1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/compiler.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
22 #include <linux/memcontrol.h>
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kmem.h>
29 enum slab_state slab_state
;
30 LIST_HEAD(slab_caches
);
31 DEFINE_MUTEX(slab_mutex
);
32 struct kmem_cache
*kmem_cache
;
34 static LIST_HEAD(slab_caches_to_rcu_destroy
);
35 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
36 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
37 slab_caches_to_rcu_destroy_workfn
);
40 * Set of flags that will prevent slab merging
42 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
43 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
44 SLAB_FAILSLAB | SLAB_KASAN)
46 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
50 * Merge control. If this is set then no merging of slab caches will occur.
52 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
54 static int __init
setup_slab_nomerge(char *str
)
61 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
64 __setup("slab_nomerge", setup_slab_nomerge
);
67 * Determine the size of a slab object
69 unsigned int kmem_cache_size(struct kmem_cache
*s
)
71 return s
->object_size
;
73 EXPORT_SYMBOL(kmem_cache_size
);
75 #ifdef CONFIG_DEBUG_VM
76 static int kmem_cache_sanity_check(const char *name
, size_t size
)
78 struct kmem_cache
*s
= NULL
;
80 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
81 size
> KMALLOC_MAX_SIZE
) {
82 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
86 list_for_each_entry(s
, &slab_caches
, list
) {
91 * This happens when the module gets unloaded and doesn't
92 * destroy its slab cache and no-one else reuses the vmalloc
93 * area of the module. Print a warning.
95 res
= probe_kernel_address(s
->name
, tmp
);
97 pr_err("Slab cache with size %d has lost its name\n",
103 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
107 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
113 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
117 for (i
= 0; i
< nr
; i
++) {
119 kmem_cache_free(s
, p
[i
]);
125 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
130 for (i
= 0; i
< nr
; i
++) {
131 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
133 __kmem_cache_free_bulk(s
, i
, p
);
140 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
142 LIST_HEAD(slab_root_caches
);
144 void slab_init_memcg_params(struct kmem_cache
*s
)
146 s
->memcg_params
.root_cache
= NULL
;
147 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
148 INIT_LIST_HEAD(&s
->memcg_params
.children
);
151 static int init_memcg_params(struct kmem_cache
*s
,
152 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
154 struct memcg_cache_array
*arr
;
157 s
->memcg_params
.root_cache
= root_cache
;
158 s
->memcg_params
.memcg
= memcg
;
159 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
160 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
164 slab_init_memcg_params(s
);
166 if (!memcg_nr_cache_ids
)
169 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
170 memcg_nr_cache_ids
* sizeof(void *),
175 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
179 static void destroy_memcg_params(struct kmem_cache
*s
)
181 if (is_root_cache(s
))
182 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
185 static void free_memcg_params(struct rcu_head
*rcu
)
187 struct memcg_cache_array
*old
;
189 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
193 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
195 struct memcg_cache_array
*old
, *new;
197 new = kvzalloc(sizeof(struct memcg_cache_array
) +
198 new_array_size
* sizeof(void *), GFP_KERNEL
);
202 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
203 lockdep_is_held(&slab_mutex
));
205 memcpy(new->entries
, old
->entries
,
206 memcg_nr_cache_ids
* sizeof(void *));
208 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
210 call_rcu(&old
->rcu
, free_memcg_params
);
214 int memcg_update_all_caches(int num_memcgs
)
216 struct kmem_cache
*s
;
219 mutex_lock(&slab_mutex
);
220 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
221 ret
= update_memcg_params(s
, num_memcgs
);
223 * Instead of freeing the memory, we'll just leave the caches
224 * up to this point in an updated state.
