Linux 4.14.97
[linux-stable.git] / kernel / time / posix-cpu-timers.c
blob6e8c230ca877938f548fda072bb98e72c88d8b0d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
18 #include "posix-timers.h"
20 static void posix_cpu_timer_rearm(struct k_itimer *timer);
23 * Called after updating RLIMIT_CPU to run cpu timer and update
24 * tsk->signal->cputime_expires expiration cache if necessary. Needs
25 * siglock protection since other code may update expiration cache as
26 * well.
28 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
30 u64 nsecs = rlim_new * NSEC_PER_SEC;
32 spin_lock_irq(&task->sighand->siglock);
33 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
34 spin_unlock_irq(&task->sighand->siglock);
37 static int check_clock(const clockid_t which_clock)
39 int error = 0;
40 struct task_struct *p;
41 const pid_t pid = CPUCLOCK_PID(which_clock);
43 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
44 return -EINVAL;
46 if (pid == 0)
47 return 0;
49 rcu_read_lock();
50 p = find_task_by_vpid(pid);
51 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
52 same_thread_group(p, current) : has_group_leader_pid(p))) {
53 error = -EINVAL;
55 rcu_read_unlock();
57 return error;
61 * Update expiry time from increment, and increase overrun count,
62 * given the current clock sample.
64 static void bump_cpu_timer(struct k_itimer *timer, u64 now)
66 int i;
67 u64 delta, incr;
69 if (timer->it.cpu.incr == 0)
70 return;
72 if (now < timer->it.cpu.expires)
73 return;
75 incr = timer->it.cpu.incr;
76 delta = now + incr - timer->it.cpu.expires;
78 /* Don't use (incr*2 < delta), incr*2 might overflow. */
79 for (i = 0; incr < delta - incr; i++)
80 incr = incr << 1;
82 for (; i >= 0; incr >>= 1, i--) {
83 if (delta < incr)
84 continue;
86 timer->it.cpu.expires += incr;
87 timer->it_overrun += 1LL << i;
88 delta -= incr;
92 /**
93 * task_cputime_zero - Check a task_cputime struct for all zero fields.
95 * @cputime: The struct to compare.
97 * Checks @cputime to see if all fields are zero. Returns true if all fields
98 * are zero, false if any field is nonzero.
100 static inline int task_cputime_zero(const struct task_cputime *cputime)
102 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
103 return 1;
104 return 0;
107 static inline u64 prof_ticks(struct task_struct *p)
109 u64 utime, stime;
111 task_cputime(p, &utime, &stime);
113 return utime + stime;
115 static inline u64 virt_ticks(struct task_struct *p)
117 u64 utime, stime;
119 task_cputime(p, &utime, &stime);
121 return utime;
124 static int
125 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
127 int error = check_clock(which_clock);
128 if (!error) {
129 tp->tv_sec = 0;
130 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
131 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
133 * If sched_clock is using a cycle counter, we
134 * don't have any idea of its true resolution
135 * exported, but it is much more than 1s/HZ.
137 tp->tv_nsec = 1;
140 return error;
143 static int
144 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
147 * You can never reset a CPU clock, but we check for other errors
148 * in the call before failing with EPERM.
150 int error = check_clock(which_clock);
151 if (error == 0) {
152 error = -EPERM;
154 return error;
159 * Sample a per-thread clock for the given task.
161 static int cpu_clock_sample(const clockid_t which_clock,
162 struct task_struct *p, u64 *sample)
164 switch (CPUCLOCK_WHICH(which_clock)) {
165 default:
166 return -EINVAL;
167 case CPUCLOCK_PROF:
168 *sample = prof_ticks(p);
169 break;
170 case CPUCLOCK_VIRT:
171 *sample = virt_ticks(p);
172 break;
173 case CPUCLOCK_SCHED:
174 *sample = task_sched_runtime(p);
175 break;
177 return 0;
181 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
182 * to avoid race conditions with concurrent updates to cputime.
184 static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
186 u64 curr_cputime;
187 retry:
188 curr_cputime = atomic64_read(cputime);
189 if (sum_cputime > curr_cputime) {
190 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
191 goto retry;
195 static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
197 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
198 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
199 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
202 /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
203 static inline void sample_cputime_atomic(struct task_cputime *times,
204 struct task_cputime_atomic *atomic_times)
206 times->utime = atomic64_read(&atomic_times->utime);
207 times->stime = atomic64_read(&atomic_times->stime);
208 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
216 /* Check if cputimer isn't running. This is accessed without locking. */
217 if (!READ_ONCE(cputimer->running)) {
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start it.
