drm/arm: malidp: Use crtc->mode_valid() callback
[linux-stable.git] / mm / gup.c
blobb3c7214d710d5ea8bab8648b5182c53d882f3c31
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
21 #include "internal.h"
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
155 if (flags & FOLL_GET) {
156 get_page(page);
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page);
175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page);
198 unlock_page(page);
201 out:
202 pte_unmap_unlock(ptep, ptl);
203 return page;
204 no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
207 return NULL;
208 return no_page_table(vma, flags);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
228 pgd_t *pgd;
229 p4d_t *p4d;
230 pud_t *pud;
231 pmd_t *pmd;
232 spinlock_t *ptl;
233 struct page *page;
234 struct mm_struct *mm = vma->vm_mm;
236 *page_mask = 0;
238 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
239 if (!IS_ERR(page)) {
240 BUG_ON(flags & FOLL_GET);
241 return page;
244 pgd = pgd_offset(mm, address);
245 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
246 return no_page_table(vma, flags);
247 p4d = p4d_offset(pgd, address);
248 if (p4d_none(*p4d))
249 return no_page_table(vma, flags);
250 BUILD_BUG_ON(p4d_huge(*p4d));
251 if (unlikely(p4d_bad(*p4d)))
252 return no_page_table(vma, flags);
253 pud = pud_offset(p4d, address);
254 if (pud_none(*pud))
255 return no_page_table(vma, flags);
256 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
257 page = follow_huge_pud(mm, address, pud, flags);
258 if (page)
259 return page;
260 return no_page_table(vma, flags);
262 if (pud_devmap(*pud)) {
263 ptl = pud_lock(mm, pud);
264 page = follow_devmap_pud(vma, address, pud, flags);
265 spin_unlock(ptl);
266 if (page)
267 return page;
269 if (unlikely(pud_bad(*pud)))
270 return no_page_table(vma, flags);
272 pmd = pmd_offset(pud, address);
273 if (pmd_none(*pmd))
274 return no_page_table(vma, flags);
275 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
276 page = follow_huge_pmd(mm, address, pmd, flags);
277 if (page)
278 return page;
279 return no_page_table(vma, flags);
281 if (pmd_devmap(*pmd)) {
282 ptl = pmd_lock(mm, pmd);
283 page = follow_devmap_pmd(vma, address, pmd, flags);
284 spin_unlock(ptl);
285 if (page)
286 return page;
288 if (likely(!pmd_trans_huge(*pmd)))
289 return follow_page_pte(vma, address, pmd, flags);
291 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
292 return no_page_table(vma, flags);
294 ptl = pmd_lock(mm, pmd);
295 if (unlikely(!pmd_trans_huge(*pmd))) {
296 spin_unlock(ptl);
297 return follow_page_pte(vma, address, pmd, flags);
299 if (flags & FOLL_SPLIT) {
300 int ret;
301 page = pmd_page(*pmd);
302 if (is_huge_zero_page(page)) {
303 spin_unlock(ptl);
304 ret = 0;
305 split_huge_pmd(vma, pmd, address);
306 if (pmd_trans_unstable(pmd))
307 ret = -EBUSY;
308 } else {
309 get_page(page);
310 spin_unlock(ptl);
311 lock_page(page);
312 ret = split_huge_page(page);
313 unlock_page(page);
314 put_page(page);
315 if (pmd_none(*pmd))
316 return no_page_table(vma, flags);
319 return ret ? ERR_PTR(ret) :
320 follow_page_pte(vma, address, pmd, flags);
323 page = follow_trans_huge_pmd(vma, address, pmd, flags);
324 spin_unlock(ptl);
325 *page_mask = HPAGE_PMD_NR - 1;
326 return page;
329 static int get_gate_page(struct mm_struct *mm, unsigned long address,
330 unsigned int gup_flags, struct vm_area_struct **vma,
331 struct page **page)
333 pgd_t *pgd;
334 p4d_t *p4d;
335 pud_t *pud;
336 pmd_t *pmd;
337 pte_t *pte;
338 int ret = -EFAULT;
340 /* user gate pages are read-only */
341 if (gup_flags & FOLL_WRITE)
342 return -EFAULT;
343 if (address > TASK_SIZE)
344 pgd = pgd_offset_k(address);
345 else
346 pgd = pgd_offset_gate(mm, address);
347 BUG_ON(pgd_none(*pgd));
348 p4d = p4d_offset(pgd, address);
349 BUG_ON(p4d_none(*p4d));
350 pud = pud_offset(p4d, address);
351 BUG_ON(pud_none(*pud));
352 pmd = pmd_offset(pud, address);
353 if (pmd_none(*pmd))
354 return -EFAULT;
355 VM_BUG_ON(pmd_trans_huge(*pmd));
356 pte = pte_offset_map(pmd, address);
357 if (pte_none(*pte))
358 goto unmap;
359 *vma = get_gate_vma(mm);
360 if (!page)
361 goto out;
362 *page = vm_normal_page(*vma, address, *pte);
363 if (!*page) {
364 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
365 goto unmap;
366 *page = pte_page(*pte);
368 get_page(*page);
369 out:
370 ret = 0;
371 unmap:
372 pte_unmap(pte);
373 return ret;
377 * mmap_sem must be held on entry. If @nonblocking != NULL and
378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
382 unsigned long address, unsigned int *flags, int *nonblocking)
384 unsigned int fault_flags = 0;
385 int ret;
387 /* mlock all present pages, but do not fault in new pages */
388 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
389 return -ENOENT;
390 /* For mm_populate(), just skip the stack guard page. */
