2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
23 #include <asm/pgtable.h>
26 * swapper_space is a fiction, retained to simplify the path through
27 * vmscan's shrink_page_list.
29 static const struct address_space_operations swap_aops
= {
30 .writepage
= swap_writepage
,
31 .set_page_dirty
= swap_set_page_dirty
,
32 #ifdef CONFIG_MIGRATION
33 .migratepage
= migrate_page
,
37 struct address_space
*swapper_spaces
[MAX_SWAPFILES
];
38 static unsigned int nr_swapper_spaces
[MAX_SWAPFILES
];
40 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
43 unsigned long add_total
;
44 unsigned long del_total
;
45 unsigned long find_success
;
46 unsigned long find_total
;
49 unsigned long total_swapcache_pages(void)
51 unsigned int i
, j
, nr
;
52 unsigned long ret
= 0;
53 struct address_space
*spaces
;
56 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
63 nr
= nr_swapper_spaces
[i
];
64 spaces
= rcu_dereference(swapper_spaces
[i
]);
67 for (j
= 0; j
< nr
; j
++)
68 ret
+= spaces
[j
].nrpages
;
74 static atomic_t swapin_readahead_hits
= ATOMIC_INIT(4);
76 void show_swap_cache_info(void)
78 printk("%lu pages in swap cache\n", total_swapcache_pages());
79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
80 swap_cache_info
.add_total
, swap_cache_info
.del_total
,
81 swap_cache_info
.find_success
, swap_cache_info
.find_total
);
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT
- 10));
84 printk("Total swap = %lukB\n", total_swap_pages
<< (PAGE_SHIFT
- 10));
88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
89 * but sets SwapCache flag and private instead of mapping and index.
91 int __add_to_swap_cache(struct page
*page
, swp_entry_t entry
)
94 struct address_space
*address_space
;
96 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
97 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
101 SetPageSwapCache(page
);
102 set_page_private(page
, entry
.val
);
104 address_space
= swap_address_space(entry
);
105 spin_lock_irq(&address_space
->tree_lock
);
106 error
= radix_tree_insert(&address_space
->page_tree
,
107 swp_offset(entry
), page
);
108 if (likely(!error
)) {
109 address_space
->nrpages
++;
110 __inc_node_page_state(page
, NR_FILE_PAGES
);
111 INC_CACHE_INFO(add_total
);
113 spin_unlock_irq(&address_space
->tree_lock
);
115 if (unlikely(error
)) {
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
121 VM_BUG_ON(error
== -EEXIST
);
122 set_page_private(page
, 0UL);
123 ClearPageSwapCache(page
);
131 int add_to_swap_cache(struct page
*page
, swp_entry_t entry
, gfp_t gfp_mask
)
135 error
= radix_tree_maybe_preload(gfp_mask
);
137 error
= __add_to_swap_cache(page
, entry
);
138 radix_tree_preload_end();
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
147 void __delete_from_swap_cache(struct page
*page
)
150 struct address_space
*address_space
;
152 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
153 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
154 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
156 entry
.val
= page_private(page
);
157 address_space
= swap_address_space(entry
);
158 radix_tree_delete(&address_space
->page_tree
, swp_offset(entry
));
159 set_page_private(page
, 0);
160 ClearPageSwapCache(page
);
161 address_space
->nrpages
--;
162 __dec_node_page_state(page
, NR_FILE_PAGES
);
163 INC_CACHE_INFO(del_total
);
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
173 int add_to_swap(struct page
*page
, struct list_head
*list
)
178 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
179 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
181 entry
= get_swap_page();
185 if (mem_cgroup_try_charge_swap(page
, entry
)) {
186 swapcache_free(entry
);
190 if (unlikely(PageTransHuge(page
)))
191 if (unlikely(split_huge_page_to_list(page
, list
))) {
192 swapcache_free(entry
);
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
205 * Add it to the swap cache.
