4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
51 #include <linux/sched.h>
52 #include <linux/sched/autogroup.h>
53 #include <linux/sched/loadavg.h>
54 #include <linux/sched/stat.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/coredump.h>
57 #include <linux/sched/task.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/rcupdate.h>
60 #include <linux/uidgid.h>
61 #include <linux/cred.h>
63 #include <linux/kmsg_dump.h>
64 /* Move somewhere else to avoid recompiling? */
65 #include <generated/utsrelease.h>
67 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
71 #ifndef SET_UNALIGN_CTL
72 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
74 #ifndef GET_UNALIGN_CTL
75 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
78 # define SET_FPEMU_CTL(a, b) (-EINVAL)
81 # define GET_FPEMU_CTL(a, b) (-EINVAL)
84 # define SET_FPEXC_CTL(a, b) (-EINVAL)
87 # define GET_FPEXC_CTL(a, b) (-EINVAL)
90 # define GET_ENDIAN(a, b) (-EINVAL)
93 # define SET_ENDIAN(a, b) (-EINVAL)
96 # define GET_TSC_CTL(a) (-EINVAL)
99 # define SET_TSC_CTL(a) (-EINVAL)
101 #ifndef MPX_ENABLE_MANAGEMENT
102 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
104 #ifndef MPX_DISABLE_MANAGEMENT
105 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
108 # define GET_FP_MODE(a) (-EINVAL)
111 # define SET_FP_MODE(a,b) (-EINVAL)
115 * this is where the system-wide overflow UID and GID are defined, for
116 * architectures that now have 32-bit UID/GID but didn't in the past
119 int overflowuid
= DEFAULT_OVERFLOWUID
;
120 int overflowgid
= DEFAULT_OVERFLOWGID
;
122 EXPORT_SYMBOL(overflowuid
);
123 EXPORT_SYMBOL(overflowgid
);
126 * the same as above, but for filesystems which can only store a 16-bit
127 * UID and GID. as such, this is needed on all architectures
130 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
131 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
133 EXPORT_SYMBOL(fs_overflowuid
);
134 EXPORT_SYMBOL(fs_overflowgid
);
137 * Returns true if current's euid is same as p's uid or euid,
138 * or has CAP_SYS_NICE to p's user_ns.
140 * Called with rcu_read_lock, creds are safe
142 static bool set_one_prio_perm(struct task_struct
*p
)
144 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
146 if (uid_eq(pcred
->uid
, cred
->euid
) ||
147 uid_eq(pcred
->euid
, cred
->euid
))
149 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
155 * set the priority of a task
156 * - the caller must hold the RCU read lock
158 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
162 if (!set_one_prio_perm(p
)) {
166 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
170 no_nice
= security_task_setnice(p
, niceval
);
177 set_user_nice(p
, niceval
);
182 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
184 struct task_struct
*g
, *p
;
185 struct user_struct
*user
;
186 const struct cred
*cred
= current_cred();
191 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
194 /* normalize: avoid signed division (rounding problems) */
196 if (niceval
< MIN_NICE
)
198 if (niceval
> MAX_NICE
)
202 read_lock(&tasklist_lock
);
206 p
= find_task_by_vpid(who
);
210 error
= set_one_prio(p
, niceval
, error
);
214 pgrp
= find_vpid(who
);
216 pgrp
= task_pgrp(current
);
217 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
218 error
= set_one_prio(p
, niceval
, error
);
219 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
222 uid
= make_kuid(cred
->user_ns
, who
);
226 else if (!uid_eq(uid
, cred
->uid
)) {
227 user
= find_user(uid
);
229 goto out_unlock
; /* No processes for this user */
231 do_each_thread(g
, p
) {
232 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
233 error
= set_one_prio(p
, niceval
, error
);
234 } while_each_thread(g
, p
);
235 if (!uid_eq(uid
, cred
->uid
))
236 free_uid(user
); /* For find_user() */
240 read_unlock(&tasklist_lock
);
247 * Ugh. To avoid negative return values, "getpriority()" will
248 * not return the normal nice-value, but a negated value that
249 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
250 * to stay compatible.
252 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
254 struct task_struct
*g
, *p
;
255 struct user_struct
*user
;
256 const struct cred
*cred
= current_cred();
257 long niceval
, retval
= -ESRCH
;
261 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
265 read_lock(&tasklist_lock
);
269 p
= find_task_by_vpid(who
);
273 niceval
= nice_to_rlimit(task_nice(p
));
274 if (niceval
> retval
)
280 pgrp
= find_vpid(who
);
282 pgrp
= task_pgrp(current
);
283 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
284 niceval
= nice_to_rlimit(task_nice(p
));
285 if (niceval
> retval
)
287 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
290 uid
= make_kuid(cred
->user_ns
, who
);
294 else if (!uid_eq(uid
, cred
->uid
)) {
295 user
= find_user(uid
);
297 goto out_unlock
; /* No processes for this user */
299 do_each_thread(g
, p
) {
300 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
301 niceval
= nice_to_rlimit(task_nice(p
));
302 if (niceval
> retval
)
305 } while_each_thread(g
, p
);
306 if (!uid_eq(uid
, cred
->uid
))
307 free_uid(user
); /* for find_user() */
311 read_unlock(&tasklist_lock
);
318 * Unprivileged users may change the real gid to the effective gid
319 * or vice versa. (BSD-style)
321 * If you set the real gid at all, or set the effective gid to a value not
322 * equal to the real gid, then the saved gid is set to the new effective gid.
324 * This makes it possible for a setgid program to completely drop its
325 * privileges, which is often a useful assertion to make when you are doing
326 * a security audit over a program.
328 * The general idea is that a program which uses just setregid() will be
329 * 100% compatible with BSD. A program which uses just setgid() will be
330 * 100% compatible with POSIX with saved IDs.
332 * SMP: There are not races, the GIDs are checked only by filesystem
333 * operations (as far as semantic preservation is concerned).
335 #ifdef CONFIG_MULTIUSER
336 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
338 struct user_namespace
*ns
= current_user_ns();
339 const struct cred
*old
;
344 krgid
= make_kgid(ns
, rgid
);
345 kegid
= make_kgid(ns
, egid
);
347 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
349 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
352 new = prepare_creds();
355 old
= current_cred();
358 if (rgid
!= (gid_t
) -1) {
359 if (gid_eq(old
->gid
, krgid
) ||
360 gid_eq(old
->egid
, krgid
) ||
361 ns_capable(old
->user_ns
, CAP_SETGID
))
366 if (egid
!= (gid_t
) -1) {
367 if (gid_eq(old
->gid
, kegid
) ||
368 gid_eq(old
->egid
, kegid
) ||
369 gid_eq(old
->sgid
, kegid
) ||
370 ns_capable(old
->user_ns
, CAP_SETGID
))
376 if (rgid
!= (gid_t
) -1 ||
377 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
378 new->sgid
= new->egid
;
379 new->fsgid
= new->egid
;
381 return commit_creds(new);
389 * setgid() is implemented like SysV w/ SAVED_IDS
391 * SMP: Same implicit races as above.
