2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
33 #include "xfs_attr_sf.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
54 kmem_zone_t
*xfs_inode_zone
;
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
60 #define XFS_ITRUNC_MAX_EXTENTS 2
62 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
63 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
64 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
67 * helper function to extract extent size hint from inode
73 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
74 return ip
->i_d
.di_extsize
;
75 if (XFS_IS_REALTIME_INODE(ip
))
76 return ip
->i_mount
->m_sb
.sb_rextsize
;
81 * Helper function to extract CoW extent size hint from inode.
82 * Between the extent size hint and the CoW extent size hint, we
83 * return the greater of the two. If the value is zero (automatic),
84 * use the default size.
87 xfs_get_cowextsz_hint(
93 if (ip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
94 a
= ip
->i_d
.di_cowextsize
;
95 b
= xfs_get_extsz_hint(ip
);
99 return XFS_DEFAULT_COWEXTSZ_HINT
;
104 * These two are wrapper routines around the xfs_ilock() routine used to
105 * centralize some grungy code. They are used in places that wish to lock the
106 * inode solely for reading the extents. The reason these places can't just
107 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
108 * bringing in of the extents from disk for a file in b-tree format. If the
109 * inode is in b-tree format, then we need to lock the inode exclusively until
110 * the extents are read in. Locking it exclusively all the time would limit
111 * our parallelism unnecessarily, though. What we do instead is check to see
112 * if the extents have been read in yet, and only lock the inode exclusively
115 * The functions return a value which should be given to the corresponding
116 * xfs_iunlock() call.
119 xfs_ilock_data_map_shared(
120 struct xfs_inode
*ip
)
122 uint lock_mode
= XFS_ILOCK_SHARED
;
124 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
125 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
126 lock_mode
= XFS_ILOCK_EXCL
;
127 xfs_ilock(ip
, lock_mode
);
132 xfs_ilock_attr_map_shared(
133 struct xfs_inode
*ip
)
135 uint lock_mode
= XFS_ILOCK_SHARED
;
137 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
138 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
139 lock_mode
= XFS_ILOCK_EXCL
;
140 xfs_ilock(ip
, lock_mode
);
145 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
146 * the i_lock. This routine allows various combinations of the locks to be
149 * The 3 locks should always be ordered so that the IO lock is obtained first,
150 * the mmap lock second and the ilock last in order to prevent deadlock.
152 * Basic locking order:
154 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
156 * mmap_sem locking order:
158 * i_iolock -> page lock -> mmap_sem
159 * mmap_sem -> i_mmap_lock -> page_lock
161 * The difference in mmap_sem locking order mean that we cannot hold the
162 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
163 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
164 * in get_user_pages() to map the user pages into the kernel address space for
165 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
166 * page faults already hold the mmap_sem.
168 * Hence to serialise fully against both syscall and mmap based IO, we need to
169 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
170 * taken in places where we need to invalidate the page cache in a race
171 * free manner (e.g. truncate, hole punch and other extent manipulation
179 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
182 * You can't set both SHARED and EXCL for the same lock,
183 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
184 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
186 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
187 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
188 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
189 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
190 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
191 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
192 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
194 if (lock_flags
& XFS_IOLOCK_EXCL
)
195 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
196 else if (lock_flags
& XFS_IOLOCK_SHARED
)
197 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
199 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
200 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
201 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
202 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
204 if (lock_flags
& XFS_ILOCK_EXCL
)
205 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
206 else if (lock_flags
& XFS_ILOCK_SHARED
)
207 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
211 * This is just like xfs_ilock(), except that the caller
212 * is guaranteed not to sleep. It returns 1 if it gets
213 * the requested locks and 0 otherwise. If the IO lock is
214 * obtained but the inode lock cannot be, then the IO lock
215 * is dropped before returning.
217 * ip -- the inode being locked
218 * lock_flags -- this parameter indicates the inode's locks to be
219 * to be locked. See the comment for xfs_ilock() for a list
227 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
230 * You can't set both SHARED and EXCL for the same lock,
231 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
232 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
234 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
235 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
236 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
237 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
238 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
239 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
240 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
242 if (lock_flags
& XFS_IOLOCK_EXCL
) {
243 if (!mrtryupdate(&ip
->i_iolock
))
245 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
246 if (!mrtryaccess(&ip
->i_iolock
))
250 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
251 if (!mrtryupdate(&ip
->i_mmaplock
))
252 goto out_undo_iolock
;
253 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
254 if (!mrtryaccess(&ip
->i_mmaplock
))
255 goto out_undo_iolock
;
258 if (lock_flags
& XFS_ILOCK_EXCL
) {
259 if (!mrtryupdate(&ip
->i_lock
))
260 goto out_undo_mmaplock
;
261 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
262 if (!mrtryaccess(&ip
->i_lock
))
263 goto out_undo_mmaplock
;
268 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
269 mrunlock_excl(&ip
->i_mmaplock
);
270 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
271 mrunlock_shared(&ip
->i_mmaplock
);
273 if (lock_flags
& XFS_IOLOCK_EXCL
)
274 mrunlock_excl(&ip
->i_iolock
);
275 else if (lock_flags
& XFS_IOLOCK_SHARED
)
276 mrunlock_shared(&ip
->i_iolock
);
282 * xfs_iunlock() is used to drop the inode locks acquired with
283 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
284 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
285 * that we know which locks to drop.
287 * ip -- the inode being unlocked
288 * lock_flags -- this parameter indicates the inode's locks to be
289 * to be unlocked. See the comment for xfs_ilock() for a list
290 * of valid values for this parameter.
299 * You can't set both SHARED and EXCL for the same lock,
300 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
301 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
303 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
304 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
305 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
306 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
307 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
308 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
309 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
310 ASSERT(lock_flags
!= 0);
312 if (lock_flags
& XFS_IOLOCK_EXCL
)
313 mrunlock_excl(&ip
->i_iolock
);
314 else if (lock_flags
& XFS_IOLOCK_SHARED
)
315 mrunlock_shared(&ip
->i_iolock
);
317 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
318 mrunlock_excl(&ip
->i_mmaplock
);
319 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
320 mrunlock_shared(&ip
->i_mmaplock
);
322 if (lock_flags
& XFS_ILOCK_EXCL
)
323 mrunlock_excl(&ip
->i_lock
);
324 else if (lock_flags
& XFS_ILOCK_SHARED
)
325 mrunlock_shared(&ip
->i_lock
);
327 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
331 * give up write locks. the i/o lock cannot be held nested
332 * if it is being demoted.
339 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
341 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
343 if (lock_flags
& XFS_ILOCK_EXCL
)
344 mrdemote(&ip
->i_lock
);
345 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
346 mrdemote(&ip
->i_mmaplock
);
347 if (lock_flags
& XFS_IOLOCK_EXCL
)
348 mrdemote(&ip
->i_iolock
);
350 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
353 #if defined(DEBUG) || defined(XFS_WARN)
359 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
360 if (!(lock_flags
& XFS_ILOCK_SHARED
))
361 return !!ip
->i_lock
.mr_writer
;
362 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
365 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
366 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
367 return !!ip
->i_mmaplock
.mr_writer
;
368 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
371 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
372 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
373 return !!ip
->i_iolock
.mr_writer
;
374 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
384 int xfs_small_retries
;
385 int xfs_middle_retries
;
386 int xfs_lots_retries
;
391 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
392 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
393 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
394 * errors and warnings.
396 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
398 xfs_lockdep_subclass_ok(
401 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
404 #define xfs_lockdep_subclass_ok(subclass) (true)
408 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
409 * value. This can be called for any type of inode lock combination, including
410 * parent locking. Care must be taken to ensure we don't overrun the subclass
411 * storage fields in the class mask we build.
414 xfs_lock_inumorder(int lock_mode
, int subclass
)
418 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
420 ASSERT(xfs_lockdep_subclass_ok(subclass
));
422 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
423 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
424 ASSERT(xfs_lockdep_subclass_ok(subclass
+
425 XFS_IOLOCK_PARENT_VAL
));
426 class += subclass
<< XFS_IOLOCK_SHIFT
;
427 if (lock_mode
& XFS_IOLOCK_PARENT
)
428 class += XFS_IOLOCK_PARENT_VAL
<< XFS_IOLOCK_SHIFT
;
431 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
432 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
433 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
436 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
437 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
438 class += subclass
<< XFS_ILOCK_SHIFT
;
441 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
445 * The following routine will lock n inodes in exclusive mode. We assume the
446 * caller calls us with the inodes in i_ino order.
448 * We need to detect deadlock where an inode that we lock is in the AIL and we
449 * start waiting for another inode that is locked by a thread in a long running
450 * transaction (such as truncate). This can result in deadlock since the long
451 * running trans might need to wait for the inode we just locked in order to
452 * push the tail and free space in the log.
454 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
455 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
456 * lock more than one at a time, lockdep will report false positives saying we
457 * have violated locking orders.
465 int attempts
= 0, i
, j
, try_lock
;
469 * Currently supports between 2 and 5 inodes with exclusive locking. We
470 * support an arbitrary depth of locking here, but absolute limits on
471 * inodes depend on the the type of locking and the limits placed by
472 * lockdep annotations in xfs_lock_inumorder. These are all checked by
475 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
476 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
478 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
480 ASSERT(!(lock_mode
& XFS_IOLOCK_EXCL
) ||
481 inodes
<= XFS_IOLOCK_MAX_SUBCLASS
+ 1);
482 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
483 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
484 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
485 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
487 if (lock_mode
& XFS_IOLOCK_EXCL
) {
488 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
489 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
490 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
495 for (; i
< inodes
; i
++) {
498 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
502 * If try_lock is not set yet, make sure all locked inodes are
503 * not in the AIL. If any are, set try_lock to be used later.
