KVM: arm/arm64: Ensure vcpu target is unset on reset failure
[linux-stable.git] / virt / kvm / arm / arm.c
blob4154f98b337c52f5ccfea89f9dba4584634c4170
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
37 #include <linux/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
54 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
66 static bool vgic_present;
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 return &kvm_arm_running_vcpu;
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 int kvm_arch_hardware_setup(void)
101 return 0;
104 void kvm_arch_check_processor_compat(void *rtn)
106 *(int *)rtn = 0;
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 int ret, cpu;
118 if (type)
119 return -EINVAL;
121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 if (!kvm->arch.last_vcpu_ran)
123 return -ENOMEM;
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128 ret = kvm_alloc_stage2_pgd(kvm);
129 if (ret)
130 goto out_fail_alloc;
132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 if (ret)
134 goto out_free_stage2_pgd;
136 kvm_vgic_early_init(kvm);
138 /* Mark the initial VMID generation invalid */
139 kvm->arch.vmid_gen = 0;
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm->arch.max_vcpus = vgic_present ?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 free_percpu(kvm->arch.last_vcpu_ran);
150 kvm->arch.last_vcpu_ran = NULL;
151 return ret;
154 bool kvm_arch_has_vcpu_debugfs(void)
156 return false;
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 return 0;
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
166 return VM_FAULT_SIGBUS;
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
174 void kvm_arch_destroy_vm(struct kvm *kvm)
176 int i;
178 free_percpu(kvm->arch.last_vcpu_ran);
179 kvm->arch.last_vcpu_ran = NULL;
181 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 if (kvm->vcpus[i]) {
183 kvm_arch_vcpu_free(kvm->vcpus[i]);
184 kvm->vcpus[i] = NULL;
188 kvm_vgic_destroy(kvm);
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 int r;
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 r = vgic_present;
197 break;
198 case KVM_CAP_IOEVENTFD:
199 case KVM_CAP_DEVICE_CTRL:
200 case KVM_CAP_USER_MEMORY:
201 case KVM_CAP_SYNC_MMU:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 case KVM_CAP_ONE_REG:
204 case KVM_CAP_ARM_PSCI:
205 case KVM_CAP_ARM_PSCI_0_2:
206 case KVM_CAP_READONLY_MEM:
207 case KVM_CAP_MP_STATE:
208 case KVM_CAP_IMMEDIATE_EXIT:
209 r = 1;
210 break;
211 case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 r = 1;
213 break;
214 case KVM_CAP_NR_VCPUS:
215 r = num_online_cpus();
216 break;
217 case KVM_CAP_MAX_VCPUS:
218 r = KVM_MAX_VCPUS;
219 break;
220 case KVM_CAP_NR_MEMSLOTS:
221 r = KVM_USER_MEM_SLOTS;
222 break;
223 case KVM_CAP_MSI_DEVID:
224 if (!kvm)
225 r = -EINVAL;
226 else
227 r = kvm->arch.vgic.msis_require_devid;
228 break;
229 case KVM_CAP_ARM_USER_IRQ:
231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232 * (bump this number if adding more devices)
234 r = 1;
235 break;
236 default:
237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 break;
240 return r;
243 long kvm_arch_dev_ioctl(struct file *filp,
244 unsigned int ioctl, unsigned long arg)
246 return -EINVAL;
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
252 int err;
253 struct kvm_vcpu *vcpu;
255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256 err = -EBUSY;
257 goto out;
260 if (id >= kvm->arch.max_vcpus) {
261 err = -EINVAL;
262 goto out;
265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266 if (!vcpu) {
267 err = -ENOMEM;
268 goto out;
271 err = kvm_vcpu_init(vcpu, kvm, id);
272 if (err)
273 goto free_vcpu;
275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 if (err)
277 goto vcpu_uninit;
279 return vcpu;
280 vcpu_uninit:
281 kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283 kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285 return ERR_PTR(err);
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 kvm_vgic_vcpu_early_init(vcpu);
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
295 kvm_mmu_free_memory_caches(vcpu);
296 kvm_timer_vcpu_terminate(vcpu);
297 kvm_vgic_vcpu_destroy(vcpu);
298 kvm_pmu_vcpu_destroy(vcpu);
299 kvm_vcpu_uninit(vcpu);
300 kmem_cache_free(kvm_vcpu_cache, vcpu);
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
305 kvm_arch_vcpu_free(vcpu);
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311 kvm_timer_should_fire(vcpu_ptimer(vcpu));
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
316 kvm_timer_schedule(vcpu);
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
321 kvm_timer_unschedule(vcpu);
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
326 /* Force users to call KVM_ARM_VCPU_INIT */
327 vcpu->arch.target = -1;
328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu);
333 kvm_arm_reset_debug_ptr(vcpu);
335 return kvm_vgic_vcpu_init(vcpu);
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
340 int *last_ran;
342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
345 * We might get preempted before the vCPU actually runs, but
346 * over-invalidation doesn't affect correctness.
