Revert "loop: Fix double mutex_unlock(&loop_ctl_mutex) in loop_control_ioctl()"
[linux-stable.git] / drivers / perf / arm_pmu.c
blob5e06917b4cefe89193481afd0db90284396a9399
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
12 #define pr_fmt(fmt) "hw perfevents: " fmt
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
27 #include <asm/irq_regs.h>
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 [PERF_COUNT_HW_CACHE_MAX]
32 [PERF_COUNT_HW_CACHE_OP_MAX]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 u64 config)
36 unsigned int cache_type, cache_op, cache_result, ret;
38 cache_type = (config >> 0) & 0xff;
39 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 return -EINVAL;
42 cache_op = (config >> 8) & 0xff;
43 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 return -EINVAL;
46 cache_result = (config >> 16) & 0xff;
47 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 return -EINVAL;
50 if (!cache_map)
51 return -ENOENT;
53 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
55 if (ret == CACHE_OP_UNSUPPORTED)
56 return -ENOENT;
58 return ret;
61 static int
62 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
64 int mapping;
66 if (config >= PERF_COUNT_HW_MAX)
67 return -EINVAL;
69 if (!event_map)
70 return -ENOENT;
72 mapping = (*event_map)[config];
73 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
76 static int
77 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
79 return (int)(config & raw_event_mask);
82 int
83 armpmu_map_event(struct perf_event *event,
84 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
85 const unsigned (*cache_map)
86 [PERF_COUNT_HW_CACHE_MAX]
87 [PERF_COUNT_HW_CACHE_OP_MAX]
88 [PERF_COUNT_HW_CACHE_RESULT_MAX],
89 u32 raw_event_mask)
91 u64 config = event->attr.config;
92 int type = event->attr.type;
94 if (type == event->pmu->type)
95 return armpmu_map_raw_event(raw_event_mask, config);
97 switch (type) {
98 case PERF_TYPE_HARDWARE:
99 return armpmu_map_hw_event(event_map, config);
100 case PERF_TYPE_HW_CACHE:
101 return armpmu_map_cache_event(cache_map, config);
102 case PERF_TYPE_RAW:
103 return armpmu_map_raw_event(raw_event_mask, config);
106 return -ENOENT;
109 int armpmu_event_set_period(struct perf_event *event)
111 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
112 struct hw_perf_event *hwc = &event->hw;
113 s64 left = local64_read(&hwc->period_left);
114 s64 period = hwc->sample_period;
115 int ret = 0;
117 if (unlikely(left <= -period)) {
118 left = period;
119 local64_set(&hwc->period_left, left);
120 hwc->last_period = period;
121 ret = 1;
124 if (unlikely(left <= 0)) {
125 left += period;
126 local64_set(&hwc->period_left, left);
127 hwc->last_period = period;
128 ret = 1;
132 * Limit the maximum period to prevent the counter value
133 * from overtaking the one we are about to program. In
134 * effect we are reducing max_period to account for
135 * interrupt latency (and we are being very conservative).
137 if (left > (armpmu->max_period >> 1))
138 left = armpmu->max_period >> 1;
140 local64_set(&hwc->prev_count, (u64)-left);
142 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
144 perf_event_update_userpage(event);
146 return ret;
149 u64 armpmu_event_update(struct perf_event *event)
151 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
152 struct hw_perf_event *hwc = &event->hw;
153 u64 delta, prev_raw_count, new_raw_count;
155 again:
156 prev_raw_count = local64_read(&hwc->prev_count);
157 new_raw_count = armpmu->read_counter(event);
159 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
160 new_raw_count) != prev_raw_count)
161 goto again;
163 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
165 local64_add(delta, &event->count);
166 local64_sub(delta, &hwc->period_left);
168 return new_raw_count;
171 static void
172 armpmu_read(struct perf_event *event)
174 armpmu_event_update(event);
177 static void
178 armpmu_stop(struct perf_event *event, int flags)
180 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
181 struct hw_perf_event *hwc = &event->hw;
184 * ARM pmu always has to update the counter, so ignore
185 * PERF_EF_UPDATE, see comments in armpmu_start().
