2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
23 #include <linux/spi/spi.h>
25 #define SUN4I_FIFO_DEPTH 64
27 #define SUN4I_RXDATA_REG 0x00
29 #define SUN4I_TXDATA_REG 0x04
31 #define SUN4I_CTL_REG 0x08
32 #define SUN4I_CTL_ENABLE BIT(0)
33 #define SUN4I_CTL_MASTER BIT(1)
34 #define SUN4I_CTL_CPHA BIT(2)
35 #define SUN4I_CTL_CPOL BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
37 #define SUN4I_CTL_LMTF BIT(6)
38 #define SUN4I_CTL_TF_RST BIT(8)
39 #define SUN4I_CTL_RF_RST BIT(9)
40 #define SUN4I_CTL_XCH BIT(10)
41 #define SUN4I_CTL_CS_MASK 0x3000
42 #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB BIT(15)
44 #define SUN4I_CTL_CS_MANUAL BIT(16)
45 #define SUN4I_CTL_CS_LEVEL BIT(17)
46 #define SUN4I_CTL_TP BIT(18)
48 #define SUN4I_INT_CTL_REG 0x0c
49 #define SUN4I_INT_CTL_RF_F34 BIT(4)
50 #define SUN4I_INT_CTL_TF_E34 BIT(12)
51 #define SUN4I_INT_CTL_TC BIT(16)
53 #define SUN4I_INT_STA_REG 0x10
55 #define SUN4I_DMA_CTL_REG 0x14
57 #define SUN4I_WAIT_REG 0x18
59 #define SUN4I_CLK_CTL_REG 0x1c
60 #define SUN4I_CLK_CTL_CDR2_MASK 0xff
61 #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
62 #define SUN4I_CLK_CTL_CDR1_MASK 0xf
63 #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
64 #define SUN4I_CLK_CTL_DRS BIT(12)
66 #define SUN4I_MAX_XFER_SIZE 0xffffff
68 #define SUN4I_BURST_CNT_REG 0x20
69 #define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
71 #define SUN4I_XMIT_CNT_REG 0x24
72 #define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
75 #define SUN4I_FIFO_STA_REG 0x28
76 #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
77 #define SUN4I_FIFO_STA_RF_CNT_BITS 0
78 #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
79 #define SUN4I_FIFO_STA_TF_CNT_BITS 16
82 struct spi_master
*master
;
83 void __iomem
*base_addr
;
87 struct completion done
;
94 static inline u32
sun4i_spi_read(struct sun4i_spi
*sspi
, u32 reg
)
96 return readl(sspi
->base_addr
+ reg
);
99 static inline void sun4i_spi_write(struct sun4i_spi
*sspi
, u32 reg
, u32 value
)
101 writel(value
, sspi
->base_addr
+ reg
);
104 static inline u32
sun4i_spi_get_tx_fifo_count(struct sun4i_spi
*sspi
)
106 u32 reg
= sun4i_spi_read(sspi
, SUN4I_FIFO_STA_REG
);
108 reg
>>= SUN4I_FIFO_STA_TF_CNT_BITS
;
110 return reg
& SUN4I_FIFO_STA_TF_CNT_MASK
;
113 static inline void sun4i_spi_enable_interrupt(struct sun4i_spi
*sspi
, u32 mask
)
115 u32 reg
= sun4i_spi_read(sspi
, SUN4I_INT_CTL_REG
);
118 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, reg
);
121 static inline void sun4i_spi_disable_interrupt(struct sun4i_spi
*sspi
, u32 mask
)
123 u32 reg
= sun4i_spi_read(sspi
, SUN4I_INT_CTL_REG
);
126 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, reg
);
129 static inline void sun4i_spi_drain_fifo(struct sun4i_spi
*sspi
, int len
)
134 /* See how much data is available */
135 reg
= sun4i_spi_read(sspi
, SUN4I_FIFO_STA_REG
);
136 reg
&= SUN4I_FIFO_STA_RF_CNT_MASK
;
137 cnt
= reg
>> SUN4I_FIFO_STA_RF_CNT_BITS
;
143 byte
= readb(sspi
->base_addr
+ SUN4I_RXDATA_REG
);
145 *sspi
->rx_buf
++ = byte
;
149 static inline void sun4i_spi_fill_fifo(struct sun4i_spi
*sspi
, int len
)
154 /* See how much data we can fit */
155 cnt
= SUN4I_FIFO_DEPTH
- sun4i_spi_get_tx_fifo_count(sspi
);
157 len
= min3(len
, (int)cnt
, sspi
->len
);
160 byte
= sspi