348 if (*last_ran != vcpu->vcpu_id) {
349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350 *last_ran = vcpu->vcpu_id;
353 vcpu->cpu = cpu;
354 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
356 kvm_arm_set_running_vcpu(vcpu);
358 kvm_vgic_load(vcpu);
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
363 kvm_vgic_put(vcpu);
365 vcpu->cpu = -1;
367 kvm_arm_set_running_vcpu(NULL);
368 kvm_timer_vcpu_put(vcpu);
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
373 vcpu->arch.power_off = true;
374 kvm_make_request(KVM_REQ_SLEEP, vcpu);
375 kvm_vcpu_kick(vcpu);
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379 struct kvm_mp_state *mp_state)
381 if (vcpu->arch.power_off)
382 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383 else
384 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
386 return 0;
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390 struct kvm_mp_state *mp_state)
392 switch (mp_state->mp_state) {
393 case KVM_MP_STATE_RUNNABLE:
394 vcpu->arch.power_off = false;
395 break;
396 case KVM_MP_STATE_STOPPED:
397 vcpu_power_off(vcpu);
398 break;
399 default:
400 return -EINVAL;
403 return 0;
407 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408 * @v: The VCPU pointer
410 * If the guest CPU is not waiting for interrupts or an interrupt line is
411 * asserted, the CPU is by definition runnable.
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
415 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416 && !v->arch.power_off && !v->arch.pause);
419 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
421 return vcpu_mode_priv(vcpu);
424 /* Just ensure a guest exit from a particular CPU */
425 static void exit_vm_noop(void *info)
429 void force_vm_exit(const cpumask_t *mask)
431 preempt_disable();
432 smp_call_function_many(mask, exit_vm_noop, NULL, true);
433 preempt_enable();
437 * need_new_vmid_gen - check that the VMID is still valid
438 * @kvm: The VM's VMID to check
440 * return true if there is a new generation of VMIDs being used
442 * The hardware supports only 256 values with the value zero reserved for the
443 * host, so we check if an assigned value belongs to a previous generation,
444 * which which requires us to assign a new value. If we're the first to use a
445 * VMID for the new generation, we must flush necessary caches and TLBs on all
446 * CPUs.
448 static bool need_new_vmid_gen(struct kvm *kvm)
450 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
451 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
452 return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
456 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
457 * @kvm The guest that we are about to run
459 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
460 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
461 * caches and TLBs.
463 static void update_vttbr(struct kvm *kvm)
465 phys_addr_t pgd_phys;
466 u64 vmid;
468 if (!need_new_vmid_gen(kvm))
469 return;
471 spin_lock(&kvm_vmid_lock);
474 * We need to re-check the vmid_gen here to ensure that if another vcpu
475 * already allocated a valid vmid for this vm, then this vcpu should
476 * use the same vmid.
478 if (!need_new_vmid_gen(kvm)) {
479 spin_unlock(&kvm_vmid_lock);
480 return;
483 /* First user of a new VMID generation? */
484 if (unlikely(kvm_next_vmid == 0)) {
485 atomic64_inc(&kvm_vmid_gen);
486 kvm_next_vmid = 1;
489 * On SMP we know no other CPUs can use this CPU's or each
490 * other's VMID after force_vm_exit returns since the
491 * kvm_vmid_lock blocks them from reentry to the guest.