187 if (!(hwc->state & PERF_HES_STOPPED)) {
188 armpmu->disable(event);
189 armpmu_event_update(event);
190 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
194 static void armpmu_start(struct perf_event *event, int flags)
196 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
197 struct hw_perf_event *hwc = &event->hw;
200 * ARM pmu always has to reprogram the period, so ignore
201 * PERF_EF_RELOAD, see the comment below.
203 if (flags & PERF_EF_RELOAD)
204 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
206 hwc->state = 0;
208 * Set the period again. Some counters can't be stopped, so when we
209 * were stopped we simply disabled the IRQ source and the counter
210 * may have been left counting. If we don't do this step then we may
211 * get an interrupt too soon or *way* too late if the overflow has
212 * happened since disabling.
214 armpmu_event_set_period(event);
215 armpmu->enable(event);
218 static void
219 armpmu_del(struct perf_event *event, int flags)
221 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
222 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
223 struct hw_perf_event *hwc = &event->hw;
224 int idx = hwc->idx;
226 armpmu_stop(event, PERF_EF_UPDATE);
227 hw_events->events[idx] = NULL;
228 clear_bit(idx, hw_events->used_mask);
229 if (armpmu->clear_event_idx)
230 armpmu->clear_event_idx(hw_events, event);
232 perf_event_update_userpage(event);
235 static int
236 armpmu_add(struct perf_event *event, int flags)
238 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
239 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
240 struct hw_perf_event *hwc = &event->hw;
241 int idx;
243 /* An event following a process won't be stopped earlier */
244 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
245 return -ENOENT;
247 /* If we don't have a space for the counter then finish early. */
248 idx = armpmu->get_event_idx(hw_events, event);
249 if (idx < 0)
250 return idx;
253 * If there is an event in the counter we are going to use then make
254 * sure it is disabled.
256 event->hw.idx = idx;
257 armpmu->disable(event);
258 hw_events->events[idx] = event;
260 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
261 if (flags & PERF_EF_START)
262 armpmu_start(event, PERF_EF_RELOAD);
264 /* Propagate our changes to the userspace mapping. */
265 perf_event_update_userpage(event);
267 return 0;
270 static int
271 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
272 struct perf_event *event)
274 struct arm_pmu *armpmu;
276 if (is_software_event(event))
277 return 1;
280 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
281 * core perf code won't check that the pmu->ctx == leader->ctx
282 * until after pmu->event_init(event).
284 if (event->pmu != pmu)
285 return 0;
287 if (event->state < PERF_EVENT_STATE_OFF)
288 return 1;
290 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
291 return 1;
293 armpmu = to_arm_pmu(event->pmu);
294 return armpmu->get_event_idx(hw_events, event) >= 0;
297 static int
298 validate_group(struct perf_event *event)
300 struct perf_event *sibling, *leader = event->group_leader;
301 struct pmu_hw_events fake_pmu;
304 * Initialise the fake PMU. We only need to populate the
305 * used_mask for the purposes of validation.
307 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
309 if (!validate_event(event->pmu, &fake_pmu, leader))
310 return -EINVAL;
312 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
313 if (!validate_event(event->pmu, &fake_pmu, sibling))
314 return -EINVAL;
317 if (!validate_event(event->pmu, &fake_pmu, event))
318 return -EINVAL;
320 return 0;
323 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
325 struct platform_device *pdev = armpmu->plat_device;
327 return pdev ? dev_get_platdata(&pdev->dev) : NULL;
330 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
332 struct arm_pmu *armpmu;
333 struct arm_pmu_platdata *plat;
334 int ret;
335 u64 start_clock, finish_clock;
338 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
339 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
340 * do any necessary shifting, we just need to perform the first
341 * dereference.
