4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
30 armpmu_map_cache_event(const unsigned (*cache_map
)
31 [PERF_COUNT_HW_CACHE_MAX
]
32 [PERF_COUNT_HW_CACHE_OP_MAX
]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
36 unsigned int cache_type
, cache_op
, cache_result
, ret
;
38 cache_type
= (config
>> 0) & 0xff;
39 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
42 cache_op
= (config
>> 8) & 0xff;
43 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
46 cache_result
= (config
>> 16) & 0xff;
47 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
53 ret
= (int)(*cache_map
)[cache_type
][cache_op
][cache_result
];
55 if (ret
== CACHE_OP_UNSUPPORTED
)
62 armpmu_map_hw_event(const unsigned (*event_map
)[PERF_COUNT_HW_MAX
], u64 config
)
66 if (config
>= PERF_COUNT_HW_MAX
)
72 mapping
= (*event_map
)[config
];
73 return mapping
== HW_OP_UNSUPPORTED
? -ENOENT
: mapping
;
77 armpmu_map_raw_event(u32 raw_event_mask
, u64 config
)
79 return (int)(config
& raw_event_mask
);
83 armpmu_map_event(struct perf_event
*event
,
84 const unsigned (*event_map
)[PERF_COUNT_HW_MAX
],
85 const unsigned (*cache_map
)
86 [PERF_COUNT_HW_CACHE_MAX
]
87 [PERF_COUNT_HW_CACHE_OP_MAX
]
88 [PERF_COUNT_HW_CACHE_RESULT_MAX
],
91 u64 config
= event
->attr
.config
;
92 int type
= event
->attr
.type
;
94 if (type
== event
->pmu
->type
)
95 return armpmu_map_raw_event(raw_event_mask
, config
);
98 case PERF_TYPE_HARDWARE
:
99 return armpmu_map_hw_event(event_map
, config
);
100 case PERF_TYPE_HW_CACHE
:
101 return armpmu_map_cache_event(cache_map
, config
);
103 return armpmu_map_raw_event(raw_event_mask
, config
);
109 int armpmu_event_set_period(struct perf_event
*event
)
111 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
112 struct hw_perf_event
*hwc
= &event
->hw
;
113 s64 left
= local64_read(&hwc
->period_left
);
114 s64 period
= hwc
->sample_period
;
117 if (unlikely(left
<= -period
)) {
119 local64_set(&hwc
->period_left
, left
);
120 hwc
->last_period
= period
;
124 if (unlikely(left
<= 0)) {
126 local64_set(&hwc
->period_left
, left
);
127 hwc
->last_period
= period
;
132 * Limit the maximum period to prevent the counter value
133 * from overtaking the one we are about to program. In
134 * effect we are reducing max_period to account for
135 * interrupt latency (and we are being very conservative).
137 if (left
> (armpmu
->max_period
>> 1))
138 left
= armpmu
->max_period
>> 1;
140 local64_set(&hwc
->prev_count
, (u64
)-left
);
142 armpmu
->write_counter(event
, (u64
)(-left
) & 0xffffffff);
144 perf_event_update_userpage(event
);
149 u64
armpmu_event_update(struct perf_event
*event
)
151 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
152 struct hw_perf_event
*hwc
= &event
->hw
;
153 u64 delta
, prev_raw_count
, new_raw_count
;
156 prev_raw_count
= local64_read(&hwc
->prev_count
);
157 new_raw_count
= armpmu
->read_counter(event
);
159 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
160 new_raw_count
) != prev_raw_count
)
163 delta
= (new_raw_count
- prev_raw_count
) & armpmu
->max_period
;
165 local64_add(delta
, &event
->count
);
166 local64_sub(delta
, &hwc
->period_left
);
168 return new_raw_count
;
172 armpmu_read(struct perf_event
*event
)
174 armpmu_event_update(event
);
178 armpmu_stop(struct perf_event
*event
, int flags
)
180 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
181 struct hw_perf_event
*hwc
= &event
->hw
;
184 * ARM pmu always has to update the counter, so ignore
185 * PERF_EF_UPDATE, see comments in armpmu_start().
187 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
188 armpmu
->disable(event
);
189 armpmu_event_update(event
);
190 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
194 static void armpmu_start(struct perf_event
*event
, int flags
)
196 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
197 struct hw_perf_event
*hwc
= &event
->hw
;
200 * ARM pmu always has to reprogram the period, so ignore
201 * PERF_EF_RELOAD, see the comment below.