493 force_vm_exit(cpu_all_mask);
495 * Now broadcast TLB + ICACHE invalidation over the inner
496 * shareable domain to make sure all data structures are
497 * clean.
499 kvm_call_hyp(__kvm_flush_vm_context);
502 kvm->arch.vmid = kvm_next_vmid;
503 kvm_next_vmid++;
504 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
506 /* update vttbr to be used with the new vmid */
507 pgd_phys = virt_to_phys(kvm->arch.pgd);
508 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
509 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
510 kvm->arch.vttbr = pgd_phys | vmid;
512 smp_wmb();
513 WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));
515 spin_unlock(&kvm_vmid_lock);
518 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
520 struct kvm *kvm = vcpu->kvm;
521 int ret = 0;
523 if (likely(vcpu->arch.has_run_once))
524 return 0;
526 vcpu->arch.has_run_once = true;
529 * Map the VGIC hardware resources before running a vcpu the first
530 * time on this VM.
532 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
533 ret = kvm_vgic_map_resources(kvm);
534 if (ret)
535 return ret;
538 ret = kvm_timer_enable(vcpu);
539 if (ret)
540 return ret;
542 ret = kvm_arm_pmu_v3_enable(vcpu);
544 return ret;
547 bool kvm_arch_intc_initialized(struct kvm *kvm)
549 return vgic_initialized(kvm);
552 void kvm_arm_halt_guest(struct kvm *kvm)
554 int i;
555 struct kvm_vcpu *vcpu;
557 kvm_for_each_vcpu(i, vcpu, kvm)
558 vcpu->arch.pause = true;
559 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
562 void kvm_arm_resume_guest(struct kvm *kvm)
564 int i;
565 struct kvm_vcpu *vcpu;
567 kvm_for_each_vcpu(i, vcpu, kvm) {
568 vcpu->arch.pause = false;
569 swake_up(kvm_arch_vcpu_wq(vcpu));
573 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
575 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
577 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
578 (!vcpu->arch.pause)));
580 if (vcpu->arch.power_off || vcpu->arch.pause) {
581 /* Awaken to handle a signal, request we sleep again later. */
582 kvm_make_request(KVM_REQ_SLEEP, vcpu);
586 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
588 return vcpu->arch.target >= 0;
591 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
593 if (kvm_request_pending(vcpu)) {
594 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
595 vcpu_req_sleep(vcpu);
598 * Clear IRQ_PENDING requests that were made to guarantee
599 * that a VCPU sees new virtual interrupts.
601 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
606 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
607 * @vcpu: The VCPU pointer
608 * @run: The kvm_run structure pointer used for userspace state exchange
610 * This function is called through the VCPU_RUN ioctl called from user space. It
611 * will execute VM code in a loop until the time slice for the process is used
612 * or some emulation is needed from user space in which case the function will
613 * return with return value 0 and with the kvm_run structure filled in with the
614 * required data for the requested emulation.
616 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
618 int ret;
620 if (unlikely(!kvm_vcpu_initialized(vcpu)))
621 return -ENOEXEC;
623 ret = kvm_vcpu_first_run_init(vcpu);
624 if (ret)
625 return ret;
627 if (run->exit_reason == KVM_EXIT_MMIO) {
628 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
629 if (ret)
630 return ret;
633 if (run->immediate_exit)
634 return -EINTR;
636 kvm_sigset_activate(vcpu);
638 ret = 1;
639 run->exit_reason = KVM_EXIT_UNKNOWN;
640 while (ret > 0) {
642 * Check conditions before entering the guest
644 cond_resched();
646 update_vttbr(vcpu->kvm);
648 check_vcpu_requests(vcpu);
651 * Preparing the interrupts to be injected also
652 * involves poking the GIC, which must be done in a
653 * non-preemptible context.