223 thread_group_cputime(tsk, &sum);
224 update_gt_cputime(&cputimer->cputime_atomic, &sum);
227 * We're setting cputimer->running without a lock. Ensure
228 * this only gets written to in one operation. We set
229 * running after update_gt_cputime() as a small optimization,
230 * but barriers are not required because update_gt_cputime()
231 * can handle concurrent updates.
233 WRITE_ONCE(cputimer->running, true);
235 sample_cputime_atomic(times, &cputimer->cputime_atomic);
239 * Sample a process (thread group) clock for the given group_leader task.
240 * Must be called with task sighand lock held for safe while_each_thread()
241 * traversal.
243 static int cpu_clock_sample_group(const clockid_t which_clock,
244 struct task_struct *p,
245 u64 *sample)
247 struct task_cputime cputime;
249 switch (CPUCLOCK_WHICH(which_clock)) {
250 default:
251 return -EINVAL;
252 case CPUCLOCK_PROF:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime.utime + cputime.stime;
255 break;
256 case CPUCLOCK_VIRT:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.utime;
259 break;
260 case CPUCLOCK_SCHED:
261 thread_group_cputime(p, &cputime);
262 *sample = cputime.sum_exec_runtime;
263 break;
265 return 0;
268 static int posix_cpu_clock_get_task(struct task_struct *tsk,
269 const clockid_t which_clock,
270 struct timespec64 *tp)
272 int err = -EINVAL;
273 u64 rtn;
275 if (CPUCLOCK_PERTHREAD(which_clock)) {
276 if (same_thread_group(tsk, current))
277 err = cpu_clock_sample(which_clock, tsk, &rtn);
278 } else {
279 if (tsk == current || thread_group_leader(tsk))
280 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
283 if (!err)
284 *tp = ns_to_timespec64(rtn);
286 return err;
290 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
292 const pid_t pid = CPUCLOCK_PID(which_clock);
293 int err = -EINVAL;
295 if (pid == 0) {
297 * Special case constant value for our own clocks.
298 * We don't have to do any lookup to find ourselves.
300 err = posix_cpu_clock_get_task(current, which_clock, tp);
301 } else {
303 * Find the given PID, and validate that the caller
304 * should be able to see it.
306 struct task_struct *p;
307 rcu_read_lock();
308 p = find_task_by_vpid(pid);
309 if (p)
310 err = posix_cpu_clock_get_task(p, which_clock, tp);
311 rcu_read_unlock();
314 return err;
318 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
319 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
320 * new timer already all-zeros initialized.
322 static int posix_cpu_timer_create(struct k_itimer *new_timer)
324 int ret = 0;
325 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
326 struct task_struct *p;
328 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
329 return -EINVAL;
331 new_timer->kclock = &clock_posix_cpu;
333 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
335 rcu_read_lock();
336 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
337 if (pid == 0) {
338 p = current;
339 } else {
340 p = find_task_by_vpid(pid);
341 if (p && !same_thread_group(p, current))
342 p = NULL;
344 } else {
345 if (pid == 0) {
346 p = current->group_leader;
347 } else {
348 p = find_task_by_vpid(pid);
349 if (p && !has_group_leader_pid(p))
350 p = NULL;
353 new_timer->it.cpu.task = p;
354 if (p) {
355 get_task_struct(p);
356 } else {
357 ret = -EINVAL;
359 rcu_read_unlock();
361 return ret;
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
370 static int posix_cpu_timer_del(struct k_itimer *timer)
372 int ret = 0;
373 unsigned long flags;
374 struct sighand_struct *sighand;
375 struct task_struct *p = timer->it.cpu.task;
377 WARN_ON_ONCE(p == NULL);
380 * Protect against sighand release/switch in exit/exec and process/
381 * thread timer list entry concurrent read/writes.
383 sighand = lock_task_sighand(p, &flags);
384 if (unlikely(sighand == NULL)) {
386 * We raced with the reaping of the task.
387 * The deletion should have cleared us off the list.
389 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
390 } else {
391 if (timer->it.cpu.firing)
392 ret = TIMER_RETRY;
393 else
394 list_del(&timer->it.cpu.entry);
396 unlock_task_sighand(p, &flags);
399 if (!ret)
400 put_task_struct(p);
402 return ret;
405 static void cleanup_timers_list(struct list_head *head)
407 struct cpu_timer_list *timer, *next;
409 list_for_each_entry_safe(timer, next, head, entry)
410 list_del_init(&timer->entry);
414 * Clean out CPU timers still ticking when a thread exited. The task
415 * pointer is cleared, and the expiry time is replaced with the residual
416 * time for later timer_gettime calls to return.