203 if (flags
& PERF_EF_RELOAD
)
204 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
208 * Set the period again. Some counters can't be stopped, so when we
209 * were stopped we simply disabled the IRQ source and the counter
210 * may have been left counting. If we don't do this step then we may
211 * get an interrupt too soon or *way* too late if the overflow has
212 * happened since disabling.
214 armpmu_event_set_period(event
);
215 armpmu
->enable(event
);
219 armpmu_del(struct perf_event
*event
, int flags
)
221 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
222 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
223 struct hw_perf_event
*hwc
= &event
->hw
;
226 armpmu_stop(event
, PERF_EF_UPDATE
);
227 hw_events
->events
[idx
] = NULL
;
228 clear_bit(idx
, hw_events
->used_mask
);
229 if (armpmu
->clear_event_idx
)
230 armpmu
->clear_event_idx(hw_events
, event
);
232 perf_event_update_userpage(event
);
236 armpmu_add(struct perf_event
*event
, int flags
)
238 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
239 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
240 struct hw_perf_event
*hwc
= &event
->hw
;
243 /* An event following a process won't be stopped earlier */
244 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
247 /* If we don't have a space for the counter then finish early. */
248 idx
= armpmu
->get_event_idx(hw_events
, event
);
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
257 armpmu
->disable(event
);
258 hw_events
->events
[idx
] = event
;
260 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
261 if (flags
& PERF_EF_START
)
262 armpmu_start(event
, PERF_EF_RELOAD
);
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event
);
271 validate_event(struct pmu
*pmu
, struct pmu_hw_events
*hw_events
,
272 struct perf_event
*event
)
274 struct arm_pmu
*armpmu
;
276 if (is_software_event(event
))
280 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
281 * core perf code won't check that the pmu->ctx == leader->ctx
282 * until after pmu->event_init(event).
284 if (event
->pmu
!= pmu
)
287 if (event
->state
< PERF_EVENT_STATE_OFF
)
290 if (event
->state
== PERF_EVENT_STATE_OFF
&& !event
->attr
.enable_on_exec
)
293 armpmu
= to_arm_pmu(event
->pmu
);
294 return armpmu
->get_event_idx(hw_events
, event
) >= 0;
298 validate_group(struct perf_event
*event
)
300 struct perf_event
*sibling
, *leader
= event
->group_leader
;
301 struct pmu_hw_events fake_pmu
;
304 * Initialise the fake PMU. We only need to populate the
305 * used_mask for the purposes of validation.
307 memset(&fake_pmu
.used_mask
, 0, sizeof(fake_pmu
.used_mask
));
309 if (!validate_event(event
->pmu
, &fake_pmu
, leader
))
312 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
313 if (!validate_event(event
->pmu
, &fake_pmu
, sibling
))
317 if (!validate_event(event
->pmu
, &fake_pmu
, event
))
323 static struct arm_pmu_platdata
*armpmu_get_platdata(struct arm_pmu
*armpmu
)
325 struct platform_device
*pdev
= armpmu
->plat_device
;
327 return pdev
? dev_get_platdata(&pdev
->dev
) : NULL
;
330 static irqreturn_t
armpmu_dispatch_irq(int irq
, void *dev
)
332 struct arm_pmu
*armpmu
;
333 struct arm_pmu_platdata
*plat
;
335 u64 start_clock
, finish_clock
;
338 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
339 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
340 * do any necessary shifting, we just need to perform the first
343 armpmu
= *(void **)dev
;
345 plat
= armpmu_get_platdata(armpmu
);
347 start_clock
= sched_clock();
348 if (plat
&& plat
->handle_irq
)
349 ret
= plat
->handle_irq(irq
, armpmu
, armpmu
->handle_irq
);
351 ret
= armpmu
->handle_irq(irq
, armpmu
);
352 finish_clock
= sched_clock();
354 perf_sample_event_took(finish_clock
- start_clock
);
359 event_requires_mode_exclusion(struct perf_event_attr
*attr
)
361 return attr
->exclude_idle
|| attr
->exclude_user
||
362 attr
->exclude_kernel
|| attr
->exclude_hv
;
366 __hw_perf_event_init(struct perf_event
*event
)
368 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
369 struct hw_perf_event
*hwc
= &event
->hw
;
372 mapping
= armpmu
->map_event(event
);
375 pr_debug("event %x:%llx not supported\n", event
->attr
.type
,
381 * We don't assign an index until we actually place the event onto
382 * hardware. Use -1 to signify that we haven't decided where to put it
383 * yet. For SMP systems, each core has it's own PMU so we can't do any
384 * clever allocation or constraints checking at this point.