655 preempt_disable();
657 kvm_pmu_flush_hwstate(vcpu);
659 kvm_timer_flush_hwstate(vcpu);
660 kvm_vgic_flush_hwstate(vcpu);
662 local_irq_disable();
665 * If we have a singal pending, or need to notify a userspace
666 * irqchip about timer or PMU level changes, then we exit (and
667 * update the timer level state in kvm_timer_update_run
668 * below).
670 if (signal_pending(current) ||
671 kvm_timer_should_notify_user(vcpu) ||
672 kvm_pmu_should_notify_user(vcpu)) {
673 ret = -EINTR;
674 run->exit_reason = KVM_EXIT_INTR;
678 * Ensure we set mode to IN_GUEST_MODE after we disable
679 * interrupts and before the final VCPU requests check.
680 * See the comment in kvm_vcpu_exiting_guest_mode() and
681 * Documentation/virtual/kvm/vcpu-requests.rst
683 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
685 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
686 kvm_request_pending(vcpu)) {
687 vcpu->mode = OUTSIDE_GUEST_MODE;
688 local_irq_enable();
689 kvm_pmu_sync_hwstate(vcpu);
690 kvm_timer_sync_hwstate(vcpu);
691 kvm_vgic_sync_hwstate(vcpu);
692 preempt_enable();
693 continue;
696 kvm_arm_setup_debug(vcpu);
698 /**************************************************************
699 * Enter the guest
701 trace_kvm_entry(*vcpu_pc(vcpu));
702 guest_enter_irqoff();
704 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
706 vcpu->mode = OUTSIDE_GUEST_MODE;
707 vcpu->stat.exits++;
709 * Back from guest
710 *************************************************************/
712 kvm_arm_clear_debug(vcpu);
715 * We may have taken a host interrupt in HYP mode (ie
716 * while executing the guest). This interrupt is still
717 * pending, as we haven't serviced it yet!
719 * We're now back in SVC mode, with interrupts
720 * disabled. Enabling the interrupts now will have
721 * the effect of taking the interrupt again, in SVC
722 * mode this time.
724 local_irq_enable();
727 * We do local_irq_enable() before calling guest_exit() so
728 * that if a timer interrupt hits while running the guest we
729 * account that tick as being spent in the guest. We enable
730 * preemption after calling guest_exit() so that if we get
731 * preempted we make sure ticks after that is not counted as
732 * guest time.
734 guest_exit();
735 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
738 * We must sync the PMU and timer state before the vgic state so
739 * that the vgic can properly sample the updated state of the
740 * interrupt line.
742 kvm_pmu_sync_hwstate(vcpu);
743 kvm_timer_sync_hwstate(vcpu);
745 kvm_vgic_sync_hwstate(vcpu);
747 preempt_enable();
749 ret = handle_exit(vcpu, run, ret);
752 /* Tell userspace about in-kernel device output levels */
753 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
754 kvm_timer_update_run(vcpu);
755 kvm_pmu_update_run(vcpu);
758 kvm_sigset_deactivate(vcpu);
760 return ret;
763 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
765 int bit_index;
766 bool set;
767 unsigned long *ptr;
769 if (number == KVM_ARM_IRQ_CPU_IRQ)
770 bit_index = __ffs(HCR_VI);
771 else /* KVM_ARM_IRQ_CPU_FIQ */
772 bit_index = __ffs(HCR_VF);
774 ptr = (unsigned long *)&vcpu->arch.irq_lines;
775 if (level)
776 set = test_and_set_bit(bit_index, ptr);
777 else
778 set = test_and_clear_bit(bit_index, ptr);
781 * If we didn't change anything, no need to wake up or kick other CPUs
783 if (set == level)
784 return 0;
787 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
788 * trigger a world-switch round on the running physical CPU to set the
789 * virtual IRQ/FIQ fields in the HCR appropriately.