391 if ((*flags & FOLL_POPULATE) &&
392 (stack_guard_page_start(vma, address) ||
393 stack_guard_page_end(vma, address + PAGE_SIZE)))
394 return -ENOENT;
395 if (*flags & FOLL_WRITE)
396 fault_flags |= FAULT_FLAG_WRITE;
397 if (*flags & FOLL_REMOTE)
398 fault_flags |= FAULT_FLAG_REMOTE;
399 if (nonblocking)
400 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
401 if (*flags & FOLL_NOWAIT)
402 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
403 if (*flags & FOLL_TRIED) {
404 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
405 fault_flags |= FAULT_FLAG_TRIED;
408 ret = handle_mm_fault(vma, address, fault_flags);
409 if (ret & VM_FAULT_ERROR) {
410 int err = vm_fault_to_errno(ret, *flags);
412 if (err)
413 return err;
414 BUG();
417 if (tsk) {
418 if (ret & VM_FAULT_MAJOR)
419 tsk->maj_flt++;
420 else
421 tsk->min_flt++;
424 if (ret & VM_FAULT_RETRY) {
425 if (nonblocking)
426 *nonblocking = 0;
427 return -EBUSY;
431 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
432 * necessary, even if maybe_mkwrite decided not to set pte_write. We
433 * can thus safely do subsequent page lookups as if they were reads.
434 * But only do so when looping for pte_write is futile: in some cases
435 * userspace may also be wanting to write to the gotten user page,
436 * which a read fault here might prevent (a readonly page might get
437 * reCOWed by userspace write).
439 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
440 *flags |= FOLL_COW;
441 return 0;
444 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
446 vm_flags_t vm_flags = vma->vm_flags;
447 int write = (gup_flags & FOLL_WRITE);
448 int foreign = (gup_flags & FOLL_REMOTE);
450 if (vm_flags & (VM_IO | VM_PFNMAP))
451 return -EFAULT;
453 if (write) {
454 if (!(vm_flags & VM_WRITE)) {
455 if (!(gup_flags & FOLL_FORCE))
456 return -EFAULT;
458 * We used to let the write,force case do COW in a
459 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
460 * set a breakpoint in a read-only mapping of an
461 * executable, without corrupting the file (yet only
462 * when that file had been opened for writing!).
463 * Anon pages in shared mappings are surprising: now
464 * just reject it.
466 if (!is_cow_mapping(vm_flags))
467 return -EFAULT;
469 } else if (!(vm_flags & VM_READ)) {
470 if (!(gup_flags & FOLL_FORCE))
471 return -EFAULT;
473 * Is there actually any vma we can reach here which does not
474 * have VM_MAYREAD set?
476 if (!(vm_flags & VM_MAYREAD))
477 return -EFAULT;
480 * gups are always data accesses, not instruction
481 * fetches, so execute=false here
483 if (!arch_vma_access_permitted(vma, write, false, foreign))
484 return -EFAULT;
485 return 0;
489 * __get_user_pages() - pin user pages in memory
490 * @tsk: task_struct of target task
491 * @mm: mm_struct of target mm
492 * @start: starting user address
493 * @nr_pages: number of pages from start to pin
494 * @gup_flags: flags modifying pin behaviour
495 * @pages: array that receives pointers to the pages pinned.
496 * Should be at least nr_pages long. Or NULL, if caller
497 * only intends to ensure the pages are faulted in.
498 * @vmas: array of pointers to vmas corresponding to each page.
499 * Or NULL if the caller does not require them.
500 * @nonblocking: whether waiting for disk IO or mmap_sem contention
502 * Returns number of pages pinned. This may be fewer than the number
503 * requested. If nr_pages is 0 or negative, returns 0. If no pages
504 * were pinned, returns -errno. Each page returned must be released
505 * with a put_page() call when it is finished with. vmas will only
506 * remain valid while mmap_sem is held.
508 * Must be called with mmap_sem held. It may be released. See below.
510 * __get_user_pages walks a process's page tables and takes a reference to
511 * each struct page that each user address corresponds to at a given
512 * instant. That is, it takes the page that would be accessed if a user
513 * thread accesses the given user virtual address at that instant.
515 * This does not guarantee that the page exists in the user mappings when
516 * __get_user_pages returns, and there may even be a completely different
517 * page there in some cases (eg. if mmapped pagecache has been invalidated
518 * and subsequently re faulted). However it does guarantee that the page
519 * won't be freed completely. And mostly callers simply care that the page
520 * contains data that was valid *at some point in time*. Typically, an IO
521 * or similar operation cannot guarantee anything stronger anyway because
522 * locks can't be held over the syscall boundary.
524 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
525 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
526 * appropriate) must be called after the page is finished with, and
527 * before put_page is called.