506 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
507 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
508 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
514 * If any of the previous locks we have locked is in the AIL,
515 * we must TRY to get the second and subsequent locks. If
516 * we can't get any, we must release all we have
520 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
524 /* try_lock means we have an inode locked that is in the AIL. */
526 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
530 * Unlock all previous guys and try again. xfs_iunlock will try
531 * to push the tail if the inode is in the AIL.
534 for (j
= i
- 1; j
>= 0; j
--) {
536 * Check to see if we've already unlocked this one. Not
537 * the first one going back, and the inode ptr is the
540 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
543 xfs_iunlock(ips
[j
], lock_mode
);
546 if ((attempts
% 5) == 0) {
547 delay(1); /* Don't just spin the CPU */
559 if (attempts
< 5) xfs_small_retries
++;
560 else if (attempts
< 100) xfs_middle_retries
++;
561 else xfs_lots_retries
++;
569 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
570 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
571 * lock more than one at a time, lockdep will report false positives saying we
572 * have violated locking orders.
584 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
585 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)));
586 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
587 } else if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
))
588 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
590 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
592 if (ip0
->i_ino
> ip1
->i_ino
) {
599 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
602 * If the first lock we have locked is in the AIL, we must TRY to get
603 * the second lock. If we can't get it, we must release the first one
606 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
607 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
608 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
609 xfs_iunlock(ip0
, lock_mode
);
610 if ((++attempts
% 5) == 0)
611 delay(1); /* Don't just spin the CPU */
615 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
622 struct xfs_inode
*ip
)
624 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
625 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
628 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
629 if (xfs_isiflocked(ip
))
631 } while (!xfs_iflock_nowait(ip
));
633 finish_wait(wq
, &wait
.wait
);
644 if (di_flags
& XFS_DIFLAG_ANY
) {
645 if (di_flags
& XFS_DIFLAG_REALTIME
)
646 flags
|= FS_XFLAG_REALTIME
;
647 if (di_flags
& XFS_DIFLAG_PREALLOC
)
648 flags
|= FS_XFLAG_PREALLOC
;
649 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
650 flags
|= FS_XFLAG_IMMUTABLE
;
651 if (di_flags
& XFS_DIFLAG_APPEND
)
652 flags
|= FS_XFLAG_APPEND
;
653 if (di_flags
& XFS_DIFLAG_SYNC
)
654 flags
|= FS_XFLAG_SYNC
;
655 if (di_flags
& XFS_DIFLAG_NOATIME
)
656 flags
|= FS_XFLAG_NOATIME
;
657 if (di_flags
& XFS_DIFLAG_NODUMP
)
658 flags
|= FS_XFLAG_NODUMP
;
659 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
660 flags
|= FS_XFLAG_RTINHERIT
;
661 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
662 flags
|= FS_XFLAG_PROJINHERIT
;
663 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
664 flags
|= FS_XFLAG_NOSYMLINKS
;
665 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
666 flags
|= FS_XFLAG_EXTSIZE
;
667 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
668 flags
|= FS_XFLAG_EXTSZINHERIT
;
669 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
670 flags
|= FS_XFLAG_NODEFRAG
;
671 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
672 flags
|= FS_XFLAG_FILESTREAM
;
675 if (di_flags2
& XFS_DIFLAG2_ANY
) {
676 if (di_flags2
& XFS_DIFLAG2_DAX
)
677 flags
|= FS_XFLAG_DAX
;
678 if (di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
679 flags
|= FS_XFLAG_COWEXTSIZE
;
683 flags
|= FS_XFLAG_HASATTR
;
690 struct xfs_inode
*ip
)
692 struct xfs_icdinode
*dic
= &ip
->i_d
;
694 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
698 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
699 * is allowed, otherwise it has to be an exact match. If a CI match is found,
700 * ci_name->name will point to a the actual name (caller must free) or
701 * will be set to NULL if an exact match is found.
706 struct xfs_name
*name
,
708 struct xfs_name
*ci_name
)
713 trace_xfs_lookup(dp
, name
);
715 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
718 xfs_ilock(dp
, XFS_IOLOCK_SHARED
);
719 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
723 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
727 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
732 kmem_free(ci_name
->name
);
734 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
740 * Allocate an inode on disk and return a copy of its in-core version.
741 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
742 * appropriately within the inode. The uid and gid for the inode are
743 * set according to the contents of the given cred structure.
745 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
746 * has a free inode available, call xfs_iget() to obtain the in-core
747 * version of the allocated inode. Finally, fill in the inode and
748 * log its initial contents. In this case, ialloc_context would be
751 * If xfs_dialloc() does not have an available inode, it will replenish
752 * its supply by doing an allocation. Since we can only do one
753 * allocation within a transaction without deadlocks, we must commit
754 * the current transaction before returning the inode itself.
755 * In this case, therefore, we will set ialloc_context and return.
756 * The caller should then commit the current transaction, start a new
757 * transaction, and call xfs_ialloc() again to actually get the inode.
759 * To ensure that some other process does not grab the inode that
760 * was allocated during the first call to xfs_ialloc(), this routine
761 * also returns the [locked] bp pointing to the head of the freelist
762 * as ialloc_context. The caller should hold this buffer across
763 * the commit and pass it back into this routine on the second call.
765 * If we are allocating quota inodes, we do not have a parent inode
766 * to attach to or associate with (i.e. pip == NULL) because they
767 * are not linked into the directory structure - they are attached
768 * directly to the superblock - and so have no parent.
779 xfs_buf_t
**ialloc_context
,
782 struct xfs_mount
*mp
= tp
->t_mountp
;
791 * Call the space management code to pick
792 * the on-disk inode to be allocated.
794 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
795 ialloc_context
, &ino
);
798 if (*ialloc_context
|| ino
== NULLFSINO
) {
802 ASSERT(*ialloc_context
== NULL
);
805 * Get the in-core inode with the lock held exclusively.
806 * This is because we're setting fields here we need
807 * to prevent others from looking at until we're done.
809 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
810 XFS_ILOCK_EXCL
, &ip
);
817 * We always convert v1 inodes to v2 now - we only support filesystems
818 * with >= v2 inode capability, so there is no reason for ever leaving
819 * an inode in v1 format.
821 if (ip
->i_d
.di_version
== 1)
822 ip
->i_d
.di_version
= 2;
824 inode
->i_mode
= mode
;
825 set_nlink(inode
, nlink
);
826 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
827 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
828 xfs_set_projid(ip
, prid
);
830 if (pip
&& XFS_INHERIT_GID(pip
)) {
831 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
832 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
833 inode
->i_mode
|= S_ISGID
;
837 * If the group ID of the new file does not match the effective group
838 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
839 * (and only if the irix_sgid_inherit compatibility variable is set).
841 if ((irix_sgid_inherit
) &&
842 (inode
->i_mode
& S_ISGID
) &&
843 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
844 inode
->i_mode
&= ~S_ISGID
;
847 ip
->i_d
.di_nextents
= 0;
848 ASSERT(ip
->i_d
.di_nblocks
== 0);
850 tv
= current_time(inode
);
855 ip
->i_d
.di_extsize
= 0;
856 ip
->i_d
.di_dmevmask
= 0;
857 ip
->i_d
.di_dmstate
= 0;
858 ip
->i_d
.di_flags
= 0;
860 if (ip
->i_d
.di_version
== 3) {
861 inode
->i_version
= 1;
862 ip
->i_d
.di_flags2
= 0;
863 ip
->i_d
.di_cowextsize
= 0;
864 ip
->i_d
.di_crtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
865 ip
->i_d
.di_crtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
869 flags
= XFS_ILOG_CORE
;
870 switch (mode
& S_IFMT
) {
875 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
876 ip
->i_df
.if_u2
.if_rdev
= rdev
;
877 ip
->i_df
.if_flags
= 0;
878 flags
|= XFS_ILOG_DEV
;
882 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
883 uint64_t di_flags2
= 0;
887 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
888 di_flags
|= XFS_DIFLAG_RTINHERIT
;
889 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
890 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
891 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
893 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
894 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
895 } else if (S_ISREG(mode
)) {
896 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
897 di_flags
|= XFS_DIFLAG_REALTIME
;
898 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
899 di_flags
|= XFS_DIFLAG_EXTSIZE
;
900 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
903 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
905 di_flags
|= XFS_DIFLAG_NOATIME
;
906 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
908 di_flags
|= XFS_DIFLAG_NODUMP
;
909 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
911 di_flags
|= XFS_DIFLAG_SYNC
;
912 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
913 xfs_inherit_nosymlinks
)
914 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
915 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
916 xfs_inherit_nodefrag
)
917 di_flags
|= XFS_DIFLAG_NODEFRAG
;
918 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
919 di_flags
|= XFS_DIFLAG_FILESTREAM
;
920 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
921 di_flags2
|= XFS_DIFLAG2_DAX
;
923 ip
->i_d
.di_flags
|= di_flags
;
924 ip
->i_d
.di_flags2
|= di_flags2
;
927 (pip
->i_d
.di_flags2
& XFS_DIFLAG2_ANY
) &&
928 pip
->i_d
.di_version
== 3 &&
929 ip
->i_d
.di_version
== 3) {
930 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
) {
931 ip
->i_d
.di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
932 ip
->i_d
.di_cowextsize
= pip
->i_d
.di_cowextsize
;
937 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
938 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
939 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
940 ip
->i_df
.if_u1
.if_extents
= NULL
;
946 * Attribute fork settings for new inode.
948 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
949 ip
->i_d
.di_anextents
= 0;
952 * Log the new values stuffed into the inode.
954 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
955 xfs_trans_log_inode(tp
, ip
, flags
);
957 /* now that we have an i_mode we can setup the inode structure */
965 * Allocates a new inode from disk and return a pointer to the
966 * incore copy. This routine will internally commit the current
967 * transaction and allocate a new one if the Space Manager needed
968 * to do an allocation to replenish the inode free-list.