343 armpmu = *(void **)dev;
345 plat = armpmu_get_platdata(armpmu);
347 start_clock = sched_clock();
348 if (plat && plat->handle_irq)
349 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
350 else
351 ret = armpmu->handle_irq(irq, armpmu);
352 finish_clock = sched_clock();
354 perf_sample_event_took(finish_clock - start_clock);
355 return ret;
358 static int
359 event_requires_mode_exclusion(struct perf_event_attr *attr)
361 return attr->exclude_idle || attr->exclude_user ||
362 attr->exclude_kernel || attr->exclude_hv;
365 static int
366 __hw_perf_event_init(struct perf_event *event)
368 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
369 struct hw_perf_event *hwc = &event->hw;
370 int mapping;
372 mapping = armpmu->map_event(event);
374 if (mapping < 0) {
375 pr_debug("event %x:%llx not supported\n", event->attr.type,
376 event->attr.config);
377 return mapping;
381 * We don't assign an index until we actually place the event onto
382 * hardware. Use -1 to signify that we haven't decided where to put it
383 * yet. For SMP systems, each core has it's own PMU so we can't do any
384 * clever allocation or constraints checking at this point.
386 hwc->idx = -1;
387 hwc->config_base = 0;
388 hwc->config = 0;
389 hwc->event_base = 0;
392 * Check whether we need to exclude the counter from certain modes.
394 if ((!armpmu->set_event_filter ||
395 armpmu->set_event_filter(hwc, &event->attr)) &&
396 event_requires_mode_exclusion(&event->attr)) {
397 pr_debug("ARM performance counters do not support "
398 "mode exclusion\n");
399 return -EOPNOTSUPP;
403 * Store the event encoding into the config_base field.
405 hwc->config_base |= (unsigned long)mapping;
407 if (!is_sampling_event(event)) {
409 * For non-sampling runs, limit the sample_period to half
410 * of the counter width. That way, the new counter value
411 * is far less likely to overtake the previous one unless
412 * you have some serious IRQ latency issues.
414 hwc->sample_period = armpmu->max_period >> 1;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
419 if (event->group_leader != event) {
420 if (validate_group(event) != 0)
421 return -EINVAL;
424 return 0;
427 static int armpmu_event_init(struct perf_event *event)
429 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
432 * Reject CPU-affine events for CPUs that are of a different class to
433 * that which this PMU handles. Process-following events (where
434 * event->cpu == -1) can be migrated between CPUs, and thus we have to
435 * reject them later (in armpmu_add) if they're scheduled on a
436 * different class of CPU.
438 if (event->cpu != -1 &&
439 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
440 return -ENOENT;
442 /* does not support taken branch sampling */
443 if (has_branch_stack(event))
444 return -EOPNOTSUPP;
446 if (armpmu->map_event(event) == -ENOENT)
447 return -ENOENT;
449 return __hw_perf_event_init(event);
452 static void armpmu_enable(struct pmu *pmu)
454 struct arm_pmu *armpmu = to_arm_pmu(pmu);
455 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
456 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
458 /* For task-bound events we may be called on other CPUs */
459 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
460 return;
462 if (enabled)
463 armpmu->start(armpmu);
466 static void armpmu_disable(struct pmu *pmu)
468 struct arm_pmu *armpmu = to_arm_pmu(pmu);
470 /* For task-bound events we may be called on other CPUs */
471 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
472 return;
474 armpmu->stop(armpmu);
478 * In heterogeneous systems, events are specific to a particular
479 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
480 * the same microarchitecture.
482 static int armpmu_filter_match(struct perf_event *event)
484 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
485 unsigned int cpu = smp_processor_id();
486 int ret;
488 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
489 if (ret && armpmu->filter_match)
490 return armpmu->filter_match(event);
492 return ret;
495 static ssize_t armpmu_cpumask_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
498 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
499 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
502 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
504 static struct attribute *armpmu_common_attrs[] = {
505 &dev_attr_cpus.attr,
506 NULL,
509 static struct attribute_group armpmu_common_attr_group = {
510 .attrs = armpmu_common_attrs,
513 /* Set at runtime when we know what CPU type we are. */
514 static struct arm_pmu *__oprofile_cpu_pmu;
517 * Despite the names, these two functions are CPU-specific and are used
518 * by the OProfile/perf code.
