1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
23 static struct page
*no_page_table(struct vm_area_struct
*vma
,
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
35 return ERR_PTR(-EFAULT
);
39 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
40 pte_t
*pte
, unsigned int flags
)
42 /* No page to get reference */
46 if (flags
& FOLL_TOUCH
) {
49 if (flags
& FOLL_WRITE
)
50 entry
= pte_mkdirty(entry
);
51 entry
= pte_mkyoung(entry
);
53 if (!pte_same(*pte
, entry
)) {
54 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
55 update_mmu_cache(vma
, address
, pte
);
59 /* Proper page table entry exists, but no corresponding struct page */
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
69 return pte_write(pte
) ||
70 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
73 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
74 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
76 struct mm_struct
*mm
= vma
->vm_mm
;
77 struct dev_pagemap
*pgmap
= NULL
;
83 if (unlikely(pmd_bad(*pmd
)))
84 return no_page_table(vma
, flags
);
86 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
88 if (!pte_present(pte
)) {
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags
& FOLL_MIGRATION
)))
99 entry
= pte_to_swp_entry(pte
);
100 if (!is_migration_entry(entry
))
102 pte_unmap_unlock(ptep
, ptl
);
103 migration_entry_wait(mm
, pmd
, address
);
106 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
108 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
109 pte_unmap_unlock(ptep
, ptl
);
113 page
= vm_normal_page(vma
, address
, pte
);
114 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap
= get_dev_pagemap(pte_pfn(pte
), NULL
);
121 page
= pte_page(pte
);
124 } else if (unlikely(!page
)) {
125 if (flags
& FOLL_DUMP
) {
126 /* Avoid special (like zero) pages in core dumps */
127 page
= ERR_PTR(-EFAULT
);
131 if (is_zero_pfn(pte_pfn(pte
))) {
132 page
= pte_page(pte
);
136 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
142 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
145 pte_unmap_unlock(ptep
, ptl
);
147 ret
= split_huge_page(page
);
155 if (flags
& FOLL_GET
) {
158 /* drop the pgmap reference now that we hold the page */
160 put_dev_pagemap(pgmap
);
164 if (flags
& FOLL_TOUCH
) {
165 if ((flags
& FOLL_WRITE
) &&
166 !pte_dirty(pte
) && !PageDirty(page
))
167 set_page_dirty(page
);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page
);
175 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page
))
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page
->mapping
&& trylock_page(page
)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page
);
202 pte_unmap_unlock(ptep
, ptl
);
205 pte_unmap_unlock(ptep
, ptl
);
208 return no_page_table(vma
, flags
);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
225 unsigned long address
, unsigned int flags
,
226 unsigned int *page_mask
)
234 struct mm_struct
*mm
= vma
->vm_mm
;
238 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
240 BUG_ON(flags
& FOLL_GET
);
244 pgd
= pgd_offset(mm
, address
);
245 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
246 return no_page_table(vma
, flags
);
247 p4d
= p4d_offset(pgd
, address
);
249 return no_page_table(vma
, flags
);
250 BUILD_BUG_ON(p4d_huge(*p4d
));
251 if (unlikely(p4d_bad(*p4d
)))
252 return no_page_table(vma
, flags
);
253 pud
= pud_offset(p4d
, address
);
255 return no_page_table(vma
, flags
);
256 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
257 page
= follow_huge_pud(mm
, address
, pud
, flags
);
260 return no_page_table(vma
, flags
);
262 if (pud_devmap(*pud
)) {
263 ptl
= pud_lock(mm
, pud
);
264 page
= follow_devmap_pud(vma
, address
, pud
, flags
);
269 if (unlikely(pud_bad(*pud
)))
270 return no_page_table(vma
, flags
);
272 pmd
= pmd_offset(pud
, address
);
274 return no_page_table(vma
, flags
);
275 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
276 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
279 return no_page_table(vma
, flags
);
281 if (pmd_devmap(*pmd
)) {
282 ptl
= pmd_lock(mm
, pmd
);
283 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
);
288 if (likely(!pmd_trans_huge(*pmd
)))
289 return follow_page_pte(vma
, address
, pmd
, flags
);
291 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
292 return no_page_table(vma
, flags
);
294 ptl
= pmd_lock(mm
, pmd
);
295 if (unlikely(!pmd_trans_huge(*pmd
))) {
297 return follow_page_pte(vma
, address
, pmd
, flags
);
299 if (flags
& FOLL_SPLIT