970 * This routine is designed to be called from xfs_create and
976 xfs_trans_t
**tpp
, /* input: current transaction;
977 output: may be a new transaction. */
978 xfs_inode_t
*dp
, /* directory within whose allocate
983 prid_t prid
, /* project id */
984 int okalloc
, /* ok to allocate new space */
985 xfs_inode_t
**ipp
, /* pointer to inode; it will be
992 xfs_buf_t
*ialloc_context
= NULL
;
998 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1001 * xfs_ialloc will return a pointer to an incore inode if
1002 * the Space Manager has an available inode on the free
1003 * list. Otherwise, it will do an allocation and replenish
1004 * the freelist. Since we can only do one allocation per
1005 * transaction without deadlocks, we will need to commit the
1006 * current transaction and start a new one. We will then
1007 * need to call xfs_ialloc again to get the inode.
1009 * If xfs_ialloc did an allocation to replenish the freelist,
1010 * it returns the bp containing the head of the freelist as
1011 * ialloc_context. We will hold a lock on it across the
1012 * transaction commit so that no other process can steal
1013 * the inode(s) that we've just allocated.
1015 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
1016 &ialloc_context
, &ip
);
1019 * Return an error if we were unable to allocate a new inode.
1020 * This should only happen if we run out of space on disk or
1021 * encounter a disk error.
1027 if (!ialloc_context
&& !ip
) {
1033 * If the AGI buffer is non-NULL, then we were unable to get an
1034 * inode in one operation. We need to commit the current
1035 * transaction and call xfs_ialloc() again. It is guaranteed
1036 * to succeed the second time.
1038 if (ialloc_context
) {
1040 * Normally, xfs_trans_commit releases all the locks.
1041 * We call bhold to hang on to the ialloc_context across
1042 * the commit. Holding this buffer prevents any other
1043 * processes from doing any allocations in this
1046 xfs_trans_bhold(tp
, ialloc_context
);
1049 * We want the quota changes to be associated with the next
1050 * transaction, NOT this one. So, detach the dqinfo from this
1051 * and attach it to the next transaction.
1056 dqinfo
= (void *)tp
->t_dqinfo
;
1057 tp
->t_dqinfo
= NULL
;
1058 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1059 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1062 code
= xfs_trans_roll(&tp
, NULL
);
1063 if (committed
!= NULL
)
1067 * Re-attach the quota info that we detached from prev trx.
1070 tp
->t_dqinfo
= dqinfo
;
1071 tp
->t_flags
|= tflags
;
1075 xfs_buf_relse(ialloc_context
);
1080 xfs_trans_bjoin(tp
, ialloc_context
);
1083 * Call ialloc again. Since we've locked out all
1084 * other allocations in this allocation group,
1085 * this call should always succeed.
1087 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1088 okalloc
, &ialloc_context
, &ip
);
1091 * If we get an error at this point, return to the caller
1092 * so that the current transaction can be aborted.
1099 ASSERT(!ialloc_context
&& ip
);
1102 if (committed
!= NULL
)
1113 * Decrement the link count on an inode & log the change. If this causes the
1114 * link count to go to zero, move the inode to AGI unlinked list so that it can
1115 * be freed when the last active reference goes away via xfs_inactive().
1117 static int /* error */
1122 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1124 drop_nlink(VFS_I(ip
));
1125 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1127 if (VFS_I(ip
)->i_nlink
)
1130 return xfs_iunlink(tp
, ip
);
1134 * Increment the link count on an inode & log the change.
1141 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1143 ASSERT(ip
->i_d
.di_version
> 1);
1144 inc_nlink(VFS_I(ip
));
1145 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1152 struct xfs_name
*name
,
1157 int is_dir
= S_ISDIR(mode
);
1158 struct xfs_mount
*mp
= dp
->i_mount
;
1159 struct xfs_inode
*ip
= NULL
;
1160 struct xfs_trans
*tp
= NULL
;
1162 struct xfs_defer_ops dfops
;
1163 xfs_fsblock_t first_block
;
1164 bool unlock_dp_on_error
= false;
1166 struct xfs_dquot
*udqp
= NULL
;
1167 struct xfs_dquot
*gdqp
= NULL
;
1168 struct xfs_dquot
*pdqp
= NULL
;
1169 struct xfs_trans_res
*tres
;
1172 trace_xfs_create(dp
, name
);
1174 if (XFS_FORCED_SHUTDOWN(mp
))
1177 prid
= xfs_get_initial_prid(dp
);
1180 * Make sure that we have allocated dquot(s) on disk.
1182 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1183 xfs_kgid_to_gid(current_fsgid()), prid
,
1184 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1185 &udqp
, &gdqp
, &pdqp
);
1191 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1192 tres
= &M_RES(mp
)->tr_mkdir
;
1194 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1195 tres
= &M_RES(mp
)->tr_create
;
1199 * Initially assume that the file does not exist and
1200 * reserve the resources for that case. If that is not
1201 * the case we'll drop the one we have and get a more
1202 * appropriate transaction later.
1204 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1205 if (error
== -ENOSPC
) {
1206 /* flush outstanding delalloc blocks and retry */
1207 xfs_flush_inodes(mp
);
1208 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1210 if (error
== -ENOSPC
) {
1211 /* No space at all so try a "no-allocation" reservation */
1213 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1216 goto out_release_inode
;
1218 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
|
1219 XFS_IOLOCK_PARENT
| XFS_ILOCK_PARENT
);
1220 unlock_dp_on_error
= true;
1222 xfs_defer_init(&dfops
, &first_block
);
1225 * Reserve disk quota and the inode.
1227 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1228 pdqp
, resblks
, 1, 0);
1230 goto out_trans_cancel
;
1233 error
= xfs_dir_canenter(tp
, dp
, name
);
1235 goto out_trans_cancel
;
1239 * A newly created regular or special file just has one directory
1240 * entry pointing to them, but a directory also the "." entry
1241 * pointing to itself.
1243 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1244 prid
, resblks
> 0, &ip
, NULL
);
1246 goto out_trans_cancel
;
1249 * Now we join the directory inode to the transaction. We do not do it
1250 * earlier because xfs_dir_ialloc might commit the previous transaction
1251 * (and release all the locks). An error from here on will result in
1252 * the transaction cancel unlocking dp so don't do it explicitly in the
1255 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1256 unlock_dp_on_error
= false;
1258 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1259 &first_block
, &dfops
, resblks
?
1260 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1262 ASSERT(error
!= -ENOSPC
);
1263 goto out_trans_cancel
;
1265 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1266 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1269 error
= xfs_dir_init(tp
, ip
, dp
);
1271 goto out_bmap_cancel
;
1273 error
= xfs_bumplink(tp
, dp
);
1275 goto out_bmap_cancel
;
1279 * If this is a synchronous mount, make sure that the
1280 * create transaction goes to disk before returning to
1283 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1284 xfs_trans_set_sync(tp
);
1287 * Attach the dquot(s) to the inodes and modify them incore.
1288 * These ids of the inode couldn't have changed since the new
1289 * inode has been locked ever since it was created.
1291 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1293 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1295 goto out_bmap_cancel
;
1297 error
= xfs_trans_commit(tp
);
1299 goto out_release_inode
;
1301 xfs_qm_dqrele(udqp
);
1302 xfs_qm_dqrele(gdqp
);
1303 xfs_qm_dqrele(pdqp
);
1309 xfs_defer_cancel(&dfops
);
1311 xfs_trans_cancel(tp
);
1314 * Wait until after the current transaction is aborted to finish the
1315 * setup of the inode and release the inode. This prevents recursive
1316 * transactions and deadlocks from xfs_inactive.
1319 xfs_finish_inode_setup(ip
);
1323 xfs_qm_dqrele(udqp
);
1324 xfs_qm_dqrele(gdqp
);
1325 xfs_qm_dqrele(pdqp
);
1327 if (unlock_dp_on_error
)
1328 xfs_iunlock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1334 struct xfs_inode
*dp
,
1335 struct dentry
*dentry
,
1337 struct xfs_inode
**ipp
)
1339 struct xfs_mount
*mp
= dp
->i_mount
;
1340 struct xfs_inode
*ip
= NULL
;
1341 struct xfs_trans
*tp
= NULL
;
1344 struct xfs_dquot
*udqp
= NULL
;
1345 struct xfs_dquot
*gdqp
= NULL
;
1346 struct xfs_dquot
*pdqp
= NULL
;
1347 struct xfs_trans_res
*tres
;
1350 if (XFS_FORCED_SHUTDOWN(mp
))
1353 prid
= xfs_get_initial_prid(dp
);
1356 * Make sure that we have allocated dquot(s) on disk.
1358 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1359 xfs_kgid_to_gid(current_fsgid()), prid
,
1360 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1361 &udqp
, &gdqp
, &pdqp
);
1365 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1366 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1368 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1369 if (error
== -ENOSPC
) {
1370 /* No space at all so try a "no-allocation" reservation */
1372 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1375 goto out_release_inode
;
1377 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1378 pdqp
, resblks
, 1, 0);
1380 goto out_trans_cancel
;
1382 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1383 prid
, resblks
> 0, &ip
, NULL
);
1385 goto out_trans_cancel
;
1387 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1388 xfs_trans_set_sync(tp
);
1391 * Attach the dquot(s) to the inodes and modify them incore.
1392 * These ids of the inode couldn't have changed since the new
1393 * inode has been locked ever since it was created.
1395 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1397 error
= xfs_iunlink(tp
, ip
);
1399 goto out_trans_cancel
;
1401 error
= xfs_trans_commit(tp
);
1403 goto out_release_inode
;
1405 xfs_qm_dqrele(udqp
);
1406 xfs_qm_dqrele(gdqp
);
1407 xfs_qm_dqrele(pdqp
);
1413 xfs_trans_cancel(tp
);
1416 * Wait until after the current transaction is aborted to finish the
1417 * setup of the inode and release the inode. This prevents recursive
1418 * transactions and deadlocks from xfs_inactive.