791 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
792 kvm_vcpu_kick(vcpu);
794 return 0;
797 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
798 bool line_status)
800 u32 irq = irq_level->irq;
801 unsigned int irq_type, vcpu_idx, irq_num;
802 int nrcpus = atomic_read(&kvm->online_vcpus);
803 struct kvm_vcpu *vcpu = NULL;
804 bool level = irq_level->level;
806 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
807 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
808 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
810 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
812 switch (irq_type) {
813 case KVM_ARM_IRQ_TYPE_CPU:
814 if (irqchip_in_kernel(kvm))
815 return -ENXIO;
817 if (vcpu_idx >= nrcpus)
818 return -EINVAL;
820 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
821 if (!vcpu)
822 return -EINVAL;
824 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
825 return -EINVAL;
827 return vcpu_interrupt_line(vcpu, irq_num, level);
828 case KVM_ARM_IRQ_TYPE_PPI:
829 if (!irqchip_in_kernel(kvm))
830 return -ENXIO;
832 if (vcpu_idx >= nrcpus)
833 return -EINVAL;
835 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
836 if (!vcpu)
837 return -EINVAL;
839 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
840 return -EINVAL;
842 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
843 case KVM_ARM_IRQ_TYPE_SPI:
844 if (!irqchip_in_kernel(kvm))
845 return -ENXIO;
847 if (irq_num < VGIC_NR_PRIVATE_IRQS)
848 return -EINVAL;
850 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
853 return -EINVAL;
856 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
857 const struct kvm_vcpu_init *init)
859 unsigned int i, ret;
860 int phys_target = kvm_target_cpu();
862 if (init->target != phys_target)
863 return -EINVAL;
866 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
867 * use the same target.
869 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
870 return -EINVAL;
872 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
873 for (i = 0; i < sizeof(init->features) * 8; i++) {
874 bool set = (init->features[i / 32] & (1 << (i % 32)));
876 if (set && i >= KVM_VCPU_MAX_FEATURES)
877 return -ENOENT;
880 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
881 * use the same feature set.
883 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
884 test_bit(i, vcpu->arch.features) != set)
885 return -EINVAL;
887 if (set)
888 set_bit(i, vcpu->arch.features);
891 vcpu->arch.target = phys_target;
893 /* Now we know what it is, we can reset it. */
894 ret = kvm_reset_vcpu(vcpu);
895 if (ret) {
896 vcpu->arch.target = -1;
897 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
900 return ret;
903 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
904 struct kvm_vcpu_init *init)
906 int ret;
908 ret = kvm_vcpu_set_target(vcpu, init);
909 if (ret)
910 return ret;
913 * Ensure a rebooted VM will fault in RAM pages and detect if the
914 * guest MMU is turned off and flush the caches as needed.
916 if (vcpu->arch.has_run_once)
917 stage2_unmap_vm(vcpu->kvm);
919 vcpu_reset_hcr(vcpu);
922 * Handle the "start in power-off" case.
924 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
925 vcpu_power_off(vcpu);
926 else
927 vcpu->arch.power_off = false;
929 return 0;
932 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
933 struct kvm_device_attr *attr)
935 int ret = -ENXIO;
937 switch (attr->group) {
938 default:
939 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
940 break;
943 return ret;
946 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
947 struct kvm_device_attr *attr)
949 int ret = -ENXIO;
951 switch (attr->group) {
952 default:
953 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
954 break;
957 return ret;
960 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
961 struct kvm_device_attr *attr)
963 int ret = -ENXIO;
965 switch (attr->group) {
966 default:
967 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
968 break;
971 return ret;
974 long kvm_arch_vcpu_ioctl(struct file *filp,
975 unsigned int ioctl, unsigned long arg)
977 struct kvm_vcpu *vcpu = filp->private_data;
978 void __user *argp = (void __user *)arg;
979 struct kvm_device_attr attr;
981 switch (ioctl) {
982 case KVM_ARM_VCPU_INIT: {
983 struct kvm_vcpu_init init;
985 if (copy_from_user(&init, argp, sizeof(init)))
986 return -EFAULT;
988 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
990 case KVM_SET_ONE_REG:
991 case KVM_GET_ONE_REG: {
992 struct kvm_one_reg reg;
994 if (unlikely(!kvm_vcpu_initialized(vcpu)))
995 return -ENOEXEC;
997 if (copy_from_user(&reg, argp, sizeof(reg)))