529 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
530 * or mmap_sem contention, and if waiting is needed to pin all pages,
531 * *@nonblocking will be set to 0. Further, if @gup_flags does not
532 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
533 * this case.
535 * A caller using such a combination of @nonblocking and @gup_flags
536 * must therefore hold the mmap_sem for reading only, and recognize
537 * when it's been released. Otherwise, it must be held for either
538 * reading or writing and will not be released.
540 * In most cases, get_user_pages or get_user_pages_fast should be used
541 * instead of __get_user_pages. __get_user_pages should be used only if
542 * you need some special @gup_flags.
544 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
545 unsigned long start, unsigned long nr_pages,
546 unsigned int gup_flags, struct page **pages,
547 struct vm_area_struct **vmas, int *nonblocking)
549 long i = 0;
550 unsigned int page_mask;
551 struct vm_area_struct *vma = NULL;
553 if (!nr_pages)
554 return 0;
556 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
559 * If FOLL_FORCE is set then do not force a full fault as the hinting
560 * fault information is unrelated to the reference behaviour of a task
561 * using the address space
563 if (!(gup_flags & FOLL_FORCE))
564 gup_flags |= FOLL_NUMA;
566 do {
567 struct page *page;
568 unsigned int foll_flags = gup_flags;
569 unsigned int page_increm;
571 /* first iteration or cross vma bound */
572 if (!vma || start >= vma->vm_end) {
573 vma = find_extend_vma(mm, start);
574 if (!vma && in_gate_area(mm, start)) {
575 int ret;
576 ret = get_gate_page(mm, start & PAGE_MASK,
577 gup_flags, &vma,
578 pages ? &pages[i] : NULL);
579 if (ret)
580 return i ? : ret;
581 page_mask = 0;
582 goto next_page;
585 if (!vma || check_vma_flags(vma, gup_flags))
586 return i ? : -EFAULT;
587 if (is_vm_hugetlb_page(vma)) {
588 i = follow_hugetlb_page(mm, vma, pages, vmas,
589 &start, &nr_pages, i,
590 gup_flags, nonblocking);
591 continue;
594 retry:
596 * If we have a pending SIGKILL, don't keep faulting pages and
597 * potentially allocating memory.
599 if (unlikely(fatal_signal_pending(current)))
600 return i ? i : -ERESTARTSYS;
601 cond_resched();
602 page = follow_page_mask(vma, start, foll_flags, &page_mask);
603 if (!page) {
604 int ret;
605 ret = faultin_page(tsk, vma, start, &foll_flags,
606 nonblocking);
607 switch (ret) {
608 case 0:
609 goto retry;
610 case -EFAULT:
611 case -ENOMEM:
612 case -EHWPOISON:
613 return i ? i : ret;
614 case -EBUSY:
615 return i;
616 case -ENOENT:
617 goto next_page;
619 BUG();
620 } else if (PTR_ERR(page) == -EEXIST) {
622 * Proper page table entry exists, but no corresponding
623 * struct page.
625 goto next_page;
626 } else if (IS_ERR(page)) {
627 return i ? i : PTR_ERR(page);
629 if (pages) {
630 pages[i] = page;
631 flush_anon_page(vma, page, start);
632 flush_dcache_page(page);
633 page_mask = 0;
635 next_page:
636 if (vmas) {
637 vmas[i] = vma;
638 page_mask = 0;
640 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
641 if (page_increm > nr_pages)
642 page_increm = nr_pages;
643 i += page_increm;
644 start += page_increm * PAGE_SIZE;
645 nr_pages -= page_increm;
646 } while (nr_pages);
647 return i;
650 static bool vma_permits_fault(struct vm_area_struct *vma,
651 unsigned int fault_flags)
653 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
654 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
655 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
657 if (!(vm_flags & vma->vm_flags))
658 return false;
661 * The architecture might have a hardware protection
662 * mechanism other than read/write that can deny access.
664 * gup always represents data access, not instruction
665 * fetches, so execute=false here:
667 if (!arch_vma_access_permitted(vma, write, false, foreign))
668 return false;
670 return true;
674 * fixup_user_fault() - manually resolve a user page fault
675 * @tsk: the task_struct to use for page fault accounting, or
676 * NULL if faults are not to be recorded.
677 * @mm: mm_struct of target mm
678 * @address: user address
679 * @fault_flags:flags to pass down to handle_mm_fault()
680 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
681 * does not allow retry
683 * This is meant to be called in the specific scenario where for locking reasons
684 * we try to access user memory in atomic context (within a pagefault_disable()
685 * section), this returns -EFAULT, and we want to resolve the user fault before
686 * trying again.
688 * Typically this is meant to be used by the futex code.
690 * The main difference with get_user_pages() is that this function will
691 * unconditionally call handle_mm_fault() which will in turn perform all the
692 * necessary SW fixup of the dirty and young bits in the PTE, while
693 * get_user_pages() only guarantees to update these in the struct page.
695 * This is important for some architectures where those bits also gate the
696 * access permission to the page because they are maintained in software. On
697 * such architectures, gup() will not be enough to make a subsequent access
698 * succeed.