->tx_buf
? *sspi
->tx_buf
++ : 0;
161 writeb(byte
, sspi
->base_addr
+ SUN4I_TXDATA_REG
);
166 static void sun4i_spi_set_cs(struct spi_device
*spi
, bool enable
)
168 struct sun4i_spi
*sspi
= spi_master_get_devdata(spi
->master
);
171 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
173 reg
&= ~SUN4I_CTL_CS_MASK
;
174 reg
|= SUN4I_CTL_CS(spi
->chip_select
);
176 /* We want to control the chip select manually */
177 reg
|= SUN4I_CTL_CS_MANUAL
;
180 reg
|= SUN4I_CTL_CS_LEVEL
;
182 reg
&= ~SUN4I_CTL_CS_LEVEL
;
185 * Even though this looks irrelevant since we are supposed to
186 * be controlling the chip select manually, this bit also
187 * controls the levels of the chip select for inactive
190 * If we don't set it, the chip select level will go low by
191 * default when the device is idle, which is not really
192 * expected in the common case where the chip select is active
195 if (spi
->mode
& SPI_CS_HIGH
)
196 reg
&= ~SUN4I_CTL_CS_ACTIVE_LOW
;
198 reg
|= SUN4I_CTL_CS_ACTIVE_LOW
;
200 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
203 static size_t sun4i_spi_max_transfer_size(struct spi_device
*spi
)
205 return SUN4I_FIFO_DEPTH
- 1;
208 static int sun4i_spi_transfer_one(struct spi_master
*master
,
209 struct spi_device
*spi
,
210 struct spi_transfer
*tfr
)
212 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
213 unsigned int mclk_rate
, div
, timeout
;
214 unsigned int start
, end
, tx_time
;
215 unsigned int tx_len
= 0;
219 /* We don't support transfer larger than the FIFO */
220 if (tfr
->len
> SUN4I_MAX_XFER_SIZE
)
223 if (tfr
->tx_buf
&& tfr
->len
>= SUN4I_MAX_XFER_SIZE
)
226 reinit_completion(&sspi
->done
);
227 sspi
->tx_buf
= tfr
->tx_buf
;
228 sspi
->rx_buf
= tfr
->rx_buf
;
229 sspi
->len
= tfr
->len
;
231 /* Clear pending interrupts */
232 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, ~0);
235 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
238 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
239 reg
| SUN4I_CTL_RF_RST
| SUN4I_CTL_TF_RST
);
242 * Setup the transfer control register: Chip Select,
245 if (spi
->mode
& SPI_CPOL
)
246 reg
|= SUN4I_CTL_CPOL
;
248 reg
&= ~SUN4I_CTL_CPOL
;
250 if (spi
->mode
& SPI_CPHA
)
251 reg
|= SUN4I_CTL_CPHA
;
253 reg
&= ~SUN4I_CTL_CPHA
;
255 if (spi
->mode
& SPI_LSB_FIRST
)
256 reg
|= SUN4I_CTL_LMTF
;
258 reg
&= ~SUN4I_CTL_LMTF
;
262 * If it's a TX only transfer, we don't want to fill the RX
263 * FIFO with bogus data
266 reg
&= ~SUN4I_CTL_DHB
;
268 reg
|= SUN4I_CTL_DHB
;
270 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
);
272 /* Ensure that we have a parent clock fast enough */
273 mclk_rate
= clk_get_rate(sspi
->mclk
);
274 if (mclk_rate
< (2 * tfr
->speed_hz
)) {
275 clk_set_rate(sspi
->mclk
, 2 * tfr
->speed_hz
);
276 mclk_rate
= clk_get_rate(sspi
->mclk
);
280 * Setup clock divider.
282 * We have two choices there. Either we can use the clock
283 * divide rate 1, which is calculated thanks to this formula:
284 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
285 * Or we can use CDR2, which is calculated with the formula:
286 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
287 * Wether we use the former or the latter is set through the
290 * First try CDR2, and if we can't reach the expected
291 * frequency, fall back to CDR1.