417 * This must be called with the siglock held.
419 static void cleanup_timers(struct list_head *head)
421 cleanup_timers_list(head);
422 cleanup_timers_list(++head);
423 cleanup_timers_list(++head);
427 * These are both called with the siglock held, when the current thread
428 * is being reaped. When the final (leader) thread in the group is reaped,
429 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
431 void posix_cpu_timers_exit(struct task_struct *tsk)
433 cleanup_timers(tsk->cpu_timers);
435 void posix_cpu_timers_exit_group(struct task_struct *tsk)
437 cleanup_timers(tsk->signal->cpu_timers);
440 static inline int expires_gt(u64 expires, u64 new_exp)
442 return expires == 0 || expires > new_exp;
446 * Insert the timer on the appropriate list before any timers that
447 * expire later. This must be called with the sighand lock held.
449 static void arm_timer(struct k_itimer *timer)
451 struct task_struct *p = timer->it.cpu.task;
452 struct list_head *head, *listpos;
453 struct task_cputime *cputime_expires;
454 struct cpu_timer_list *const nt = &timer->it.cpu;
455 struct cpu_timer_list *next;
457 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
458 head = p->cpu_timers;
459 cputime_expires = &p->cputime_expires;
460 } else {
461 head = p->signal->cpu_timers;
462 cputime_expires = &p->signal->cputime_expires;
464 head += CPUCLOCK_WHICH(timer->it_clock);
466 listpos = head;
467 list_for_each_entry(next, head, entry) {
468 if (nt->expires < next->expires)
469 break;
470 listpos = &next->entry;
472 list_add(&nt->entry, listpos);
474 if (listpos == head) {
475 u64 exp = nt->expires;
478 * We are the new earliest-expiring POSIX 1.b timer, hence
479 * need to update expiration cache. Take into account that
480 * for process timers we share expiration cache with itimers
481 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
484 switch (CPUCLOCK_WHICH(timer->it_clock)) {
485 case CPUCLOCK_PROF:
486 if (expires_gt(cputime_expires->prof_exp, exp))
487 cputime_expires->prof_exp = exp;
488 break;
489 case CPUCLOCK_VIRT:
490 if (expires_gt(cputime_expires->virt_exp, exp))
491 cputime_expires->virt_exp = exp;
492 break;
493 case CPUCLOCK_SCHED:
494 if (expires_gt(cputime_expires->sched_exp, exp))
495 cputime_expires->sched_exp = exp;
496 break;
498 if (CPUCLOCK_PERTHREAD(timer->it_clock))
499 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
500 else
501 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
506 * The timer is locked, fire it and arrange for its reload.
508 static void cpu_timer_fire(struct k_itimer *timer)
510 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
512 * User don't want any signal.
514 timer->it.cpu.expires = 0;
515 } else if (unlikely(timer->sigq == NULL)) {
517 * This a special case for clock_nanosleep,
518 * not a normal timer from sys_timer_create.
520 wake_up_process(timer->it_process);
521 timer->it.cpu.expires = 0;
522 } else if (timer->it.cpu.incr == 0) {
524 * One-shot timer. Clear it as soon as it's fired.
526 posix_timer_event(timer, 0);
527 timer->it.cpu.expires = 0;
528 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
530 * The signal did not get queued because the signal
531 * was ignored, so we won't get any callback to
532 * reload the timer. But we need to keep it
533 * ticking in case the signal is deliverable next time.
535 posix_cpu_timer_rearm(timer);
536 ++timer->it_requeue_pending;
541 * Sample a process (thread group) timer for the given group_leader task.
542 * Must be called with task sighand lock held for safe while_each_thread()
543 * traversal.
545 static int cpu_timer_sample_group(const clockid_t which_clock,
546 struct task_struct *p, u64 *sample)
548 struct task_cputime cputime;
550 thread_group_cputimer(p, &cputime);
551 switch (CPUCLOCK_WHICH(which_clock)) {
552 default:
553 return -EINVAL;
554 case CPUCLOCK_PROF:
555 *sample = cputime.utime + cputime.stime;
556 break;
557 case CPUCLOCK_VIRT:
558 *sample = cputime.utime;
559 break;
560 case CPUCLOCK_SCHED:
561 *sample = cputime.sum_exec_runtime;
562 break;
564 return 0;
568 * Guts of sys_timer_settime for CPU timers.