229 mutex_unlock(&slab_mutex
);
233 void memcg_link_cache(struct kmem_cache
*s
)
235 if (is_root_cache(s
)) {
236 list_add(&s
->root_caches_node
, &slab_root_caches
);
238 list_add(&s
->memcg_params
.children_node
,
239 &s
->memcg_params
.root_cache
->memcg_params
.children
);
240 list_add(&s
->memcg_params
.kmem_caches_node
,
241 &s
->memcg_params
.memcg
->kmem_caches
);
245 static void memcg_unlink_cache(struct kmem_cache
*s
)
247 if (is_root_cache(s
)) {
248 list_del(&s
->root_caches_node
);
250 list_del(&s
->memcg_params
.children_node
);
251 list_del(&s
->memcg_params
.kmem_caches_node
);
255 static inline int init_memcg_params(struct kmem_cache
*s
,
256 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
261 static inline void destroy_memcg_params(struct kmem_cache
*s
)
265 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
268 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
271 * Find a mergeable slab cache
273 int slab_unmergeable(struct kmem_cache
*s
)
275 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
278 if (!is_root_cache(s
))
285 * We may have set a slab to be unmergeable during bootstrap.
293 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
294 unsigned long flags
, const char *name
, void (*ctor
)(void *))
296 struct kmem_cache
*s
;
304 size
= ALIGN(size
, sizeof(void *));
305 align
= calculate_alignment(flags
, align
, size
);
306 size
= ALIGN(size
, align
);
307 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
309 if (flags
& SLAB_NEVER_MERGE
)
312 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
313 if (slab_unmergeable(s
))
319 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
322 * Check if alignment is compatible.
323 * Courtesy of Adrian Drzewiecki
325 if ((s
->size
& ~(align
- 1)) != s
->size
)
328 if (s
->size
- size
>= sizeof(void *))
331 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
332 (align
> s
->align
|| s
->align
% align
))
341 * Figure out what the alignment of the objects will be given a set of
342 * flags, a user specified alignment and the size of the objects.
344 unsigned long calculate_alignment(unsigned long flags
,
345 unsigned long align
, unsigned long size
)
348 * If the user wants hardware cache aligned objects then follow that
349 * suggestion if the object is sufficiently large.
351 * The hardware cache alignment cannot override the specified
352 * alignment though. If that is greater then use it.
354 if (flags
& SLAB_HWCACHE_ALIGN
) {
355 unsigned long ralign
= cache_line_size();
356 while (size
<= ralign
/ 2)
358 align
= max(align
, ralign
);
361 if (align
< ARCH_SLAB_MINALIGN
)
362 align
= ARCH_SLAB_MINALIGN
;
364 return ALIGN(align
, sizeof(void *));
367 static struct kmem_cache
*create_cache(const char *name
,
368 size_t object_size
, size_t size
, size_t align
,
369 unsigned long flags
, void (*ctor
)(void *),
370 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
372 struct kmem_cache
*s
;
376 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
381 s
->object_size
= object_size
;
386 err
= init_memcg_params(s
, memcg
, root_cache
);
390 err
= __kmem_cache_create(s
, flags
);
395 list_add(&s
->list
, &slab_caches
);
403 destroy_memcg_params(s
);
404 kmem_cache_free(kmem_cache
, s
);
409 * kmem_cache_create - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
414 * @ctor: A constructor for the objects.
416 * Returns a ptr to the cache on success, NULL on failure.
417 * Cannot be called within a interrupt, but can be interrupted.
418 * The @ctor is run when new pages are allocated by the cache.
422 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
423 * to catch references to uninitialised memory.
425 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
426 * for buffer overruns.