998 return -EFAULT;
999 if (ioctl == KVM_SET_ONE_REG)
1000 return kvm_arm_set_reg(vcpu, &reg);
1001 else
1002 return kvm_arm_get_reg(vcpu, &reg);
1004 case KVM_GET_REG_LIST: {
1005 struct kvm_reg_list __user *user_list = argp;
1006 struct kvm_reg_list reg_list;
1007 unsigned n;
1009 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1010 return -ENOEXEC;
1012 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1013 return -EFAULT;
1014 n = reg_list.n;
1015 reg_list.n = kvm_arm_num_regs(vcpu);
1016 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1017 return -EFAULT;
1018 if (n < reg_list.n)
1019 return -E2BIG;
1020 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1022 case KVM_SET_DEVICE_ATTR: {
1023 if (copy_from_user(&attr, argp, sizeof(attr)))
1024 return -EFAULT;
1025 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1027 case KVM_GET_DEVICE_ATTR: {
1028 if (copy_from_user(&attr, argp, sizeof(attr)))
1029 return -EFAULT;
1030 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1032 case KVM_HAS_DEVICE_ATTR: {
1033 if (copy_from_user(&attr, argp, sizeof(attr)))
1034 return -EFAULT;
1035 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1037 default:
1038 return -EINVAL;
1043 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1044 * @kvm: kvm instance
1045 * @log: slot id and address to which we copy the log
1047 * Steps 1-4 below provide general overview of dirty page logging. See
1048 * kvm_get_dirty_log_protect() function description for additional details.
1050 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1051 * always flush the TLB (step 4) even if previous step failed and the dirty
1052 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1053 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1054 * writes will be marked dirty for next log read.
1056 * 1. Take a snapshot of the bit and clear it if needed.
1057 * 2. Write protect the corresponding page.
1058 * 3. Copy the snapshot to the userspace.
1059 * 4. Flush TLB's if needed.
1061 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1063 bool is_dirty = false;
1064 int r;
1066 mutex_lock(&kvm->slots_lock);
1068 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1070 if (is_dirty)
1071 kvm_flush_remote_tlbs(kvm);
1073 mutex_unlock(&kvm->slots_lock);
1074 return r;
1077 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1078 struct kvm_arm_device_addr *dev_addr)
1080 unsigned long dev_id, type;
1082 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1083 KVM_ARM_DEVICE_ID_SHIFT;
1084 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1085 KVM_ARM_DEVICE_TYPE_SHIFT;
1087 switch (dev_id) {
1088 case KVM_ARM_DEVICE_VGIC_V2:
1089 if (!vgic_present)
1090 return -ENXIO;
1091 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1092 default:
1093 return -ENODEV;
1097 long kvm_arch_vm_ioctl(struct file *filp,
1098 unsigned int ioctl, unsigned long arg)
1100 struct kvm *kvm = filp->private_data;
1101 void __user *argp = (void __user *)arg;
1103 switch (ioctl) {
1104 case KVM_CREATE_IRQCHIP: {
1105 int ret;
1106 if (!vgic_present)
1107 return -ENXIO;
1108 mutex_lock(&kvm->lock);
1109 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1110 mutex_unlock(&kvm->lock);
1111 return ret;
1113 case KVM_ARM_SET_DEVICE_ADDR: {
1114 struct kvm_arm_device_addr dev_addr;
1116 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1117 return -EFAULT;
1118 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1120 case KVM_ARM_PREFERRED_TARGET: {
1121 int err;
1122 struct kvm_vcpu_init init;
1124 err = kvm_vcpu_preferred_target(&init);
1125 if (err)
1126 return err;
1128 if (copy_to_user(argp, &init, sizeof(init)))
1129 return -EFAULT;
1131 return 0;
1133 default:
1134 return -EINVAL;
1138 static void cpu_init_hyp_mode(void *dummy)
1140 phys_addr_t pgd_ptr;
1141 unsigned long hyp_stack_ptr;
1142 unsigned long stack_page;
1143 unsigned long vector_ptr;
1145 /* Switch from the HYP stub to our own HYP init vector */
1146 __hyp_set_vectors(kvm_get_idmap_vector());
1148 pgd_ptr = kvm_mmu_get_httbr();
1149 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1150 hyp_stack_ptr = stack_page + PAGE_SIZE;
1151 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1153 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1154 __cpu_init_stage2();
1157 static void cpu_hyp_reset(void)
1159 if (!is_kernel_in_hyp_mode())
1160 __hyp_reset_vectors();
1163 static void cpu_hyp_reinit(void)
1165 cpu_hyp_reset();
1167 if (is_kernel_in_hyp_mode()) {
1169 * __cpu_init_stage2() is safe to call even if the PM
1170 * event was cancelled before the CPU was reset.