293 div
= mclk_rate
/ (2 * tfr
->speed_hz
);
294 if (div
<= (SUN4I_CLK_CTL_CDR2_MASK
+ 1)) {
298 reg
= SUN4I_CLK_CTL_CDR2(div
) | SUN4I_CLK_CTL_DRS
;
300 div
= ilog2(mclk_rate
) - ilog2(tfr
->speed_hz
);
301 reg
= SUN4I_CLK_CTL_CDR1(div
);
304 sun4i_spi_write(sspi
, SUN4I_CLK_CTL_REG
, reg
);
306 /* Setup the transfer now... */
310 /* Setup the counters */
311 sun4i_spi_write(sspi
, SUN4I_BURST_CNT_REG
, SUN4I_BURST_CNT(tfr
->len
));
312 sun4i_spi_write(sspi
, SUN4I_XMIT_CNT_REG
, SUN4I_XMIT_CNT(tx_len
));
316 * Filling the FIFO fully causes timeout for some reason
317 * at least on spi2 on A10s
319 sun4i_spi_fill_fifo(sspi
, SUN4I_FIFO_DEPTH
- 1);
321 /* Enable the interrupts */
322 sun4i_spi_enable_interrupt(sspi
, SUN4I_INT_CTL_TC
|
323 SUN4I_INT_CTL_RF_F34
);
324 /* Only enable Tx FIFO interrupt if we really need it */
325 if (tx_len
> SUN4I_FIFO_DEPTH
)
326 sun4i_spi_enable_interrupt(sspi
, SUN4I_INT_CTL_TF_E34
);
328 /* Start the transfer */
329 reg
= sun4i_spi_read(sspi
, SUN4I_CTL_REG
);
330 sun4i_spi_write(sspi
, SUN4I_CTL_REG
, reg
| SUN4I_CTL_XCH
);
332 tx_time
= max(tfr
->len
* 8 * 2 / (tfr
->speed_hz
/ 1000), 100U);
334 timeout
= wait_for_completion_timeout(&sspi
->done
,
335 msecs_to_jiffies(tx_time
));
338 dev_warn(&master
->dev
,
339 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
340 dev_name(&spi
->dev
), tfr
->len
, tfr
->speed_hz
,
341 jiffies_to_msecs(end
- start
), tx_time
);
348 sun4i_spi_write(sspi
, SUN4I_INT_CTL_REG
, 0);
353 static irqreturn_t
sun4i_spi_handler(int irq
, void *dev_id
)
355 struct sun4i_spi
*sspi
= dev_id
;
356 u32 status
= sun4i_spi_read(sspi
, SUN4I_INT_STA_REG
);
358 /* Transfer complete */
359 if (status
& SUN4I_INT_CTL_TC
) {
360 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_TC
);
361 sun4i_spi_drain_fifo(sspi
, SUN4I_FIFO_DEPTH
);
362 complete(&sspi
->done
);
366 /* Receive FIFO 3/4 full */
367 if (status
& SUN4I_INT_CTL_RF_F34
) {
368 sun4i_spi_drain_fifo(sspi
, SUN4I_FIFO_DEPTH
);
369 /* Only clear the interrupt _after_ draining the FIFO */
370 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_RF_F34
);
374 /* Transmit FIFO 3/4 empty */
375 if (status
& SUN4I_INT_CTL_TF_E34
) {
376 sun4i_spi_fill_fifo(sspi
, SUN4I_FIFO_DEPTH
);
379 /* nothing left to transmit */
380 sun4i_spi_disable_interrupt(sspi
, SUN4I_INT_CTL_TF_E34
);
382 /* Only clear the interrupt _after_ re-seeding the FIFO */
383 sun4i_spi_write(sspi
, SUN4I_INT_STA_REG
, SUN4I_INT_CTL_TF_E34
);
391 static int sun4i_spi_runtime_resume(struct device
*dev
)
393 struct spi_master
*master
= dev_get_drvdata(dev
);
394 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
397 ret
= clk_prepare_enable(sspi
->hclk
);
399 dev_err(dev
, "Couldn't enable AHB clock\n");
403 ret
= clk_prepare_enable(sspi
->mclk
);
405 dev_err(dev
, "Couldn't enable module clock\n");
409 sun4i_spi_write(sspi
, SUN4I_CTL_REG
,
410 SUN4I_CTL_ENABLE
| SUN4I_CTL_MASTER
| SUN4I_CTL_TP
);
415 clk_disable_unprepare(sspi
->hclk
);
420 static int sun4i_spi_runtime_suspend(struct device
*dev
)
422 struct spi_master
*master
= dev_get_drvdata(dev
);
423 struct sun4i_spi
*sspi
= spi_master_get_devdata(master
);
425 clk_disable_unprepare(sspi
->mclk
);
426 clk_disable_unprepare(sspi
->hclk
);
431 static int sun4i_spi_probe(struct platform_device