569 * This is called with the timer locked and interrupts disabled.
570 * If we return TIMER_RETRY, it's necessary to release the timer's lock
571 * and try again. (This happens when the timer is in the middle of firing.)
573 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
574 struct itimerspec64 *new, struct itimerspec64 *old)
576 unsigned long flags;
577 struct sighand_struct *sighand;
578 struct task_struct *p = timer->it.cpu.task;
579 u64 old_expires, new_expires, old_incr, val;
580 int ret;
582 WARN_ON_ONCE(p == NULL);
585 * Use the to_ktime conversion because that clamps the maximum
586 * value to KTIME_MAX and avoid multiplication overflows.
588 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
591 * Protect against sighand release/switch in exit/exec and p->cpu_timers
592 * and p->signal->cpu_timers read/write in arm_timer()
594 sighand = lock_task_sighand(p, &flags);
596 * If p has just been reaped, we can no
597 * longer get any information about it at all.
599 if (unlikely(sighand == NULL)) {
600 return -ESRCH;
604 * Disarm any old timer after extracting its expiry time.
606 WARN_ON_ONCE(!irqs_disabled());
608 ret = 0;
609 old_incr = timer->it.cpu.incr;
610 old_expires = timer->it.cpu.expires;
611 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY;
614 } else
615 list_del_init(&timer->it.cpu.entry);
618 * We need to sample the current value to convert the new
619 * value from to relative and absolute, and to convert the
620 * old value from absolute to relative. To set a process
621 * timer, we need a sample to balance the thread expiry
622 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample.
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626 cpu_clock_sample(timer->it_clock, p, &val);
627 } else {
628 cpu_timer_sample_group(timer->it_clock, p, &val);
631 if (old) {
632 if (old_expires == 0) {
633 old->it_value.tv_sec = 0;
634 old->it_value.tv_nsec = 0;
635 } else {
637 * Update the timer in case it has
638 * overrun already. If it has,
639 * we'll report it as having overrun
640 * and with the next reloaded timer
641 * already ticking, though we are
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
646 bump_cpu_timer(timer, val);
647 if (val < timer->it.cpu.expires) {
648 old_expires = timer->it.cpu.expires - val;
649 old->it_value = ns_to_timespec64(old_expires);
650 } else {
651 old->it_value.tv_nsec = 1;
652 old->it_value.tv_sec = 0;
657 if (unlikely(ret)) {
659 * We are colliding with the timer actually firing.
660 * Punt after filling in the timer's old value, and
661 * disable this firing since we are already reporting
662 * it as an overrun (thanks to bump_cpu_timer above).
664 unlock_task_sighand(p, &flags);
665 goto out;
668 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669 new_expires += val;
673 * Install the new expiry time (or zero).
674 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime).
677 timer->it.cpu.expires = new_expires;
678 if (new_expires != 0 && val < new_expires) {
679 arm_timer(timer);
682 unlock_task_sighand(p, &flags);
684 * Install the new reload setting, and
685 * set up the signal and overrun bookkeeping.
687 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688 timer->it_interval = ns_to_ktime(timer->it.cpu.incr);
691 * This acts as a modification timestamp for the timer,
692 * so any automatic reload attempt will punt on seeing
693 * that we have reset the timer manually.
695 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
696 ~REQUEUE_PENDING;
697 timer->it_overrun_last = 0;
698 timer->it_overrun = -1;
700 if (new_expires != 0 && !(val < new_expires)) {
702 * The designated time already passed, so we notify
703 * immediately, even if the thread never runs to
704 * accumulate more time on this clock.
706 cpu_timer_fire(timer);
709 ret = 0;
710 out:
711 if (old)
712 old->it_interval = ns_to_timespec64(old_incr);
714 return ret;
717 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
719 u64 now;
720 struct task_struct *p = timer->it.cpu.task;
722 WARN_ON_ONCE(p == NULL);
725 * Easy part: convert the reload time.
727 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
729 if (!timer->it.cpu.expires)
730 return;
733 * Sample the clock to take the difference with the expiry time.
735 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
736 cpu_clock_sample(timer->it_clock, p, &now);
737 } else {
738 struct sighand_struct *sighand;
739 unsigned long flags;
742 * Protect against sighand release/switch in exit/exec and
743 * also make timer sampling safe if it ends up calling
744 * thread_group_cputime().
746 sighand = lock_task_sighand(p, &flags);
747 if (unlikely(sighand == NULL)) {
749 * The process has been reaped.
750 * We can't even collect a sample any more.