393 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
395 struct user_namespace
*ns
= current_user_ns();
396 const struct cred
*old
;
401 kgid
= make_kgid(ns
, gid
);
402 if (!gid_valid(kgid
))
405 new = prepare_creds();
408 old
= current_cred();
411 if (ns_capable(old
->user_ns
, CAP_SETGID
))
412 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
413 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
414 new->egid
= new->fsgid
= kgid
;
418 return commit_creds(new);
426 * change the user struct in a credentials set to match the new UID
428 static int set_user(struct cred
*new)
430 struct user_struct
*new_user
;
432 new_user
= alloc_uid(new->uid
);
437 * We don't fail in case of NPROC limit excess here because too many
438 * poorly written programs don't check set*uid() return code, assuming
439 * it never fails if called by root. We may still enforce NPROC limit
440 * for programs doing set*uid()+execve() by harmlessly deferring the
441 * failure to the execve() stage.
443 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
444 new_user
!= INIT_USER
)
445 current
->flags
|= PF_NPROC_EXCEEDED
;
447 current
->flags
&= ~PF_NPROC_EXCEEDED
;
450 new->user
= new_user
;
455 * Unprivileged users may change the real uid to the effective uid
456 * or vice versa. (BSD-style)
458 * If you set the real uid at all, or set the effective uid to a value not
459 * equal to the real uid, then the saved uid is set to the new effective uid.
461 * This makes it possible for a setuid program to completely drop its
462 * privileges, which is often a useful assertion to make when you are doing
463 * a security audit over a program.
465 * The general idea is that a program which uses just setreuid() will be
466 * 100% compatible with BSD. A program which uses just setuid() will be
467 * 100% compatible with POSIX with saved IDs.
469 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
471 struct user_namespace
*ns
= current_user_ns();
472 const struct cred
*old
;
477 kruid
= make_kuid(ns
, ruid
);
478 keuid
= make_kuid(ns
, euid
);
480 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
482 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
485 new = prepare_creds();
488 old
= current_cred();
491 if (ruid
!= (uid_t
) -1) {
493 if (!uid_eq(old
->uid
, kruid
) &&
494 !uid_eq(old
->euid
, kruid
) &&
495 !ns_capable(old
->user_ns
, CAP_SETUID
))
499 if (euid
!= (uid_t
) -1) {
501 if (!uid_eq(old
->uid
, keuid
) &&
502 !uid_eq(old
->euid
, keuid
) &&
503 !uid_eq(old
->suid
, keuid
) &&
504 !ns_capable(old
->user_ns
, CAP_SETUID
))
508 if (!uid_eq(new->uid
, old
->uid
)) {
509 retval
= set_user(new);
513 if (ruid
!= (uid_t
) -1 ||
514 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
515 new->suid
= new->euid
;
516 new->fsuid
= new->euid
;
518 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
522 return commit_creds(new);
530 * setuid() is implemented like SysV with SAVED_IDS
532 * Note that SAVED_ID's is deficient in that a setuid root program
533 * like sendmail, for example, cannot set its uid to be a normal
534 * user and then switch back, because if you're root, setuid() sets
535 * the saved uid too. If you don't like this, blame the bright people
536 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
537 * will allow a root program to temporarily drop privileges and be able to
538 * regain them by swapping the real and effective uid.
540 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
542 struct user_namespace
*ns
= current_user_ns();
543 const struct cred
*old
;
548 kuid
= make_kuid(ns
, uid
);
549 if (!uid_valid(kuid
))
552 new = prepare_creds();
555 old
= current_cred();
558 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
559 new->suid
= new->uid
= kuid
;
560 if (!uid_eq(kuid
, old
->uid
)) {
561 retval
= set_user(new);
565 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
569 new->fsuid
= new->euid
= kuid
;
571 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
575 return commit_creds(new);
584 * This function implements a generic ability to update ruid, euid,
585 * and suid. This allows you to implement the 4.4 compatible seteuid().
587 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
589 struct user_namespace
*ns
= current_user_ns();
590 const struct cred
*old
;
593 kuid_t kruid
, keuid
, ksuid
;
595 kruid
= make_kuid(ns
, ruid
);
596 keuid
= make_kuid(ns
, euid
);
597 ksuid
= make_kuid(ns
, suid
);
599 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
602 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
605 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
608 new = prepare_creds();
612 old
= current_cred();
615 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
616 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
617 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
619 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
620 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
622 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
623 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
627 if (ruid
!= (uid_t
) -1) {
629 if (!uid_eq(kruid
, old
->uid
)) {
630 retval
= set_user(new);
635 if (euid
!= (uid_t
) -1)
637 if (suid
!= (uid_t
) -1)
639 new->fsuid
= new->euid
;
641 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
645 return commit_creds(new);
652 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
654 const struct cred
*cred
= current_cred();
656 uid_t ruid
, euid
, suid
;
658 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
659 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
660 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
662 retval
= put_user(ruid
, ruidp
);
664 retval
= put_user(euid
, euidp
);
666 return put_user(suid
, suidp
);
672 * Same as above, but for rgid, egid, sgid.
674 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
676 struct user_namespace
*ns
= current_user_ns();
677 const struct cred
*old
;
680 kgid_t krgid
, kegid
, ksgid
;
682 krgid
= make_kgid(ns
, rgid
);
683 kegid
= make_kgid(ns
, egid
);
684 ksgid
= make_kgid(ns
, sgid
);
686 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
688 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
690 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
693 new = prepare_creds();
696 old
= current_cred();
699 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
700 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
701 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
703 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
704 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
706 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
707 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
711 if (rgid
!= (gid_t
) -1)
713 if (egid
!= (gid_t
) -1)
715 if (sgid
!= (gid_t
) -1)
717 new->fsgid
= new->egid
;
719 return commit_creds(new);
726 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
728 const struct cred
*cred
= current_cred();
730 gid_t rgid
, egid
, sgid
;
732 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
733 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
734 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
736 retval
= put_user(rgid
, rgidp
);
738 retval
= put_user(egid
, egidp
);
740 retval
= put_user(sgid
, sgidp
);
748 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
749 * is used for "access()" and for the NFS daemon (letting nfsd stay at
750 * whatever uid it wants to). It normally shadows "euid", except when
751 * explicitly set by setfsuid() or for access..