) {
301 page
= pmd_page(*pmd
);
302 if (is_huge_zero_page(page
)) {
305 split_huge_pmd(vma
, pmd
, address
);
306 if (pmd_trans_unstable(pmd
))
312 ret
= split_huge_page(page
);
316 return no_page_table(vma
, flags
);
319 return ret
? ERR_PTR(ret
) :
320 follow_page_pte(vma
, address
, pmd
, flags
);
323 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
325 *page_mask
= HPAGE_PMD_NR
- 1;
329 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
330 unsigned int gup_flags
, struct vm_area_struct
**vma
,
340 /* user gate pages are read-only */
341 if (gup_flags
& FOLL_WRITE
)
343 if (address
> TASK_SIZE
)
344 pgd
= pgd_offset_k(address
);
346 pgd
= pgd_offset_gate(mm
, address
);
347 BUG_ON(pgd_none(*pgd
));
348 p4d
= p4d_offset(pgd
, address
);
349 BUG_ON(p4d_none(*p4d
));
350 pud
= pud_offset(p4d
, address
);
351 BUG_ON(pud_none(*pud
));
352 pmd
= pmd_offset(pud
, address
);
355 VM_BUG_ON(pmd_trans_huge(*pmd
));
356 pte
= pte_offset_map(pmd
, address
);
359 *vma
= get_gate_vma(mm
);
362 *page
= vm_normal_page(*vma
, address
, *pte
);
364 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
366 *page
= pte_page(*pte
);
377 * mmap_sem must be held on entry. If @nonblocking != NULL and
378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
381 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
382 unsigned long address
, unsigned int *flags
, int *nonblocking
)
384 unsigned int fault_flags
= 0;
387 /* mlock all present pages, but do not fault in new pages */
388 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
390 /* For mm_populate(), just skip the stack guard page. */
391 if ((*flags
& FOLL_POPULATE
) &&
392 (stack_guard_page_start(vma
, address
) ||
393 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
395 if (*flags
& FOLL_WRITE
)
396 fault_flags
|= FAULT_FLAG_WRITE
;
397 if (*flags
& FOLL_REMOTE
)
398 fault_flags
|= FAULT_FLAG_REMOTE
;
400 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
401 if (*flags
& FOLL_NOWAIT
)
402 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
403 if (*flags
& FOLL_TRIED
) {
404 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
405 fault_flags
|= FAULT_FLAG_TRIED
;
408 ret
= handle_mm_fault(vma
, address
, fault_flags
);
409 if (ret
& VM_FAULT_ERROR
) {
410 int err
= vm_fault_to_errno(ret
, *flags
);
418 if (ret
& VM_FAULT_MAJOR
)
424 if (ret
& VM_FAULT_RETRY
) {
431 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
432 * necessary, even if maybe_mkwrite decided not to set pte_write. We
433 * can thus safely do subsequent page lookups as if they were reads.
434 * But only do so when looping for pte_write is futile: in some cases
435 * userspace may also be wanting to write to the gotten user page,
436 * which a read fault here might prevent (a readonly page might get
437 * reCOWed by userspace write).
439 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
444 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
446 vm_flags_t vm_flags
= vma
->vm_flags
;
447 int write
= (gup_flags
& FOLL_WRITE
);
448 int foreign
= (gup_flags
& FOLL_REMOTE
);
450 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
454 if (!(vm_flags
& VM_WRITE
)) {
455 if (!(gup_flags
& FOLL_FORCE
))
458 * We used to let the write,force case do COW in a
459 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
460 * set a breakpoint in a read-only mapping of an
461 * executable, without corrupting the file (yet only
462 * when that file had been opened for writing!).
463 * Anon pages in shared mappings are surprising: now
466 if (!is_cow_mapping(vm_flags
))
469 } else if (!(vm_flags
& VM_READ
)) {
470 if (!(gup_flags
& FOLL_FORCE
))
473 * Is there actually any vma we can reach here which does not
474 * have VM_MAYREAD set?
476 if (!(vm_flags
& VM_MAYREAD
))
480 * gups are always data accesses, not instruction
481 * fetches, so execute=false here
483 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
489 * __get_user_pages() - pin user pages in memory
490 * @tsk: task_struct of target task
491 * @mm: mm_struct of target mm
492 * @start: starting user address
493 * @nr_pages: number of pages from start to pin
494 * @gup_flags: flags modifying pin behaviour
495 * @pages: array that receives pointers to the pages pinned.
496 * Should be at least nr_pages long. Or NULL, if caller
497 * only intends to ensure the pages are faulted in.
498 * @vmas: array of pointers to vmas corresponding to each page.
499 * Or NULL if the caller does not require them.
