op->poll();
1573 * otherwise we might miss an event that happens between the
1574 * f_op->poll() call and the new event set registering.
1576 epi
->event
.events
= event
->events
; /* need barrier below */
1577 epi
->event
.data
= event
->data
; /* protected by mtx */
1578 if (epi
->event
.events
& EPOLLWAKEUP
) {
1579 if (!ep_has_wakeup_source(epi
))
1580 ep_create_wakeup_source(epi
);
1581 } else if (ep_has_wakeup_source(epi
)) {
1582 ep_destroy_wakeup_source(epi
);
1586 * The following barrier has two effects:
1588 * 1) Flush epi changes above to other CPUs. This ensures
1589 * we do not miss events from ep_poll_callback if an
1590 * event occurs immediately after we call f_op->poll().
1591 * We need this because we did not take ep->lock while
1592 * changing epi above (but ep_poll_callback does take
1595 * 2) We also need to ensure we do not miss _past_ events
1596 * when calling f_op->poll(). This barrier also
1597 * pairs with the barrier in wq_has_sleeper (see
1598 * comments for wq_has_sleeper).
1600 * This barrier will now guarantee ep_poll_callback or f_op->poll
1601 * (or both) will notice the readiness of an item.
1606 * Get current event bits. We can safely use the file* here because
1607 * its usage count has been increased by the caller of this function.
1609 revents
= ep_item_poll(epi
, &pt
);
1612 * If the item is "hot" and it is not registered inside the ready
1613 * list, push it inside.
1615 if (revents
& event
->events
) {
1616 spin_lock_irq(&ep
->lock
);
1617 if (!ep_is_linked(&epi
->rdllink
)) {
1618 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1619 ep_pm_stay_awake(epi
);
1621 /* Notify waiting tasks that events are available */
1622 if (waitqueue_active(&ep
->wq
))
1623 wake_up_locked(&ep
->wq
);
1624 if (waitqueue_active(&ep
->poll_wait
))
1627 spin_unlock_irq(&ep
->lock
);
1630 /* We have to call this outside the lock */
1632 ep_poll_safewake(&ep
->poll_wait
);
1637 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1640 struct ep_send_events_data
*esed
= priv
;
1642 unsigned int revents
;
1644 struct epoll_event __user
*uevent
;
1645 struct wakeup_source
*ws
;
1648 init_poll_funcptr(&pt
, NULL
);
1651 * We can loop without lock because we are passed a task private list.
1652 * Items cannot vanish during the loop because ep_scan_ready_list() is
1653 * holding "mtx" during this call.
1655 for (eventcnt
= 0, uevent
= esed
->events
;
1656 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1657 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1660 * Activate ep->ws before deactivating epi->ws to prevent
1661 * triggering auto-suspend here (in case we reactive epi->ws
1664 * This could be rearranged to delay the deactivation of epi->ws
1665 * instead, but then epi->ws would temporarily be out of sync
1666 * with ep_is_linked().
1668 ws
= ep_wakeup_source(epi
);
1671 __pm_stay_awake(ep
->ws
);
1675 list_del_init(&epi
->rdllink
);
1677 revents
= ep_item_poll(epi
, &pt
);
1680 * If the event mask intersect the caller-requested one,
1681 * deliver the event to userspace. Again, ep_scan_ready_list()
1682 * is holding "mtx", so no operations coming from userspace
1683 * can change the item.
1686 if (__put_user(revents
, &uevent
->events
) ||
1687 __put_user(epi
->event
.data
, &uevent
->data
)) {
1688 list_add(&epi
->rdllink
, head
);
1689 ep_pm_stay_awake(epi
);
1690 return eventcnt
? eventcnt
: -EFAULT
;
1694 if (epi
->event
.events
& EPOLLONESHOT
)
1695 epi
->event
.events
&= EP_PRIVATE_BITS
;
1696 else if (!(epi
->event
.events
& EPOLLET
)) {
1698 * If this file has been added with Level
1699 * Trigger mode, we need to insert back inside
1700 * the ready list, so that the next call to
1701 * epoll_wait() will check again the events
1702 * availability. At this point, no one can insert
1703 * into ep->rdllist besides us. The epoll_ctl()
1704 * callers are locked out by
1705 * ep_scan_ready_list() holding "mtx" and the
1706 * poll callback will queue them in ep->ovflist.