753 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
755 const struct cred
*old
;
760 old
= current_cred();
761 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
763 kuid
= make_kuid(old
->user_ns
, uid
);
764 if (!uid_valid(kuid
))
767 new = prepare_creds();
771 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
772 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
773 ns_capable(old
->user_ns
, CAP_SETUID
)) {
774 if (!uid_eq(kuid
, old
->fsuid
)) {
776 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
790 * Samma på svenska..
792 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
794 const struct cred
*old
;
799 old
= current_cred();
800 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
802 kgid
= make_kgid(old
->user_ns
, gid
);
803 if (!gid_valid(kgid
))
806 new = prepare_creds();
810 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
811 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
812 ns_capable(old
->user_ns
, CAP_SETGID
)) {
813 if (!gid_eq(kgid
, old
->fsgid
)) {
826 #endif /* CONFIG_MULTIUSER */
829 * sys_getpid - return the thread group id of the current process
831 * Note, despite the name, this returns the tgid not the pid. The tgid and
832 * the pid are identical unless CLONE_THREAD was specified on clone() in
833 * which case the tgid is the same in all threads of the same group.
835 * This is SMP safe as current->tgid does not change.
837 SYSCALL_DEFINE0(getpid
)
839 return task_tgid_vnr(current
);
842 /* Thread ID - the internal kernel "pid" */
843 SYSCALL_DEFINE0(gettid
)
845 return task_pid_vnr(current
);
849 * Accessing ->real_parent is not SMP-safe, it could
850 * change from under us. However, we can use a stale
851 * value of ->real_parent under rcu_read_lock(), see
852 * release_task()->call_rcu(delayed_put_task_struct).
854 SYSCALL_DEFINE0(getppid
)
859 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
865 SYSCALL_DEFINE0(getuid
)
867 /* Only we change this so SMP safe */
868 return from_kuid_munged(current_user_ns(), current_uid());
871 SYSCALL_DEFINE0(geteuid
)
873 /* Only we change this so SMP safe */
874 return from_kuid_munged(current_user_ns(), current_euid());
877 SYSCALL_DEFINE0(getgid
)
879 /* Only we change this so SMP safe */
880 return from_kgid_munged(current_user_ns(), current_gid());
883 SYSCALL_DEFINE0(getegid
)
885 /* Only we change this so SMP safe */
886 return from_kgid_munged(current_user_ns(), current_egid());
889 static void do_sys_times(struct tms
*tms
)
891 u64 tgutime
, tgstime
, cutime
, cstime
;
893 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
894 cutime
= current
->signal
->cutime
;
895 cstime
= current
->signal
->cstime
;
896 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
897 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
898 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
899 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
902 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
908 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
911 force_successful_syscall_return();
912 return (long) jiffies_64_to_clock_t(get_jiffies_64());
916 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
918 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
921 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
925 struct compat_tms tmp
;
928 /* Convert our struct tms to the compat version. */
929 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
930 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
931 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
932 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
933 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
936 force_successful_syscall_return();
937 return compat_jiffies_to_clock_t(jiffies
);
942 * This needs some heavy checking ...
943 * I just haven't the stomach for it. I also don't fully
944 * understand sessions/pgrp etc. Let somebody who does explain it.
946 * OK, I think I have the protection semantics right.... this is really
947 * only important on a multi-user system anyway, to make sure one user
948 * can't send a signal to a process owned by another. -TYT, 12/12/91
950 * !PF_FORKNOEXEC check to conform completely to POSIX.
952 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
954 struct task_struct
*p
;
955 struct task_struct
*group_leader
= current
->group_leader
;
960 pid
= task_pid_vnr(group_leader
);
967 /* From this point forward we keep holding onto the tasklist lock
968 * so that our parent does not change from under us. -DaveM
970 write_lock_irq(&tasklist_lock
);
973 p
= find_task_by_vpid(pid
);
978 if (!thread_group_leader(p
))
981 if (same_thread_group(p
->real_parent
, group_leader
)) {
983 if (task_session(p
) != task_session(group_leader
))
986 if (!(p
->flags
& PF_FORKNOEXEC
))
990 if (p
!= group_leader
)
995 if (p
->signal
->leader
)
1000 struct task_struct
*g
;
1002 pgrp
= find_vpid(pgid
);
1003 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1004 if (!g
|| task_session(g
) != task_session(group_leader
))
1008 err
= security_task_setpgid(p
, pgid
);
1012 if (task_pgrp(p
) != pgrp
)
1013 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1017 /* All paths lead to here, thus we are safe. -DaveM */
1018 write_unlock_irq(&tasklist_lock
);
1023 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1025 struct task_struct
*p
;
1031 grp
= task_pgrp(current
);
1034 p
= find_task_by_vpid(pid
);
1041 retval
= security_task_getpgid(p
);
1045 retval
= pid_vnr(grp
);
1051 #ifdef __ARCH_WANT_SYS_GETPGRP
1053 SYSCALL_DEFINE0(getpgrp
)
1055 return sys_getpgid(0);
1060 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1062 struct task_struct
*p
;
1068 sid
= task_session(current
);
1071 p
= find_task_by_vpid(pid
);
1074 sid
= task_session(p
);
1078 retval
= security_task_getsid(p
);
1082 retval
= pid_vnr(sid
);
1088 static void set_special_pids(struct pid
*pid
)
1090 struct task_struct
*curr
= current
->group_leader
;
1092 if (task_session(curr
) != pid
)
1093 change_pid(curr
, PIDTYPE_SID
, pid
);
1095 if (task_pgrp(curr
) != pid
)
1096 change_pid(curr
, PIDTYPE_PGID
, pid
);
1099 SYSCALL_DEFINE0(setsid
)
1101 struct task_struct
*group_leader
= current
->group_leader
;
1102 struct pid
*sid
= task_pid(group_leader
);
1103 pid_t session
= pid_vnr(sid
);
1106 write_lock_irq(&tasklist_lock
);
1107 /* Fail if I am already a session leader */
1108 if (group_leader
->signal
->leader
)
1111 /* Fail if a process group id already exists that equals the
1112 * proposed session id.