500 * @nonblocking: whether waiting for disk IO or mmap_sem contention
502 * Returns number of pages pinned. This may be fewer than the number
503 * requested. If nr_pages is 0 or negative, returns 0. If no pages
504 * were pinned, returns -errno. Each page returned must be released
505 * with a put_page() call when it is finished with. vmas will only
506 * remain valid while mmap_sem is held.
508 * Must be called with mmap_sem held. It may be released. See below.
510 * __get_user_pages walks a process's page tables and takes a reference to
511 * each struct page that each user address corresponds to at a given
512 * instant. That is, it takes the page that would be accessed if a user
513 * thread accesses the given user virtual address at that instant.
515 * This does not guarantee that the page exists in the user mappings when
516 * __get_user_pages returns, and there may even be a completely different
517 * page there in some cases (eg. if mmapped pagecache has been invalidated
518 * and subsequently re faulted). However it does guarantee that the page
519 * won't be freed completely. And mostly callers simply care that the page
520 * contains data that was valid *at some point in time*. Typically, an IO
521 * or similar operation cannot guarantee anything stronger anyway because
522 * locks can't be held over the syscall boundary.
524 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
525 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
526 * appropriate) must be called after the page is finished with, and
527 * before put_page is called.
529 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
530 * or mmap_sem contention, and if waiting is needed to pin all pages,
531 * *@nonblocking will be set to 0. Further, if @gup_flags does not
532 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
535 * A caller using such a combination of @nonblocking and @gup_flags
536 * must therefore hold the mmap_sem for reading only, and recognize
537 * when it's been released. Otherwise, it must be held for either
538 * reading or writing and will not be released.
540 * In most cases, get_user_pages or get_user_pages_fast should be used
541 * instead of __get_user_pages. __get_user_pages should be used only if
542 * you need some special @gup_flags.
544 static long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
545 unsigned long start
, unsigned long nr_pages
,
546 unsigned int gup_flags
, struct page
**pages
,
547 struct vm_area_struct
**vmas
, int *nonblocking
)
550 unsigned int page_mask
;
551 struct vm_area_struct
*vma
= NULL
;
556 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
559 * If FOLL_FORCE is set then do not force a full fault as the hinting
560 * fault information is unrelated to the reference behaviour of a task
561 * using the address space
563 if (!(gup_flags
& FOLL_FORCE
))
564 gup_flags
|= FOLL_NUMA
;
568 unsigned int foll_flags
= gup_flags
;
569 unsigned int page_increm
;
571 /* first iteration or cross vma bound */
572 if (!vma
|| start
>= vma
->vm_end
) {
573 vma
= find_extend_vma(mm
, start
);
574 if (!vma
&& in_gate_area(mm
, start
)) {
576 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
578 pages
? &pages
[i
] : NULL
);
585 if (!vma
|| check_vma_flags(vma
, gup_flags
))
586 return i
? : -EFAULT
;
587 if (is_vm_hugetlb_page(vma
)) {
588 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
589 &start
, &nr_pages
, i
,
590 gup_flags
, nonblocking
);
596 * If we have a pending SIGKILL, don't keep faulting pages and
597 * potentially allocating memory.
599 if (unlikely(fatal_signal_pending(current
)))
600 return i
? i
: -ERESTARTSYS
;
602 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
605 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
620 } else if (PTR_ERR(page
) == -EEXIST
) {
622 * Proper page table entry exists, but no corresponding
626 } else if (IS_ERR(page
)) {
627 return i
? i
: PTR_ERR(page
);
631 flush_anon_page(vma
, page
, start
);
632 flush_dcache_page(page
);
640 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
641 if (page_increm
> nr_pages
)
642 page_increm
= nr_pages
;
644 start
+= page_increm
* PAGE_SIZE
;
645 nr_pages
-= page_increm
;
650 static bool vma_permits_fault(struct vm_area_struct
*vma
,
651 unsigned int fault_flags
)
653 bool write
= !!(fault_flags
& FAULT_FLAG_WRITE
);
654 bool foreign
= !!(fault_flags
& FAULT_FLAG_REMOTE
);
655 vm_flags_t vm_flags
= write
? VM_WRITE
: VM_READ
;
657 if (!(vm_flags
& vma
->vm_flags
))
661 * The architecture might have a hardware protection
662 * mechanism other than read/write that can deny access.
664 * gup always represents data access, not instruction
665 * fetches, so execute=false here:
667 if (!arch_vma_access_permitted(vma
, write
, false, foreign
))
674 * fixup_user_fault() - manually resolve a user page fault
675 * @tsk: the task_struct to use for page fault accounting, or
676 * NULL if faults are not to be recorded.