1708 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1709 ep_pm_stay_awake(epi
);
1717 static int ep_send_events(struct eventpoll
*ep
,
1718 struct epoll_event __user
*events
, int maxevents
)
1720 struct ep_send_events_data esed
;
1722 esed
.maxevents
= maxevents
;
1723 esed
.events
= events
;
1725 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1728 static inline struct timespec64
ep_set_mstimeout(long ms
)
1730 struct timespec64 now
, ts
= {
1731 .tv_sec
= ms
/ MSEC_PER_SEC
,
1732 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1735 ktime_get_ts64(&now
);
1736 return timespec64_add_safe(now
, ts
);
1740 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1743 * @ep: Pointer to the eventpoll context.
1744 * @events: Pointer to the userspace buffer where the ready events should be
1746 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1747 * @timeout: Maximum timeout for the ready events fetch operation, in
1748 * milliseconds. If the @timeout is zero, the function will not block,
1749 * while if the @timeout is less than zero, the function will block
1750 * until at least one event has been retrieved (or an error
1753 * Returns: Returns the number of ready events which have been fetched, or an
1754 * error code, in case of error.
1756 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1757 int maxevents
, long timeout
)
1759 int res
= 0, eavail
, timed_out
= 0;
1760 unsigned long flags
;
1762 wait_queue_entry_t wait
;
1763 ktime_t expires
, *to
= NULL
;
1766 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1768 slack
= select_estimate_accuracy(&end_time
);
1770 *to
= timespec64_to_ktime(end_time
);
1771 } else if (timeout
== 0) {
1773 * Avoid the unnecessary trip to the wait queue loop, if the
1774 * caller specified a non blocking operation.
1777 spin_lock_irqsave(&ep
->lock
, flags
);
1783 if (!ep_events_available(ep
))
1784 ep_busy_loop(ep
, timed_out
);
1786 spin_lock_irqsave(&ep
->lock
, flags
);
1788 if (!ep_events_available(ep
)) {
1790 * Busy poll timed out. Drop NAPI ID for now, we can add
1791 * it back in when we have moved a socket with a valid NAPI
1792 * ID onto the ready list.
1794 ep_reset_busy_poll_napi_id(ep
);
1797 * We don't have any available event to return to the caller.
1798 * We need to sleep here, and we will be wake up by
1799 * ep_poll_callback() when events will become available.
1801 init_waitqueue_entry(&wait
, current
);
1802 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1806 * We don't want to sleep if the ep_poll_callback() sends us
1807 * a wakeup in between. That's why we set the task state
1808 * to TASK_INTERRUPTIBLE before doing the checks.
1810 set_current_state(TASK_INTERRUPTIBLE
);
1812 * Always short-circuit for fatal signals to allow
1813 * threads to make a timely exit without the chance of
1814 * finding more events available and fetching
1817 if (fatal_signal_pending(current
)) {
1821 if (ep_events_available(ep
) || timed_out
)
1823 if (signal_pending(current
)) {
1828 spin_unlock_irqrestore(&ep
->lock
, flags
);
1829 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1832 spin_lock_irqsave(&ep
->lock
, flags
);
1835 __remove_wait_queue(&ep
->wq
, &wait
);
1836 __set_current_state(TASK_RUNNING
);
1839 /* Is it worth to try to dig for events ? */
1840 eavail
= ep_events_available(ep
);
1842 spin_unlock_irqrestore(&ep
->lock
, flags
);
1845 * Try to transfer events to user space. In case we get 0 events and
1846 * there's still timeout left over, we go trying again in search of
1849 if (!res
&& eavail
&&
1850 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1857 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1858 * API, to verify that adding an epoll file inside another
1859 * epoll structure, does not violate the constraints, in
1860 * terms of closed loops, or too deep chains (which can
1861 * result in excessive stack usage).
1863 * @priv: Pointer to the epoll file to be currently checked.
1864 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1865 * data structure pointer.
1866 * @call_nests: Current dept of the @ep_call_nested() call stack.
1868 * Returns: Returns zero if adding the epoll @file inside current epoll
1869 * structure @ep does not violate the constraints, or -1 otherwise.
1871 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1874 struct file
*file
= priv
;
1875 struct eventpoll
*ep
= file
->private_data
;
1876 struct eventpoll
*ep_tovisit
;
1877 struct rb_node
*rbp
;
1880 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1882 list_add(&ep
->visited_list_link
, &visited_list
);
1883 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1884 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1885 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1886 ep_tovisit
= epi
->ffd
.file
->private_data
;
1887 if (ep_tovisit
->visited
)
1889 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1890 ep_loop_check_proc
, epi
->ffd
.file
,
1891 ep_tovisit
, current
);
1896 * If we've reached a file that is not associated with
1897 * an ep, then we need to check if the newly added
1898 * links are going to add too many wakeup paths. We do
1899 * this by adding it to the tfile_check_list, if it's
1900 * not already there, and calling reverse_path_check()
1901 * during ep_insert().