428 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
429 * cacheline. This can be beneficial if you're counting cycles as closely
433 kmem_cache_create(const char *name
, size_t size
, size_t align
,
434 unsigned long flags
, void (*ctor
)(void *))
436 struct kmem_cache
*s
= NULL
;
437 const char *cache_name
;
442 memcg_get_cache_ids();
444 mutex_lock(&slab_mutex
);
446 err
= kmem_cache_sanity_check(name
, size
);
451 /* Refuse requests with allocator specific flags */
452 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
458 * Some allocators will constraint the set of valid flags to a subset
459 * of all flags. We expect them to define CACHE_CREATE_MASK in this
460 * case, and we'll just provide them with a sanitized version of the
463 flags
&= CACHE_CREATE_MASK
;
465 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
469 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
475 s
= create_cache(cache_name
, size
, size
,
476 calculate_alignment(flags
, align
, size
),
477 flags
, ctor
, NULL
, NULL
);
480 kfree_const(cache_name
);
484 mutex_unlock(&slab_mutex
);
486 memcg_put_cache_ids();
491 if (flags
& SLAB_PANIC
)
492 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
495 pr_warn("kmem_cache_create(%s) failed with error %d\n",
503 EXPORT_SYMBOL(kmem_cache_create
);
505 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
507 LIST_HEAD(to_destroy
);
508 struct kmem_cache
*s
, *s2
;
511 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
512 * @slab_caches_to_rcu_destroy list. The slab pages are freed
513 * through RCU and and the associated kmem_cache are dereferenced
514 * while freeing the pages, so the kmem_caches should be freed only
515 * after the pending RCU operations are finished. As rcu_barrier()
516 * is a pretty slow operation, we batch all pending destructions
519 mutex_lock(&slab_mutex
);
520 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
521 mutex_unlock(&slab_mutex
);
523 if (list_empty(&to_destroy
))
528 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
529 #ifdef SLAB_SUPPORTS_SYSFS
530 sysfs_slab_release(s
);
532 slab_kmem_cache_release(s
);
537 static int shutdown_cache(struct kmem_cache
*s
)
539 /* free asan quarantined objects */
540 kasan_cache_shutdown(s
);
542 if (__kmem_cache_shutdown(s
) != 0)
545 memcg_unlink_cache(s
);
548 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
549 #ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_unlink(s
);
552 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
553 schedule_work(&slab_caches_to_rcu_destroy_work
);
555 #ifdef SLAB_SUPPORTS_SYSFS
556 sysfs_slab_unlink(s
);
557 sysfs_slab_release(s
);
559 slab_kmem_cache_release(s
);
566 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
568 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
569 * @memcg: The memory cgroup the new cache is for.
570 * @root_cache: The parent of the new cache.
572 * This function attempts to create a kmem cache that will serve allocation
573 * requests going from @memcg to @root_cache. The new cache inherits properties
576 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
577 struct kmem_cache
*root_cache
)
579 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
580 struct cgroup_subsys_state
*css
= &memcg
->css
;
581 struct memcg_cache_array
*arr
;
582 struct kmem_cache
*s
= NULL
;
589 mutex_lock(&slab_mutex
);
592 * The memory cgroup could have been offlined while the cache
593 * creation work was pending.
595 if (memcg
->kmem_state
!= KMEM_ONLINE
)
598 idx
= memcg_cache_id(memcg
);
599 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
600 lockdep_is_held(&slab_mutex
));
603 * Since per-memcg caches are created asynchronously on first
604 * allocation (see memcg_kmem_get_cache()), several threads can try to
605 * create the same cache, but only one of them may succeed.
607 if (arr
->entries
[idx
])
610 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
611 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
612 css
->serial_nr
, memcg_name_buf
);
616 s
= create_cache(cache_name
, root_cache
->object_size
,
617 root_cache
->size
, root_cache
->align
,
618 root_cache
->flags
& CACHE_CREATE_MASK
,
619 root_cache
->ctor
, memcg
, root_cache
);
621 * If we could not create a memcg cache, do not complain, because
622 * that's not critical at all as we can always proceed with the root
631 * Since readers won't lock (see cache_from_memcg_idx()), we need a
632 * barrier here to ensure nobody will see the kmem_cache partially
636 arr
->entries
[idx
] = s
;
639 mutex_unlock(&slab_mutex
);
645 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
647 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
648 memcg_params
.deact_work
);
653 mutex_lock(&slab_mutex
);
655 s
->memcg_params
.deact_fn(s
);
657 mutex_unlock(&slab_mutex
);
662 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
663 css_put(&s
->memcg_params
.memcg
->css
);
666 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
668 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
669 memcg_params
.deact_rcu_head
);
672 * We need to grab blocking locks. Bounce to ->deact_work. The
673 * work item shares the space with the RCU head and can't be
674 * initialized eariler.