677 * @mm: mm_struct of target mm
678 * @address: user address
679 * @fault_flags:flags to pass down to handle_mm_fault()
680 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
681 * does not allow retry
683 * This is meant to be called in the specific scenario where for locking reasons
684 * we try to access user memory in atomic context (within a pagefault_disable()
685 * section), this returns -EFAULT, and we want to resolve the user fault before
688 * Typically this is meant to be used by the futex code.
690 * The main difference with get_user_pages() is that this function will
691 * unconditionally call handle_mm_fault() which will in turn perform all the
692 * necessary SW fixup of the dirty and young bits in the PTE, while
693 * get_user_pages() only guarantees to update these in the struct page.
695 * This is important for some architectures where those bits also gate the
696 * access permission to the page because they are maintained in software. On
697 * such architectures, gup() will not be enough to make a subsequent access
700 * This function will not return with an unlocked mmap_sem. So it has not the
701 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
703 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
704 unsigned long address
, unsigned int fault_flags
,
707 struct vm_area_struct
*vma
;
711 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
714 vma
= find_extend_vma(mm
, address
);
715 if (!vma
|| address
< vma
->vm_start
)
718 if (!vma_permits_fault(vma
, fault_flags
))
721 ret
= handle_mm_fault(vma
, address
, fault_flags
);
722 major
|= ret
& VM_FAULT_MAJOR
;
723 if (ret
& VM_FAULT_ERROR
) {
724 int err
= vm_fault_to_errno(ret
, 0);
731 if (ret
& VM_FAULT_RETRY
) {
732 down_read(&mm
->mmap_sem
);
733 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
735 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
736 fault_flags
|= FAULT_FLAG_TRIED
;
749 EXPORT_SYMBOL_GPL(fixup_user_fault
);
751 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
752 struct mm_struct
*mm
,
754 unsigned long nr_pages
,
756 struct vm_area_struct
**vmas
,
757 int *locked
, bool notify_drop
,
760 long ret
, pages_done
;
764 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
766 /* check caller initialized locked */
767 BUG_ON(*locked
!= 1);
774 lock_dropped
= false;
776 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
779 /* VM_FAULT_RETRY couldn't trigger, bypass */
782 /* VM_FAULT_RETRY cannot return errors */
785 BUG_ON(ret
>= nr_pages
);
789 /* If it's a prefault don't insist harder */
799 /* VM_FAULT_RETRY didn't trigger */
804 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
806 start
+= ret
<< PAGE_SHIFT
;
809 * Repeat on the address that fired VM_FAULT_RETRY
810 * without FAULT_FLAG_ALLOW_RETRY but with
815 down_read(&mm
->mmap_sem
);
816 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
831 if (notify_drop
&& lock_dropped
&& *locked
) {
833 * We must let the caller know we temporarily dropped the lock
834 * and so the critical section protected by it was lost.
836 up_read(&mm
->mmap_sem
);
843 * We can leverage the VM_FAULT_RETRY functionality in the page fault
844 * paths better by using either get_user_pages_locked() or
845 * get_user_pages_unlocked().
847 * get_user_pages_locked() is suitable to replace the form:
849 * down_read(&mm->mmap_sem);
851 * get_user_pages(tsk, mm, ..., pages, NULL);
852 * up_read(&mm->mmap_sem);
857 * down_read(&mm->mmap_sem);
859 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
861 * up_read(&mm->mmap_sem);
863 long get_user_pages_locked(unsigned long start
, unsigned long nr_pages
,
864 unsigned int gup_flags
, struct page
**pages
,
867 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
868 pages
, NULL
, locked
, true,
869 gup_flags
| FOLL_TOUCH
);
871 EXPORT_SYMBOL(get_user_pages_locked
);
874 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
875 * tsk, mm to be specified.
877 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
878 * caller if required (just like with __get_user_pages). "FOLL_GET"
879 * is set implicitly if "pages" is non-NULL.
881 static __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
,
882 struct mm_struct
*mm
, unsigned long start
,
883 unsigned long nr_pages
, struct page
**pages
,
884 unsigned int gup_flags
)
889 down_read(&mm
->mmap_sem
);
890 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, NULL
,
891 &locked
, false, gup_flags
);
893 up_read(&mm
->mmap_sem
);
898 * get_user_pages_unlocked() is suitable to replace the form:
900 * down_read(&mm->mmap_sem);
901 * get_user_pages(tsk, mm, ..., pages, NULL);
902 * up_read(&mm->mmap_sem);
906 * get_user_pages_unlocked(tsk, mm, ..., pages);
908 * It is functionally equivalent to get_user_pages_fast so
909 * get_user_pages_fast should be used instead if specific gup_flags
910 * (e.g. FOLL_FORCE) are not required.