700 * This function will not return with an unlocked mmap_sem. So it has not the
701 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
703 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
704 unsigned long address, unsigned int fault_flags,
705 bool *unlocked)
707 struct vm_area_struct *vma;
708 int ret, major = 0;
710 if (unlocked)
711 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
713 retry:
714 vma = find_extend_vma(mm, address);
715 if (!vma || address < vma->vm_start)
716 return -EFAULT;
718 if (!vma_permits_fault(vma, fault_flags))
719 return -EFAULT;
721 ret = handle_mm_fault(vma, address, fault_flags);
722 major |= ret & VM_FAULT_MAJOR;
723 if (ret & VM_FAULT_ERROR) {
724 int err = vm_fault_to_errno(ret, 0);
726 if (err)
727 return err;
728 BUG();
731 if (ret & VM_FAULT_RETRY) {
732 down_read(&mm->mmap_sem);
733 if (!(fault_flags & FAULT_FLAG_TRIED)) {
734 *unlocked = true;
735 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
736 fault_flags |= FAULT_FLAG_TRIED;
737 goto retry;
741 if (tsk) {
742 if (major)
743 tsk->maj_flt++;
744 else
745 tsk->min_flt++;
747 return 0;
749 EXPORT_SYMBOL_GPL(fixup_user_fault);
751 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
752 struct mm_struct *mm,
753 unsigned long start,
754 unsigned long nr_pages,
755 struct page **pages,
756 struct vm_area_struct **vmas,
757 int *locked, bool notify_drop,
758 unsigned int flags)
760 long ret, pages_done;
761 bool lock_dropped;
763 if (locked) {
764 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
765 BUG_ON(vmas);
766 /* check caller initialized locked */
767 BUG_ON(*locked != 1);
770 if (pages)
771 flags |= FOLL_GET;
773 pages_done = 0;
774 lock_dropped = false;
775 for (;;) {
776 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
777 vmas, locked);
778 if (!locked)
779 /* VM_FAULT_RETRY couldn't trigger, bypass */
780 return ret;
782 /* VM_FAULT_RETRY cannot return errors */
783 if (!*locked) {
784 BUG_ON(ret < 0);
785 BUG_ON(ret >= nr_pages);
788 if (!pages)
789 /* If it's a prefault don't insist harder */
790 return ret;
792 if (ret > 0) {
793 nr_pages -= ret;
794 pages_done += ret;
795 if (!nr_pages)
796 break;
798 if (*locked) {
799 /* VM_FAULT_RETRY didn't trigger */
800 if (!pages_done)
801 pages_done = ret;
802 break;
804 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
805 pages += ret;
806 start += ret << PAGE_SHIFT;
809 * Repeat on the address that fired VM_FAULT_RETRY
810 * without FAULT_FLAG_ALLOW_RETRY but with
811 * FAULT_FLAG_TRIED.
813 *locked = 1;
814 lock_dropped = true;
815 down_read(&mm->mmap_sem);
816 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
817 pages, NULL, NULL);
818 if (ret != 1) {
819 BUG_ON(ret > 1);
820 if (!pages_done)
821 pages_done = ret;
822 break;
824 nr_pages--;
825 pages_done++;
826 if (!nr_pages)
827 break;
828 pages++;
829 start += PAGE_SIZE;
831 if (notify_drop && lock_dropped && *locked) {
833 * We must let the caller know we temporarily dropped the lock
834 * and so the critical section protected by it was lost.
836 up_read(&mm->mmap_sem);
837 *locked = 0;
839 return pages_done;
843 * We can leverage the VM_FAULT_RETRY functionality in the page fault
844 * paths better by using either get_user_pages_locked() or
845 * get_user_pages_unlocked().
847 * get_user_pages_locked() is suitable to replace the form:
849 * down_read(&mm->mmap_sem);
850 * do_something()
851 * get_user_pages(tsk, mm, ..., pages, NULL);
852 * up_read(&mm->mmap_sem);
854 * to:
856 * int locked = 1;
857 * down_read(&mm->mmap_sem);
858 * do_something()
859 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
860 * if (locked)
861 * up_read(&mm->mmap_sem);
863 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
864 unsigned int gup_flags, struct page **pages,
865 int *locked)
867 return __get_user_pages_locked(current, current->mm, start, nr_pages,
868 pages, NULL, locked, true,
869 gup_flags | FOLL_TOUCH);
871 EXPORT_SYMBOL(get_user_pages_locked);
874 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
875 * tsk, mm to be specified.
877 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
878 * caller if required (just like with __get_user_pages). "FOLL_GET"
879 * is set implicitly if "pages" is non-NULL.
881 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
882 struct mm_struct *mm, unsigned long start,
883 unsigned long nr_pages, struct page **pages,
884 unsigned int gup_flags)
886 long ret;
887 int locked = 1;
889 down_read(&mm->mmap_sem);
890 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
891 &locked, false, gup_flags);
892 if (locked)
893 up_read(&mm->mmap_sem);
894 return ret;
898 * get_user_pages_unlocked() is suitable to replace the form:
900 * down_read(&mm->mmap_sem);
901 * get_user_pages(tsk, mm, ..., pages, NULL);
902 * up_read(&mm->mmap_sem);
904 * with:
906 * get_user_pages_unlocked(tsk, mm, ..., pages);
908 * It is functionally equivalent to get_user_pages_fast so
909 * get_user_pages_fast should be used instead if specific gup_flags
910 * (e.g. FOLL_FORCE) are not required.