676 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
677 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
681 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
682 * sched RCU grace period
683 * @s: target kmem_cache
684 * @deact_fn: deactivation function to call
686 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
687 * held after a sched RCU grace period. The slab is guaranteed to stay
688 * alive until @deact_fn is finished. This is to be used from
689 * __kmemcg_cache_deactivate().
691 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
692 void (*deact_fn
)(struct kmem_cache
*))
694 if (WARN_ON_ONCE(is_root_cache(s
)) ||
695 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
698 /* pin memcg so that @s doesn't get destroyed in the middle */
699 css_get(&s
->memcg_params
.memcg
->css
);
701 s
->memcg_params
.deact_fn
= deact_fn
;
702 call_rcu_sched(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
705 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
708 struct memcg_cache_array
*arr
;
709 struct kmem_cache
*s
, *c
;
711 idx
= memcg_cache_id(memcg
);
716 mutex_lock(&slab_mutex
);
717 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
718 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
719 lockdep_is_held(&slab_mutex
));
720 c
= arr
->entries
[idx
];
724 __kmemcg_cache_deactivate(c
);
725 arr
->entries
[idx
] = NULL
;
727 mutex_unlock(&slab_mutex
);
733 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
735 struct kmem_cache
*s
, *s2
;
740 mutex_lock(&slab_mutex
);
741 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
742 memcg_params
.kmem_caches_node
) {
744 * The cgroup is about to be freed and therefore has no charges
745 * left. Hence, all its caches must be empty by now.
747 BUG_ON(shutdown_cache(s
));
749 mutex_unlock(&slab_mutex
);
755 static int shutdown_memcg_caches(struct kmem_cache
*s
)
757 struct memcg_cache_array
*arr
;
758 struct kmem_cache
*c
, *c2
;
762 BUG_ON(!is_root_cache(s
));
765 * First, shutdown active caches, i.e. caches that belong to online
768 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
769 lockdep_is_held(&slab_mutex
));
770 for_each_memcg_cache_index(i
) {
774 if (shutdown_cache(c
))
776 * The cache still has objects. Move it to a temporary
777 * list so as not to try to destroy it for a second
778 * time while iterating over inactive caches below.
780 list_move(&c
->memcg_params
.children_node
, &busy
);
783 * The cache is empty and will be destroyed soon. Clear
784 * the pointer to it in the memcg_caches array so that
785 * it will never be accessed even if the root cache
788 arr
->entries
[i
] = NULL
;
792 * Second, shutdown all caches left from memory cgroups that are now
795 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
796 memcg_params
.children_node
)
799 list_splice(&busy
, &s
->memcg_params
.children
);
802 * A cache being destroyed must be empty. In particular, this means
803 * that all per memcg caches attached to it must be empty too.
805 if (!list_empty(&s
->memcg_params
.children
))
810 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
814 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
816 void slab_kmem_cache_release(struct kmem_cache
*s
)
818 __kmem_cache_release(s
);
819 destroy_memcg_params(s
);
820 kfree_const(s
->name
);
821 kmem_cache_free(kmem_cache
, s
);
824 void kmem_cache_destroy(struct kmem_cache
*s
)
834 mutex_lock(&slab_mutex
);
840 err
= shutdown_memcg_caches(s
);
842 err
= shutdown_cache(s
);
845 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
850 mutex_unlock(&slab_mutex
);
855 EXPORT_SYMBOL(kmem_cache_destroy
);
858 * kmem_cache_shrink - Shrink a cache.
859 * @cachep: The cache to shrink.