387 hwc
->config_base
= 0;
392 * Check whether we need to exclude the counter from certain modes.
394 if ((!armpmu
->set_event_filter
||
395 armpmu
->set_event_filter(hwc
, &event
->attr
)) &&
396 event_requires_mode_exclusion(&event
->attr
)) {
397 pr_debug("ARM performance counters do not support "
403 * Store the event encoding into the config_base field.
405 hwc
->config_base
|= (unsigned long)mapping
;
407 if (!is_sampling_event(event
)) {
409 * For non-sampling runs, limit the sample_period to half
410 * of the counter width. That way, the new counter value
411 * is far less likely to overtake the previous one unless
412 * you have some serious IRQ latency issues.
414 hwc
->sample_period
= armpmu
->max_period
>> 1;
415 hwc
->last_period
= hwc
->sample_period
;
416 local64_set(&hwc
->period_left
, hwc
->sample_period
);
419 if (event
->group_leader
!= event
) {
420 if (validate_group(event
) != 0)
427 static int armpmu_event_init(struct perf_event
*event
)
429 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
432 * Reject CPU-affine events for CPUs that are of a different class to
433 * that which this PMU handles. Process-following events (where
434 * event->cpu == -1) can be migrated between CPUs, and thus we have to
435 * reject them later (in armpmu_add) if they're scheduled on a
436 * different class of CPU.
438 if (event
->cpu
!= -1 &&
439 !cpumask_test_cpu(event
->cpu
, &armpmu
->supported_cpus
))
442 /* does not support taken branch sampling */
443 if (has_branch_stack(event
))
446 if (armpmu
->map_event(event
) == -ENOENT
)
449 return __hw_perf_event_init(event
);
452 static void armpmu_enable(struct pmu
*pmu
)
454 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
455 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
456 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
458 /* For task-bound events we may be called on other CPUs */
459 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
463 armpmu
->start(armpmu
);
466 static void armpmu_disable(struct pmu
*pmu
)
468 struct arm_pmu
*armpmu
= to_arm_pmu(pmu
);
470 /* For task-bound events we may be called on other CPUs */
471 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
474 armpmu
->stop(armpmu
);
478 * In heterogeneous systems, events are specific to a particular
479 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
480 * the same microarchitecture.
482 static int armpmu_filter_match(struct perf_event
*event
)
484 struct arm_pmu
*armpmu
= to_arm_pmu(event
->pmu
);
485 unsigned int cpu
= smp_processor_id();
488 ret
= cpumask_test_cpu(cpu
, &armpmu
->supported_cpus
);
489 if (ret
&& armpmu
->filter_match
)
490 return armpmu
->filter_match(event
);
495 static ssize_t
armpmu_cpumask_show(struct device
*dev
,
496 struct device_attribute
*attr
, char *buf
)
498 struct arm_pmu
*armpmu
= to_arm_pmu(dev_get_drvdata(dev
));
499 return cpumap_print_to_pagebuf(true, buf
, &armpmu
->supported_cpus
);
502 static DEVICE_ATTR(cpus
, S_IRUGO
, armpmu_cpumask_show
, NULL
);
504 static struct attribute
*armpmu_common_attrs
[] = {
509 static struct attribute_group armpmu_common_attr_group
= {
510 .attrs
= armpmu_common_attrs
,
513 /* Set at runtime when we know what CPU type we are. */
514 static struct arm_pmu
*__oprofile_cpu_pmu
;
517 * Despite the names, these two functions are CPU-specific and are used
518 * by the OProfile/perf code.