1421 xfs_finish_inode_setup(ip
);
1425 xfs_qm_dqrele(udqp
);
1426 xfs_qm_dqrele(gdqp
);
1427 xfs_qm_dqrele(pdqp
);
1436 struct xfs_name
*target_name
)
1438 xfs_mount_t
*mp
= tdp
->i_mount
;
1441 struct xfs_defer_ops dfops
;
1442 xfs_fsblock_t first_block
;
1445 trace_xfs_link(tdp
, target_name
);
1447 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1449 if (XFS_FORCED_SHUTDOWN(mp
))
1452 error
= xfs_qm_dqattach(sip
, 0);
1456 error
= xfs_qm_dqattach(tdp
, 0);
1460 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1461 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1462 if (error
== -ENOSPC
) {
1464 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1469 xfs_ilock(tdp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
1470 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1472 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1473 xfs_trans_ijoin(tp
, tdp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1476 * If we are using project inheritance, we only allow hard link
1477 * creation in our tree when the project IDs are the same; else
1478 * the tree quota mechanism could be circumvented.
1480 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1481 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1487 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1492 xfs_defer_init(&dfops
, &first_block
);
1495 * Handle initial link state of O_TMPFILE inode
1497 if (VFS_I(sip
)->i_nlink
== 0) {
1498 error
= xfs_iunlink_remove(tp
, sip
);
1503 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1504 &first_block
, &dfops
, resblks
);
1507 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1508 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1510 error
= xfs_bumplink(tp
, sip
);
1515 * If this is a synchronous mount, make sure that the
1516 * link transaction goes to disk before returning to
1519 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1520 xfs_trans_set_sync(tp
);
1522 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1524 xfs_defer_cancel(&dfops
);
1528 return xfs_trans_commit(tp
);
1531 xfs_trans_cancel(tp
);
1537 * Free up the underlying blocks past new_size. The new size must be smaller
1538 * than the current size. This routine can be used both for the attribute and
1539 * data fork, and does not modify the inode size, which is left to the caller.
1541 * The transaction passed to this routine must have made a permanent log
1542 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1543 * given transaction and start new ones, so make sure everything involved in
1544 * the transaction is tidy before calling here. Some transaction will be
1545 * returned to the caller to be committed. The incoming transaction must
1546 * already include the inode, and both inode locks must be held exclusively.
1547 * The inode must also be "held" within the transaction. On return the inode
1548 * will be "held" within the returned transaction. This routine does NOT
1549 * require any disk space to be reserved for it within the transaction.
1551 * If we get an error, we must return with the inode locked and linked into the
1552 * current transaction. This keeps things simple for the higher level code,
1553 * because it always knows that the inode is locked and held in the transaction
1554 * that returns to it whether errors occur or not. We don't mark the inode
1555 * dirty on error so that transactions can be easily aborted if possible.
1558 xfs_itruncate_extents(
1559 struct xfs_trans
**tpp
,
1560 struct xfs_inode
*ip
,
1562 xfs_fsize_t new_size
)
1564 struct xfs_mount
*mp
= ip
->i_mount
;
1565 struct xfs_trans
*tp
= *tpp
;
1566 struct xfs_defer_ops dfops
;
1567 xfs_fsblock_t first_block
;
1568 xfs_fileoff_t first_unmap_block
;
1569 xfs_fileoff_t last_block
;
1570 xfs_filblks_t unmap_len
;
1574 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1575 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1576 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1577 ASSERT(new_size
<= XFS_ISIZE(ip
));
1578 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1579 ASSERT(ip
->i_itemp
!= NULL
);
1580 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1581 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1583 trace_xfs_itruncate_extents_start(ip
, new_size
);
1586 * Since it is possible for space to become allocated beyond
1587 * the end of the file (in a crash where the space is allocated
1588 * but the inode size is not yet updated), simply remove any
1589 * blocks which show up between the new EOF and the maximum
1590 * possible file size. If the first block to be removed is
1591 * beyond the maximum file size (ie it is the same as last_block),
1592 * then there is nothing to do.
1594 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1595 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1596 if (first_unmap_block
== last_block
)
1599 ASSERT(first_unmap_block
< last_block
);
1600 unmap_len
= last_block
- first_unmap_block
+ 1;
1602 xfs_defer_init(&dfops
, &first_block
);
1603 error
= xfs_bunmapi(tp
, ip
,
1604 first_unmap_block
, unmap_len
,
1605 xfs_bmapi_aflag(whichfork
),
1606 XFS_ITRUNC_MAX_EXTENTS
,
1607 &first_block
, &dfops
,
1610 goto out_bmap_cancel
;
1613 * Duplicate the transaction that has the permanent
1614 * reservation and commit the old transaction.
1616 error
= xfs_defer_finish(&tp
, &dfops
, ip
);
1618 goto out_bmap_cancel
;
1620 error
= xfs_trans_roll(&tp
, ip
);
1625 /* Remove all pending CoW reservations. */
1626 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, first_unmap_block
,
1632 * Clear the reflink flag if we truncated everything.
1634 if (ip
->i_d
.di_nblocks
== 0 && xfs_is_reflink_inode(ip
)) {
1635 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1636 xfs_inode_clear_cowblocks_tag(ip
);
1640 * Always re-log the inode so that our permanent transaction can keep
1641 * on rolling it forward in the log.
1643 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1645 trace_xfs_itruncate_extents_end(ip
, new_size
);
1652 * If the bunmapi call encounters an error, return to the caller where
1653 * the transaction can be properly aborted. We just need to make sure
1654 * we're not holding any resources that we were not when we came in.
1656 xfs_defer_cancel(&dfops
);
1664 xfs_mount_t
*mp
= ip
->i_mount
;
1667 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1670 /* If this is a read-only mount, don't do this (would generate I/O) */
1671 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1674 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1678 * If we previously truncated this file and removed old data
1679 * in the process, we want to initiate "early" writeout on
1680 * the last close. This is an attempt to combat the notorious
1681 * NULL files problem which is particularly noticeable from a
1682 * truncate down, buffered (re-)write (delalloc), followed by
1683 * a crash. What we are effectively doing here is
1684 * significantly reducing the time window where we'd otherwise
1685 * be exposed to that problem.
1687 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1689 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1690 if (ip
->i_delayed_blks
> 0) {
1691 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1698 if (VFS_I(ip
)->i_nlink
== 0)
1701 if (xfs_can_free_eofblocks(ip
, false)) {
1704 * If we can't get the iolock just skip truncating the blocks
1705 * past EOF because we could deadlock with the mmap_sem
1706 * otherwise. We'll get another chance to drop them once the
1707 * last reference to the inode is dropped, so we'll never leak
1708 * blocks permanently.
1710 * Further, check if the inode is being opened, written and
1711 * closed frequently and we have delayed allocation blocks
1712 * outstanding (e.g. streaming writes from the NFS server),
1713 * truncating the blocks past EOF will cause fragmentation to
1716 * In this case don't do the truncation, either, but we have to
1717 * be careful how we detect this case. Blocks beyond EOF show
1718 * up as i_delayed_blks even when the inode is clean, so we
1719 * need to truncate them away first before checking for a dirty
1720 * release. Hence on the first dirty close we will still remove
1721 * the speculative allocation, but after that we will leave it
1724 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1727 error
= xfs_free_eofblocks(mp
, ip
, true);
1728 if (error
&& error
!= -EAGAIN
)
1731 /* delalloc blocks after truncation means it really is dirty */
1732 if (ip
->i_delayed_blks
)
1733 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1739 * xfs_inactive_truncate
1741 * Called to perform a truncate when an inode becomes unlinked.
1744 xfs_inactive_truncate(
1745 struct xfs_inode
*ip
)
1747 struct xfs_mount
*mp
= ip
->i_mount
;
1748 struct xfs_trans
*tp
;
1751 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1753 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1757 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1758 xfs_trans_ijoin(tp
, ip
, 0);
1761 * Log the inode size first to prevent stale data exposure in the event
1762 * of a system crash before the truncate completes. See the related
1763 * comment in xfs_vn_setattr_size() for details.
1765 ip
->i_d
.di_size
= 0;
1766 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1768 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1770 goto error_trans_cancel
;
1772 ASSERT(ip
->i_d
.di_nextents
== 0);
1774 error
= xfs_trans_commit(tp
);
1778 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1782 xfs_trans_cancel(tp
);
1784 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1789 * xfs_inactive_ifree()
1791 * Perform the inode free when an inode is unlinked.
1795 struct xfs_inode
*ip
)
1797 struct xfs_defer_ops dfops
;
1798 xfs_fsblock_t first_block
;
1799 struct xfs_mount
*mp
= ip
->i_mount
;
1800 struct xfs_trans
*tp
;
1804 * The ifree transaction might need to allocate blocks for record
1805 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1806 * allow ifree to dip into the reserved block pool if necessary.
1808 * Freeing large sets of inodes generally means freeing inode chunks,
1809 * directory and file data blocks, so this should be relatively safe.
1810 * Only under severe circumstances should it be possible to free enough
1811 * inodes to exhaust the reserve block pool via finobt expansion while
1812 * at the same time not creating free space in the filesystem.
1814 * Send a warning if the reservation does happen to fail, as the inode
1815 * now remains allocated and sits on the unlinked list until the fs is
1818 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1819 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
, &tp
);
1821 if (error
== -ENOSPC
) {
1822 xfs_warn_ratelimited(mp
,
1823 "Failed to remove inode(s) from unlinked list. "
1824 "Please free space, unmount and run xfs_repair.");
1826 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1831 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1832 xfs_trans_ijoin(tp
, ip
, 0);
1834 xfs_defer_init(&dfops
, &first_block
);
1835 error
= xfs_ifree(tp
, ip
, &dfops
);
1838 * If we fail to free the inode, shut down. The cancel
1839 * might do that, we need to make sure. Otherwise the
1840 * inode might be lost for a long time or forever.