751 * Call the timer disarmed, nothing else to do.
753 timer->it.cpu.expires = 0;
754 return;
755 } else {
756 cpu_timer_sample_group(timer->it_clock, p, &now);
757 unlock_task_sighand(p, &flags);
761 if (now < timer->it.cpu.expires) {
762 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
763 } else {
765 * The timer should have expired already, but the firing
766 * hasn't taken place yet. Say it's just about to expire.
768 itp->it_value.tv_nsec = 1;
769 itp->it_value.tv_sec = 0;
773 static unsigned long long
774 check_timers_list(struct list_head *timers,
775 struct list_head *firing,
776 unsigned long long curr)
778 int maxfire = 20;
780 while (!list_empty(timers)) {
781 struct cpu_timer_list *t;
783 t = list_first_entry(timers, struct cpu_timer_list, entry);
785 if (!--maxfire || curr < t->expires)
786 return t->expires;
788 t->firing = 1;
789 list_move_tail(&t->entry, firing);
792 return 0;
796 * Check for any per-thread CPU timers that have fired and move them off
797 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
798 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
800 static void check_thread_timers(struct task_struct *tsk,
801 struct list_head *firing)
803 struct list_head *timers = tsk->cpu_timers;
804 struct task_cputime *tsk_expires = &tsk->cputime_expires;
805 u64 expires;
806 unsigned long soft;
809 * If cputime_expires is zero, then there are no active
810 * per thread CPU timers.
812 if (task_cputime_zero(&tsk->cputime_expires))
813 return;
815 expires = check_timers_list(timers, firing, prof_ticks(tsk));
816 tsk_expires->prof_exp = expires;
818 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
819 tsk_expires->virt_exp = expires;
821 tsk_expires->sched_exp = check_timers_list(++timers, firing,
822 tsk->se.sum_exec_runtime);
825 * Check for the special case thread timers.
827 soft = task_rlimit(tsk, RLIMIT_RTTIME);
828 if (soft != RLIM_INFINITY) {
829 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
831 if (hard != RLIM_INFINITY &&
832 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
834 * At the hard limit, we just die.
835 * No need to calculate anything else now.
837 if (print_fatal_signals) {
838 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
839 tsk->comm, task_pid_nr(tsk));
841 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
842 return;
844 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
846 * At the soft limit, send a SIGXCPU every second.
848 if (soft < hard) {
849 soft += USEC_PER_SEC;
850 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
851 soft;
853 if (print_fatal_signals) {
854 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
855 tsk->comm, task_pid_nr(tsk));
857 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
860 if (task_cputime_zero(tsk_expires))
861 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
864 static inline void stop_process_timers(struct signal_struct *sig)
866 struct thread_group_cputimer *cputimer = &sig->cputimer;
868 /* Turn off cputimer->running. This is done without locking. */
869 WRITE_ONCE(cputimer->running, false);
870 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
873 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
874 u64 *expires, u64 cur_time, int signo)
876 if (!it->expires)
877 return;
879 if (cur_time >= it->expires) {
880 if (it->incr)
881 it->expires += it->incr;
882 else
883 it->expires = 0;
885 trace_itimer_expire(signo == SIGPROF ?
886 ITIMER_PROF : ITIMER_VIRTUAL,
887 tsk->signal->leader_pid, cur_time);
888 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
891 if (it->expires && (!*expires || it->expires < *expires))
892 *expires = it->expires;
896 * Check for any per-thread CPU timers that have fired and move them
897 * off the tsk->*_timers list onto the firing list. Per-thread timers
898 * have already been taken off.
900 static void check_process_timers(struct task_struct *tsk,
901 struct list_head *firing)
903 struct signal_struct *const sig = tsk->signal;
904 u64 utime, ptime, virt_expires, prof_expires;
905 u64 sum_sched_runtime, sched_expires;
906 struct list_head *timers = sig->cpu_timers;
907 struct task_cputime cputime;
908 unsigned long soft;
911 * If cputimer is not running, then there are no active
912 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
914 if (!READ_ONCE(tsk->signal->cputimer.running))
915 return;
918 * Signify that a thread is checking for process timers.
919 * Write access to this field is protected by the sighand lock.
921 sig->cputimer.checking_timer = true;
924 * Collect the current process totals.
926 thread_group_cputimer(tsk, &cputime);
927 utime = cputime.utime;
928 ptime = utime + cputime.stime;
929 sum_sched_runtime = cputime.sum_exec_runtime;
931 prof_expires = check_timers_list(timers, firing, ptime);
932 virt_expires = check_timers_list(++timers, firing, utime);
933 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
936 * Check for the special case process timers.