861 * Releases as many slabs as possible for a cache.
862 * To help debugging, a zero exit status indicates all slabs were released.
864 int kmem_cache_shrink(struct kmem_cache
*cachep
)
870 kasan_cache_shrink(cachep
);
871 ret
= __kmem_cache_shrink(cachep
);
876 EXPORT_SYMBOL(kmem_cache_shrink
);
878 bool slab_is_available(void)
880 return slab_state
>= UP
;
884 /* Create a cache during boot when no slab services are available yet */
885 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
891 s
->size
= s
->object_size
= size
;
892 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
894 slab_init_memcg_params(s
);
896 err
= __kmem_cache_create(s
, flags
);
899 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
902 s
->refcount
= -1; /* Exempt from merging for now */
905 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
908 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
911 panic("Out of memory when creating slab %s\n", name
);
913 create_boot_cache(s
, name
, size
, flags
);
914 list_add(&s
->list
, &slab_caches
);
920 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
921 EXPORT_SYMBOL(kmalloc_caches
);
923 #ifdef CONFIG_ZONE_DMA
924 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
925 EXPORT_SYMBOL(kmalloc_dma_caches
);
929 * Conversion table for small slabs sizes / 8 to the index in the
930 * kmalloc array. This is necessary for slabs < 192 since we have non power
931 * of two cache sizes there. The size of larger slabs can be determined using
934 static s8 size_index
[24] = {
961 static inline int size_index_elem(size_t bytes
)
963 return (bytes
- 1) / 8;
967 * Find the kmem_cache structure that serves a given size of
970 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
976 return ZERO_SIZE_PTR
;
978 index
= size_index
[size_index_elem(size
)];
980 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
984 index
= fls(size
- 1);
987 #ifdef CONFIG_ZONE_DMA
988 if (unlikely((flags
& GFP_DMA
)))
989 return kmalloc_dma_caches
[index
];
992 return kmalloc_caches
[index
];
996 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
997 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1000 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1001 {NULL
, 0}, {"kmalloc-96", 96},
1002 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1003 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1004 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1005 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1006 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1007 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1008 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1009 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1010 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1011 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1012 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1013 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1014 {"kmalloc-67108864", 67108864}
1018 * Patch up the size_index table if we have strange large alignment
1019 * requirements for the kmalloc array. This is only the case for
1020 * MIPS it seems. The standard arches will not generate any code here.
1022 * Largest permitted alignment is 256 bytes due to the way we
1023 * handle the index determination for the smaller caches.
1025 * Make sure that nothing crazy happens if someone starts tinkering
1026 * around with ARCH_KMALLOC_MINALIGN
1028 void __init
setup_kmalloc_cache_index_table(void)
1032 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1033 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1035 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1036 int elem
= size_index_elem(i
);
1038 if (elem
>= ARRAY_SIZE(size_index
))
1040 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1043 if (KMALLOC_MIN_SIZE
>= 64) {
1045 * The 96 byte size cache is not used if the alignment
1048 for (i
= 64 + 8; i
<= 96; i
+= 8)
1049 size_index
[size_index_elem(i
)] = 7;
1053 if (KMALLOC_MIN_SIZE
>= 128) {
1055 * The 192 byte sized cache is not used if the alignment
1056 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1059 for (i
= 128 + 8; i
<= 192; i
+= 8)
1060 size_index
[size_index_elem(i
)] = 8;
1064 static void __init
new_kmalloc_cache(int idx
, unsigned long flags
)
1066 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
1067 kmalloc_info
[idx
].size
, flags
);
1071 * Create the kmalloc array. Some of the regular kmalloc arrays
1072 * may already have been created because they were needed to
1073 * enable allocations for slab creation.
1075 void __init
create_kmalloc_caches(unsigned long flags
)
1079 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1080 if (!kmalloc_caches
[i
])
1081 new_kmalloc_cache(i
, flags
);
1084 * Caches that are not of the two-to-the-power-of size.