520 const char *perf_pmu_name(void)
522 if (!__oprofile_cpu_pmu
)
525 return __oprofile_cpu_pmu
->name
;
527 EXPORT_SYMBOL_GPL(perf_pmu_name
);
529 int perf_num_counters(void)
533 if (__oprofile_cpu_pmu
!= NULL
)
534 max_events
= __oprofile_cpu_pmu
->num_events
;
538 EXPORT_SYMBOL_GPL(perf_num_counters
);
540 void armpmu_free_irq(struct arm_pmu
*armpmu
, int cpu
)
542 struct pmu_hw_events __percpu
*hw_events
= armpmu
->hw_events
;
543 int irq
= per_cpu(hw_events
->irq
, cpu
);
545 if (!cpumask_test_and_clear_cpu(cpu
, &armpmu
->active_irqs
))
548 if (irq_is_percpu(irq
)) {
549 free_percpu_irq(irq
, &hw_events
->percpu_pmu
);
550 cpumask_clear(&armpmu
->active_irqs
);
554 free_irq(irq
, per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
557 void armpmu_free_irqs(struct arm_pmu
*armpmu
)
561 for_each_cpu(cpu
, &armpmu
->supported_cpus
)
562 armpmu_free_irq(armpmu
, cpu
);
565 int armpmu_request_irq(struct arm_pmu
*armpmu
, int cpu
)
568 struct pmu_hw_events __percpu
*hw_events
= armpmu
->hw_events
;
569 const irq_handler_t handler
= armpmu_dispatch_irq
;
570 int irq
= per_cpu(hw_events
->irq
, cpu
);
574 if (irq_is_percpu(irq
) && cpumask_empty(&armpmu
->active_irqs
)) {
575 err
= request_percpu_irq(irq
, handler
, "arm-pmu",
576 &hw_events
->percpu_pmu
);
577 } else if (irq_is_percpu(irq
)) {
578 int other_cpu
= cpumask_first(&armpmu
->active_irqs
);
579 int other_irq
= per_cpu(hw_events
->irq
, other_cpu
);
581 if (irq
!= other_irq
) {
582 pr_warn("mismatched PPIs detected.\n");
587 struct arm_pmu_platdata
*platdata
= armpmu_get_platdata(armpmu
);
588 unsigned long irq_flags
;
590 err
= irq_force_affinity(irq
, cpumask_of(cpu
));
592 if (err
&& num_possible_cpus() > 1) {
593 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
598 if (platdata
&& platdata
->irq_flags
) {
599 irq_flags
= platdata
->irq_flags
;
601 irq_flags
= IRQF_PERCPU
|
606 err
= request_irq(irq
, handler
, irq_flags
, "arm-pmu",
607 per_cpu_ptr(&hw_events
->percpu_pmu
, cpu
));
613 cpumask_set_cpu(cpu
, &armpmu
->active_irqs
);
617 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq
);
621 int armpmu_request_irqs(struct arm_pmu
*armpmu
)
625 for_each_cpu(cpu
, &armpmu
->supported_cpus
) {
626 err
= armpmu_request_irq(armpmu
, cpu
);
634 static int armpmu_get_cpu_irq(struct arm_pmu
*pmu
, int cpu
)
636 struct pmu_hw_events __percpu
*hw_events
= pmu
->hw_events
;
637 return per_cpu(hw_events
->irq
, cpu
);
641 * PMU hardware loses all context when a CPU goes offline.
642 * When a CPU is hotplugged back in, since some hardware registers are
643 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
644 * junk values out of them.
646 static int arm_perf_starting_cpu(unsigned int cpu
, struct hlist_node
*node
)
648 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
651 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
656 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
658 if (irq_is_percpu(irq
)) {
659 enable_percpu_irq(irq
, IRQ_TYPE_NONE
);
667 static int arm_perf_teardown_cpu(unsigned int cpu
, struct hlist_node
*node
)
669 struct arm_pmu
*pmu
= hlist_entry_safe(node
, struct arm_pmu
, node
);
672 if (!cpumask_test_cpu(cpu
, &pmu
->supported_cpus
))
675 irq
= armpmu_get_cpu_irq(pmu
, cpu
);
676 if (irq
&& irq_is_percpu(irq
))
677 disable_percpu_irq(irq
);
683 static void cpu_pm_pmu_setup(struct arm_pmu
*armpmu
, unsigned long cmd
)
685 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
686 struct perf_event
*event
;
689 for (idx
= 0; idx
< armpmu
->num_events
; idx
++) {
691 * If the counter is not used skip it, there is no
692 * need of stopping/restarting it.
694 if (!test_bit(idx
, hw_events
->used_mask
))
697 event
= hw_events
->events
[idx
];
702 * Stop and update the counter
704 armpmu_stop(event
, PERF_EF_UPDATE
);
707 case CPU_PM_ENTER_FAILED
:
709 * Restore and enable the counter.