*pdev
)
433 struct spi_master
*master
;
434 struct sun4i_spi
*sspi
;
435 struct resource
*res
;
438 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct sun4i_spi
));
440 dev_err(&pdev
->dev
, "Unable to allocate SPI Master\n");
444 platform_set_drvdata(pdev
, master
);
445 sspi
= spi_master_get_devdata(master
);
447 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
448 sspi
->base_addr
= devm_ioremap_resource(&pdev
->dev
, res
);
449 if (IS_ERR(sspi
->base_addr
)) {
450 ret
= PTR_ERR(sspi
->base_addr
);
451 goto err_free_master
;
454 irq
= platform_get_irq(pdev
, 0);
456 dev_err(&pdev
->dev
, "No spi IRQ specified\n");
458 goto err_free_master
;
461 ret
= devm_request_irq(&pdev
->dev
, irq
, sun4i_spi_handler
,
462 0, "sun4i-spi", sspi
);
464 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
465 goto err_free_master
;
468 sspi
->master
= master
;
469 master
->max_speed_hz
= 100 * 1000 * 1000;
470 master
->min_speed_hz
= 3 * 1000;
471 master
->set_cs
= sun4i_spi_set_cs
;
472 master
->transfer_one
= sun4i_spi_transfer_one
;
473 master
->num_chipselect
= 4;
474 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LSB_FIRST
;
475 master
->bits_per_word_mask
= SPI_BPW_MASK(8);
476 master
->dev
.of_node
= pdev
->dev
.of_node
;
477 master
->auto_runtime_pm
= true;
478 master
->max_transfer_size
= sun4i_spi_max_transfer_size
;
480 sspi
->hclk
= devm_clk_get(&pdev
->dev
, "ahb");
481 if (IS_ERR(sspi
->hclk
)) {
482 dev_err(&pdev
->dev
, "Unable to acquire AHB clock\n");
483 ret
= PTR_ERR(sspi
->hclk
);
484 goto err_free_master
;
487 sspi
->mclk
= devm_clk_get(&pdev
->dev
, "mod");
488 if (IS_ERR(sspi
->mclk
)) {
489 dev_err(&pdev
->dev
, "Unable to acquire module clock\n");
490 ret
= PTR_ERR(sspi
->mclk
);
491 goto err_free_master
;
494 init_completion(&sspi
->done
);
497 * This wake-up/shutdown pattern is to be able to have the
498 * device woken up, even if runtime_pm is disabled
500 ret
= sun4i_spi_runtime_resume(&pdev
->dev
);
502 dev_err(&pdev
->dev
, "Couldn't resume the device\n");
503 goto err_free_master
;
506 pm_runtime_set_active(&pdev
->dev
);
507 pm_runtime_enable(&pdev
->dev
);
508 pm_runtime_idle(&pdev
->dev
);
510 ret
= devm_spi_register_master(&pdev
->dev
, master
);
512 dev_err(&pdev
->dev
, "cannot register SPI master\n");
519 pm_runtime_disable(&pdev
->dev
);
520 sun4i_spi_runtime_suspend(&pdev
->dev
);
522 spi_master_put(master
);
526 static int sun4i_spi_remove(struct platform_device
*pdev
)
528 pm_runtime_disable(&pdev
->dev
);
533 static const struct of_device_id sun4i_spi_match
[] = {
534 { .compatible
= "allwinner,sun4i-a10-spi", },
537 MODULE_DEVICE_TABLE(of
, sun4i_spi_match
);
539 static const struct dev_pm_ops sun4i_spi_pm_ops
= {
540 .runtime_resume
= sun4i_spi_runtime_resume
,
541 .runtime_suspend
= sun4i_spi_runtime_suspend
,
544 static struct platform_driver sun4i_spi_driver
= {
545 .probe
= sun4i_spi_probe
,
546 .remove
= sun4i_spi_remove
,
549 .of_match_table
= sun4i_spi_match
,
550 .pm
= &sun4i_spi_pm_ops
,
553 module_platform_driver(sun4i_spi_driver
);
555 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
556 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
557 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
558 MODULE_LICENSE("GPL");