1172 __cpu_init_stage2();
1173 kvm_timer_init_vhe();
1174 } else {
1175 cpu_init_hyp_mode(NULL);
1178 kvm_arm_init_debug();
1180 if (vgic_present)
1181 kvm_vgic_init_cpu_hardware();
1184 static void _kvm_arch_hardware_enable(void *discard)
1186 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1187 cpu_hyp_reinit();
1188 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1192 int kvm_arch_hardware_enable(void)
1194 _kvm_arch_hardware_enable(NULL);
1195 return 0;
1198 static void _kvm_arch_hardware_disable(void *discard)
1200 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1201 cpu_hyp_reset();
1202 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1206 void kvm_arch_hardware_disable(void)
1208 _kvm_arch_hardware_disable(NULL);
1211 #ifdef CONFIG_CPU_PM
1212 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1213 unsigned long cmd,
1214 void *v)
1217 * kvm_arm_hardware_enabled is left with its old value over
1218 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1219 * re-enable hyp.
1221 switch (cmd) {
1222 case CPU_PM_ENTER:
1223 if (__this_cpu_read(kvm_arm_hardware_enabled))
1225 * don't update kvm_arm_hardware_enabled here
1226 * so that the hardware will be re-enabled
1227 * when we resume. See below.
1229 cpu_hyp_reset();
1231 return NOTIFY_OK;
1232 case CPU_PM_ENTER_FAILED:
1233 case CPU_PM_EXIT:
1234 if (__this_cpu_read(kvm_arm_hardware_enabled))
1235 /* The hardware was enabled before suspend. */
1236 cpu_hyp_reinit();
1238 return NOTIFY_OK;
1240 default:
1241 return NOTIFY_DONE;
1245 static struct notifier_block hyp_init_cpu_pm_nb = {
1246 .notifier_call = hyp_init_cpu_pm_notifier,
1249 static void __init hyp_cpu_pm_init(void)
1251 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1253 static void __init hyp_cpu_pm_exit(void)
1255 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1257 #else
1258 static inline void hyp_cpu_pm_init(void)
1261 static inline void hyp_cpu_pm_exit(void)
1264 #endif
1266 static int init_common_resources(void)
1268 /* set size of VMID supported by CPU */
1269 kvm_vmid_bits = kvm_get_vmid_bits();
1270 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1272 return 0;
1275 static int init_subsystems(void)
1277 int err = 0;
1280 * Enable hardware so that subsystem initialisation can access EL2.