912 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
913 struct page **pages, unsigned int gup_flags)
915 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
916 pages, gup_flags | FOLL_TOUCH);
918 EXPORT_SYMBOL(get_user_pages_unlocked);
921 * get_user_pages_remote() - pin user pages in memory
922 * @tsk: the task_struct to use for page fault accounting, or
923 * NULL if faults are not to be recorded.
924 * @mm: mm_struct of target mm
925 * @start: starting user address
926 * @nr_pages: number of pages from start to pin
927 * @gup_flags: flags modifying lookup behaviour
928 * @pages: array that receives pointers to the pages pinned.
929 * Should be at least nr_pages long. Or NULL, if caller
930 * only intends to ensure the pages are faulted in.
931 * @vmas: array of pointers to vmas corresponding to each page.
932 * Or NULL if the caller does not require them.
933 * @locked: pointer to lock flag indicating whether lock is held and
934 * subsequently whether VM_FAULT_RETRY functionality can be
935 * utilised. Lock must initially be held.
937 * Returns number of pages pinned. This may be fewer than the number
938 * requested. If nr_pages is 0 or negative, returns 0. If no pages
939 * were pinned, returns -errno. Each page returned must be released
940 * with a put_page() call when it is finished with. vmas will only
941 * remain valid while mmap_sem is held.
943 * Must be called with mmap_sem held for read or write.
945 * get_user_pages walks a process's page tables and takes a reference to
946 * each struct page that each user address corresponds to at a given
947 * instant. That is, it takes the page that would be accessed if a user
948 * thread accesses the given user virtual address at that instant.
950 * This does not guarantee that the page exists in the user mappings when
951 * get_user_pages returns, and there may even be a completely different
952 * page there in some cases (eg. if mmapped pagecache has been invalidated
953 * and subsequently re faulted). However it does guarantee that the page
954 * won't be freed completely. And mostly callers simply care that the page
955 * contains data that was valid *at some point in time*. Typically, an IO
956 * or similar operation cannot guarantee anything stronger anyway because
957 * locks can't be held over the syscall boundary.
959 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
960 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
961 * be called after the page is finished with, and before put_page is called.
963 * get_user_pages is typically used for fewer-copy IO operations, to get a
964 * handle on the memory by some means other than accesses via the user virtual
965 * addresses. The pages may be submitted for DMA to devices or accessed via
966 * their kernel linear mapping (via the kmap APIs). Care should be taken to
967 * use the correct cache flushing APIs.
969 * See also get_user_pages_fast, for performance critical applications.
971 * get_user_pages should be phased out in favor of
972 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
973 * should use get_user_pages because it cannot pass
974 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
976 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
977 unsigned long start, unsigned long nr_pages,
978 unsigned int gup_flags, struct page **pages,
979 struct vm_area_struct **vmas, int *locked)
981 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
982 locked, true,
983 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
985 EXPORT_SYMBOL(get_user_pages_remote);
988 * This is the same as get_user_pages_remote(), just with a
989 * less-flexible calling convention where we assume that the task
990 * and mm being operated on are the current task's and don't allow
991 * passing of a locked parameter. We also obviously don't pass
992 * FOLL_REMOTE in here.
994 long get_user_pages(unsigned long start, unsigned long nr_pages,
995 unsigned int gup_flags, struct page **pages,
996 struct vm_area_struct **vmas)
998 return __get_user_pages_locked(current, current->mm, start, nr_pages,
999 pages, vmas, NULL, false,
1000 gup_flags | FOLL_TOUCH);
1002 EXPORT_SYMBOL(get_user_pages);
1005 * populate_vma_page_range() - populate a range of pages in the vma.
1006 * @vma: target vma
1007 * @start: start address
1008 * @end: end address
1009 * @nonblocking:
1011 * This takes care of mlocking the pages too if VM_LOCKED is set.
1013 * return 0 on success, negative error code on error.
1015 * vma->vm_mm->mmap_sem must be held.
1017 * If @nonblocking is NULL, it may be held for read or write and will
1018 * be unperturbed.
1020 * If @nonblocking is non-NULL, it must held for read only and may be
1021 * released. If it's released, *@nonblocking will be set to 0.
1023 long populate_vma_page_range(struct vm_area_struct *vma,
1024 unsigned long start, unsigned long end, int *nonblocking)
1026 struct mm_struct *mm = vma->vm_mm;
1027 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1028 int gup_flags;
1030 VM_BUG_ON(start & ~PAGE_MASK);
1031 VM_BUG_ON(end & ~PAGE_MASK);
1032 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1033 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1034 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1036 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1037 if (vma->vm_flags & VM_LOCKONFAULT)
1038 gup_flags &= ~FOLL_POPULATE;
1040 * We want to touch writable mappings with a write fault in order
1041 * to break COW, except for shared mappings because these don't COW
1042 * and we would not want to dirty them for nothing.
1044 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1045 gup_flags |= FOLL_WRITE;
1048 * We want mlock to succeed for regions that have any permissions
1049 * other than PROT_NONE.