1085 * These have to be created immediately after the
1086 * earlier power of two caches
1088 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1089 new_kmalloc_cache(1, flags
);
1090 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1091 new_kmalloc_cache(2, flags
);
1094 /* Kmalloc array is now usable */
1097 #ifdef CONFIG_ZONE_DMA
1098 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1099 struct kmem_cache
*s
= kmalloc_caches
[i
];
1102 int size
= kmalloc_size(i
);
1103 char *n
= kasprintf(GFP_NOWAIT
,
1104 "dma-kmalloc-%d", size
);
1107 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1108 size
, SLAB_CACHE_DMA
| flags
);
1113 #endif /* !CONFIG_SLOB */
1116 * To avoid unnecessary overhead, we pass through large allocation requests
1117 * directly to the page allocator. We use __GFP_COMP, because we will need to
1118 * know the allocation order to free the pages properly in kfree.
1120 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1125 flags
|= __GFP_COMP
;
1126 page
= alloc_pages(flags
, order
);
1127 ret
= page
? page_address(page
) : NULL
;
1128 kmemleak_alloc(ret
, size
, 1, flags
);
1129 kasan_kmalloc_large(ret
, size
, flags
);
1132 EXPORT_SYMBOL(kmalloc_order
);
1134 #ifdef CONFIG_TRACING
1135 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1137 void *ret
= kmalloc_order(size
, flags
, order
);
1138 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1141 EXPORT_SYMBOL(kmalloc_order_trace
);
1144 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1145 /* Randomize a generic freelist */
1146 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1152 for (i
= 0; i
< count
; i
++)
1155 /* Fisher-Yates shuffle */
1156 for (i
= count
- 1; i
> 0; i
--) {
1157 rand
= prandom_u32_state(state
);
1159 swap(list
[i
], list
[rand
]);
1163 /* Create a random sequence per cache */
1164 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1167 struct rnd_state state
;
1169 if (count
< 2 || cachep
->random_seq
)
1172 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1173 if (!cachep
->random_seq
)
1176 /* Get best entropy at this stage of boot */
1177 prandom_seed_state(&state
, get_random_long());
1179 freelist_randomize(&state
, cachep
->random_seq
, count
);
1183 /* Destroy the per-cache random freelist sequence */
1184 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1186 kfree(cachep
->random_seq
);
1187 cachep
->random_seq
= NULL
;
1189 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1191 #ifdef CONFIG_SLABINFO
1194 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1196 #define SLABINFO_RIGHTS S_IRUSR
1199 static void print_slabinfo_header(struct seq_file
*m
)
1202 * Output format version, so at least we can change it
1203 * without _too_ many complaints.
1205 #ifdef CONFIG_DEBUG_SLAB
1206 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1208 seq_puts(m
, "slabinfo - version: 2.1\n");
1210 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1211 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1212 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1213 #ifdef CONFIG_DEBUG_SLAB
1214 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1215 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1220 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1222 mutex_lock(&slab_mutex
);
1223 return seq_list_start(&slab_root_caches
, *pos
);
1226 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1228 return seq_list_next(p
, &slab_root_caches
, pos
);
1231 void slab_stop(struct seq_file
*m
, void *p
)
1233 mutex_unlock(&slab_mutex
);
1237 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1239 struct kmem_cache
*c
;
1240 struct slabinfo sinfo
;
1242 if (!is_root_cache(s
))
1245 for_each_memcg_cache(c
, s
) {
1246 memset(&sinfo
, 0, sizeof(sinfo
));
1247 get_slabinfo(c
, &sinfo
);
1249 info
->active_slabs
+= sinfo
.active_slabs
;
1250 info
->num_slabs
+= sinfo
.num_slabs
;
1251 info
->shared_avail
+= sinfo
.shared_avail
;
1252 info
->active_objs
+= sinfo
.active_objs
;
1253 info
->num_objs
+= sinfo
.num_objs
;
1257 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1259 struct slabinfo sinfo
;
1261 memset(&sinfo
, 0, sizeof(sinfo
));
1262 get_slabinfo(s
, &sinfo
);
1264 memcg_accumulate_slabinfo(s
, &sinfo
);
1266 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1267 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1268 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1270 seq_printf(m