1282 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1285 * Register CPU lower-power notifier
1287 hyp_cpu_pm_init();
1290 * Init HYP view of VGIC
1292 err = kvm_vgic_hyp_init();
1293 switch (err) {
1294 case 0:
1295 vgic_present = true;
1296 break;
1297 case -ENODEV:
1298 case -ENXIO:
1299 vgic_present = false;
1300 err = 0;
1301 break;
1302 default:
1303 goto out;
1307 * Init HYP architected timer support
1309 err = kvm_timer_hyp_init();
1310 if (err)
1311 goto out;
1313 kvm_perf_init();
1314 kvm_coproc_table_init();
1316 out:
1317 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1319 return err;
1322 static void teardown_hyp_mode(void)
1324 int cpu;
1326 free_hyp_pgds();
1327 for_each_possible_cpu(cpu)
1328 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1329 hyp_cpu_pm_exit();
1333 * Inits Hyp-mode on all online CPUs
1335 static int init_hyp_mode(void)
1337 int cpu;
1338 int err = 0;
1341 * Allocate Hyp PGD and setup Hyp identity mapping
1343 err = kvm_mmu_init();
1344 if (err)
1345 goto out_err;
1348 * Allocate stack pages for Hypervisor-mode
1350 for_each_possible_cpu(cpu) {
1351 unsigned long stack_page;
1353 stack_page = __get_free_page(GFP_KERNEL);
1354 if (!stack_page) {
1355 err = -ENOMEM;
1356 goto out_err;
1359 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1363 * Map the Hyp-code called directly from the host
1365 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1366 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1367 if (err) {
1368 kvm_err("Cannot map world-switch code\n");
1369 goto out_err;
1372 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1373 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1374 if (err) {
1375 kvm_err("Cannot map rodata section\n");
1376 goto out_err;
1379 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1380 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1381 if (err) {
1382 kvm_err("Cannot map bss section\n");
1383 goto out_err;
1386 err = kvm_map_vectors();
1387 if (err) {
1388 kvm_err("Cannot map vectors\n");
1389 goto out_err;
1393 * Map the Hyp stack pages
1395 for_each_possible_cpu(cpu) {
1396 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1397 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1398 PAGE_HYP);
1400 if (err) {
1401 kvm_err("Cannot map hyp stack\n");
1402 goto out_err;
1406 for_each_possible_cpu(cpu) {
1407 kvm_cpu_context_t *cpu_ctxt;
1409 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1410 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1412 if (err) {
1413 kvm_err("Cannot map host CPU state: %d\n", err);
1414 goto out_err;
1418 err = hyp_map_aux_data();
1419 if (err)
1420 kvm_err("Cannot map host auxilary data: %d\n", err);
1422 return 0;
1424 out_err:
1425 teardown_hyp_mode();
1426 kvm_err("error initializing Hyp mode: %d\n", err);
1427 return err;
1430 static void check_kvm_target_cpu(void *ret)
1432 *(int *)ret = kvm_target_cpu();
1435 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1437 struct kvm_vcpu *vcpu;
1438 int i;
1440 mpidr &= MPIDR_HWID_BITMASK;
1441 kvm_for_each_vcpu(i, vcpu, kvm) {
1442 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1443 return vcpu;
1445 return NULL;
1449 * Initialize Hyp-mode and memory mappings on all CPUs.
1451 int kvm_arch_init(void *opaque)
1453 int err;
1454 int ret, cpu;
1455 bool in_hyp_mode;
1457 if (!is_hyp_mode_available()) {
1458 kvm_info("HYP mode not available\n");
1459 return -ENODEV;
1462 for_each_online_cpu(cpu) {
1463 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1464 if (ret < 0) {
1465 kvm_err("Error, CPU %d not supported!\n", cpu);
1466 return -ENODEV;
1470 err = init_common_resources();
1471 if (err)
1472 return err;
1474 in_hyp_mode = is_kernel_in_hyp_mode();
1476 if (!in_hyp_mode) {
1477 err = init_hyp_mode();
1478 if (err)
1479 goto out_err;
1482 err = init_subsystems();
1483 if (err)
1484 goto out_hyp;
1486 if (in_hyp_mode)
1487 kvm_info("VHE mode initialized successfully\n");
1488 else
1489 kvm_info("Hyp mode initialized successfully\n");
1491 return 0;
1493 out_hyp:
1494 if (!in_hyp_mode)
1495 teardown_hyp_mode();
1496 out_err:
1497 return err;
1500 /* NOP: Compiling as a module not supported */
1501 void kvm_arch_exit(void)
1503 kvm_perf_teardown();
1506 static int arm_init(void)
1508 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1509 return rc;
1512 module_init(arm_init);