1114 if (pid_task(sid
, PIDTYPE_PGID
))
1117 group_leader
->signal
->leader
= 1;
1118 set_special_pids(sid
);
1120 proc_clear_tty(group_leader
);
1124 write_unlock_irq(&tasklist_lock
);
1126 proc_sid_connector(group_leader
);
1127 sched_autogroup_create_attach(group_leader
);
1132 DECLARE_RWSEM(uts_sem
);
1134 #ifdef COMPAT_UTS_MACHINE
1135 #define override_architecture(name) \
1136 (personality(current->personality) == PER_LINUX32 && \
1137 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1138 sizeof(COMPAT_UTS_MACHINE)))
1140 #define override_architecture(name) 0
1144 * Work around broken programs that cannot handle "Linux 3.0".
1145 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1146 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1148 static int override_release(char __user
*release
, size_t len
)
1152 if (current
->personality
& UNAME26
) {
1153 const char *rest
= UTS_RELEASE
;
1154 char buf
[65] = { 0 };
1160 if (*rest
== '.' && ++ndots
>= 3)
1162 if (!isdigit(*rest
) && *rest
!= '.')
1166 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1167 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1168 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1169 ret
= copy_to_user(release
, buf
, copy
+ 1);
1174 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1178 down_read(&uts_sem
);
1179 if (copy_to_user(name
, utsname(), sizeof *name
))
1183 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1185 if (!errno
&& override_architecture(name
))
1190 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1194 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1201 down_read(&uts_sem
);
1202 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1206 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1208 if (!error
&& override_architecture(name
))
1213 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1219 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1222 down_read(&uts_sem
);
1223 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1225 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1226 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1228 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1229 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1231 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1232 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1234 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1235 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1237 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1240 if (!error
&& override_architecture(name
))
1242 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1244 return error
? -EFAULT
: 0;
1248 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1251 char tmp
[__NEW_UTS_LEN
];
1253 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1256 if (len
< 0 || len
> __NEW_UTS_LEN
)
1258 down_write(&uts_sem
);
1260 if (!copy_from_user(tmp
, name
, len
)) {
1261 struct new_utsname
*u
= utsname();
1263 memcpy(u
->nodename
, tmp
, len
);
1264 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1266 uts_proc_notify(UTS_PROC_HOSTNAME
);
1272 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1274 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1277 struct new_utsname
*u
;
1281 down_read(&uts_sem
);
1283 i
= 1 + strlen(u
->nodename
);
1287 if (copy_to_user(name
, u
->nodename
, i
))
1296 * Only setdomainname; getdomainname can be implemented by calling
1299 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1302 char tmp
[__NEW_UTS_LEN
];
1304 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1306 if (len
< 0 || len
> __NEW_UTS_LEN
)
1309 down_write(&uts_sem
);
1311 if (!copy_from_user(tmp
, name
, len
)) {
1312 struct new_utsname
*u
= utsname();
1314 memcpy(u
->domainname
, tmp
, len
);
1315 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1317 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1323 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1325 struct rlimit value
;
1328 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1330 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1335 #ifdef CONFIG_COMPAT
1337 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1338 struct compat_rlimit __user
*, rlim
)
1341 struct compat_rlimit r32
;
1343 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1346 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1347 r
.rlim_cur
= RLIM_INFINITY
;
1349 r
.rlim_cur
= r32
.rlim_cur
;
1350 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1351 r
.rlim_max
= RLIM_INFINITY
;
1353 r
.rlim_max
= r32
.rlim_max
;
1354 return do_prlimit(current
, resource
, &r
, NULL
);
1357 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1358 struct compat_rlimit __user
*, rlim
)
1363 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1365 struct compat_rlimit r32
;
1366 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1367 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1369 r32
.rlim_cur
= r
.rlim_cur
;
1370 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1371 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1373 r32
.rlim_max
= r
.rlim_max
;
1375 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1383 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1386 * Back compatibility for getrlimit. Needed for some apps.
1388 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1389 struct rlimit __user
*, rlim
)
1392 if (resource
>= RLIM_NLIMITS
)
1395 task_lock(current
->group_leader
);
1396 x
= current
->signal
->rlim
[resource
];
1397 task_unlock(current
->group_leader
);
1398 if (x
.rlim_cur
> 0x7FFFFFFF)
1399 x
.rlim_cur
= 0x7FFFFFFF;
1400 if (x
.rlim_max
> 0x7FFFFFFF)
1401 x
.rlim_max
= 0x7FFFFFFF;
1402 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1405 #ifdef CONFIG_COMPAT
1406 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1407 struct compat_rlimit __user
*, rlim
)
1411 if (resource
>= RLIM_NLIMITS
)
1414 task_lock(current
->group_leader
);
1415 r
= current
->signal
->rlim
[resource
];
1416 task_unlock(current
->group_leader
);
1417 if (r
.rlim_cur
> 0x7FFFFFFF)
1418 r
.rlim_cur
= 0x7FFFFFFF;
1419 if (r
.rlim_max
> 0x7FFFFFFF)
1420 r
.rlim_max
= 0x7FFFFFFF;
1422 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1423 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1431 static inline bool rlim64_is_infinity(__u64 rlim64
)
1433 #if BITS_PER_LONG < 64
1434 return rlim64
>= ULONG_MAX
;
1436 return rlim64
== RLIM64_INFINITY
;
1440 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1442 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1443 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1445 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1446 if (rlim
->rlim_max
== RLIM_INFINITY
)
1447 rlim64
->rlim_max
= RLIM64_INFINITY
;
1449 rlim64
->rlim_max
= rlim
->rlim_max
;
1452 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1454 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1455 rlim
->rlim_cur
= RLIM_INFINITY
;
1457 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1458 if (rlim64_is_infinity(rlim64
->rlim_max
))
1459 rlim
->rlim_max
= RLIM_INFINITY
;
1461 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1464 /* make sure you are allowed to change @tsk limits before calling this */
1465 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1466 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1468 struct rlimit
*rlim
;
1471 if (resource
>= RLIM_NLIMITS
)
1474 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1476 if (resource
== RLIMIT_NOFILE
&&
1477 new_rlim
->rlim_max
> sysctl_nr_open
)
1481 /* protect tsk->signal and tsk->sighand from disappearing */
1482 read_lock(&tasklist_lock