1903 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1904 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1908 mutex_unlock(&ep
->mtx
);
1914 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1915 * another epoll file (represented by @ep) does not create
1916 * closed loops or too deep chains.
1918 * @ep: Pointer to the epoll private data structure.
1919 * @file: Pointer to the epoll file to be checked.
1921 * Returns: Returns zero if adding the epoll @file inside current epoll
1922 * structure @ep does not violate the constraints, or -1 otherwise.
1924 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1927 struct eventpoll
*ep_cur
, *ep_next
;
1929 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1930 ep_loop_check_proc
, file
, ep
, current
);
1931 /* clear visited list */
1932 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1933 visited_list_link
) {
1934 ep_cur
->visited
= 0;
1935 list_del(&ep_cur
->visited_list_link
);
1940 static void clear_tfile_check_list(void)
1944 /* first clear the tfile_check_list */
1945 while (!list_empty(&tfile_check_list
)) {
1946 file
= list_first_entry(&tfile_check_list
, struct file
,
1948 list_del_init(&file
->f_tfile_llink
);
1950 INIT_LIST_HEAD(&tfile_check_list
);
1954 * Open an eventpoll file descriptor.
1956 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1959 struct eventpoll
*ep
= NULL
;
1962 /* Check the EPOLL_* constant for consistency. */
1963 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1965 if (flags
& ~EPOLL_CLOEXEC
)
1968 * Create the internal data structure ("struct eventpoll").
1970 error
= ep_alloc(&ep
);
1974 * Creates all the items needed to setup an eventpoll file. That is,
1975 * a file structure and a free file descriptor.
1977 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1982 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1983 O_RDWR
| (flags
& O_CLOEXEC
));
1985 error
= PTR_ERR(file
);
1989 fd_install(fd
, file
);
1999 SYSCALL_DEFINE1(epoll_create
, int, size
)
2004 return sys_epoll_create1(0);
2008 * The following function implements the controller interface for
2009 * the eventpoll file that enables the insertion/removal/change of
2010 * file descriptors inside the interest set.
2012 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2013 struct epoll_event __user
*, event
)
2018 struct eventpoll
*ep
;
2020 struct epoll_event epds
;
2021 struct eventpoll
*tep
= NULL
;
2024 if (ep_op_has_event(op
) &&
2025 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2033 /* Get the "struct file *" for the target file */
2038 /* The target file descriptor must support poll */
2040 if (!tf
.file
->f_op
->poll
)
2041 goto error_tgt_fput
;
2043 /* Check if EPOLLWAKEUP is allowed */
2044 if (ep_op_has_event(op
))
2045 ep_take_care_of_epollwakeup(&epds
);
2048 * We have to check that the file structure underneath the file descriptor
2049 * the user passed to us _is_ an eventpoll file. And also we do not permit
2050 * adding an epoll file descriptor inside itself.
2053 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2054 goto error_tgt_fput
;
2057 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2058 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2059 * Also, we do not currently supported nested exclusive wakeups.
2061 if (ep_op_has_event(op
) && (epds
.events
& EPOLLEXCLUSIVE
)) {
2062 if (op
== EPOLL_CTL_MOD
)
2063 goto error_tgt_fput
;
2064 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2065 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2066 goto error_tgt_fput
;
2070 * At this point it is safe to assume that the "private_data" contains
2071 * our own data structure.
2073 ep
= f
.file
->private_data
;
2076 * When we insert an epoll file descriptor, inside another epoll file
2077 * descriptor, there is the change of creating closed loops, which are
2078 * better be handled here, than in more critical paths. While we are
2079 * checking for loops we also determine the list of files reachable
2080 * and hang them on the tfile_check_list, so we can check that we
2081 * haven't created too many possible wakeup paths.
2083 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2084 * the epoll file descriptor is attaching directly to a wakeup source,
2085 * unless the epoll file descriptor is nested. The purpose of taking the
2086 * 'epmutex' on add is to prevent complex toplogies such as loops and
2087 * deep wakeup paths from forming in parallel through multiple
2088 * EPOLL_CTL_ADD operations.