1842 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1843 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1845 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1847 xfs_trans_cancel(tp
);
1848 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1853 * Credit the quota account(s). The inode is gone.
1855 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1858 * Just ignore errors at this point. There is nothing we can do except
1859 * to try to keep going. Make sure it's not a silent error.
1861 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1863 xfs_notice(mp
, "%s: xfs_defer_finish returned error %d",
1865 xfs_defer_cancel(&dfops
);
1867 error
= xfs_trans_commit(tp
);
1869 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1872 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1879 * This is called when the vnode reference count for the vnode
1880 * goes to zero. If the file has been unlinked, then it must
1881 * now be truncated. Also, we clear all of the read-ahead state
1882 * kept for the inode here since the file is now closed.
1888 struct xfs_mount
*mp
;
1893 * If the inode is already free, then there can be nothing
1896 if (VFS_I(ip
)->i_mode
== 0) {
1897 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1898 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1903 ASSERT(!xfs_iflags_test(ip
, XFS_IRECOVERY
));
1905 /* If this is a read-only mount, don't do this (would generate I/O) */
1906 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1909 if (VFS_I(ip
)->i_nlink
!= 0) {
1911 * force is true because we are evicting an inode from the
1912 * cache. Post-eof blocks must be freed, lest we end up with
1913 * broken free space accounting.
1915 if (xfs_can_free_eofblocks(ip
, true))
1916 xfs_free_eofblocks(mp
, ip
, false);
1921 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1922 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1923 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1926 error
= xfs_qm_dqattach(ip
, 0);
1930 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1931 error
= xfs_inactive_symlink(ip
);
1933 error
= xfs_inactive_truncate(ip
);
1938 * If there are attributes associated with the file then blow them away
1939 * now. The code calls a routine that recursively deconstructs the
1940 * attribute fork. If also blows away the in-core attribute fork.
1942 if (XFS_IFORK_Q(ip
)) {
1943 error
= xfs_attr_inactive(ip
);
1949 ASSERT(ip
->i_d
.di_anextents
== 0);
1950 ASSERT(ip
->i_d
.di_forkoff
== 0);
1955 error
= xfs_inactive_ifree(ip
);
1960 * Release the dquots held by inode, if any.
1962 xfs_qm_dqdetach(ip
);
1966 * This is called when the inode's link count goes to 0 or we are creating a
1967 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1968 * set to true as the link count is dropped to zero by the VFS after we've
1969 * created the file successfully, so we have to add it to the unlinked list
1970 * while the link count is non-zero.
1972 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1973 * list when the inode is freed.
1977 struct xfs_trans
*tp
,
1978 struct xfs_inode
*ip
)
1980 xfs_mount_t
*mp
= tp
->t_mountp
;
1990 ASSERT(VFS_I(ip
)->i_mode
!= 0);
1993 * Get the agi buffer first. It ensures lock ordering
1996 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1999 agi
= XFS_BUF_TO_AGI(agibp
);
2002 * Get the index into the agi hash table for the
2003 * list this inode will go on.
2005 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2007 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2008 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2009 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
2011 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
2013 * There is already another inode in the bucket we need
2014 * to add ourselves to. Add us at the front of the list.
2015 * Here we put the head pointer into our next pointer,
2016 * and then we fall through to point the head at us.
2018 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2023 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
2024 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
2025 offset
= ip
->i_imap
.im_boffset
+
2026 offsetof(xfs_dinode_t
, di_next_unlinked
);
2028 /* need to recalc the inode CRC if appropriate */
2029 xfs_dinode_calc_crc(mp
, dip
);
2031 xfs_trans_inode_buf(tp
, ibp
);
2032 xfs_trans_log_buf(tp
, ibp
, offset
,
2033 (offset
+ sizeof(xfs_agino_t
) - 1));
2034 xfs_inobp_check(mp
, ibp
);
2038 * Point the bucket head pointer at the inode being inserted.
2041 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2042 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2043 (sizeof(xfs_agino_t
) * bucket_index
);
2044 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2045 xfs_trans_log_buf(tp
, agibp
, offset
,
2046 (offset
+ sizeof(xfs_agino_t
) - 1));
2051 * Pull the on-disk inode from the AGI unlinked list.
2064 xfs_agnumber_t agno
;
2066 xfs_agino_t next_agino
;
2067 xfs_buf_t
*last_ibp
;
2068 xfs_dinode_t
*last_dip
= NULL
;
2070 int offset
, last_offset
= 0;
2074 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2077 * Get the agi buffer first. It ensures lock ordering
2080 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2084 agi
= XFS_BUF_TO_AGI(agibp
);
2087 * Get the index into the agi hash table for the
2088 * list this inode will go on.
2090 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2092 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2093 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2094 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2096 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2098 * We're at the head of the list. Get the inode's on-disk
2099 * buffer to see if there is anyone after us on the list.
2100 * Only modify our next pointer if it is not already NULLAGINO.
2101 * This saves us the overhead of dealing with the buffer when
2102 * there is no need to change it.
2104 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2107 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2111 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2112 ASSERT(next_agino
!= 0);
2113 if (next_agino
!= NULLAGINO
) {
2114 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2115 offset
= ip
->i_imap
.im_boffset
+
2116 offsetof(xfs_dinode_t
, di_next_unlinked
);
2118 /* need to recalc the inode CRC if appropriate */
2119 xfs_dinode_calc_crc(mp
, dip
);
2121 xfs_trans_inode_buf(tp
, ibp
);
2122 xfs_trans_log_buf(tp
, ibp
, offset
,
2123 (offset
+ sizeof(xfs_agino_t
) - 1));
2124 xfs_inobp_check(mp
, ibp
);
2126 xfs_trans_brelse(tp
, ibp
);
2129 * Point the bucket head pointer at the next inode.
2131 ASSERT(next_agino
!= 0);
2132 ASSERT(next_agino
!= agino
);
2133 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2134 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2135 (sizeof(xfs_agino_t
) * bucket_index
);
2136 xfs_trans_buf_set_type(tp
, agibp
, XFS_BLFT_AGI_BUF
);
2137 xfs_trans_log_buf(tp
, agibp
, offset
,
2138 (offset
+ sizeof(xfs_agino_t
) - 1));
2141 * We need to search the list for the inode being freed.
2143 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2145 while (next_agino
!= agino
) {
2146 struct xfs_imap imap
;
2149 xfs_trans_brelse(tp
, last_ibp
);
2152 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2154 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2157 "%s: xfs_imap returned error %d.",
2162 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2166 "%s: xfs_imap_to_bp returned error %d.",
2171 last_offset
= imap
.im_boffset
;
2172 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2173 ASSERT(next_agino
!= NULLAGINO
);
2174 ASSERT(next_agino
!= 0);
2178 * Now last_ibp points to the buffer previous to us on the
2179 * unlinked list. Pull us from the list.
2181 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2184 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2188 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2189 ASSERT(next_agino
!= 0);
2190 ASSERT(next_agino
!= agino
);
2191 if (next_agino
!= NULLAGINO
) {
2192 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2193 offset
= ip
->i_imap
.im_boffset
+
2194 offsetof(xfs_dinode_t
, di_next_unlinked
);
2196 /* need to recalc the inode CRC if appropriate */
2197 xfs_dinode_calc_crc(mp
, dip
);
2199 xfs_trans_inode_buf(tp
, ibp
);
2200 xfs_trans_log_buf(tp
, ibp
, offset
,
2201 (offset
+ sizeof(xfs_agino_t
) - 1));
2202 xfs_inobp_check(mp
, ibp
);
2204 xfs_trans_brelse(tp
, ibp
);
2207 * Point the previous inode on the list to the next inode.
2209 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2210 ASSERT(next_agino
!= 0);
2211 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2213 /* need to recalc the inode CRC if appropriate */
2214 xfs_dinode_calc_crc(mp
, last_dip
);
2216 xfs_trans_inode_buf(tp
, last_ibp
);
2217 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2218 (offset
+ sizeof(xfs_agino_t
) - 1));
2219 xfs_inobp_check(mp
, last_ibp
);
2225 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2226 * inodes that are in memory - they all must be marked stale and attached to
2227 * the cluster buffer.
2231 xfs_inode_t
*free_ip
,
2233 struct xfs_icluster
*xic
)
2235 xfs_mount_t
*mp
= free_ip
->i_mount
;
2236 int blks_per_cluster
;
2237 int inodes_per_cluster
;
2244 xfs_inode_log_item_t
*iip
;
2245 xfs_log_item_t
*lip
;
2246 struct xfs_perag
*pag
;
2249 inum
= xic
->first_ino
;
2250 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2251 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2252 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2253 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2255 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2257 * The allocation bitmap tells us which inodes of the chunk were
2258 * physically allocated. Skip the cluster if an inode falls into
2261 ioffset
= inum
- xic
->first_ino
;
2262 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2263 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2267 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2268 XFS_INO_TO_AGBNO(mp
, inum
));
2271 * We obtain and lock the backing buffer first in the process
2272 * here, as we have to ensure that any dirty inode that we
2273 * can't get the flush lock on is attached to the buffer.
2274 * If we scan the in-memory inodes first, then buffer IO can
2275 * complete before we get a lock on it, and hence we may fail
2276 * to mark all the active inodes on the buffer stale.