938 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
939 SIGPROF);
940 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
941 SIGVTALRM);
942 soft = task_rlimit(tsk, RLIMIT_CPU);
943 if (soft != RLIM_INFINITY) {
944 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
945 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
946 u64 x;
947 if (psecs >= hard) {
949 * At the hard limit, we just die.
950 * No need to calculate anything else now.
952 if (print_fatal_signals) {
953 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
954 tsk->comm, task_pid_nr(tsk));
956 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
957 return;
959 if (psecs >= soft) {
961 * At the soft limit, send a SIGXCPU every second.
963 if (print_fatal_signals) {
964 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
965 tsk->comm, task_pid_nr(tsk));
967 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
968 if (soft < hard) {
969 soft++;
970 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
973 x = soft * NSEC_PER_SEC;
974 if (!prof_expires || x < prof_expires)
975 prof_expires = x;
978 sig->cputime_expires.prof_exp = prof_expires;
979 sig->cputime_expires.virt_exp = virt_expires;
980 sig->cputime_expires.sched_exp = sched_expires;
981 if (task_cputime_zero(&sig->cputime_expires))
982 stop_process_timers(sig);
984 sig->cputimer.checking_timer = false;
988 * This is called from the signal code (via posixtimer_rearm)
989 * when the last timer signal was delivered and we have to reload the timer.
991 static void posix_cpu_timer_rearm(struct k_itimer *timer)
993 struct sighand_struct *sighand;
994 unsigned long flags;
995 struct task_struct *p = timer->it.cpu.task;
996 u64 now;
998 WARN_ON_ONCE(p == NULL);
1001 * Fetch the current sample and update the timer's expiry time.
1003 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004 cpu_clock_sample(timer->it_clock, p, &now);
1005 bump_cpu_timer(timer, now);
1006 if (unlikely(p->exit_state))
1007 return;
1009 /* Protect timer list r/w in arm_timer() */
1010 sighand = lock_task_sighand(p, &flags);
1011 if (!sighand)
1012 return;
1013 } else {
1015 * Protect arm_timer() and timer sampling in case of call to
1016 * thread_group_cputime().
1018 sighand = lock_task_sighand(p, &flags);
1019 if (unlikely(sighand == NULL)) {
1021 * The process has been reaped.
1022 * We can't even collect a sample any more.
1024 timer->it.cpu.expires = 0;
1025 return;
1026 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027 /* If the process is dying, no need to rearm */
1028 goto unlock;
1030 cpu_timer_sample_group(timer->it_clock, p, &now);
1031 bump_cpu_timer(timer, now);
1032 /* Leave the sighand locked for the call below. */
1036 * Now re-arm for the new expiry time.
1038 WARN_ON_ONCE(!irqs_disabled());
1039 arm_timer(timer);
1040 unlock:
1041 unlock_task_sighand(p, &flags);
1045 * task_cputime_expired - Compare two task_cputime entities.
1047 * @sample: The task_cputime structure to be checked for expiration.
1048 * @expires: Expiration times, against which @sample will be checked.
1050 * Checks @sample against @expires to see if any field of @sample has expired.
1051 * Returns true if any field of the former is greater than the corresponding
1052 * field of the latter if the latter field is set. Otherwise returns false.
1054 static inline int task_cputime_expired(const struct task_cputime *sample,
1055 const struct task_cputime *expires)
1057 if (expires->utime && sample->utime >= expires->utime)
1058 return 1;
1059 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060 return 1;
1061 if (expires->sum_exec_runtime != 0 &&
1062 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063 return 1;
1064 return 0;
1068 * fastpath_timer_check - POSIX CPU timers fast path.
1070 * @tsk: The task (thread) being checked.
1072 * Check the task and thread group timers. If both are zero (there are no
1073 * timers set) return false. Otherwise snapshot the task and thread group
1074 * timers and compare them with the corresponding expiration times. Return
1075 * true if a timer has expired, else return false.
1077 static inline int fastpath_timer_check(struct task_struct *tsk)
1079 struct signal_struct *sig;
1081 if (!task_cputime_zero(&tsk->cputime_expires)) {
1082 struct task_cputime task_sample;
1084 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087 return 1;
1090 sig = tsk->signal;
1092 * Check if thread group timers expired when the cputimer is
1093 * running and no other thread in the group is already checking
1094 * for thread group cputimers. These fields are read without the
1095 * sighand lock. However, this is fine because this is meant to
1096 * be a fastpath heuristic to determine whether we should try to
1097 * acquire the sighand lock to check/handle timers.
