crypto: arm64/aes-blk - add a non-SIMD fallback for synchronous CTR
[linux-stable.git] / kernel / time / sched_clock.c
blob2d8f05aad442a5fcafc37b98a177f84bde2047a5
1 /*
2 * sched_clock.c: Generic sched_clock() support, to extend low level
3 * hardware time counters to full 64-bit ns values.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9 #include <linux/clocksource.h>
10 #include <linux/init.h>
11 #include <linux/jiffies.h>
12 #include <linux/ktime.h>
13 #include <linux/kernel.h>
14 #include <linux/moduleparam.h>
15 #include <linux/sched.h>
16 #include <linux/sched/clock.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/hrtimer.h>
19 #include <linux/sched_clock.h>
20 #include <linux/seqlock.h>
21 #include <linux/bitops.h>
23 /**
24 * struct clock_read_data - data required to read from sched_clock()
26 * @epoch_ns: sched_clock() value at last update
27 * @epoch_cyc: Clock cycle value at last update.
28 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
29 * clocks.
30 * @read_sched_clock: Current clock source (or dummy source when suspended).
31 * @mult: Multipler for scaled math conversion.
32 * @shift: Shift value for scaled math conversion.
34 * Care must be taken when updating this structure; it is read by
35 * some very hot code paths. It occupies <=40 bytes and, when combined
36 * with the seqcount used to synchronize access, comfortably fits into
37 * a 64 byte cache line.
39 struct clock_read_data {
40 u64 epoch_ns;
41 u64 epoch_cyc;
42 u64 sched_clock_mask;
43 u64 (*read_sched_clock)(void);
44 u32 mult;
45 u32 shift;
48 /**
49 * struct clock_data - all data needed for sched_clock() (including
50 * registration of a new clock source)
52 * @seq: Sequence counter for protecting updates. The lowest
53 * bit is the index for @read_data.
54 * @read_data: Data required to read from sched_clock.
55 * @wrap_kt: Duration for which clock can run before wrapping.
56 * @rate: Tick rate of the registered clock.
57 * @actual_read_sched_clock: Registered hardware level clock read function.
59 * The ordering of this structure has been chosen to optimize cache
60 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
61 * into a single 64-byte cache line.
63 struct clock_data {
64 seqcount_t seq;
65 struct clock_read_data read_data[2];
66 ktime_t wrap_kt;
67 unsigned long rate;
69 u64 (*actual_read_sched_clock)(void);
72 static struct hrtimer sched_clock_timer;
73 static int irqtime = -1;
75 core_param(irqtime, irqtime, int, 0400);
77 static u64 notrace jiffy_sched_clock_read(void)
80 * We don't need to use get_jiffies_64 on 32-bit arches here
81 * because we register with BITS_PER_LONG
83 return (u64)(jiffies - INITIAL_JIFFIES);
86 static struct clock_data cd ____cacheline_aligned = {
87 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
88 .read_sched_clock = jiffy_sched_clock_read, },
89 .actual_read_sched_clock = jiffy_sched_clock_read,
92 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
94 return (cyc * mult) >> shift;
97 unsigned long long notrace sched_clock(void)
99 u64 cyc, res;
100 unsigned long seq;
101 struct clock_read_data *rd;
103 do {
104 seq = raw_read_seqcount(&cd.seq);
105 rd = cd.read_data + (seq & 1);
107 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
108 rd->sched_clock_mask;
109 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
110 } while (read_seqcount_retry(&cd.seq, seq));
112 return res;
116 * Updating the data required to read the clock.
118 * sched_clock() will never observe mis-matched data even if called from
119 * an NMI. We do this by maintaining an odd/even copy of the data and
120 * steering sched_clock() to one or the other using a sequence counter.
121 * In order to preserve the data cache profile of sched_clock() as much
122 * as possible the system reverts back to the even copy when the update
123 * completes; the odd copy is used *only* during an update.
125 static void update_clock_read_data(struct clock_read_data *rd)
127 /* update the backup (odd) copy with the new data */
128 cd.read_data[1] = *rd;
130 /* steer readers towards the odd copy */
131 raw_write_seqcount_latch(&cd.seq);
133 /* now its safe for us to update the normal (even) copy */
134 cd.read_data[0] = *rd;
136 /* switch readers back to the even copy */
137 raw_write_seqcount_latch(&cd.seq);
141 * Atomically update the sched_clock() epoch.