207 err
= add_to_swap_cache(page
, entry
,
208 __GFP_HIGH
|__GFP_NOMEMALLOC
|__GFP_NOWARN
);
212 } else { /* -ENOMEM radix-tree allocation failure */
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
217 swapcache_free(entry
);
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
228 void delete_from_swap_cache(struct page
*page
)
231 struct address_space
*address_space
;
233 entry
.val
= page_private(page
);
235 address_space
= swap_address_space(entry
);
236 spin_lock_irq(&address_space
->tree_lock
);
237 __delete_from_swap_cache(page
);
238 spin_unlock_irq(&address_space
->tree_lock
);
240 swapcache_free(entry
);
245 * If we are the only user, then try to free up the swap cache.
247 * Its ok to check for PageSwapCache without the page lock
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
252 static inline void free_swap_cache(struct page
*page
)
254 if (PageSwapCache(page
) && !page_mapped(page
) && trylock_page(page
)) {
255 try_to_free_swap(page
);
261 * Perform a free_page(), also freeing any swap cache associated with
262 * this page if it is the last user of the page.
264 void free_page_and_swap_cache(struct page
*page
)
266 free_swap_cache(page
);
267 if (!is_huge_zero_page(page
))
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
275 void free_pages_and_swap_cache(struct page
**pages
, int nr
)
277 struct page
**pagep
= pages
;
281 for (i
= 0; i
< nr
; i
++)
282 free_swap_cache(pagep
[i
]);
283 release_pages(pagep
, nr
, false);
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
292 struct page
* lookup_swap_cache(swp_entry_t entry
)
296 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
299 INC_CACHE_INFO(find_success
);
300 if (TestClearPageReadahead(page
))
301 atomic_inc(&swapin_readahead_hits
);
304 INC_CACHE_INFO(find_total
);
308 struct page
*__read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
309 struct vm_area_struct
*vma
, unsigned long addr
,
310 bool *new_page_allocated
)
312 struct page
*found_page
, *new_page
= NULL
;
313 struct address_space
*swapper_space
= swap_address_space(entry
);
315 *new_page_allocated
= false;
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
323 found_page
= find_get_page(swapper_space
, swp_offset(entry
));
328 * Just skip read ahead for unused swap slot.
329 * During swap_off when swap_slot_cache is disabled,
330 * we have to handle the race between putting
331 * swap entry in swap cache and marking swap slot
332 * as SWAP_HAS_CACHE. That's done in later part of code or
333 * else swap_off will be aborted if we return NULL.
335 if (!__swp_swapcount(entry
) && swap_slot_cache_enabled
)
339 * Get a new page to read into from swap.
342 new_page
= alloc_page_vma(gfp_mask
, vma
, addr
);
344 break; /* Out of memory */
348 * call radix_tree_preload() while we can wait.
350 err
= radix_tree_maybe_preload(gfp_mask
& GFP_KERNEL
);
355 * Swap entry may have been freed since our caller observed it.
357 err
= swapcache_prepare(entry
);
358 if (err
== -EEXIST
) {
359 radix_tree_preload_end();
361 * We might race against get_swap_page() and stumble
362 * across a SWAP_HAS_CACHE swap_map entry whose page
363 * has not been brought into the swapcache yet.
368 if (err
) { /* swp entry is obsolete ? */
369 radix_tree_preload_end();
373 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
374 __SetPageLocked(new_page
);
375 __SetPageSwapBacked(new_page
);
376 err
= __add_to_swap_cache(new_page
, entry
);
378 radix_tree_preload_end();
380 * Initiate read into locked page and return.
382 lru_cache_add_anon(new_page
);
383 *new_page_allocated
= true;
386 radix_tree_preload_end();
387 __ClearPageLocked(new_page
);
389 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
390 * clear SWAP_HAS_CACHE flag.
392 swapcache_free(entry
);
393 } while (err
!= -ENOMEM
);
401 * Locate a page of swap in physical memory, reserving swap cache space
402 * and reading the disk if it is not already cached.
403 * A failure return means that either the page allocation failed or that
404 * the swap entry is no longer in use.