2090 mutex_lock_nested(&ep
->mtx
, 0);
2091 if (op
== EPOLL_CTL_ADD
) {
2092 if (!list_empty(&f
.file
->f_ep_links
) ||
2093 is_file_epoll(tf
.file
)) {
2095 mutex_unlock(&ep
->mtx
);
2096 mutex_lock(&epmutex
);
2097 if (is_file_epoll(tf
.file
)) {
2099 if (ep_loop_check(ep
, tf
.file
) != 0) {
2100 clear_tfile_check_list();
2101 goto error_tgt_fput
;
2104 list_add(&tf
.file
->f_tfile_llink
,
2106 mutex_lock_nested(&ep
->mtx
, 0);
2107 if (is_file_epoll(tf
.file
)) {
2108 tep
= tf
.file
->private_data
;
2109 mutex_lock_nested(&tep
->mtx
, 1);
2115 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2116 * above, we can be sure to be able to use the item looked up by
2117 * ep_find() till we release the mutex.
2119 epi
= ep_find(ep
, tf
.file
, fd
);
2125 epds
.events
|= POLLERR
| POLLHUP
;
2126 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
2130 clear_tfile_check_list();
2134 error
= ep_remove(ep
, epi
);
2140 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2141 epds
.events
|= POLLERR
| POLLHUP
;
2142 error
= ep_modify(ep
, epi
, &epds
);
2149 mutex_unlock(&tep
->mtx
);
2150 mutex_unlock(&ep
->mtx
);
2154 mutex_unlock(&epmutex
);
2165 * Implement the event wait interface for the eventpoll file. It is the kernel
2166 * part of the user space epoll_wait(2).
2168 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2169 int, maxevents
, int, timeout
)
2173 struct eventpoll
*ep
;
2175 /* The maximum number of event must be greater than zero */
2176 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2179 /* Verify that the area passed by the user is writeable */
2180 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
2183 /* Get the "struct file *" for the eventpoll file */
2189 * We have to check that the file structure underneath the fd
2190 * the user passed to us _is_ an eventpoll file.
2193 if (!is_file_epoll(f
.file
))
2197 * At this point it is safe to assume that the "private_data" contains
2198 * our own data structure.
2200 ep
= f
.file
->private_data
;
2202 /* Time to fish for events ... */
2203 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2211 * Implement the event wait interface for the eventpoll file. It is the kernel
2212 * part of the user space epoll_pwait(2).
2214 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2215 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2219 sigset_t ksigmask
, sigsaved
;
2222 * If the caller wants a certain signal mask to be set during the wait,
2226 if (sigsetsize
!= sizeof(sigset_t
))
2228 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2230 sigsaved
= current
->blocked
;
2231 set_current_blocked(&ksigmask
);
2234 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2237 * If we changed the signal mask, we need to restore the original one.
2238 * In case we've got a signal while waiting, we do not restore the
2239 * signal mask yet, and we allow do_signal() to deliver the signal on
2240 * the way back to userspace, before the signal mask is restored.
2243 if (error
== -EINTR
) {
2244 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2246 set_restore_sigmask();
2248 set_current_blocked(&sigsaved
);
2254 #ifdef CONFIG_COMPAT
2255 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2256 struct epoll_event __user
*, events
,
2257 int, maxevents
, int, timeout
,
2258 const compat_sigset_t __user
*, sigmask
,
2259 compat_size_t
, sigsetsize
)
2262 compat_sigset_t csigmask
;
2263 sigset_t ksigmask
, sigsaved
;
2266 * If the caller wants a certain signal mask to be set during the wait,
2270 if (sigsetsize
!= sizeof(compat_sigset_t
))
2272 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2274 sigset_from_compat(&ksigmask
, &csigmask
);
2275 sigsaved
= current
->blocked
;
2276 set_current_blocked(&ksigmask
);
2279 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2282 * If we changed the signal mask, we need to restore the original one.
2283 * In case we've got a signal while waiting, we do not restore the
2284 * signal mask yet, and we allow do_signal() to deliver the signal on
2285 * the way back to userspace, before the signal mask is restored.
2288 if (err
== -EINTR
) {
2289 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2291 set_restore_sigmask();
2293 set_current_blocked(&sigsaved
);
2300 static int __init
eventpoll_init(void)
2306 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2308 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2310 BUG_ON(max_user_watches
< 0);
2313 * Initialize the structure used to perform epoll file descriptor
2314 * inclusion loops checks.
2316 ep_nested_calls_init(&poll_loop_ncalls
);
2318 /* Initialize the structure used to perform safe poll wait head wake ups */
2319 ep_nested_calls_init(&poll_safewake_ncalls
);
2321 /* Initialize the structure used to perform file's f_op->poll() calls */
2322 ep_nested_calls_init(&poll_readywalk_ncalls
);
2325 * We can have many thousands of epitems, so prevent this from
2326 * using an extra cache line on 64-bit (and smaller) CPUs
2328 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2330 /* Allocates slab cache used to allocate "struct epitem" items */
2331 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2332 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2334 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2335 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2336 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2340 fs_initcall(eventpoll_init
);