);
1483 if (!tsk
->sighand
) {
1488 rlim
= tsk
->signal
->rlim
+ resource
;
1489 task_lock(tsk
->group_leader
);
1491 /* Keep the capable check against init_user_ns until
1492 cgroups can contain all limits */
1493 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1494 !capable(CAP_SYS_RESOURCE
))
1497 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1498 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1500 * The caller is asking for an immediate RLIMIT_CPU
1501 * expiry. But we use the zero value to mean "it was
1502 * never set". So let's cheat and make it one second
1505 new_rlim
->rlim_cur
= 1;
1514 task_unlock(tsk
->group_leader
);
1517 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1518 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1519 * very long-standing error, and fixing it now risks breakage of
1520 * applications, so we live with it
1522 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1523 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1524 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1525 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1527 read_unlock(&tasklist_lock
);
1531 /* rcu lock must be held */
1532 static int check_prlimit_permission(struct task_struct
*task
,
1535 const struct cred
*cred
= current_cred(), *tcred
;
1538 if (current
== task
)
1541 tcred
= __task_cred(task
);
1542 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1543 uid_eq(cred
->uid
, tcred
->suid
) &&
1544 uid_eq(cred
->uid
, tcred
->uid
) &&
1545 gid_eq(cred
->gid
, tcred
->egid
) &&
1546 gid_eq(cred
->gid
, tcred
->sgid
) &&
1547 gid_eq(cred
->gid
, tcred
->gid
));
1548 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1551 return security_task_prlimit(cred
, tcred
, flags
);
1554 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1555 const struct rlimit64 __user
*, new_rlim
,
1556 struct rlimit64 __user
*, old_rlim
)
1558 struct rlimit64 old64
, new64
;
1559 struct rlimit old
, new;
1560 struct task_struct
*tsk
;
1561 unsigned int checkflags
= 0;
1565 checkflags
|= LSM_PRLIMIT_READ
;
1568 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1570 rlim64_to_rlim(&new64
, &new);
1571 checkflags
|= LSM_PRLIMIT_WRITE
;
1575 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1580 ret
= check_prlimit_permission(tsk
, checkflags
);
1585 get_task_struct(tsk
);
1588 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1589 old_rlim
? &old
: NULL
);
1591 if (!ret
&& old_rlim
) {
1592 rlim_to_rlim64(&old
, &old64
);
1593 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1597 put_task_struct(tsk
);
1601 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1603 struct rlimit new_rlim
;
1605 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1607 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1611 * It would make sense to put struct rusage in the task_struct,
1612 * except that would make the task_struct be *really big*. After
1613 * task_struct gets moved into malloc'ed memory, it would
1614 * make sense to do this. It will make moving the rest of the information
1615 * a lot simpler! (Which we're not doing right now because we're not
1616 * measuring them yet).
1618 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1619 * races with threads incrementing their own counters. But since word
1620 * reads are atomic, we either get new values or old values and we don't
1621 * care which for the sums. We always take the siglock to protect reading
1622 * the c* fields from p->signal from races with exit.c updating those
1623 * fields when reaping, so a sample either gets all the additions of a
1624 * given child after it's reaped, or none so this sample is before reaping.
1627 * We need to take the siglock for CHILDEREN, SELF and BOTH
1628 * for the cases current multithreaded, non-current single threaded
1629 * non-current multithreaded. Thread traversal is now safe with
1631 * Strictly speaking, we donot need to take the siglock if we are current and
1632 * single threaded, as no one else can take our signal_struct away, no one
1633 * else can reap the children to update signal->c* counters, and no one else
1634 * can race with the signal-> fields. If we do not take any lock, the
1635 * signal-> fields could be read out of order while another thread was just
1636 * exiting. So we should place a read memory barrier when we avoid the lock.
1637 * On the writer side, write memory barrier is implied in __exit_signal
1638 * as __exit_signal releases the siglock spinlock after updating the signal->
1639 * fields. But we don't do this yet to keep things simple.
1643 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1645 r
->ru_nvcsw
+= t
->nvcsw
;
1646 r
->ru_nivcsw
+= t
->nivcsw
;
1647 r
->ru_minflt
+= t
->min_flt
;
1648 r
->ru_majflt
+= t
->maj_flt
;
1649 r
->ru_inblock
+= task_io_get_inblock(t
);
1650 r
->ru_oublock
+= task_io_get_oublock(t
);
1653 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1655 struct task_struct
*t
;
1656 unsigned long flags
;
1657 u64 tgutime
, tgstime
, utime
, stime
;
1658 unsigned long maxrss
= 0;
1660 memset((char *)r
, 0, sizeof (*r
));
1663 if (who
== RUSAGE_THREAD
) {
1664 task_cputime_adjusted(current
, &utime
, &stime
);
1665 accumulate_thread_rusage(p
, r
);
1666 maxrss
= p
->signal
->maxrss
;
1670 if (!lock_task_sighand(p
, &flags
))
1675 case RUSAGE_CHILDREN
:
1676 utime
= p
->signal
->cutime
;
1677 stime
= p
->signal
->cstime
;
1678 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1679 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1680 r
->ru_minflt
= p
->signal
->cmin_flt
;
1681 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1682 r
->ru_inblock
= p
->signal
->cinblock
;
1683 r
->ru_oublock
= p
->signal
->coublock
;
1684 maxrss
= p
->signal
->cmaxrss
;
1686 if (who
== RUSAGE_CHILDREN
)
1690 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1693 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1694 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1695 r
->ru_minflt
+= p
->signal
->min_flt
;
1696 r
->ru_majflt
+= p
->signal
->maj_flt
;
1697 r
->ru_inblock
+= p
->signal
->inblock
;
1698 r
->ru_oublock
+= p
->signal
->oublock
;
1699 if (maxrss
< p
->signal
->maxrss
)
1700 maxrss
= p
->signal
->maxrss
;
1703 accumulate_thread_rusage(t
, r
);
1704 } while_each_thread(p
, t
);
1710 unlock_task_sighand(p
, &flags
);
1713 r
->ru_utime
= ns_to_timeval(utime
);
1714 r
->ru_stime
= ns_to_timeval(stime
);
1716 if (who
!= RUSAGE_CHILDREN
) {
1717 struct mm_struct
*mm
= get_task_mm(p
);
1720 setmax_mm_hiwater_rss(&maxrss
, mm
);
1724 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1727 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1731 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1732 who
!= RUSAGE_THREAD
)
1735 getrusage(current
, who
, &r
);
1736 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1739 #ifdef CONFIG_COMPAT
1740 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1744 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1745 who
!= RUSAGE_THREAD
)
1748 getrusage(current
, who
, &r
);
1749 return put_compat_rusage(&r
, ru
);
1753 SYSCALL_DEFINE1(umask
, int, mask
)
1755 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1759 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1762 struct file
*old_exe
, *exe_file
;
1763 struct inode
*inode
;
1770 inode
= file_inode(exe
.file
);
1773 * Because the original mm->exe_file points to executable file, make
1774 * sure that this one is executable as well, to avoid breaking an
1778 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1781 err
= inode_permission(inode
, MAY_EXEC
);
1786 * Forbid mm->exe_file change if old file still mapped.