1099 * In the worst case scenario, if 'running' or 'checking_timer' gets
1100 * set but the current thread doesn't see the change yet, we'll wait
1101 * until the next thread in the group gets a scheduler interrupt to
1102 * handle the timer. This isn't an issue in practice because these
1103 * types of delays with signals actually getting sent are expected.
1105 if (READ_ONCE(sig->cputimer.running) &&
1106 !READ_ONCE(sig->cputimer.checking_timer)) {
1107 struct task_cputime group_sample;
1109 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1111 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112 return 1;
1115 return 0;
1119 * This is called from the timer interrupt handler. The irq handler has
1120 * already updated our counts. We need to check if any timers fire now.
1121 * Interrupts are disabled.
1123 void run_posix_cpu_timers(struct task_struct *tsk)
1125 LIST_HEAD(firing);
1126 struct k_itimer *timer, *next;
1127 unsigned long flags;
1129 WARN_ON_ONCE(!irqs_disabled());
1132 * The fast path checks that there are no expired thread or thread
1133 * group timers. If that's so, just return.
1135 if (!fastpath_timer_check(tsk))
1136 return;
1138 if (!lock_task_sighand(tsk, &flags))
1139 return;
1141 * Here we take off tsk->signal->cpu_timers[N] and
1142 * tsk->cpu_timers[N] all the timers that are firing, and
1143 * put them on the firing list.
1145 check_thread_timers(tsk, &firing);
1147 check_process_timers(tsk, &firing);
1150 * We must release these locks before taking any timer's lock.
1151 * There is a potential race with timer deletion here, as the
1152 * siglock now protects our private firing list. We have set
1153 * the firing flag in each timer, so that a deletion attempt
1154 * that gets the timer lock before we do will give it up and
1155 * spin until we've taken care of that timer below.
1157 unlock_task_sighand(tsk, &flags);
1160 * Now that all the timers on our list have the firing flag,
1161 * no one will touch their list entries but us. We'll take
1162 * each timer's lock before clearing its firing flag, so no
1163 * timer call will interfere.
1165 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166 int cpu_firing;
1168 spin_lock(&timer->it_lock);
1169 list_del_init(&timer->it.cpu.entry);
1170 cpu_firing = timer->it.cpu.firing;
1171 timer->it.cpu.firing = 0;
1173 * The firing flag is -1 if we collided with a reset
1174 * of the timer, which already reported this
1175 * almost-firing as an overrun. So don't generate an event.
1177 if (likely(cpu_firing >= 0))
1178 cpu_timer_fire(timer);
1179 spin_unlock(&timer->it_lock);
1184 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185 * The tsk->sighand->siglock must be held by the caller.
1187 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188 u64 *newval, u64 *oldval)
1190 u64 now;
1192 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193 cpu_timer_sample_group(clock_idx, tsk, &now);
1195 if (oldval) {
1197 * We are setting itimer. The *oldval is absolute and we update
1198 * it to be relative, *newval argument is relative and we update
1199 * it to be absolute.
1201 if (*oldval) {
1202 if (*oldval <= now) {
1203 /* Just about to fire. */
1204 *oldval = TICK_NSEC;
1205 } else {
1206 *oldval -= now;
1210 if (!*newval)
1211 return;
1212 *newval += now;
1216 * Update expiration cache if we are the earliest timer, or eventually
1217 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1219 switch (clock_idx) {
1220 case CPUCLOCK_PROF:
1221 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222 tsk->signal->cputime_expires.prof_exp = *newval;
1223 break;
1224 case CPUCLOCK_VIRT:
1225 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226 tsk->signal->cputime_expires.virt_exp = *newval;
1227 break;
1230 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1233 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234 const struct timespec64 *rqtp)
1236 struct itimerspec64 it;
1237 struct k_itimer timer;
1238 u64 expires;
1239 int error;
1242 * Set up a temporary timer and then wait for it to go off.
1244 memset(&timer, 0, sizeof timer);
1245 spin_lock_init(&timer.it_lock);
1246 timer.it_clock = which_clock;
1247 timer.it_overrun = -1;
1248 error = posix_cpu_timer_create(&timer);
1249 timer.it_process = current;
1250 if (!error) {
1251 static struct itimerspec64 zero_it;
1252 struct restart_block *restart;
1254 memset(&it, 0, sizeof(it));
1255 it.it_value = *rqtp;
1257 spin_lock_irq(&timer.it_lock);
1258 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259 if (error) {
1260 spin_unlock_irq(&timer.it_lock);
1261 return error;
1264 while (!signal_pending(current)) {
1265 if (timer.it.cpu.expires == 0) {
1267 * Our timer fired and was reset, below
1268 * deletion can not fail.