, " : tunables %4u %4u %4u",
1271 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1272 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1273 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1274 slabinfo_show_stats(m
, s
);
1278 static int slab_show(struct seq_file
*m
, void *p
)
1280 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1282 if (p
== slab_root_caches
.next
)
1283 print_slabinfo_header(m
);
1288 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1289 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1291 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1293 mutex_lock(&slab_mutex
);
1294 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1297 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1299 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1301 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1304 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1306 mutex_unlock(&slab_mutex
);
1309 int memcg_slab_show(struct seq_file
*m
, void *p
)
1311 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1312 memcg_params
.kmem_caches_node
);
1313 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1315 if (p
== memcg
->kmem_caches
.next
)
1316 print_slabinfo_header(m
);
1323 * slabinfo_op - iterator that generates /proc/slabinfo
1332 * num-pages-per-slab
1333 * + further values on SMP and with statistics enabled
1335 static const struct seq_operations slabinfo_op
= {
1336 .start
= slab_start
,
1342 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1344 return seq_open(file
, &slabinfo_op
);
1347 static const struct file_operations proc_slabinfo_operations
= {
1348 .open
= slabinfo_open
,
1350 .write
= slabinfo_write
,
1351 .llseek
= seq_lseek
,
1352 .release
= seq_release
,
1355 static int __init
slab_proc_init(void)
1357 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1358 &proc_slabinfo_operations
);
1361 module_init(slab_proc_init
);
1362 #endif /* CONFIG_SLABINFO */
1364 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1373 if (ks
>= new_size
) {
1374 kasan_krealloc((void *)p
, new_size
, flags
);
1378 ret
= kmalloc_track_caller(new_size
, flags
);
1386 * __krealloc - like krealloc() but don't free @p.
1387 * @p: object to reallocate memory for.
1388 * @new_size: how many bytes of memory are required.
1389 * @flags: the type of memory to allocate.
1391 * This function is like krealloc() except it never frees the originally
1392 * allocated buffer. Use this if you don't want to free the buffer immediately
1393 * like, for example, with RCU.
1395 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1397 if (unlikely(!new_size
))
1398 return ZERO_SIZE_PTR
;
1400 return __do_krealloc(p
, new_size
, flags
);
1403 EXPORT_SYMBOL(__krealloc
);
1406 * krealloc - reallocate memory. The contents will remain unchanged.
1407 * @p: object to reallocate memory for.
1408 * @new_size: how many bytes of memory are required.
1409 * @flags: the type of memory to allocate.
1411 * The contents of the object pointed to are preserved up to the
1412 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1413 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1414 * %NULL pointer, the object pointed to is freed.
1416 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1420 if (unlikely(!new_size
)) {
1422 return ZERO_SIZE_PTR
;
1425 ret
= __do_krealloc(p
, new_size
, flags
);
1426 if (ret
&& p
!= ret
)
1431 EXPORT_SYMBOL(krealloc
);
1434 * kzfree - like kfree but zero memory
1435 * @p: object to free memory of
1437 * The memory of the object @p points to is zeroed before freed.
1438 * If @p is %NULL, kzfree() does nothing.
1440 * Note: this function zeroes the whole allocated buffer which can be a good
1441 * deal bigger than the requested buffer size passed to kmalloc(). So be
1442 * careful when using this function in performance sensitive code.
1444 void kzfree(const void *p
)
1447 void *mem
= (void *)p
;
1449 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1455 EXPORT_SYMBOL(kzfree
);
1457 /* Tracepoints definitions. */
1458 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1459 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1460 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1461 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1462 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1463 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);