1051 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1052 gup_flags |= FOLL_FORCE;
1055 * We made sure addr is within a VMA, so the following will
1056 * not result in a stack expansion that recurses back here.
1058 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1059 NULL, NULL, nonblocking);
1063 * __mm_populate - populate and/or mlock pages within a range of address space.
1065 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1066 * flags. VMAs must be already marked with the desired vm_flags, and
1067 * mmap_sem must not be held.
1069 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1071 struct mm_struct *mm = current->mm;
1072 unsigned long end, nstart, nend;
1073 struct vm_area_struct *vma = NULL;
1074 int locked = 0;
1075 long ret = 0;
1077 VM_BUG_ON(start & ~PAGE_MASK);
1078 VM_BUG_ON(len != PAGE_ALIGN(len));
1079 end = start + len;
1081 for (nstart = start; nstart < end; nstart = nend) {
1083 * We want to fault in pages for [nstart; end) address range.
1084 * Find first corresponding VMA.
1086 if (!locked) {
1087 locked = 1;
1088 down_read(&mm->mmap_sem);
1089 vma = find_vma(mm, nstart);
1090 } else if (nstart >= vma->vm_end)
1091 vma = vma->vm_next;
1092 if (!vma || vma->vm_start >= end)
1093 break;
1095 * Set [nstart; nend) to intersection of desired address
1096 * range with the first VMA. Also, skip undesirable VMA types.
1098 nend = min(end, vma->vm_end);
1099 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1100 continue;
1101 if (nstart < vma->vm_start)
1102 nstart = vma->vm_start;
1104 * Now fault in a range of pages. populate_vma_page_range()
1105 * double checks the vma flags, so that it won't mlock pages
1106 * if the vma was already munlocked.
1108 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1109 if (ret < 0) {
1110 if (ignore_errors) {
1111 ret = 0;
1112 continue; /* continue at next VMA */
1114 break;
1116 nend = nstart + ret * PAGE_SIZE;
1117 ret = 0;
1119 if (locked)
1120 up_read(&mm->mmap_sem);
1121 return ret; /* 0 or negative error code */
1125 * get_dump_page() - pin user page in memory while writing it to core dump
1126 * @addr: user address
1128 * Returns struct page pointer of user page pinned for dump,
1129 * to be freed afterwards by put_page().
1131 * Returns NULL on any kind of failure - a hole must then be inserted into
1132 * the corefile, to preserve alignment with its headers; and also returns
1133 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1134 * allowing a hole to be left in the corefile to save diskspace.
1136 * Called without mmap_sem, but after all other threads have been killed.
1138 #ifdef CONFIG_ELF_CORE
1139 struct page *get_dump_page(unsigned long addr)
1141 struct vm_area_struct *vma;
1142 struct page *page;
1144 if (__get_user_pages(current, current->mm, addr, 1,
1145 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1146 NULL) < 1)
1147 return NULL;
1148 flush_cache_page(vma, addr, page_to_pfn(page));
1149 return page;
1151 #endif /* CONFIG_ELF_CORE */
1154 * Generic RCU Fast GUP
1156 * get_user_pages_fast attempts to pin user pages by walking the page
1157 * tables directly and avoids taking locks. Thus the walker needs to be
1158 * protected from page table pages being freed from under it, and should
1159 * block any THP splits.
1161 * One way to achieve this is to have the walker disable interrupts, and
1162 * rely on IPIs from the TLB flushing code blocking before the page table
1163 * pages are freed. This is unsuitable for architectures that do not need
1164 * to broadcast an IPI when invalidating TLBs.
1166 * Another way to achieve this is to batch up page table containing pages
1167 * belonging to more than one mm_user, then rcu_sched a callback to free those
1168 * pages. Disabling interrupts will allow the fast_gup walker to both block
1169 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1170 * (which is a relatively rare event). The code below adopts this strategy.
1172 * Before activating this code, please be aware that the following assumptions
1173 * are currently made:
1175 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1176 * pages containing page tables.
1178 * *) ptes can be read atomically by the architecture.
1180 * *) access_ok is sufficient to validate userspace address ranges.
1182 * The last two assumptions can be relaxed by the addition of helper functions.
1184 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1186 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1188 #ifndef gup_get_pte
1190 * We assume that the PTE can be read atomically. If this is not the case for
1191 * your architecture, please provide the helper.
1193 static inline pte_t gup_get_pte(pte_t *ptep)
1195 return READ_ONCE(*ptep);
1197 #endif
1199 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1201 while ((*nr) - nr_start) {
1202 struct page *page = pages[--(*nr)];
1204 ClearPageReferenced(page);
1205 put_page(page);
1209 #ifdef __HAVE_ARCH_PTE_SPECIAL
1210 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1211 int write, struct page **pages, int *nr)
1213 struct dev_pagemap *pgmap = NULL;
1214 int nr_start = *nr, ret = 0;
1215 pte_t *ptep, *ptem;
1217 ptem = ptep = pte_offset_map(&pmd, addr);
1218 do {
1219 pte_t pte = gup_get_pte(ptep);
1220 struct page *head, *page;
1223 * Similar to the PMD case below, NUMA hinting must take slow
1224 * path using the pte_protnone check.