1270 posix_cpu_timer_del(&timer);
1271 spin_unlock_irq(&timer.it_lock);
1272 return 0;
1276 * Block until cpu_timer_fire (or a signal) wakes us.
1278 __set_current_state(TASK_INTERRUPTIBLE);
1279 spin_unlock_irq(&timer.it_lock);
1280 schedule();
1281 spin_lock_irq(&timer.it_lock);
1285 * We were interrupted by a signal.
1287 expires = timer.it.cpu.expires;
1288 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289 if (!error) {
1291 * Timer is now unarmed, deletion can not fail.
1293 posix_cpu_timer_del(&timer);
1295 spin_unlock_irq(&timer.it_lock);
1297 while (error == TIMER_RETRY) {
1299 * We need to handle case when timer was or is in the
1300 * middle of firing. In other cases we already freed
1301 * resources.
1303 spin_lock_irq(&timer.it_lock);
1304 error = posix_cpu_timer_del(&timer);
1305 spin_unlock_irq(&timer.it_lock);
1308 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1310 * It actually did fire already.
1312 return 0;
1315 error = -ERESTART_RESTARTBLOCK;
1317 * Report back to the user the time still remaining.
1319 restart = &current->restart_block;
1320 restart->nanosleep.expires = expires;
1321 if (restart->nanosleep.type != TT_NONE)
1322 error = nanosleep_copyout(restart, &it.it_value);
1325 return error;
1328 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1330 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331 const struct timespec64 *rqtp)
1333 struct restart_block *restart_block = &current->restart_block;
1334 int error;
1337 * Diagnose required errors first.
1339 if (CPUCLOCK_PERTHREAD(which_clock) &&
1340 (CPUCLOCK_PID(which_clock) == 0 ||
1341 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342 return -EINVAL;
1344 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1346 if (error == -ERESTART_RESTARTBLOCK) {
1348 if (flags & TIMER_ABSTIME)
1349 return -ERESTARTNOHAND;
1351 restart_block->fn = posix_cpu_nsleep_restart;
1352 restart_block->nanosleep.clockid = which_clock;
1354 return error;
1357 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1359 clockid_t which_clock = restart_block->nanosleep.clockid;
1360 struct timespec64 t;
1362 t = ns_to_timespec64(restart_block->nanosleep.expires);
1364 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1367 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1370 static int process_cpu_clock_getres(const clockid_t which_clock,
1371 struct timespec64 *tp)
1373 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1375 static int process_cpu_clock_get(const clockid_t which_clock,
1376 struct timespec64 *tp)
1378 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1380 static int process_cpu_timer_create(struct k_itimer *timer)
1382 timer->it_clock = PROCESS_CLOCK;
1383 return posix_cpu_timer_create(timer);
1385 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386 const struct timespec64 *rqtp)
1388 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1390 static int thread_cpu_clock_getres(const clockid_t which_clock,
1391 struct timespec64 *tp)
1393 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1395 static int thread_cpu_clock_get(const clockid_t which_clock,
1396 struct timespec64 *tp)
1398 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1400 static int thread_cpu_timer_create(struct k_itimer *timer)
1402 timer->it_clock = THREAD_CLOCK;
1403 return posix_cpu_timer_create(timer);
1406 const struct k_clock clock_posix_cpu = {
1407 .clock_getres = posix_cpu_clock_getres,
1408 .clock_set = posix_cpu_clock_set,
1409 .clock_get = posix_cpu_clock_get,
1410 .timer_create = posix_cpu_timer_create,
1411 .nsleep = posix_cpu_nsleep,
1412 .timer_set = posix_cpu_timer_set,
1413 .timer_del = posix_cpu_timer_del,
1414 .timer_get = posix_cpu_timer_get,
1415 .timer_rearm = posix_cpu_timer_rearm,
1418 const struct k_clock clock_process = {
1419 .clock_getres = process_cpu_clock_getres,
1420 .clock_get = process_cpu_clock_get,
1421 .timer_create = process_cpu_timer_create,
1422 .nsleep = process_cpu_nsleep,
1425 const struct k_clock clock_thread = {
1426 .clock_getres = thread_cpu_clock_getres,
1427 .clock_get = thread_cpu_clock_get,
1428 .timer_create = thread_cpu_timer_create,