520 const char *perf_pmu_name(void)
522 if (!__oprofile_cpu_pmu)
523 return NULL;
525 return __oprofile_cpu_pmu->name;
527 EXPORT_SYMBOL_GPL(perf_pmu_name);
529 int perf_num_counters(void)
531 int max_events = 0;
533 if (__oprofile_cpu_pmu != NULL)
534 max_events = __oprofile_cpu_pmu->num_events;
536 return max_events;
538 EXPORT_SYMBOL_GPL(perf_num_counters);
540 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
542 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
543 int irq = per_cpu(hw_events->irq, cpu);
545 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
546 return;
548 if (irq_is_percpu(irq)) {
549 free_percpu_irq(irq, &hw_events->percpu_pmu);
550 cpumask_clear(&armpmu->active_irqs);
551 return;
554 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
557 void armpmu_free_irqs(struct arm_pmu *armpmu)
559 int cpu;
561 for_each_cpu(cpu, &armpmu->supported_cpus)
562 armpmu_free_irq(armpmu, cpu);
565 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
567 int err = 0;
568 struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
569 const irq_handler_t handler = armpmu_dispatch_irq;
570 int irq = per_cpu(hw_events->irq, cpu);
571 if (!irq)
572 return 0;
574 if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
575 err = request_percpu_irq(irq, handler, "arm-pmu",
576 &hw_events->percpu_pmu);
577 } else if (irq_is_percpu(irq)) {
578 int other_cpu = cpumask_first(&armpmu->active_irqs);
579 int other_irq = per_cpu(hw_events->irq, other_cpu);
581 if (irq != other_irq) {
582 pr_warn("mismatched PPIs detected.\n");
583 err = -EINVAL;
584 goto err_out;
586 } else {
587 struct arm_pmu_platdata *platdata = armpmu_get_platdata(armpmu);
588 unsigned long irq_flags;
590 err = irq_force_affinity(irq, cpumask_of(cpu));
592 if (err && num_possible_cpus() > 1) {
593 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
594 irq, cpu);
595 goto err_out;
598 if (platdata && platdata->irq_flags) {
599 irq_flags = platdata->irq_flags;
600 } else {
601 irq_flags = IRQF_PERCPU |
602 IRQF_NOBALANCING |
603 IRQF_NO_THREAD;
606 err = request_irq(irq, handler, irq_flags, "arm-pmu",
607 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
610 if (err)
611 goto err_out;
613 cpumask_set_cpu(cpu, &armpmu->active_irqs);
614 return 0;
616 err_out:
617 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
618 return err;
621 int armpmu_request_irqs(struct arm_pmu *armpmu)
623 int cpu, err;
625 for_each_cpu(cpu, &armpmu->supported_cpus) {
626 err = armpmu_request_irq(armpmu, cpu);
627 if (err)
628 break;
631 return err;
634 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
636 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
637 return per_cpu(hw_events->irq, cpu);
641 * PMU hardware loses all context when a CPU goes offline.
642 * When a CPU is hotplugged back in, since some hardware registers are
643 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
644 * junk values out of them.
646 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
648 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
649 int irq;
651 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
652 return 0;
653 if (pmu->reset)
654 pmu->reset(pmu);
656 irq = armpmu_get_cpu_irq(pmu, cpu);
657 if (irq) {
658 if (irq_is_percpu(irq)) {
659 enable_percpu_irq(irq, IRQ_TYPE_NONE);
660 return 0;
664 return 0;
667 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
669 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
670 int irq;
672 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
673 return 0;
675 irq = armpmu_get_cpu_irq(pmu, cpu);
676 if (irq && irq_is_percpu(irq))
677 disable_percpu_irq(irq);
679 return 0;
682 #ifdef CONFIG_CPU_PM
683 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
685 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
686 struct perf_event *event;
687 int idx;
689 for (idx = 0; idx < armpmu->num_events; idx++) {
691 * If the counter is not used skip it, there is no
692 * need of stopping/restarting it.
694 if (!test_bit(idx, hw_events->used_mask))
695 continue;
697 event = hw_events->events[idx];
699 switch (cmd) {
700 case CPU_PM_ENTER:
702 * Stop and update the counter
704 armpmu_stop(event, PERF_EF_UPDATE);
705 break;
706 case CPU_PM_EXIT:
707 case CPU_PM_ENTER_FAILED:
709 * Restore and enable the counter.
710 * armpmu_start() indirectly calls
712 * perf_event_update_userpage()
714 * that requires RCU read locking to be functional,
715 * wrap the call within RCU_NONIDLE to make the
716 * RCU subsystem aware this cpu is not idle from
717 * an RCU perspective for the armpmu_start() call
718 * duration.
720 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
721 break;
722 default:
723 break;
728 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
729 void *v)
731 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
732 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
733 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
735 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
736 return NOTIFY_DONE;
739 * Always reset the PMU registers on power-up even if
740 * there are no events running.
742 if (cmd == CPU_PM_EXIT && armpmu->reset)
743 armpmu->reset(armpmu);
745 if (!enabled)
746 return NOTIFY_OK;
748 switch (cmd) {
749 case CPU_PM_ENTER:
750 armpmu->stop(armpmu);
751 cpu_pm_pmu_setup(armpmu, cmd);
752 break;
753 case CPU_PM_EXIT:
754 cpu_pm_pmu_setup(armpmu, cmd);
755 case CPU_PM_ENTER_FAILED:
756 armpmu->start(armpmu);
757 break;
758 default:
759 return NOTIFY_DONE;
762 return NOTIFY_OK;
765 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
767 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
768 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
771 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
773 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
775 #else
776 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
777 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
778 #endif
780 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
782 int err;
784 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
785 &cpu_pmu->node);
786 if (err)
787 goto out;
789 err = cpu_pm_pmu_register(cpu_pmu);
790 if (err)
791 goto out_unregister;
793 return 0;
795 out_unregister:
796 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
797 &cpu_pmu->node);
798 out:
799 return err;
802 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
804 cpu_pm_pmu_unregister(cpu_pmu);
805 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
806 &cpu_pmu->node);
809 struct arm_pmu *armpmu_alloc(void)
811 struct arm_pmu *pmu;
812 int cpu;
814 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
815 if (!pmu) {
816 pr_info("failed to allocate PMU device!\n");
817 goto out;
820 pmu->hw_events = alloc_percpu(struct pmu_hw_events);
821 if (!pmu->hw_events) {
822 pr_info("failed to allocate per-cpu PMU data.\n");
823 goto out_free_pmu;
826 pmu->pmu = (struct pmu) {
827 .pmu_enable = armpmu_enable,
828 .pmu_disable = armpmu_disable,
829 .event_init = armpmu_event_init,
830 .add = armpmu_add,
831 .del = armpmu_del,
832 .start = armpmu_start,
833 .stop = armpmu_stop,
834 .read = armpmu_read,
835 .filter_match = armpmu_filter_match,
836 .attr_groups = pmu->attr_groups,
838 * This is a CPU PMU potentially in a heterogeneous
839 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
840 * and we have taken ctx sharing into account (e.g. with our
841 * pmu::filter_match callback and pmu::event_init group
842 * validation).
844 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
847 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
848 &armpmu_common_attr_group;
850 for_each_possible_cpu(cpu) {
851 struct pmu_hw_events *events;
853 events = per_cpu_ptr(pmu->hw_events, cpu);
854 raw_spin_lock_init(&events->pmu_lock);
855 events->percpu_pmu = pmu;
858 return pmu;
860 out_free_pmu:
861 kfree(pmu);
862 out:
863 return NULL;
866 void armpmu_free(struct arm_pmu *pmu)
868 free_percpu(pmu->hw_events);
869 kfree(pmu);
872 int armpmu_register(struct arm_pmu *pmu)
874 int ret;
876 ret = cpu_pmu_init(pmu);
877 if (ret)
878 return ret;
880 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
881 if (ret)
882 goto out_destroy;
884 if (!__oprofile_cpu_pmu)
885 __oprofile_cpu_pmu = pmu;
887 pr_info("enabled with %s PMU driver, %d counters available\n",
888 pmu->name, pmu->num_events);
890 return 0;
892 out_destroy:
893 cpu_pmu_destroy(pmu);
894 return ret;
897 static int arm_pmu_hp_init(void)
899 int ret;
901 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
902 "perf/arm/pmu:starting",
903 arm_perf_starting_cpu,
904 arm_perf_teardown_cpu);
905 if (ret)
906 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
907 ret);
908 return ret;
910 subsys_initcall(arm_pmu_hp_init);