2278 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2279 mp
->m_bsize
* blks_per_cluster
,
2286 * This buffer may not have been correctly initialised as we
2287 * didn't read it from disk. That's not important because we are
2288 * only using to mark the buffer as stale in the log, and to
2289 * attach stale cached inodes on it. That means it will never be
2290 * dispatched for IO. If it is, we want to know about it, and we
2291 * want it to fail. We can acheive this by adding a write
2292 * verifier to the buffer.
2294 bp
->b_ops
= &xfs_inode_buf_ops
;
2297 * Walk the inodes already attached to the buffer and mark them
2298 * stale. These will all have the flush locks held, so an
2299 * in-memory inode walk can't lock them. By marking them all
2300 * stale first, we will not attempt to lock them in the loop
2301 * below as the XFS_ISTALE flag will be set.
2305 if (lip
->li_type
== XFS_LI_INODE
) {
2306 iip
= (xfs_inode_log_item_t
*)lip
;
2307 ASSERT(iip
->ili_logged
== 1);
2308 lip
->li_cb
= xfs_istale_done
;
2309 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2310 &iip
->ili_flush_lsn
,
2311 &iip
->ili_item
.li_lsn
);
2312 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2314 lip
= lip
->li_bio_list
;
2319 * For each inode in memory attempt to add it to the inode
2320 * buffer and set it up for being staled on buffer IO
2321 * completion. This is safe as we've locked out tail pushing
2322 * and flushing by locking the buffer.
2324 * We have already marked every inode that was part of a
2325 * transaction stale above, which means there is no point in
2326 * even trying to lock them.
2328 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2331 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2332 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2334 /* Inode not in memory, nothing to do */
2341 * because this is an RCU protected lookup, we could
2342 * find a recently freed or even reallocated inode
2343 * during the lookup. We need to check under the
2344 * i_flags_lock for a valid inode here. Skip it if it
2345 * is not valid, the wrong inode or stale.
2347 spin_lock(&ip
->i_flags_lock
);
2348 if (ip
->i_ino
!= inum
+ i
||
2349 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2350 spin_unlock(&ip
->i_flags_lock
);
2354 spin_unlock(&ip
->i_flags_lock
);
2357 * Don't try to lock/unlock the current inode, but we
2358 * _cannot_ skip the other inodes that we did not find
2359 * in the list attached to the buffer and are not
2360 * already marked stale. If we can't lock it, back off
2363 if (ip
!= free_ip
&&
2364 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2372 xfs_iflags_set(ip
, XFS_ISTALE
);
2375 * we don't need to attach clean inodes or those only
2376 * with unlogged changes (which we throw away, anyway).
2379 if (!iip
|| xfs_inode_clean(ip
)) {
2380 ASSERT(ip
!= free_ip
);
2382 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2386 iip
->ili_last_fields
= iip
->ili_fields
;
2387 iip
->ili_fields
= 0;
2388 iip
->ili_fsync_fields
= 0;
2389 iip
->ili_logged
= 1;
2390 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2391 &iip
->ili_item
.li_lsn
);
2393 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2397 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2400 xfs_trans_stale_inode_buf(tp
, bp
);
2401 xfs_trans_binval(tp
, bp
);
2409 * This is called to return an inode to the inode free list.
2410 * The inode should already be truncated to 0 length and have
2411 * no pages associated with it. This routine also assumes that
2412 * the inode is already a part of the transaction.
2414 * The on-disk copy of the inode will have been added to the list
2415 * of unlinked inodes in the AGI. We need to remove the inode from
2416 * that list atomically with respect to freeing it here.
2422 struct xfs_defer_ops
*dfops
)
2425 struct xfs_icluster xic
= { 0 };
2427 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2428 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2429 ASSERT(ip
->i_d
.di_nextents
== 0);
2430 ASSERT(ip
->i_d
.di_anextents
== 0);
2431 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2432 ASSERT(ip
->i_d
.di_nblocks
== 0);
2435 * Pull the on-disk inode from the AGI unlinked list.
2437 error
= xfs_iunlink_remove(tp
, ip
);
2441 error
= xfs_difree(tp
, ip
->i_ino
, dfops
, &xic
);
2445 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2446 ip
->i_d
.di_flags
= 0;
2447 ip
->i_d
.di_dmevmask
= 0;
2448 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2449 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2450 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2452 * Bump the generation count so no one will be confused
2453 * by reincarnations of this inode.
2455 VFS_I(ip
)->i_generation
++;
2456 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2459 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2465 * This is called to unpin an inode. The caller must have the inode locked
2466 * in at least shared mode so that the buffer cannot be subsequently pinned
2467 * once someone is waiting for it to be unpinned.
2471 struct xfs_inode
*ip
)
2473 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2475 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2477 /* Give the log a push to start the unpinning I/O */
2478 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2484 struct xfs_inode
*ip
)
2486 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2487 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2492 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2493 if (xfs_ipincount(ip
))
2495 } while (xfs_ipincount(ip
));
2496 finish_wait(wq
, &wait
.wait
);
2501 struct xfs_inode
*ip
)
2503 if (xfs_ipincount(ip
))
2504 __xfs_iunpin_wait(ip
);
2508 * Removing an inode from the namespace involves removing the directory entry
2509 * and dropping the link count on the inode. Removing the directory entry can
2510 * result in locking an AGF (directory blocks were freed) and removing a link
2511 * count can result in placing the inode on an unlinked list which results in
2514 * The big problem here is that we have an ordering constraint on AGF and AGI
2515 * locking - inode allocation locks the AGI, then can allocate a new extent for
2516 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2517 * removes the inode from the unlinked list, requiring that we lock the AGI
2518 * first, and then freeing the inode can result in an inode chunk being freed
2519 * and hence freeing disk space requiring that we lock an AGF.
2521 * Hence the ordering that is imposed by other parts of the code is AGI before
2522 * AGF. This means we cannot remove the directory entry before we drop the inode
2523 * reference count and put it on the unlinked list as this results in a lock
2524 * order of AGF then AGI, and this can deadlock against inode allocation and
2525 * freeing. Therefore we must drop the link counts before we remove the
2528 * This is still safe from a transactional point of view - it is not until we
2529 * get to xfs_defer_finish() that we have the possibility of multiple
2530 * transactions in this operation. Hence as long as we remove the directory
2531 * entry and drop the link count in the first transaction of the remove
2532 * operation, there are no transactional constraints on the ordering here.
2537 struct xfs_name
*name
,
2540 xfs_mount_t
*mp
= dp
->i_mount
;
2541 xfs_trans_t
*tp
= NULL
;
2542 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2544 struct xfs_defer_ops dfops
;
2545 xfs_fsblock_t first_block
;
2548 trace_xfs_remove(dp
, name
);
2550 if (XFS_FORCED_SHUTDOWN(mp
))
2553 error
= xfs_qm_dqattach(dp
, 0);
2557 error
= xfs_qm_dqattach(ip
, 0);
2562 * We try to get the real space reservation first,
2563 * allowing for directory btree deletion(s) implying
2564 * possible bmap insert(s). If we can't get the space
2565 * reservation then we use 0 instead, and avoid the bmap
2566 * btree insert(s) in the directory code by, if the bmap
2567 * insert tries to happen, instead trimming the LAST
2568 * block from the directory.
2570 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2571 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2572 if (error
== -ENOSPC
) {
2574 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2578 ASSERT(error
!= -ENOSPC
);
2582 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2583 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2585 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2586 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2589 * If we're removing a directory perform some additional validation.
2592 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2593 if (VFS_I(ip
)->i_nlink
!= 2) {
2595 goto out_trans_cancel
;
2597 if (!xfs_dir_isempty(ip
)) {
2599 goto out_trans_cancel
;
2602 /* Drop the link from ip's "..". */
2603 error
= xfs_droplink(tp
, dp
);
2605 goto out_trans_cancel
;
2607 /* Drop the "." link from ip to self. */
2608 error
= xfs_droplink(tp
, ip
);
2610 goto out_trans_cancel
;
2613 * When removing a non-directory we need to log the parent
2614 * inode here. For a directory this is done implicitly
2615 * by the xfs_droplink call for the ".." entry.
2617 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2619 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2621 /* Drop the link from dp to ip. */
2622 error
= xfs_droplink(tp
, ip
);
2624 goto out_trans_cancel
;
2626 xfs_defer_init(&dfops
, &first_block
);
2627 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2628 &first_block
, &dfops
, resblks
);
2630 ASSERT(error
!= -ENOENT
);
2631 goto out_bmap_cancel
;
2635 * If this is a synchronous mount, make sure that the
2636 * remove transaction goes to disk before returning to
2639 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2640 xfs_trans_set_sync(tp
);
2642 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
2644 goto out_bmap_cancel
;
2646 error
= xfs_trans_commit(tp
);
2650 if (is_dir
&& xfs_inode_is_filestream(ip
))
2651 xfs_filestream_deassociate(ip
);
2656 xfs_defer_cancel(&dfops
);
2658 xfs_trans_cancel(tp
);
2664 * Enter all inodes for a rename transaction into a sorted array.
2666 #define __XFS_SORT_INODES 5
2668 xfs_sort_for_rename(
2669 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2670 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2671 struct xfs_inode
*ip1
, /* in: inode of old entry */
2672 struct xfs_inode
*ip2
, /* in: inode of new entry */
2673 struct xfs_inode
*wip
, /* in: whiteout inode */
2674 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2675 int *num_inodes
) /* in/out: inodes in array */
2679 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2680 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2683 * i_tab contains a list of pointers to inodes. We initialize
2684 * the table here & we'll sort it. We will then use it to
2685 * order the acquisition of the inode locks.
2687 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2700 * Sort the elements via bubble sort. (Remember, there are at
2701 * most 5 elements to sort, so this is adequate.)