406 struct page
*read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
407 struct vm_area_struct
*vma
, unsigned long addr
)
409 bool page_was_allocated
;
410 struct page
*retpage
= __read_swap_cache_async(entry
, gfp_mask
,
411 vma
, addr
, &page_was_allocated
);
413 if (page_was_allocated
)
414 swap_readpage(retpage
);
419 static unsigned long swapin_nr_pages(unsigned long offset
)
421 static unsigned long prev_offset
;
422 unsigned int pages
, max_pages
, last_ra
;
423 static atomic_t last_readahead_pages
;
425 max_pages
= 1 << READ_ONCE(page_cluster
);
430 * This heuristic has been found to work well on both sequential and
431 * random loads, swapping to hard disk or to SSD: please don't ask
432 * what the "+ 2" means, it just happens to work well, that's all.
434 pages
= atomic_xchg(&swapin_readahead_hits
, 0) + 2;
437 * We can have no readahead hits to judge by: but must not get
438 * stuck here forever, so check for an adjacent offset instead
439 * (and don't even bother to check whether swap type is same).
441 if (offset
!= prev_offset
+ 1 && offset
!= prev_offset
- 1)
443 prev_offset
= offset
;
445 unsigned int roundup
= 4;
446 while (roundup
< pages
)
451 if (pages
> max_pages
)
454 /* Don't shrink readahead too fast */
455 last_ra
= atomic_read(&last_readahead_pages
) / 2;
458 atomic_set(&last_readahead_pages
, pages
);
464 * swapin_readahead - swap in pages in hope we need them soon
465 * @entry: swap entry of this memory
466 * @gfp_mask: memory allocation flags
467 * @vma: user vma this address belongs to
468 * @addr: target address for mempolicy
470 * Returns the struct page for entry and addr, after queueing swapin.
472 * Primitive swap readahead code. We simply read an aligned block of
473 * (1 << page_cluster) entries in the swap area. This method is chosen
474 * because it doesn't cost us any seek time. We also make sure to queue
475 * the 'original' request together with the readahead ones...
477 * This has been extended to use the NUMA policies from the mm triggering
480 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
482 struct page
*swapin_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
483 struct vm_area_struct
*vma
, unsigned long addr
)
486 unsigned long entry_offset
= swp_offset(entry
);
487 unsigned long offset
= entry_offset
;
488 unsigned long start_offset
, end_offset
;
490 struct blk_plug plug
;
492 mask
= swapin_nr_pages(offset
) - 1;
496 /* Read a page_cluster sized and aligned cluster around offset. */
497 start_offset
= offset
& ~mask
;
498 end_offset
= offset
| mask
;
499 if (!start_offset
) /* First page is swap header. */
502 blk_start_plug(&plug
);
503 for (offset
= start_offset
; offset
<= end_offset
; offset
++) {
504 /* Ok, do the async read-ahead now */
505 page
= read_swap_cache_async(swp_entry(swp_type(entry
), offset
),
506 gfp_mask
, vma
, addr
);
509 if (offset
!= entry_offset
)
510 SetPageReadahead(page
);
513 blk_finish_plug(&plug
);
515 lru_add_drain(); /* Push any new pages onto the LRU now */
517 return read_swap_cache_async(entry
, gfp_mask
, vma
, addr
);
520 int init_swap_address_space(unsigned int type
, unsigned long nr_pages
)
522 struct address_space
*spaces
, *space
;
525 nr
= DIV_ROUND_UP(nr_pages
, SWAP_ADDRESS_SPACE_PAGES
);
526 spaces
= kvzalloc(sizeof(struct address_space
) * nr
, GFP_KERNEL
);
529 for (i
= 0; i
< nr
; i
++) {
531 INIT_RADIX_TREE(&space
->page_tree
, GFP_ATOMIC
|__GFP_NOWARN
);
532 atomic_set(&space
->i_mmap_writable
, 0);
533 space
->a_ops
= &swap_aops
;
534 /* swap cache doesn't use writeback related tags */
535 mapping_set_no_writeback_tags(space
);
536 spin_lock_init(&space
->tree_lock
);
538 nr_swapper_spaces
[type
] = nr
;
539 rcu_assign_pointer(swapper_spaces
[type
], spaces
);
544 void exit_swap_address_space(unsigned int type
)
546 struct address_space
*spaces
;
548 spaces
= swapper_spaces
[type
];
549 nr_swapper_spaces
[type
] = 0;
550 rcu_assign_pointer(swapper_spaces
[type
], NULL
);