1788 exe_file
= get_mm_exe_file(mm
);
1791 struct vm_area_struct
*vma
;
1793 down_read(&mm
->mmap_sem
);
1794 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1797 if (path_equal(&vma
->vm_file
->f_path
,
1802 up_read(&mm
->mmap_sem
);
1807 /* set the new file, lockless */
1809 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1816 up_read(&mm
->mmap_sem
);
1822 * WARNING: we don't require any capability here so be very careful
1823 * in what is allowed for modification from userspace.
1825 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1827 unsigned long mmap_max_addr
= TASK_SIZE
;
1828 struct mm_struct
*mm
= current
->mm
;
1829 int error
= -EINVAL
, i
;
1831 static const unsigned char offsets
[] = {
1832 offsetof(struct prctl_mm_map
, start_code
),
1833 offsetof(struct prctl_mm_map
, end_code
),
1834 offsetof(struct prctl_mm_map
, start_data
),
1835 offsetof(struct prctl_mm_map
, end_data
),
1836 offsetof(struct prctl_mm_map
, start_brk
),
1837 offsetof(struct prctl_mm_map
, brk
),
1838 offsetof(struct prctl_mm_map
, start_stack
),
1839 offsetof(struct prctl_mm_map
, arg_start
),
1840 offsetof(struct prctl_mm_map
, arg_end
),
1841 offsetof(struct prctl_mm_map
, env_start
),
1842 offsetof(struct prctl_mm_map
, env_end
),
1846 * Make sure the members are not somewhere outside
1847 * of allowed address space.
1849 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1850 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1852 if ((unsigned long)val
>= mmap_max_addr
||
1853 (unsigned long)val
< mmap_min_addr
)
1858 * Make sure the pairs are ordered.
1860 #define __prctl_check_order(__m1, __op, __m2) \
1861 ((unsigned long)prctl_map->__m1 __op \
1862 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1863 error
= __prctl_check_order(start_code
, <, end_code
);
1864 error
|= __prctl_check_order(start_data
, <, end_data
);
1865 error
|= __prctl_check_order(start_brk
, <=, brk
);
1866 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1867 error
|= __prctl_check_order(env_start
, <=, env_end
);
1870 #undef __prctl_check_order
1875 * @brk should be after @end_data in traditional maps.
1877 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1878 prctl_map
->brk
<= prctl_map
->end_data
)
1882 * Neither we should allow to override limits if they set.
1884 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1885 prctl_map
->start_brk
, prctl_map
->end_data
,
1886 prctl_map
->start_data
))
1890 * Someone is trying to cheat the auxv vector.
1892 if (prctl_map
->auxv_size
) {
1893 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1898 * Finally, make sure the caller has the rights to
1899 * change /proc/pid/exe link: only local root should
1902 if (prctl_map
->exe_fd
!= (u32
)-1) {
1903 struct user_namespace
*ns
= current_user_ns();
1904 const struct cred
*cred
= current_cred();
1906 if (!uid_eq(cred
->uid
, make_kuid(ns
, 0)) ||
1907 !gid_eq(cred
->gid
, make_kgid(ns
, 0)))
1916 #ifdef CONFIG_CHECKPOINT_RESTORE
1917 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1919 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1920 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1921 struct mm_struct
*mm
= current
->mm
;
1924 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1925 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1927 if (opt
== PR_SET_MM_MAP_SIZE
)
1928 return put_user((unsigned int)sizeof(prctl_map
),
1929 (unsigned int __user
*)addr
);
1931 if (data_size
!= sizeof(prctl_map
))
1934 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1937 error
= validate_prctl_map(&prctl_map
);
1941 if (prctl_map
.auxv_size
) {
1942 memset(user_auxv
, 0, sizeof(user_auxv
));
1943 if (copy_from_user(user_auxv
,
1944 (const void __user
*)prctl_map
.auxv
,
1945 prctl_map
.auxv_size
))
1948 /* Last entry must be AT_NULL as specification requires */
1949 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1950 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1953 if (prctl_map
.exe_fd
!= (u32
)-1) {
1954 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
1959 down_write(&mm
->mmap_sem
);
1962 * We don't validate if these members are pointing to
1963 * real present VMAs because application may have correspond
1964 * VMAs already unmapped and kernel uses these members for statistics
1965 * output in procfs mostly, except
1967 * - @start_brk/@brk which are used in do_brk but kernel lookups
1968 * for VMAs when updating these memvers so anything wrong written
1969 * here cause kernel to swear at userspace program but won't lead
1970 * to any problem in kernel itself
1973 mm
->start_code
= prctl_map
.start_code
;
1974 mm
->end_code
= prctl_map
.end_code
;
1975 mm
->start_data
= prctl_map
.start_data
;
1976 mm
->end_data
= prctl_map
.end_data
;
1977 mm
->start_brk
= prctl_map
.start_brk
;
1978 mm
->brk
= prctl_map
.brk
;
1979 mm
->start_stack
= prctl_map
.start_stack
;
1980 mm
->arg_start
= prctl_map
.arg_start
;
1981 mm
->arg_end
= prctl_map
.arg_end
;
1982 mm
->env_start
= prctl_map
.env_start
;
1983 mm
->env_end
= prctl_map
.env_end
;
1986 * Note this update of @saved_auxv is lockless thus
1987 * if someone reads this member in procfs while we're
1988 * updating -- it may get partly updated results. It's
1989 * known and acceptable trade off: we leave it as is to
1990 * not introduce additional locks here making the kernel
1993 if (prctl_map
.auxv_size
)
1994 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
1996 up_write(&mm
->mmap_sem
);
1999 #endif /* CONFIG_CHECKPOINT_RESTORE */
2001 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2005 * This doesn't move the auxiliary vector itself since it's pinned to
2006 * mm_struct, but it permits filling the vector with new values. It's
2007 * up to the caller to provide sane values here, otherwise userspace
2008 * tools which use this vector might be unhappy.