2703 for (i
= 0; i
< *num_inodes
; i
++) {
2704 for (j
= 1; j
< *num_inodes
; j
++) {
2705 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2706 struct xfs_inode
*temp
= i_tab
[j
];
2707 i_tab
[j
] = i_tab
[j
-1];
2716 struct xfs_trans
*tp
,
2717 struct xfs_defer_ops
*dfops
)
2722 * If this is a synchronous mount, make sure that the rename transaction
2723 * goes to disk before returning to the user.
2725 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2726 xfs_trans_set_sync(tp
);
2728 error
= xfs_defer_finish(&tp
, dfops
, NULL
);
2730 xfs_defer_cancel(dfops
);
2731 xfs_trans_cancel(tp
);
2735 return xfs_trans_commit(tp
);
2739 * xfs_cross_rename()
2741 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2745 struct xfs_trans
*tp
,
2746 struct xfs_inode
*dp1
,
2747 struct xfs_name
*name1
,
2748 struct xfs_inode
*ip1
,
2749 struct xfs_inode
*dp2
,
2750 struct xfs_name
*name2
,
2751 struct xfs_inode
*ip2
,
2752 struct xfs_defer_ops
*dfops
,
2753 xfs_fsblock_t
*first_block
,
2761 /* Swap inode number for dirent in first parent */
2762 error
= xfs_dir_replace(tp
, dp1
, name1
,
2764 first_block
, dfops
, spaceres
);
2766 goto out_trans_abort
;
2768 /* Swap inode number for dirent in second parent */
2769 error
= xfs_dir_replace(tp
, dp2
, name2
,
2771 first_block
, dfops
, spaceres
);
2773 goto out_trans_abort
;
2776 * If we're renaming one or more directories across different parents,
2777 * update the respective ".." entries (and link counts) to match the new
2781 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2783 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2784 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2785 dp1
->i_ino
, first_block
,
2788 goto out_trans_abort
;
2790 /* transfer ip2 ".." reference to dp1 */
2791 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2792 error
= xfs_droplink(tp
, dp2
);
2794 goto out_trans_abort
;
2795 error
= xfs_bumplink(tp
, dp1
);
2797 goto out_trans_abort
;
2801 * Although ip1 isn't changed here, userspace needs
2802 * to be warned about the change, so that applications
2803 * relying on it (like backup ones), will properly
2806 ip1_flags
|= XFS_ICHGTIME_CHG
;
2807 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2810 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2811 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2812 dp2
->i_ino
, first_block
,
2815 goto out_trans_abort
;
2817 /* transfer ip1 ".." reference to dp2 */
2818 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2819 error
= xfs_droplink(tp
, dp1
);
2821 goto out_trans_abort
;
2822 error
= xfs_bumplink(tp
, dp2
);
2824 goto out_trans_abort
;
2828 * Although ip2 isn't changed here, userspace needs
2829 * to be warned about the change, so that applications
2830 * relying on it (like backup ones), will properly
2833 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2834 ip2_flags
|= XFS_ICHGTIME_CHG
;
2839 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2840 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2843 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2844 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2847 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2848 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2850 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2851 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2852 return xfs_finish_rename(tp
, dfops
);
2855 xfs_defer_cancel(dfops
);
2856 xfs_trans_cancel(tp
);
2861 * xfs_rename_alloc_whiteout()
2863 * Return a referenced, unlinked, unlocked inode that that can be used as a
2864 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2865 * crash between allocating the inode and linking it into the rename transaction
2866 * recovery will free the inode and we won't leak it.
2869 xfs_rename_alloc_whiteout(
2870 struct xfs_inode
*dp
,
2871 struct xfs_inode
**wip
)
2873 struct xfs_inode
*tmpfile
;
2876 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2881 * Prepare the tmpfile inode as if it were created through the VFS.
2882 * Otherwise, the link increment paths will complain about nlink 0->1.
2883 * Drop the link count as done by d_tmpfile(), complete the inode setup
2884 * and flag it as linkable.
2886 drop_nlink(VFS_I(tmpfile
));
2887 xfs_setup_iops(tmpfile
);
2888 xfs_finish_inode_setup(tmpfile
);
2889 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2900 struct xfs_inode
*src_dp
,
2901 struct xfs_name
*src_name
,
2902 struct xfs_inode
*src_ip
,
2903 struct xfs_inode
*target_dp
,
2904 struct xfs_name
*target_name
,
2905 struct xfs_inode
*target_ip
,
2908 struct xfs_mount
*mp
= src_dp
->i_mount
;
2909 struct xfs_trans
*tp
;
2910 struct xfs_defer_ops dfops
;
2911 xfs_fsblock_t first_block
;
2912 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2913 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2914 int num_inodes
= __XFS_SORT_INODES
;
2915 bool new_parent
= (src_dp
!= target_dp
);
2916 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
2920 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2922 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2926 * If we are doing a whiteout operation, allocate the whiteout inode
2927 * we will be placing at the target and ensure the type is set
2930 if (flags
& RENAME_WHITEOUT
) {
2931 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2932 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2936 /* setup target dirent info as whiteout */
2937 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2940 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2941 inodes
, &num_inodes
);
2943 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2944 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
2945 if (error
== -ENOSPC
) {
2947 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
2951 goto out_release_wip
;
2954 * Attach the dquots to the inodes
2956 error
= xfs_qm_vop_rename_dqattach(inodes
);
2958 goto out_trans_cancel
;
2961 * Lock all the participating inodes. Depending upon whether
2962 * the target_name exists in the target directory, and
2963 * whether the target directory is the same as the source
2964 * directory, we can lock from 2 to 4 inodes.
2967 xfs_ilock(src_dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2969 xfs_lock_two_inodes(src_dp
, target_dp
,
2970 XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2972 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2975 * Join all the inodes to the transaction. From this point on,
2976 * we can rely on either trans_commit or trans_cancel to unlock
2979 xfs_trans_ijoin(tp
, src_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2981 xfs_trans_ijoin(tp
, target_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2982 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2984 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2986 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2989 * If we are using project inheritance, we only allow renames
2990 * into our tree when the project IDs are the same; else the
2991 * tree quota mechanism would be circumvented.
2993 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
2994 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
2996 goto out_trans_cancel
;
2999 xfs_defer_init(&dfops
, &first_block
);
3001 /* RENAME_EXCHANGE is unique from here on. */
3002 if (flags
& RENAME_EXCHANGE
)
3003 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
3004 target_dp
, target_name
, target_ip
,
3005 &dfops
, &first_block
, spaceres
);
3008 * Set up the target.
3010 if (target_ip
== NULL
) {
3012 * If there's no space reservation, check the entry will
3013 * fit before actually inserting it.
3016 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3018 goto out_trans_cancel
;
3021 * If target does not exist and the rename crosses
3022 * directories, adjust the target directory link count
3023 * to account for the ".." reference from the new entry.
3025 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3026 src_ip
->i_ino
, &first_block
,
3029 goto out_bmap_cancel
;
3031 xfs_trans_ichgtime(tp
, target_dp
,
3032 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3034 if (new_parent
&& src_is_directory
) {
3035 error
= xfs_bumplink(tp
, target_dp
);
3037 goto out_bmap_cancel
;
3039 } else { /* target_ip != NULL */
3041 * If target exists and it's a directory, check that both
3042 * target and source are directories and that target can be
3043 * destroyed, or that neither is a directory.
3045 if (S_ISDIR(VFS_I(target_ip
)->i_mode
)) {
3047 * Make sure target dir is empty.
3049 if (!(xfs_dir_isempty(target_ip
)) ||
3050 (VFS_I(target_ip
)->i_nlink
> 2)) {
3052 goto out_trans_cancel
;
3057 * Link the source inode under the target name.
3058 * If the source inode is a directory and we are moving
3059 * it across directories, its ".." entry will be
3060 * inconsistent until we replace that down below.
3062 * In case there is already an entry with the same
3063 * name at the destination directory, remove it first.
3065 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3067 &first_block
, &dfops
, spaceres
);
3069 goto out_bmap_cancel
;
3071 xfs_trans_ichgtime(tp
, target_dp
,
3072 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3075 * Decrement the link count on the target since the target
3076 * dir no longer points to it.
3078 error
= xfs_droplink(tp
, target_ip
);
3080 goto out_bmap_cancel
;
3082 if (src_is_directory
) {
3084 * Drop the link from the old "." entry.
3086 error
= xfs_droplink(tp
, target_ip
);
3088 goto out_bmap_cancel
;
3090 } /* target_ip != NULL */
3093 * Remove the source.
3095 if (new_parent
&& src_is_directory
) {
3097 * Rewrite the ".." entry to point to the new
3100 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3102 &first_block
, &dfops
, spaceres
);
3103 ASSERT(error
!= -EEXIST
);
3105 goto out_bmap_cancel
;
3109 * We always want to hit the ctime on the source inode.
3111 * This isn't strictly required by the standards since the source
3112 * inode isn't really being changed, but old unix file systems did
3113 * it and some incremental backup programs won't work without it.
3115 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3116 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3119 * Adjust the link count on src_dp. This is necessary when
3120 * renaming a directory, either within one parent when
3121 * the target existed, or across two parent directories.
3123 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3126 * Decrement link count on src_directory since the
3127 * entry that's moved no longer points to it.
3129 error
= xfs_droplink(tp
, src_dp
);
3131 goto out_bmap_cancel
;
3135 * For whiteouts, we only need to update the source dirent with the
3136 * inode number of the whiteout inode rather than removing it
3140 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3141 &first_block
, &dfops
, spaceres
);
3143 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3144 &first_block
, &dfops
, spaceres
);
3146 goto out_bmap_cancel
;
3149 * For whiteouts, we need to bump the link count on the whiteout inode.
3150 * This means that failures all the way up to this point leave the inode
3151 * on the unlinked list and so cleanup is a simple matter of dropping
3152 * the remaining reference to it. If we fail here after bumping the link
3153 * count, we're shutting down the filesystem so we'll never see the
3154 * intermediate state on disk.