1226 if (pte_protnone(pte))
1227 goto pte_unmap;
1229 if (!pte_access_permitted(pte, write))
1230 goto pte_unmap;
1232 if (pte_devmap(pte)) {
1233 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1234 if (unlikely(!pgmap)) {
1235 undo_dev_pagemap(nr, nr_start, pages);
1236 goto pte_unmap;
1238 } else if (pte_special(pte))
1239 goto pte_unmap;
1241 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1242 page = pte_page(pte);
1243 head = compound_head(page);
1245 if (!page_cache_get_speculative(head))
1246 goto pte_unmap;
1248 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1249 put_page(head);
1250 goto pte_unmap;
1253 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1255 put_dev_pagemap(pgmap);
1256 SetPageReferenced(page);
1257 pages[*nr] = page;
1258 (*nr)++;
1260 } while (ptep++, addr += PAGE_SIZE, addr != end);
1262 ret = 1;
1264 pte_unmap:
1265 pte_unmap(ptem);
1266 return ret;
1268 #else
1271 * If we can't determine whether or not a pte is special, then fail immediately
1272 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1273 * to be special.
1275 * For a futex to be placed on a THP tail page, get_futex_key requires a
1276 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1277 * useful to have gup_huge_pmd even if we can't operate on ptes.
1279 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1280 int write, struct page **pages, int *nr)
1282 return 0;
1284 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1286 #ifdef __HAVE_ARCH_PTE_DEVMAP
1287 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1288 unsigned long end, struct page **pages, int *nr)
1290 int nr_start = *nr;
1291 struct dev_pagemap *pgmap = NULL;
1293 do {
1294 struct page *page = pfn_to_page(pfn);
1296 pgmap = get_dev_pagemap(pfn, pgmap);
1297 if (unlikely(!pgmap)) {
1298 undo_dev_pagemap(nr, nr_start, pages);
1299 return 0;
1301 SetPageReferenced(page);
1302 pages[*nr] = page;
1303 get_page(page);
1304 put_dev_pagemap(pgmap);
1305 (*nr)++;
1306 pfn++;
1307 } while (addr += PAGE_SIZE, addr != end);
1308 return 1;
1311 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1312 unsigned long end, struct page **pages, int *nr)
1314 unsigned long fault_pfn;
1316 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1317 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1320 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1321 unsigned long end, struct page **pages, int *nr)
1323 unsigned long fault_pfn;
1325 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1326 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1328 #else
1329 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1330 unsigned long end, struct page **pages, int *nr)
1332 BUILD_BUG();
1333 return 0;
1336 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1337 unsigned long end, struct page **pages, int *nr)
1339 BUILD_BUG();
1340 return 0;
1342 #endif
1344 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1345 unsigned long end, int write, struct page **pages, int *nr)
1347 struct page *head, *page;
1348 int refs;
1350 if (!pmd_access_permitted(orig, write))
1351 return 0;
1353 if (pmd_devmap(orig))
1354 return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1356 refs = 0;
1357 head = pmd_page(orig);
1358 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1359 do {
1360 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1361 pages[*nr] = page;
1362 (*nr)++;
1363 page++;
1364 refs++;
1365 } while (addr += PAGE_SIZE, addr != end);
1367 if (!page_cache_add_speculative(head, refs)) {
1368 *nr -= refs;
1369 return 0;
1372 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1373 *nr -= refs;
1374 while (refs--)
1375 put_page(head);
1376 return 0;
1379 SetPageReferenced(head);
1380 return 1;
1383 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1384 unsigned long end, int write, struct page **pages, int *nr)
1386 struct page *head, *page;
1387 int refs;
1389 if (!pud_access_permitted(orig, write))
1390 return 0;
1392 if (pud_devmap(orig))
1393 return __gup_device_huge_pud(orig, addr, end, pages, nr);
1395 refs = 0;
1396 head = pud_page(orig);
1397 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1398 do {
1399 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1400 pages[*nr] = page;
1401 (*nr)++;
1402 page++;
1403 refs++;
1404 } while (addr += PAGE_SIZE, addr != end);
1406 if (!page_cache_add_speculative(head, refs)) {
1407 *nr -= refs;
1408 return 0;
1411 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1412 *nr -= refs;
1413 while (refs--)
1414 put_page(head);
1415 return 0;
1418 SetPageReferenced(head);
1419 return 1;
1422 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1423 unsigned long end, int write,
1424 struct page **pages, int *nr)
1426 int refs;
1427 struct page *head, *page;
1429 if (!pgd_access_permitted(orig, write))
1430 return 0;
1432 BUILD_BUG_ON(pgd_devmap(orig));
1433 refs = 0;
1434 head = pgd_page(orig);
1435 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1436 do {
1437 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1438 pages[*nr] = page;
1439 (*nr)++;
1440 page++;
1441 refs++;
1442 } while (addr += PAGE_SIZE, addr != end);
1444 if (!page_cache_add_speculative(head, refs)) {
1445 *nr -= refs;
1446 return 0;
1449 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1450 *nr -= refs;
1451 while (refs--)
1452 put_page(head);
1453 return 0;
1456 SetPageReferenced(head);
1457 return 1;
1460 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1461 int write, struct page **pages, int *nr)
1463 unsigned long next;
1464 pmd_t *pmdp;
1466 pmdp = pmd_offset(&pud, addr);
1467 do {
1468 pmd_t pmd = READ_ONCE(*pmdp);
1470 next = pmd_addr_end(addr, end);
1471 if (pmd_none(pmd))
1472 return 0;
1474 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1476 * NUMA hinting faults need to be handled in the GUP
1477 * slowpath for accounting purposes and so that they
1478 * can be serialised against THP migration.