2010 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2012 if (len
> sizeof(user_auxv
))
2015 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2018 /* Make sure the last entry is always AT_NULL */
2019 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2020 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2022 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2025 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2026 task_unlock(current
);
2031 static int prctl_set_mm(int opt
, unsigned long addr
,
2032 unsigned long arg4
, unsigned long arg5
)
2034 struct mm_struct
*mm
= current
->mm
;
2035 struct prctl_mm_map prctl_map
;
2036 struct vm_area_struct
*vma
;
2039 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2040 opt
!= PR_SET_MM_MAP
&&
2041 opt
!= PR_SET_MM_MAP_SIZE
)))
2044 #ifdef CONFIG_CHECKPOINT_RESTORE
2045 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2046 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2049 if (!capable(CAP_SYS_RESOURCE
))
2052 if (opt
== PR_SET_MM_EXE_FILE
)
2053 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2055 if (opt
== PR_SET_MM_AUXV
)
2056 return prctl_set_auxv(mm
, addr
, arg4
);
2058 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2063 down_write(&mm
->mmap_sem
);
2064 vma
= find_vma(mm
, addr
);
2066 prctl_map
.start_code
= mm
->start_code
;
2067 prctl_map
.end_code
= mm
->end_code
;
2068 prctl_map
.start_data
= mm
->start_data
;
2069 prctl_map
.end_data
= mm
->end_data
;
2070 prctl_map
.start_brk
= mm
->start_brk
;
2071 prctl_map
.brk
= mm
->brk
;
2072 prctl_map
.start_stack
= mm
->start_stack
;
2073 prctl_map
.arg_start
= mm
->arg_start
;
2074 prctl_map
.arg_end
= mm
->arg_end
;
2075 prctl_map
.env_start
= mm
->env_start
;
2076 prctl_map
.env_end
= mm
->env_end
;
2077 prctl_map
.auxv
= NULL
;
2078 prctl_map
.auxv_size
= 0;
2079 prctl_map
.exe_fd
= -1;
2082 case PR_SET_MM_START_CODE
:
2083 prctl_map
.start_code
= addr
;
2085 case PR_SET_MM_END_CODE
:
2086 prctl_map
.end_code
= addr
;
2088 case PR_SET_MM_START_DATA
:
2089 prctl_map
.start_data
= addr
;
2091 case PR_SET_MM_END_DATA
:
2092 prctl_map
.end_data
= addr
;
2094 case PR_SET_MM_START_STACK
:
2095 prctl_map
.start_stack
= addr
;
2097 case PR_SET_MM_START_BRK
:
2098 prctl_map
.start_brk
= addr
;
2101 prctl_map
.brk
= addr
;
2103 case PR_SET_MM_ARG_START
:
2104 prctl_map
.arg_start
= addr
;
2106 case PR_SET_MM_ARG_END
:
2107 prctl_map
.arg_end
= addr
;
2109 case PR_SET_MM_ENV_START
:
2110 prctl_map
.env_start
= addr
;
2112 case PR_SET_MM_ENV_END
:
2113 prctl_map
.env_end
= addr
;
2119 error
= validate_prctl_map(&prctl_map
);
2125 * If command line arguments and environment
2126 * are placed somewhere else on stack, we can
2127 * set them up here, ARG_START/END to setup
2128 * command line argumets and ENV_START/END
2131 case PR_SET_MM_START_STACK
:
2132 case PR_SET_MM_ARG_START
:
2133 case PR_SET_MM_ARG_END
:
2134 case PR_SET_MM_ENV_START
:
2135 case PR_SET_MM_ENV_END
:
2142 mm
->start_code
= prctl_map
.start_code
;
2143 mm
->end_code
= prctl_map
.end_code
;
2144 mm
->start_data
= prctl_map
.start_data
;
2145 mm
->end_data
= prctl_map
.end_data
;
2146 mm
->start_brk
= prctl_map
.start_brk
;
2147 mm
->brk
= prctl_map
.brk
;
2148 mm
->start_stack
= prctl_map
.start_stack
;
2149 mm
->arg_start
= prctl_map
.arg_start
;
2150 mm
->arg_end
= prctl_map
.arg_end
;
2151 mm
->env_start
= prctl_map
.env_start
;
2152 mm
->env_end
= prctl_map
.env_end
;
2156 up_write(&mm
->mmap_sem
);
2160 #ifdef CONFIG_CHECKPOINT_RESTORE
2161 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2163 return put_user(me
->clear_child_tid
, tid_addr
);
2166 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2172 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2175 * If task has has_child_subreaper - all its decendants
2176 * already have these flag too and new decendants will
2177 * inherit it on fork, skip them.
2179 * If we've found child_reaper - skip descendants in
2180 * it's subtree as they will never get out pidns.
2182 if (p
->signal
->has_child_subreaper
||
2183 is_child_reaper(task_pid(p
)))
2186 p
->signal
->has_child_subreaper
= 1;
2190 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2191 unsigned long, arg4
, unsigned long, arg5
)
2193 struct task_struct
*me
= current
;
2194 unsigned char comm
[sizeof(me
->comm
)];
2197 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2198 if (error
!= -ENOSYS
)
2203 case PR_SET_PDEATHSIG
:
2204 if (!valid_signal(arg2
)) {
2208 me
->pdeath_signal
= arg2
;
2210 case PR_GET_PDEATHSIG
:
2211 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2213 case PR_GET_DUMPABLE
:
2214 error
= get_dumpable(me
->mm
);
2216 case PR_SET_DUMPABLE
:
2217 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2221 set_dumpable(me
->mm
, arg2
);
2224 case PR_SET_UNALIGN
:
2225 error
= SET_UNALIGN_CTL(me
, arg2
);
2227 case PR_GET_UNALIGN
:
2228 error
= GET_UNALIGN_CTL(me
, arg2
);
2231 error
= SET_FPEMU_CTL(me
, arg2
);
2234 error
= GET_FPEMU_CTL(me
, arg2
);
2237 error
= SET_FPEXC_CTL(me
, arg2
);
2240 error
= GET_FPEXC_CTL(me
, arg2
);
2243 error
= PR_TIMING_STATISTICAL
;
2246 if (arg2
!= PR_TIMING_STATISTICAL
)
2250 comm
[sizeof(me
->comm
) - 1] = 0;
2251 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2252 sizeof(me
->comm
) - 1) < 0)
2254 set_task_comm(me
, comm
);
2255 proc_comm_connector(me
);
2258 get_task_comm(comm
, me
);
2259 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2263 error
= GET_ENDIAN(me
, arg2
);
2266 error
= SET_ENDIAN(me
, arg2
);
2268 case PR_GET_SECCOMP
:
2269 error
= prctl_get_seccomp();
2271 case PR_SET_SECCOMP
:
2272 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2275 error
= GET_TSC_CTL(arg2
);
2278 error
= SET_TSC_CTL(arg2
);
2280 case PR_TASK_PERF_EVENTS_DISABLE
:
2281 error
= perf_event_task_disable();
2283 case PR_TASK_PERF_EVENTS_ENABLE
:
2284 error
= perf_event_task_enable();
2286 case PR_GET_TIMERSLACK
:
2287 if (current
->timer_slack_ns
> ULONG_MAX
)
2290 error
= current
->timer_slack_ns
;
2292 case PR_SET_TIMERSLACK
:
2294 current
->timer_slack_ns
=
2295 current
->default_timer_slack_ns
;
2297 current
->timer_slack_ns
= arg2
;
2303 case PR_MCE_KILL_CLEAR
:
2306 current
->flags
&= ~PF_MCE_PROCESS
;
2308 case PR_MCE_KILL_SET
:
2309 current
->flags
|= PF_MCE_PROCESS
;
2310 if (arg3
== PR_MCE_KILL_EARLY
)
2311 current
->flags
|= PF_MCE_EARLY
;
2312 else if (arg3
== PR_MCE_KILL_LATE
)
2313 current
->flags
&= ~PF_MCE_EARLY
;
2314 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2316 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2324 case PR_MCE_KILL_GET
:
2325 if (arg2
| arg3
| arg4
| arg5
)
2327 if (current
->flags
& PF_MCE_PROCESS
)
2328 error
= (current
->flags
& PF_MCE_EARLY
) ?