912 long get_user_pages_unlocked(unsigned long start
, unsigned long nr_pages
,
913 struct page
**pages
, unsigned int gup_flags
)
915 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
916 pages
, gup_flags
| FOLL_TOUCH
);
918 EXPORT_SYMBOL(get_user_pages_unlocked
);
921 * get_user_pages_remote() - pin user pages in memory
922 * @tsk: the task_struct to use for page fault accounting, or
923 * NULL if faults are not to be recorded.
924 * @mm: mm_struct of target mm
925 * @start: starting user address
926 * @nr_pages: number of pages from start to pin
927 * @gup_flags: flags modifying lookup behaviour
928 * @pages: array that receives pointers to the pages pinned.
929 * Should be at least nr_pages long. Or NULL, if caller
930 * only intends to ensure the pages are faulted in.
931 * @vmas: array of pointers to vmas corresponding to each page.
932 * Or NULL if the caller does not require them.
933 * @locked: pointer to lock flag indicating whether lock is held and
934 * subsequently whether VM_FAULT_RETRY functionality can be
935 * utilised. Lock must initially be held.
937 * Returns number of pages pinned. This may be fewer than the number
938 * requested. If nr_pages is 0 or negative, returns 0. If no pages
939 * were pinned, returns -errno. Each page returned must be released
940 * with a put_page() call when it is finished with. vmas will only
941 * remain valid while mmap_sem is held.
943 * Must be called with mmap_sem held for read or write.
945 * get_user_pages walks a process's page tables and takes a reference to
946 * each struct page that each user address corresponds to at a given
947 * instant. That is, it takes the page that would be accessed if a user
948 * thread accesses the given user virtual address at that instant.
950 * This does not guarantee that the page exists in the user mappings when
951 * get_user_pages returns, and there may even be a completely different
952 * page there in some cases (eg. if mmapped pagecache has been invalidated
953 * and subsequently re faulted). However it does guarantee that the page
954 * won't be freed completely. And mostly callers simply care that the page
955 * contains data that was valid *at some point in time*. Typically, an IO
956 * or similar operation cannot guarantee anything stronger anyway because
957 * locks can't be held over the syscall boundary.
959 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
960 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
961 * be called after the page is finished with, and before put_page is called.
963 * get_user_pages is typically used for fewer-copy IO operations, to get a
964 * handle on the memory by some means other than accesses via the user virtual
965 * addresses. The pages may be submitted for DMA to devices or accessed via
966 * their kernel linear mapping (via the kmap APIs). Care should be taken to
967 * use the correct cache flushing APIs.
969 * See also get_user_pages_fast, for performance critical applications.
971 * get_user_pages should be phased out in favor of
972 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
973 * should use get_user_pages because it cannot pass
974 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
976 long get_user_pages_remote(struct task_struct
*tsk
, struct mm_struct
*mm
,
977 unsigned long start
, unsigned long nr_pages
,
978 unsigned int gup_flags
, struct page
**pages
,
979 struct vm_area_struct
**vmas
, int *locked
)
981 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, vmas
,
983 gup_flags
| FOLL_TOUCH
| FOLL_REMOTE
);
985 EXPORT_SYMBOL(get_user_pages_remote
);
988 * This is the same as get_user_pages_remote(), just with a
989 * less-flexible calling convention where we assume that the task
990 * and mm being operated on are the current task's and don't allow
991 * passing of a locked parameter. We also obviously don't pass
992 * FOLL_REMOTE in here.
994 long get_user_pages(unsigned long start
, unsigned long nr_pages
,
995 unsigned int gup_flags
, struct page
**pages
,
996 struct vm_area_struct
**vmas
)
998 return __get_user_pages_locked(current
, current
->mm
, start
, nr_pages
,
999 pages
, vmas
, NULL
, false,
1000 gup_flags
| FOLL_TOUCH
);
1002 EXPORT_SYMBOL(get_user_pages
);
1005 * populate_vma_page_range() - populate a range of pages in the vma.
1007 * @start: start address
1011 * This takes care of mlocking the pages too if VM_LOCKED is set.
1013 * return 0 on success, negative error code on error.
1015 * vma->vm_mm->mmap_sem must be held.
1017 * If @nonblocking is NULL, it may be held for read or write and will
1020 * If @nonblocking is non-NULL, it must held for read only and may be
1021 * released. If it's released, *@nonblocking will be set to 0.