3157 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3158 error
= xfs_bumplink(tp
, wip
);
3160 goto out_bmap_cancel
;
3161 error
= xfs_iunlink_remove(tp
, wip
);
3163 goto out_bmap_cancel
;
3164 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3167 * Now we have a real link, clear the "I'm a tmpfile" state
3168 * flag from the inode so it doesn't accidentally get misused in
3171 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3174 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3175 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3177 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3179 error
= xfs_finish_rename(tp
, &dfops
);
3185 xfs_defer_cancel(&dfops
);
3187 xfs_trans_cancel(tp
);
3196 struct xfs_inode
*ip
,
3199 struct xfs_mount
*mp
= ip
->i_mount
;
3200 struct xfs_perag
*pag
;
3201 unsigned long first_index
, mask
;
3202 unsigned long inodes_per_cluster
;
3204 struct xfs_inode
**cilist
;
3205 struct xfs_inode
*cip
;
3211 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3213 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3214 cilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3215 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3219 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3220 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3222 /* really need a gang lookup range call here */
3223 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3224 first_index
, inodes_per_cluster
);
3228 for (i
= 0; i
< nr_found
; i
++) {
3234 * because this is an RCU protected lookup, we could find a
3235 * recently freed or even reallocated inode during the lookup.
3236 * We need to check under the i_flags_lock for a valid inode
3237 * here. Skip it if it is not valid or the wrong inode.
3239 spin_lock(&cip
->i_flags_lock
);
3241 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3242 spin_unlock(&cip
->i_flags_lock
);
3247 * Once we fall off the end of the cluster, no point checking
3248 * any more inodes in the list because they will also all be
3249 * outside the cluster.
3251 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3252 spin_unlock(&cip
->i_flags_lock
);
3255 spin_unlock(&cip
->i_flags_lock
);
3258 * Do an un-protected check to see if the inode is dirty and
3259 * is a candidate for flushing. These checks will be repeated
3260 * later after the appropriate locks are acquired.
3262 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3266 * Try to get locks. If any are unavailable or it is pinned,
3267 * then this inode cannot be flushed and is skipped.
3270 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3272 if (!xfs_iflock_nowait(cip
)) {
3273 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3276 if (xfs_ipincount(cip
)) {
3278 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3284 * Check the inode number again, just to be certain we are not
3285 * racing with freeing in xfs_reclaim_inode(). See the comments
3286 * in that function for more information as to why the initial
3287 * check is not sufficient.
3291 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3296 * arriving here means that this inode can be flushed. First
3297 * re-check that it's dirty before flushing.
3299 if (!xfs_inode_clean(cip
)) {
3301 error
= xfs_iflush_int(cip
, bp
);
3303 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3304 goto cluster_corrupt_out
;
3310 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3314 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3315 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3326 cluster_corrupt_out
:
3328 * Corruption detected in the clustering loop. Invalidate the
3329 * inode buffer and shut down the filesystem.
3333 * Clean up the buffer. If it was delwri, just release it --
3334 * brelse can handle it with no problems. If not, shut down the
3335 * filesystem before releasing the buffer.
3337 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3341 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3343 if (!bufwasdelwri
) {
3345 * Just like incore_relse: if we have b_iodone functions,
3346 * mark the buffer as an error and call them. Otherwise
3347 * mark it as stale and brelse.
3350 bp
->b_flags
&= ~XBF_DONE
;
3352 xfs_buf_ioerror(bp
, -EIO
);
3361 * Unlocks the flush lock
3363 xfs_iflush_abort(cip
, false);
3366 return -EFSCORRUPTED
;
3370 * Flush dirty inode metadata into the backing buffer.
3372 * The caller must have the inode lock and the inode flush lock held. The
3373 * inode lock will still be held upon return to the caller, and the inode
3374 * flush lock will be released after the inode has reached the disk.
3376 * The caller must write out the buffer returned in *bpp and release it.
3380 struct xfs_inode
*ip
,
3381 struct xfs_buf
**bpp
)
3383 struct xfs_mount
*mp
= ip
->i_mount
;
3384 struct xfs_buf
*bp
= NULL
;
3385 struct xfs_dinode
*dip
;
3388 XFS_STATS_INC(mp
, xs_iflush_count
);
3390 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3391 ASSERT(xfs_isiflocked(ip
));
3392 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3393 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3397 xfs_iunpin_wait(ip
);
3400 * For stale inodes we cannot rely on the backing buffer remaining
3401 * stale in cache for the remaining life of the stale inode and so
3402 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3403 * inodes below. We have to check this after ensuring the inode is
3404 * unpinned so that it is safe to reclaim the stale inode after the
3407 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3413 * This may have been unpinned because the filesystem is shutting
3414 * down forcibly. If that's the case we must not write this inode
3415 * to disk, because the log record didn't make it to disk.
3417 * We also have to remove the log item from the AIL in this case,
3418 * as we wait for an empty AIL as part of the unmount process.
3420 if (XFS_FORCED_SHUTDOWN(mp
)) {
3426 * Get the buffer containing the on-disk inode. We are doing a try-lock
3427 * operation here, so we may get an EAGAIN error. In that case, we
3428 * simply want to return with the inode still dirty.
3430 * If we get any other error, we effectively have a corruption situation
3431 * and we cannot flush the inode, so we treat it the same as failing
3434 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3436 if (error
== -EAGAIN
) {
3444 * First flush out the inode that xfs_iflush was called with.
3446 error
= xfs_iflush_int(ip
, bp
);
3451 * If the buffer is pinned then push on the log now so we won't
3452 * get stuck waiting in the write for too long.
3454 if (xfs_buf_ispinned(bp
))
3455 xfs_log_force(mp
, 0);
3459 * see if other inodes can be gathered into this write
3461 error
= xfs_iflush_cluster(ip
, bp
);
3463 goto cluster_corrupt_out
;
3471 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3472 cluster_corrupt_out
:
3473 error
= -EFSCORRUPTED
;
3476 * Unlocks the flush lock
3478 xfs_iflush_abort(ip
, false);
3484 struct xfs_inode
*ip
,
3487 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3488 struct xfs_dinode
*dip
;
3489 struct xfs_mount
*mp
= ip
->i_mount
;
3491 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3492 ASSERT(xfs_isiflocked(ip
));
3493 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3494 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3495 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3496 ASSERT(ip
->i_d
.di_version
> 1);
3498 /* set *dip = inode's place in the buffer */
3499 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3501 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3502 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3503 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3504 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3505 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3508 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3510 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3511 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3512 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3513 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3514 "%s: Bad regular inode %Lu, ptr 0x%p",
3515 __func__
, ip
->i_ino
, ip
);
3518 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3520 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3521 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3522 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3523 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3524 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3525 "%s: Bad directory inode %Lu, ptr 0x%p",
3526 __func__
, ip
->i_ino
, ip
);
3530 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3531 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3532 XFS_RANDOM_IFLUSH_5
)) {
3533 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3534 "%s: detected corrupt incore inode %Lu, "
3535 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3536 __func__
, ip
->i_ino
,
3537 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3538 ip
->i_d
.di_nblocks
, ip
);
3541 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3542 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3543 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3544 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3545 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3550 * Inode item log recovery for v2 inodes are dependent on the
3551 * di_flushiter count for correct sequencing. We bump the flush
3552 * iteration count so we can detect flushes which postdate a log record
3553 * during recovery. This is redundant as we now log every change and
3554 * hence this can't happen but we need to still do it to ensure
3555 * backwards compatibility with old kernels that predate logging all
3558 if (ip
->i_d
.di_version
< 3)
3559 ip
->i_d
.di_flushiter
++;
3562 * Copy the dirty parts of the inode into the on-disk inode. We always
3563 * copy out the core of the inode, because if the inode is dirty at all
3566 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3568 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3569 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3570 ip
->i_d
.di_flushiter
= 0;
3572 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3573 if (XFS_IFORK_Q(ip
))
3574 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3575 xfs_inobp_check(mp
, bp
);
3578 * We've recorded everything logged in the inode, so we'd like to clear
3579 * the ili_fields bits so we don't log and flush things unnecessarily.
3580 * However, we can't stop logging all this information until the data
3581 * we've copied into the disk buffer is written to disk. If we did we
3582 * might overwrite the copy of the inode in the log with all the data
3583 * after re-logging only part of it, and in the face of a crash we
3584 * wouldn't have all the data we need to recover.
3586 * What we do is move the bits to the ili_last_fields field. When
3587 * logging the inode, these bits are moved back to the ili_fields field.
3588 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3589 * know that the information those bits represent is permanently on
3590 * disk. As long as the flush completes before the inode is logged
3591 * again, then both ili_fields and ili_last_fields will be cleared.
3593 * We can play with the ili_fields bits here, because the inode lock
3594 * must be held exclusively in order to set bits there and the flush
3595 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3596 * done routine can tell whether or not to look in the AIL. Also, store
3597 * the current LSN of the inode so that we can tell whether the item has
3598 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3599 * need the AIL lock, because it is a 64 bit value that cannot be read
3602 iip
->ili_last_fields
= iip
->ili_fields
;
3603 iip
->ili_fields
= 0;
3604 iip
->ili_fsync_fields
= 0;
3605 iip
->ili_logged
= 1;
3607 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3608 &iip
->ili_item
.li_lsn
);
3611 * Attach the function xfs_iflush_done to the inode's
3612 * buffer. This will remove the inode from the AIL
3613 * and unlock the inode's flush lock when the inode is
3614 * completely written to disk.
3616 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3618 /* generate the checksum. */
3619 xfs_dinode_calc_crc(mp
, dip
);
3621 ASSERT(bp
->b_fspriv
!= NULL
);
3622 ASSERT(bp
->b_iodone
!= NULL
);
3626 return -EFSCORRUPTED
;