2329 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2331 error
= PR_MCE_KILL_DEFAULT
;
2334 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2336 case PR_GET_TID_ADDRESS
:
2337 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2339 case PR_SET_CHILD_SUBREAPER
:
2340 me
->signal
->is_child_subreaper
= !!arg2
;
2344 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2346 case PR_GET_CHILD_SUBREAPER
:
2347 error
= put_user(me
->signal
->is_child_subreaper
,
2348 (int __user
*)arg2
);
2350 case PR_SET_NO_NEW_PRIVS
:
2351 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2354 task_set_no_new_privs(current
);
2356 case PR_GET_NO_NEW_PRIVS
:
2357 if (arg2
|| arg3
|| arg4
|| arg5
)
2359 return task_no_new_privs(current
) ? 1 : 0;
2360 case PR_GET_THP_DISABLE
:
2361 if (arg2
|| arg3
|| arg4
|| arg5
)
2363 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2365 case PR_SET_THP_DISABLE
:
2366 if (arg3
|| arg4
|| arg5
)
2368 if (down_write_killable(&me
->mm
->mmap_sem
))
2371 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2373 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2374 up_write(&me
->mm
->mmap_sem
);
2376 case PR_MPX_ENABLE_MANAGEMENT
:
2377 if (arg2
|| arg3
|| arg4
|| arg5
)
2379 error
= MPX_ENABLE_MANAGEMENT();
2381 case PR_MPX_DISABLE_MANAGEMENT
:
2382 if (arg2
|| arg3
|| arg4
|| arg5
)
2384 error
= MPX_DISABLE_MANAGEMENT();
2386 case PR_SET_FP_MODE
:
2387 error
= SET_FP_MODE(me
, arg2
);
2389 case PR_GET_FP_MODE
:
2390 error
= GET_FP_MODE(me
);
2399 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2400 struct getcpu_cache __user
*, unused
)
2403 int cpu
= raw_smp_processor_id();
2406 err
|= put_user(cpu
, cpup
);
2408 err
|= put_user(cpu_to_node(cpu
), nodep
);
2409 return err
? -EFAULT
: 0;
2413 * do_sysinfo - fill in sysinfo struct
2414 * @info: pointer to buffer to fill
2416 static int do_sysinfo(struct sysinfo
*info
)
2418 unsigned long mem_total
, sav_total
;
2419 unsigned int mem_unit
, bitcount
;
2422 memset(info
, 0, sizeof(struct sysinfo
));
2424 get_monotonic_boottime(&tp
);
2425 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2427 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2429 info
->procs
= nr_threads
;
2435 * If the sum of all the available memory (i.e. ram + swap)
2436 * is less than can be stored in a 32 bit unsigned long then
2437 * we can be binary compatible with 2.2.x kernels. If not,
2438 * well, in that case 2.2.x was broken anyways...
2440 * -Erik Andersen <andersee@debian.org>
2443 mem_total
= info
->totalram
+ info
->totalswap
;
2444 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2447 mem_unit
= info
->mem_unit
;
2448 while (mem_unit
> 1) {
2451 sav_total
= mem_total
;
2453 if (mem_total
< sav_total
)
2458 * If mem_total did not overflow, multiply all memory values by
2459 * info->mem_unit and set it to 1. This leaves things compatible
2460 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2465 info
->totalram
<<= bitcount
;
2466 info
->freeram
<<= bitcount
;
2467 info
->sharedram
<<= bitcount
;
2468 info
->bufferram
<<= bitcount
;
2469 info
->totalswap
<<= bitcount
;
2470 info
->freeswap
<<= bitcount
;
2471 info
->totalhigh
<<= bitcount
;
2472 info
->freehigh
<<= bitcount
;
2478 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2484 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2490 #ifdef CONFIG_COMPAT
2491 struct compat_sysinfo
{
2505 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2508 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2514 /* Check to see if any memory value is too large for 32-bit and scale
2517 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2520 while (s
.mem_unit
< PAGE_SIZE
) {
2525 s
.totalram
>>= bitcount
;
2526 s
.freeram
>>= bitcount
;
2527 s
.sharedram
>>= bitcount
;
2528 s
.bufferram
>>= bitcount
;
2529 s
.totalswap
>>= bitcount
;
2530 s
.freeswap
>>= bitcount
;
2531 s
.totalhigh
>>= bitcount
;
2532 s
.freehigh
>>= bitcount
;
2535 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2536 __put_user(s
.uptime
, &info
->uptime
) ||
2537 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2538 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2539 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2540 __put_user(s
.totalram
, &info
->totalram
) ||
2541 __put_user(s
.freeram
, &info
->freeram
) ||
2542 __put_user(s
.sharedram
, &info
->sharedram
) ||
2543 __put_user(s
.bufferram
, &info
->bufferram
) ||
2544 __put_user(s
.totalswap
, &info
->totalswap
) ||
2545 __put_user(s
.freeswap
, &info
->freeswap
) ||
2546 __put_user(s
.procs
, &info
->procs
) ||
2547 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2548 __put_user(s
.freehigh
, &info
->freehigh
) ||
2549 __put_user(s
.mem_unit
, &info
->mem_unit
))
2554 #endif /* CONFIG_COMPAT */