1023 long populate_vma_page_range(struct vm_area_struct
*vma
,
1024 unsigned long start
, unsigned long end
, int *nonblocking
)
1026 struct mm_struct
*mm
= vma
->vm_mm
;
1027 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
1030 VM_BUG_ON(start
& ~PAGE_MASK
);
1031 VM_BUG_ON(end
& ~PAGE_MASK
);
1032 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
1033 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
1034 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1036 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
1037 if (vma
->vm_flags
& VM_LOCKONFAULT
)
1038 gup_flags
&= ~FOLL_POPULATE
;
1040 * We want to touch writable mappings with a write fault in order
1041 * to break COW, except for shared mappings because these don't COW
1042 * and we would not want to dirty them for nothing.
1044 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
1045 gup_flags
|= FOLL_WRITE
;
1048 * We want mlock to succeed for regions that have any permissions
1049 * other than PROT_NONE.
1051 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
1052 gup_flags
|= FOLL_FORCE
;
1055 * We made sure addr is within a VMA, so the following will
1056 * not result in a stack expansion that recurses back here.
1058 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
1059 NULL
, NULL
, nonblocking
);
1063 * __mm_populate - populate and/or mlock pages within a range of address space.
1065 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1066 * flags. VMAs must be already marked with the desired vm_flags, and
1067 * mmap_sem must not be held.
1069 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1071 struct mm_struct
*mm
= current
->mm
;
1072 unsigned long end
, nstart
, nend
;
1073 struct vm_area_struct
*vma
= NULL
;
1077 VM_BUG_ON(start
& ~PAGE_MASK
);
1078 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
1081 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1083 * We want to fault in pages for [nstart; end) address range.
1084 * Find first corresponding VMA.
1088 down_read(&mm
->mmap_sem
);
1089 vma
= find_vma(mm
, nstart
);
1090 } else if (nstart
>= vma
->vm_end
)
1092 if (!vma
|| vma
->vm_start
>= end
)
1095 * Set [nstart; nend) to intersection of desired address
1096 * range with the first VMA. Also, skip undesirable VMA types.
1098 nend
= min(end
, vma
->vm_end
);
1099 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1101 if (nstart
< vma
->vm_start
)
1102 nstart
= vma
->vm_start
;
1104 * Now fault in a range of pages. populate_vma_page_range()
1105 * double checks the vma flags, so that it won't mlock pages
1106 * if the vma was already munlocked.
1108 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1110 if (ignore_errors
) {
1112 continue; /* continue at next VMA */
1116 nend
= nstart
+ ret
* PAGE_SIZE
;
1120 up_read(&mm
->mmap_sem
);
1121 return ret
; /* 0 or negative error code */
1125 * get_dump_page() - pin user page in memory while writing it to core dump
1126 * @addr: user address
1128 * Returns struct page pointer of user page pinned for dump,
1129 * to be freed afterwards by put_page().
1131 * Returns NULL on any kind of failure - a hole must then be inserted into
1132 * the corefile, to preserve alignment with its headers; and also returns
1133 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1134 * allowing a hole to be left in the corefile to save diskspace.
1136 * Called without mmap_sem, but after all other threads have been killed.
1138 #ifdef CONFIG_ELF_CORE
1139 struct page
*get_dump_page(unsigned long addr
)
1141 struct vm_area_struct
*vma
;
1144 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1145 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1148 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1151 #endif /* CONFIG_ELF_CORE */
1154 * Generic RCU Fast GUP
1156 * get_user_pages_fast attempts to pin user pages by walking the page
1157 * tables directly and avoids taking locks. Thus the walker needs to be
1158 * protected from page table pages being freed from under it, and should
1159 * block any THP splits.
1161 * One way to achieve this is to have the walker disable interrupts, and
1162 * rely on IPIs from the TLB flushing code blocking before the page table
1163 * pages are freed. This is unsuitable for architectures that do not need
1164 * to broadcast an IPI when invalidating TLBs.
1166 * Another way to achieve this is to batch up page table containing pages
1167 * belonging to more than one mm_user, then rcu_sched a callback to free those
1168 * pages. Disabling interrupts will allow the fast_gup walker to both block
1169 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1170 * (which is a relatively rare event). The code below adopts this strategy.
1172 * Before activating this code, please be aware that the following assumptions
1173 * are currently made:
1175 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1176 * pages containing page tables.
1178 * *) ptes can be read atomically by the architecture.
1180 * *) access_ok is sufficient to validate userspace address ranges.
1182 * The last two assumptions can be relaxed by the addition of helper functions.
1184 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1186 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1190 * We assume that the PTE can be read atomically. If this is not the case for
1191 * your architecture, please provide the helper.