710 * armpmu_start() indirectly calls
712 * perf_event_update_userpage()
714 * that requires RCU read locking to be functional,
715 * wrap the call within RCU_NONIDLE to make the
716 * RCU subsystem aware this cpu is not idle from
717 * an RCU perspective for the armpmu_start() call
720 RCU_NONIDLE(armpmu_start(event
, PERF_EF_RELOAD
));
728 static int cpu_pm_pmu_notify(struct notifier_block
*b
, unsigned long cmd
,
731 struct arm_pmu
*armpmu
= container_of(b
, struct arm_pmu
, cpu_pm_nb
);
732 struct pmu_hw_events
*hw_events
= this_cpu_ptr(armpmu
->hw_events
);
733 int enabled
= bitmap_weight(hw_events
->used_mask
, armpmu
->num_events
);
735 if (!cpumask_test_cpu(smp_processor_id(), &armpmu
->supported_cpus
))
739 * Always reset the PMU registers on power-up even if
740 * there are no events running.
742 if (cmd
== CPU_PM_EXIT
&& armpmu
->reset
)
743 armpmu
->reset(armpmu
);
750 armpmu
->stop(armpmu
);
751 cpu_pm_pmu_setup(armpmu
, cmd
);
754 cpu_pm_pmu_setup(armpmu
, cmd
);
755 case CPU_PM_ENTER_FAILED
:
756 armpmu
->start(armpmu
);
765 static int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
)
767 cpu_pmu
->cpu_pm_nb
.notifier_call
= cpu_pm_pmu_notify
;
768 return cpu_pm_register_notifier(&cpu_pmu
->cpu_pm_nb
);
771 static void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
)
773 cpu_pm_unregister_notifier(&cpu_pmu
->cpu_pm_nb
);
776 static inline int cpu_pm_pmu_register(struct arm_pmu
*cpu_pmu
) { return 0; }
777 static inline void cpu_pm_pmu_unregister(struct arm_pmu
*cpu_pmu
) { }
780 static int cpu_pmu_init(struct arm_pmu
*cpu_pmu
)
784 err
= cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING
,
789 err
= cpu_pm_pmu_register(cpu_pmu
);
796 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
802 static void cpu_pmu_destroy(struct arm_pmu
*cpu_pmu
)
804 cpu_pm_pmu_unregister(cpu_pmu
);
805 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING
,
809 struct arm_pmu
*armpmu_alloc(void)
814 pmu
= kzalloc(sizeof(*pmu
), GFP_KERNEL
);
816 pr_info("failed to allocate PMU device!\n");
820 pmu
->hw_events
= alloc_percpu(struct pmu_hw_events
);
821 if (!pmu
->hw_events
) {
822 pr_info("failed to allocate per-cpu PMU data.\n");
826 pmu
->pmu
= (struct pmu
) {
827 .pmu_enable
= armpmu_enable
,
828 .pmu_disable
= armpmu_disable
,
829 .event_init
= armpmu_event_init
,
832 .start
= armpmu_start
,
835 .filter_match
= armpmu_filter_match
,
836 .attr_groups
= pmu
->attr_groups
,
838 * This is a CPU PMU potentially in a heterogeneous
839 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
840 * and we have taken ctx sharing into account (e.g. with our
841 * pmu::filter_match callback and pmu::event_init group
844 .capabilities
= PERF_PMU_CAP_HETEROGENEOUS_CPUS
,
847 pmu
->attr_groups
[ARMPMU_ATTR_GROUP_COMMON
] =
848 &armpmu_common_attr_group
;
850 for_each_possible_cpu(cpu
) {
851 struct pmu_hw_events
*events
;
853 events
= per_cpu_ptr(pmu
->hw_events
, cpu
);
854 raw_spin_lock_init(&events
->pmu_lock
);
855 events
->percpu_pmu
= pmu
;
866 void armpmu_free(struct arm_pmu
*pmu
)
868 free_percpu(pmu
->hw_events
);
872 int armpmu_register(struct arm_pmu
*pmu
)
876 ret
= cpu_pmu_init(pmu
);
880 ret
= perf_pmu_register(&pmu
->pmu
, pmu
->name
, -1);
884 if (!__oprofile_cpu_pmu
)
885 __oprofile_cpu_pmu
= pmu
;
887 pr_info("enabled with %s PMU driver, %d counters available\n",
888 pmu
->name
, pmu
->num_events
);
893 cpu_pmu_destroy(pmu
);
897 static int arm_pmu_hp_init(void)
901 ret
= cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING
,
902 "perf/arm/pmu:starting",
903 arm_perf_starting_cpu
,
904 arm_perf_teardown_cpu
);
906 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
910 subsys_initcall(arm_pmu_hp_init
);