143 static void update_sched_clock(void)
145 u64 cyc;
146 u64 ns;
147 struct clock_read_data rd;
149 rd = cd.read_data[0];
151 cyc = cd.actual_read_sched_clock();
152 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
154 rd.epoch_ns = ns;
155 rd.epoch_cyc = cyc;
157 update_clock_read_data(&rd);
160 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
162 update_sched_clock();
163 hrtimer_forward_now(hrt, cd.wrap_kt);
165 return HRTIMER_RESTART;
168 void __init
169 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
171 u64 res, wrap, new_mask, new_epoch, cyc, ns;
172 u32 new_mult, new_shift;
173 unsigned long r;
174 char r_unit;
175 struct clock_read_data rd;
177 if (cd.rate > rate)
178 return;
180 WARN_ON(!irqs_disabled());
182 /* Calculate the mult/shift to convert counter ticks to ns. */
183 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
185 new_mask = CLOCKSOURCE_MASK(bits);
186 cd.rate = rate;
188 /* Calculate how many nanosecs until we risk wrapping */
189 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
190 cd.wrap_kt = ns_to_ktime(wrap);
192 rd = cd.read_data[0];
194 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
195 new_epoch = read();
196 cyc = cd.actual_read_sched_clock();
197 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
198 cd.actual_read_sched_clock = read;
200 rd.read_sched_clock = read;
201 rd.sched_clock_mask = new_mask;
202 rd.mult = new_mult;
203 rd.shift = new_shift;
204 rd.epoch_cyc = new_epoch;
205 rd.epoch_ns = ns;
207 update_clock_read_data(&rd);
209 if (sched_clock_timer.function != NULL) {
210 /* update timeout for clock wrap */
211 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
214 r = rate;
215 if (r >= 4000000) {
216 r /= 1000000;
217 r_unit = 'M';
218 } else {
219 if (r >= 1000) {
220 r /= 1000;
221 r_unit = 'k';
222 } else {
223 r_unit = ' ';
227 /* Calculate the ns resolution of this counter */
228 res = cyc_to_ns(1ULL, new_mult, new_shift);
230 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
231 bits, r, r_unit, res, wrap);
233 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
234 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
235 enable_sched_clock_irqtime();
237 pr_debug("Registered %pF as sched_clock source\n", read);
240 void __init sched_clock_postinit(void)
243 * If no sched_clock() function has been provided at that point,
244 * make it the final one one.
246 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
247 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
249 update_sched_clock();
252 * Start the timer to keep sched_clock() properly updated and
253 * sets the initial epoch.
255 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
256 sched_clock_timer.function = sched_clock_poll;
257 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
261 * Clock read function for use when the clock is suspended.
263 * This function makes it appear to sched_clock() as if the clock
264 * stopped counting at its last update.
266 * This function must only be called from the critical
267 * section in sched_clock(). It relies on the read_seqcount_retry()
268 * at the end of the critical section to be sure we observe the
269 * correct copy of 'epoch_cyc'.
271 static u64 notrace suspended_sched_clock_read(void)
273 unsigned long seq = raw_read_seqcount(&cd.seq);
275 return cd.read_data[seq & 1].epoch_cyc;
278 static int sched_clock_suspend(void)
280 struct clock_read_data *rd = &cd.read_data[0];
282 update_sched_clock();
283 hrtimer_cancel(&sched_clock_timer);
284 rd->read_sched_clock = suspended_sched_clock_read;
286 return 0;
289 static void sched_clock_resume(void)
291 struct clock_read_data *rd = &cd.read_data[0];
293 rd->epoch_cyc = cd.actual_read_sched_clock();
294 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
295 rd->read_sched_clock = cd.actual_read_sched_clock;
298 static struct syscore_ops sched_clock_ops = {
299 .suspend = sched_clock_suspend,
300 .resume = sched_clock_resume,
303 static int __init sched_clock_syscore_init(void)
305 register_syscore_ops(&sched_clock_ops);
307 return 0;
309 device_initcall(sched_clock_syscore_init);