1193 static inline pte_t
gup_get_pte(pte_t
*ptep
)
1195 return READ_ONCE(*ptep
);
1199 static void undo_dev_pagemap(int *nr
, int nr_start
, struct page
**pages
)
1201 while ((*nr
) - nr_start
) {
1202 struct page
*page
= pages
[--(*nr
)];
1204 ClearPageReferenced(page
);
1209 #ifdef __HAVE_ARCH_PTE_SPECIAL
1210 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1211 int write
, struct page
**pages
, int *nr
)
1213 struct dev_pagemap
*pgmap
= NULL
;
1214 int nr_start
= *nr
, ret
= 0;
1217 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1219 pte_t pte
= gup_get_pte(ptep
);
1220 struct page
*head
, *page
;
1223 * Similar to the PMD case below, NUMA hinting must take slow
1224 * path using the pte_protnone check.
1226 if (pte_protnone(pte
))
1229 if (!pte_access_permitted(pte
, write
))
1232 if (pte_devmap(pte
)) {
1233 pgmap
= get_dev_pagemap(pte_pfn(pte
), pgmap
);
1234 if (unlikely(!pgmap
)) {
1235 undo_dev_pagemap(nr
, nr_start
, pages
);
1238 } else if (pte_special(pte
))
1241 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1242 page
= pte_page(pte
);
1243 head
= compound_head(page
);
1245 if (!page_cache_get_speculative(head
))
1248 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1253 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1255 put_dev_pagemap(pgmap
);
1256 SetPageReferenced(page
);
1260 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1271 * If we can't determine whether or not a pte is special, then fail immediately
1272 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1275 * For a futex to be placed on a THP tail page, get_futex_key requires a
1276 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1277 * useful to have gup_huge_pmd even if we can't operate on ptes.
1279 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1280 int write
, struct page
**pages
, int *nr
)
1284 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1286 #ifdef __HAVE_ARCH_PTE_DEVMAP
1287 static int __gup_device_huge(unsigned long pfn
, unsigned long addr
,
1288 unsigned long end
, struct page
**pages
, int *nr
)
1291 struct dev_pagemap
*pgmap
= NULL
;
1294 struct page
*page
= pfn_to_page(pfn
);
1296 pgmap
= get_dev_pagemap(pfn
, pgmap
);
1297 if (unlikely(!pgmap
)) {
1298 undo_dev_pagemap(nr
, nr_start
, pages
);
1301 SetPageReferenced(page
);
1304 put_dev_pagemap(pgmap
);
1307 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1311 static int __gup_device_huge_pmd(pmd_t pmd
, unsigned long addr
,
1312 unsigned long end
, struct page
**pages
, int *nr
)
1314 unsigned long fault_pfn
;
1316 fault_pfn
= pmd_pfn(pmd
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1317 return __gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
);
1320 static int __gup_device_huge_pud(pud_t pud
, unsigned long addr
,
1321 unsigned long end
, struct page
**pages
, int *nr
)
1323 unsigned long fault_pfn
;
1325 fault_pfn
= pud_pfn(pud
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1326 return __gup_device_huge(fault_pfn
, addr
, end
, pages
, nr
);
1329 static int __gup_device_huge_pmd(pmd_t pmd
, unsigned long addr
,
1330 unsigned long end
, struct page
**pages
, int *nr
)
1336 static int __gup_device_huge_pud(pud_t pud
, unsigned long addr
,
1337 unsigned long end
, struct page
**pages
, int *nr
)
1344 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1345 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1347 struct page
*head
, *page
;
1350 if (!pmd_access_permitted(orig
, write
))
1353 if (pmd_devmap(orig
))
1354 return __gup_device_huge_pmd(orig
, addr
, end
, pages
, nr
);
1357 head
= pmd_page(orig
);
1358 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1360 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1365 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1367 if (!page_cache_add_speculative(head
, refs
)) {
1372 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1379 SetPageReferenced(head
);
1383 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1384 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1386 struct page
*head
, *page
;
1389 if (!pud_access_permitted(orig
, write
))
1392 if (pud_devmap(orig
))
1393 return __gup_device_huge_pud(orig
, addr
, end
, pages
, nr
);
1396 head
= pud_page(orig
);
1397 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1399 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1404 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1406 if (!page_cache_add_speculative(head
, refs
)) {
1411 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1418 SetPageReferenced(head
);
1422 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1423 unsigned long end
, int write
,
1424 struct page
**pages
, int *nr
)
1427 struct page
*head
, *page
;
1429 if (!pgd_access_permitted(orig
, write
))
1432 BUILD_BUG_ON(pgd_devmap(orig
));
1434 head
= pgd_page(orig
);
1435 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1437 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1442 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1444 if (!page_cache_add_speculative(head
, refs
)) {
1449 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1456 SetPageReferenced(head
);
1460 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1461 int write
, struct page
**pages
, int *nr
)
1466 pmdp
= pmd_offset(&pud
, addr
);
1468 pmd_t pmd
= READ_ONCE(*pmdp
);
1470 next
= pmd_addr_end(addr
, end
);
1474 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1476 * NUMA hinting faults need to be handled in the GUP
1477 * slowpath for accounting purposes and so that they
1478 * can be serialised against THP migration.