1480 if (pmd_protnone(pmd))
1481 return 0;
1483 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1484 pages, nr))
1485 return 0;
1487 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1489 * architecture have different format for hugetlbfs
1490 * pmd format and THP pmd format
1492 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1493 PMD_SHIFT, next, write, pages, nr))
1494 return 0;
1495 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1496 return 0;
1497 } while (pmdp++, addr = next, addr != end);
1499 return 1;
1502 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1503 int write, struct page **pages, int *nr)
1505 unsigned long next;
1506 pud_t *pudp;
1508 pudp = pud_offset(&p4d, addr);
1509 do {
1510 pud_t pud = READ_ONCE(*pudp);
1512 next = pud_addr_end(addr, end);
1513 if (pud_none(pud))
1514 return 0;
1515 if (unlikely(pud_huge(pud))) {
1516 if (!gup_huge_pud(pud, pudp, addr, next, write,
1517 pages, nr))
1518 return 0;
1519 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1520 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1521 PUD_SHIFT, next, write, pages, nr))
1522 return 0;
1523 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1524 return 0;
1525 } while (pudp++, addr = next, addr != end);
1527 return 1;
1530 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1531 int write, struct page **pages, int *nr)
1533 unsigned long next;
1534 p4d_t *p4dp;
1536 p4dp = p4d_offset(&pgd, addr);
1537 do {
1538 p4d_t p4d = READ_ONCE(*p4dp);
1540 next = p4d_addr_end(addr, end);
1541 if (p4d_none(p4d))
1542 return 0;
1543 BUILD_BUG_ON(p4d_huge(p4d));
1544 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1545 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1546 P4D_SHIFT, next, write, pages, nr))
1547 return 0;
1548 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1549 return 0;
1550 } while (p4dp++, addr = next, addr != end);
1552 return 1;
1556 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1557 * the regular GUP. It will only return non-negative values.
1559 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1560 struct page **pages)
1562 struct mm_struct *mm = current->mm;
1563 unsigned long addr, len, end;
1564 unsigned long next, flags;
1565 pgd_t *pgdp;
1566 int nr = 0;
1568 start &= PAGE_MASK;
1569 addr = start;
1570 len = (unsigned long) nr_pages << PAGE_SHIFT;
1571 end = start + len;
1573 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1574 (void __user *)start, len)))
1575 return 0;
1578 * Disable interrupts. We use the nested form as we can already have
1579 * interrupts disabled by get_futex_key.
1581 * With interrupts disabled, we block page table pages from being
1582 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1583 * for more details.
1585 * We do not adopt an rcu_read_lock(.) here as we also want to
1586 * block IPIs that come from THPs splitting.
1589 local_irq_save(flags);
1590 pgdp = pgd_offset(mm, addr);
1591 do {
1592 pgd_t pgd = READ_ONCE(*pgdp);
1594 next = pgd_addr_end(addr, end);
1595 if (pgd_none(pgd))
1596 break;
1597 if (unlikely(pgd_huge(pgd))) {
1598 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1599 pages, &nr))
1600 break;
1601 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1602 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1603 PGDIR_SHIFT, next, write, pages, &nr))
1604 break;
1605 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
1606 break;
1607 } while (pgdp++, addr = next, addr != end);
1608 local_irq_restore(flags);
1610 return nr;
1613 #ifndef gup_fast_permitted
1615 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1616 * we need to fall back to the slow version:
1618 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1620 unsigned long len, end;
1622 len = (unsigned long) nr_pages << PAGE_SHIFT;
1623 end = start + len;
1624 return end >= start;
1626 #endif
1629 * get_user_pages_fast() - pin user pages in memory
1630 * @start: starting user address
1631 * @nr_pages: number of pages from start to pin
1632 * @write: whether pages will be written to
1633 * @pages: array that receives pointers to the pages pinned.
1634 * Should be at least nr_pages long.
1636 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1637 * If not successful, it will fall back to taking the lock and
1638 * calling get_user_pages().
1640 * Returns number of pages pinned. This may be fewer than the number
1641 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1642 * were pinned, returns -errno.
1644 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1645 struct page **pages)
1647 int nr = 0, ret = 0;
1649 start &= PAGE_MASK;
1651 if (gup_fast_permitted(start, nr_pages, write)) {
1652 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1653 ret = nr;
1656 if (nr < nr_pages) {
1657 /* Try to get the remaining pages with get_user_pages */
1658 start += nr << PAGE_SHIFT;
1659 pages += nr;
1661 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1662 write ? FOLL_WRITE : 0);
1664 /* Have to be a bit careful with return values */
1665 if (nr > 0) {
1666 if (ret < 0)
1667 ret = nr;
1668 else
1669 ret += nr;
1673 return ret;
1676 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */