1 // SPDX-License-Identifier: GPL-2.0
3 * Virtual Memory Map support
5 * (C) 2007 sgi. Christoph Lameter.
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
22 #include <linux/mmzone.h>
23 #include <linux/bootmem.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
35 * Allocate a block of memory to be used to back the virtual memory map
36 * or to back the page tables that are used to create the mapping.
37 * Uses the main allocators if they are available, else bootmem.
40 static void * __ref
__earlyonly_bootmem_alloc(int node
,
45 return memblock_virt_alloc_try_nid(size
, align
, goal
,
46 BOOTMEM_ALLOC_ACCESSIBLE
, node
);
49 static void *vmemmap_buf
;
50 static void *vmemmap_buf_end
;
52 void * __meminit
vmemmap_alloc_block(unsigned long size
, int node
)
54 /* If the main allocator is up use that, fallback to bootmem. */
55 if (slab_is_available()) {
58 page
= alloc_pages_node(node
,
59 GFP_KERNEL
| __GFP_ZERO
| __GFP_RETRY_MAYFAIL
,
62 return page_address(page
);
65 return __earlyonly_bootmem_alloc(node
, size
, size
,
66 __pa(MAX_DMA_ADDRESS
));
69 /* need to make sure size is all the same during early stage */
70 static void * __meminit
alloc_block_buf(unsigned long size
, int node
)
75 return vmemmap_alloc_block(size
, node
);
77 /* take the from buf */
78 ptr
= (void *)ALIGN((unsigned long)vmemmap_buf
, size
);
79 if (ptr
+ size
> vmemmap_buf_end
)
80 return vmemmap_alloc_block(size
, node
);
82 vmemmap_buf
= ptr
+ size
;
87 static unsigned long __meminit
vmem_altmap_next_pfn(struct vmem_altmap
*altmap
)
89 return altmap
->base_pfn
+ altmap
->reserve
+ altmap
->alloc
93 static unsigned long __meminit
vmem_altmap_nr_free(struct vmem_altmap
*altmap
)
95 unsigned long allocated
= altmap
->alloc
+ altmap
->align
;
97 if (altmap
->free
> allocated
)
98 return altmap
->free
- allocated
;
103 * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
104 * @altmap - reserved page pool for the allocation
105 * @nr_pfns - size (in pages) of the allocation
107 * Allocations are aligned to the size of the request
109 static unsigned long __meminit
vmem_altmap_alloc(struct vmem_altmap
*altmap
,
110 unsigned long nr_pfns
)
112 unsigned long pfn
= vmem_altmap_next_pfn(altmap
);
113 unsigned long nr_align
;
115 nr_align
= 1UL << find_first_bit(&nr_pfns
, BITS_PER_LONG
);
116 nr_align
= ALIGN(pfn
, nr_align
) - pfn
;
118 if (nr_pfns
+ nr_align
> vmem_altmap_nr_free(altmap
))
120 altmap
->alloc
+= nr_pfns
;
121 altmap
->align
+= nr_align
;
122 return pfn
+ nr_align
;
125 static void * __meminit
altmap_alloc_block_buf(unsigned long size
,
126 struct vmem_altmap
*altmap
)
128 unsigned long pfn
, nr_pfns
;
131 if (size
& ~PAGE_MASK
) {
132 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
137 nr_pfns
= size
>> PAGE_SHIFT
;
138 pfn
= vmem_altmap_alloc(altmap
, nr_pfns
);
140 ptr
= __va(__pfn_to_phys(pfn
));
143 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
144 __func__
, pfn
, altmap
->alloc
, altmap
->align
, nr_pfns
);
149 /* need to make sure size is all the same during early stage */
150 void * __meminit
__vmemmap_alloc_block_buf(unsigned long size
, int node
,
151 struct vmem_altmap
*altmap
)
154 return altmap_alloc_block_buf(size
, altmap
);
155 return alloc_block_buf(size
, node
);
158 void __meminit
vmemmap_verify(pte_t
*pte
, int node
,
159 unsigned long start
, unsigned long end
)
161 unsigned long pfn
= pte_pfn(*pte
);
162 int actual_node
= early_pfn_to_nid(pfn
);
164 if (node_distance(actual_node
, node
) > LOCAL_DISTANCE
)
165 pr_warn("[%lx-%lx] potential offnode page_structs\n",
169 pte_t
* __meminit
vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
)
171 pte_t
*pte
= pte_offset_kernel(pmd
, addr
);
172 if (pte_none(*pte
)) {
174 void *p
= alloc_block_buf(PAGE_SIZE
, node
);
177 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
, PAGE_KERNEL
);
178 set_pte_at(&init_mm
, addr
, pte
, entry
);
183 pmd_t
* __meminit
vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
)
185 pmd_t
*pmd
= pmd_offset(pud
, addr
);
186 if (pmd_none(*pmd
)) {
187 void *p
= vmemmap_alloc_block(PAGE_SIZE
, node
);
190 pmd_populate_kernel(&init_mm
, pmd
, p
);
195 pud_t
* __meminit
vmemmap_pud_populate(p4d_t
*p4d
, unsigned long addr
, int node
)
197 pud_t
*pud
= pud_offset(p4d
, addr
);
198 if (pud_none(*pud
)) {
199 void *p
= vmemmap_alloc_block(PAGE_SIZE
, node
);
202 pud_populate(&init_mm
, pud
, p
);
207 p4d_t
* __meminit
vmemmap_p4d_populate(pgd_t
*pgd
, unsigned long addr
, int node
)
209 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
210 if (p4d_none(*p4d
)) {
211 void *p
= vmemmap_alloc_block(PAGE_SIZE
, node
);
214 p4d_populate(&init_mm
, p4d
, p
);
219 pgd_t
* __meminit
vmemmap_pgd_populate(unsigned long addr
, int node
)
221 pgd_t
*pgd
= pgd_offset_k(addr
);
222 if (pgd_none(*pgd
)) {
223 void *p
= vmemmap_alloc_block(PAGE_SIZE
, node
);
226 pgd_populate(&init_mm
, pgd
, p
);
231 int __meminit
vmemmap_populate_basepages(unsigned long start
,
232 unsigned long end
, int node
)
234 unsigned long addr
= start
;
241 for (; addr
< end
; addr
+= PAGE_SIZE
) {
242 pgd
= vmemmap_pgd_populate(addr
, node
);
245 p4d
= vmemmap_p4d_populate(pgd
, addr
, node
);
248 pud
= vmemmap_pud_populate(p4d
, addr
, node
);
251 pmd
= vmemmap_pmd_populate(pud
, addr
, node
);
254 pte
= vmemmap_pte_populate(pmd
, addr
, node
);
257 vmemmap_verify(pte
, node
, addr
, addr
+ PAGE_SIZE
);
263 struct page
* __meminit
sparse_mem_map_populate(unsigned long pnum
, int nid
)
269 map
= pfn_to_page(pnum
* PAGES_PER_SECTION
);
270 start
= (unsigned long)map
;
271 end
= (unsigned long)(map
+ PAGES_PER_SECTION
);
273 if (vmemmap_populate(start
, end
, nid
))
279 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
280 unsigned long pnum_begin
,
281 unsigned long pnum_end
,
282 unsigned long map_count
, int nodeid
)
285 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
286 void *vmemmap_buf_start
;
288 size
= ALIGN(size
, PMD_SIZE
);
289 vmemmap_buf_start
= __earlyonly_bootmem_alloc(nodeid
, size
* map_count
,
290 PMD_SIZE
, __pa(MAX_DMA_ADDRESS
));
292 if (vmemmap_buf_start
) {
293 vmemmap_buf
= vmemmap_buf_start
;
294 vmemmap_buf_end
= vmemmap_buf_start
+ size
* map_count
;
297 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
298 struct mem_section
*ms
;
300 if (!present_section_nr(pnum
))
303 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
306 ms
= __nr_to_section(pnum
);
307 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
309 ms
->section_mem_map
= 0;
312 if (vmemmap_buf_start
) {
313 /* need to free left buf */
314 memblock_free_early(__pa(vmemmap_buf
),
315 vmemmap_buf_end
- vmemmap_buf
);
317 vmemmap_buf_end
= NULL
;