1480 if (pmd_protnone(pmd
))
1483 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1487 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1489 * architecture have different format for hugetlbfs
1490 * pmd format and THP pmd format
1492 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1493 PMD_SHIFT
, next
, write
, pages
, nr
))
1495 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1497 } while (pmdp
++, addr
= next
, addr
!= end
);
1502 static int gup_pud_range(p4d_t p4d
, unsigned long addr
, unsigned long end
,
1503 int write
, struct page
**pages
, int *nr
)
1508 pudp
= pud_offset(&p4d
, addr
);
1510 pud_t pud
= READ_ONCE(*pudp
);
1512 next
= pud_addr_end(addr
, end
);
1515 if (unlikely(pud_huge(pud
))) {
1516 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1519 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1520 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1521 PUD_SHIFT
, next
, write
, pages
, nr
))
1523 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1525 } while (pudp
++, addr
= next
, addr
!= end
);
1530 static int gup_p4d_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1531 int write
, struct page
**pages
, int *nr
)
1536 p4dp
= p4d_offset(&pgd
, addr
);
1538 p4d_t p4d
= READ_ONCE(*p4dp
);
1540 next
= p4d_addr_end(addr
, end
);
1543 BUILD_BUG_ON(p4d_huge(p4d
));
1544 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d
))))) {
1545 if (!gup_huge_pd(__hugepd(p4d_val(p4d
)), addr
,
1546 P4D_SHIFT
, next
, write
, pages
, nr
))
1548 } else if (!gup_pud_range(p4d
, addr
, next
, write
, pages
, nr
))
1550 } while (p4dp
++, addr
= next
, addr
!= end
);
1556 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1557 * the regular GUP. It will only return non-negative values.
1559 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1560 struct page
**pages
)
1562 struct mm_struct
*mm
= current
->mm
;
1563 unsigned long addr
, len
, end
;
1564 unsigned long next
, flags
;
1570 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1573 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1574 (void __user
*)start
, len
)))
1578 * Disable interrupts. We use the nested form as we can already have
1579 * interrupts disabled by get_futex_key.
1581 * With interrupts disabled, we block page table pages from being
1582 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1585 * We do not adopt an rcu_read_lock(.) here as we also want to
1586 * block IPIs that come from THPs splitting.
1589 local_irq_save(flags
);
1590 pgdp
= pgd_offset(mm
, addr
);
1592 pgd_t pgd
= READ_ONCE(*pgdp
);
1594 next
= pgd_addr_end(addr
, end
);
1597 if (unlikely(pgd_huge(pgd
))) {
1598 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1601 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1602 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1603 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1605 } else if (!gup_p4d_range(pgd
, addr
, next
, write
, pages
, &nr
))
1607 } while (pgdp
++, addr
= next
, addr
!= end
);
1608 local_irq_restore(flags
);
1613 #ifndef gup_fast_permitted
1615 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1616 * we need to fall back to the slow version:
1618 bool gup_fast_permitted(unsigned long start
, int nr_pages
, int write
)
1620 unsigned long len
, end
;
1622 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1624 return end
>= start
;
1629 * get_user_pages_fast() - pin user pages in memory
1630 * @start: starting user address
1631 * @nr_pages: number of pages from start to pin
1632 * @write: whether pages will be written to
1633 * @pages: array that receives pointers to the pages pinned.
1634 * Should be at least nr_pages long.
1636 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1637 * If not successful, it will fall back to taking the lock and
1638 * calling get_user_pages().
1640 * Returns number of pages pinned. This may be fewer than the number
1641 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1642 * were pinned, returns -errno.
1644 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1645 struct page
**pages
)
1647 int nr
= 0, ret
= 0;
1651 if (gup_fast_permitted(start
, nr_pages
, write
)) {
1652 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1656 if (nr
< nr_pages
) {
1657 /* Try to get the remaining pages with get_user_pages */
1658 start
+= nr
<< PAGE_SHIFT
;
1661 ret
= get_user_pages_unlocked(start
, nr_pages
- nr
, pages
,
1662 write
? FOLL_WRITE
: 0);
1664 /* Have to be a bit careful with return values */
1676 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */