2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67 #include <linux/userfaultfd_k.h>
69 #include <asm/tlbflush.h>
71 #include <trace/events/tlb.h>
75 static struct kmem_cache
*anon_vma_cachep
;
76 static struct kmem_cache
*anon_vma_chain_cachep
;
78 static inline struct anon_vma
*anon_vma_alloc(void)
80 struct anon_vma
*anon_vma
;
82 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
84 atomic_set(&anon_vma
->refcount
, 1);
85 anon_vma
->degree
= 1; /* Reference for first vma */
86 anon_vma
->parent
= anon_vma
;
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
91 anon_vma
->root
= anon_vma
;
97 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
99 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
102 * Synchronize against page_lock_anon_vma_read() such that
103 * we can safely hold the lock without the anon_vma getting
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
113 * atomic_read() rwsem_is_locked()
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
119 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
120 anon_vma_lock_write(anon_vma
);
121 anon_vma_unlock_write(anon_vma
);
124 kmem_cache_free(anon_vma_cachep
, anon_vma
);
127 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
129 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
132 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
134 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
137 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
138 struct anon_vma_chain
*avc
,
139 struct anon_vma
*anon_vma
)
142 avc
->anon_vma
= anon_vma
;
143 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
144 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
148 * __anon_vma_prepare - attach an anon_vma to a memory region
149 * @vma: the memory region in question
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
157 * not we either need to find an adjacent mapping that we
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
162 * Anon-vma allocations are very subtle, because we may have
163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
173 * This must be called with the mmap_sem held for reading.
175 int __anon_vma_prepare(struct vm_area_struct
*vma
)
177 struct mm_struct
*mm
= vma
->vm_mm
;
178 struct anon_vma
*anon_vma
, *allocated
;
179 struct anon_vma_chain
*avc
;
183 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
187 anon_vma
= find_mergeable_anon_vma(vma
);
190 anon_vma
= anon_vma_alloc();
191 if (unlikely(!anon_vma
))
192 goto out_enomem_free_avc
;
193 allocated
= anon_vma
;
196 anon_vma_lock_write(anon_vma
);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm
->page_table_lock
);
199 if (likely(!vma
->anon_vma
)) {
200 vma
->anon_vma
= anon_vma
;
201 anon_vma_chain_link(vma
, avc
, anon_vma
);
202 /* vma reference or self-parent link for new root */
207 spin_unlock(&mm
->page_table_lock
);
208 anon_vma_unlock_write(anon_vma
);
210 if (unlikely(allocated
))
211 put_anon_vma(allocated
);
213 anon_vma_chain_free(avc
);
218 anon_vma_chain_free(avc
);
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
231 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
233 struct anon_vma
*new_root
= anon_vma
->root
;
234 if (new_root
!= root
) {
235 if (WARN_ON_ONCE(root
))
236 up_write(&root
->rwsem
);
238 down_write(&root
->rwsem
);
243 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
246 up_write(&root
->rwsem
);
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
261 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
263 struct anon_vma_chain
*avc
, *pavc
;
264 struct anon_vma
*root
= NULL
;
266 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
267 struct anon_vma
*anon_vma
;
269 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
270 if (unlikely(!avc
)) {
271 unlock_anon_vma_root(root
);
273 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
277 anon_vma
= pavc
->anon_vma
;
278 root
= lock_anon_vma_root(root
, anon_vma
);
279 anon_vma_chain_link(dst
, avc
, anon_vma
);
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
289 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
290 anon_vma
->degree
< 2)
291 dst
->anon_vma
= anon_vma
;
294 dst
->anon_vma
->degree
++;
295 unlock_anon_vma_root(root
);
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
305 dst
->anon_vma
= NULL
;
306 unlink_anon_vmas(dst
);
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
315 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
317 struct anon_vma_chain
*avc
;
318 struct anon_vma
*anon_vma
;
321 /* Don't bother if the parent process has no anon_vma here. */
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma
->anon_vma
= NULL
;
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
332 error
= anon_vma_clone(vma
, pvma
);
336 /* An existing anon_vma has been reused, all done then. */
340 /* Then add our own anon_vma. */
341 anon_vma
= anon_vma_alloc();
344 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
346 goto out_error_free_anon_vma
;
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
352 anon_vma
->root
= pvma
->anon_vma
->root
;
353 anon_vma
->parent
= pvma
->anon_vma
;
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
359 get_anon_vma(anon_vma
->root
);
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma
->anon_vma
= anon_vma
;
362 anon_vma_lock_write(anon_vma
);
363 anon_vma_chain_link(vma
, avc
, anon_vma
);
364 anon_vma
->parent
->degree
++;
365 anon_vma_unlock_write(anon_vma
);
369 out_error_free_anon_vma
:
370 put_anon_vma(anon_vma
);
372 unlink_anon_vmas(vma
);
376 void unlink_anon_vmas(struct vm_area_struct
*vma
)
378 struct anon_vma_chain
*avc
, *next
;
379 struct anon_vma
*root
= NULL
;
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
385 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
386 struct anon_vma
*anon_vma
= avc
->anon_vma
;
388 root
= lock_anon_vma_root(root
, anon_vma
);
389 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
395 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
.rb_root
)) {
396 anon_vma
->parent
->degree
--;
400 list_del(&avc
->same_vma
);
401 anon_vma_chain_free(avc
);
404 vma
->anon_vma
->degree
--;
405 unlock_anon_vma_root(root
);
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
410 * needing to write-acquire the anon_vma->root->rwsem.
412 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
413 struct anon_vma
*anon_vma
= avc
->anon_vma
;
415 VM_WARN_ON(anon_vma
->degree
);
416 put_anon_vma(anon_vma
);
418 list_del(&avc
->same_vma
);
419 anon_vma_chain_free(avc
);
423 static void anon_vma_ctor(void *data
)
425 struct anon_vma
*anon_vma
= data
;
427 init_rwsem(&anon_vma
->rwsem
);
428 atomic_set(&anon_vma
->refcount
, 0);
429 anon_vma
->rb_root
= RB_ROOT_CACHED
;
432 void __init
anon_vma_init(void)
434 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
435 0, SLAB_TYPESAFE_BY_RCU
|SLAB_PANIC
|SLAB_ACCOUNT
,
437 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
,
438 SLAB_PANIC
|SLAB_ACCOUNT
);
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
464 struct anon_vma
*page_get_anon_vma(struct page
*page
)
466 struct anon_vma
*anon_vma
= NULL
;
467 unsigned long anon_mapping
;
470 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
471 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
473 if (!page_mapped(page
))
476 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
477 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
483 * If this page is still mapped, then its anon_vma cannot have been
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
487 * above cannot corrupt).
489 if (!page_mapped(page
)) {
491 put_anon_vma(anon_vma
);
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
507 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
509 struct anon_vma
*anon_vma
= NULL
;
510 struct anon_vma
*root_anon_vma
;
511 unsigned long anon_mapping
;
514 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
515 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
517 if (!page_mapped(page
))
520 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
521 root_anon_vma
= READ_ONCE(anon_vma
->root
);
522 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
526 * not go away, see anon_vma_free().
528 if (!page_mapped(page
)) {
529 up_read(&root_anon_vma
->rwsem
);
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
541 if (!page_mapped(page
)) {
543 put_anon_vma(anon_vma
);
547 /* we pinned the anon_vma, its safe to sleep */
549 anon_vma_lock_read(anon_vma
);
551 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
555 * we'll deadlock on the anon_vma_lock_write() recursion.
557 anon_vma_unlock_read(anon_vma
);
558 __put_anon_vma(anon_vma
);
569 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
571 anon_vma_unlock_read(anon_vma
);
574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
581 void try_to_unmap_flush(void)
583 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
585 if (!tlb_ubc
->flush_required
)
588 arch_tlbbatch_flush(&tlb_ubc
->arch
);
589 tlb_ubc
->flush_required
= false;
590 tlb_ubc
->writable
= false;
593 /* Flush iff there are potentially writable TLB entries that can race with IO */
594 void try_to_unmap_flush_dirty(void)
596 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
598 if (tlb_ubc
->writable
)
599 try_to_unmap_flush();
602 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
, bool writable
)
604 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
606 arch_tlbbatch_add_mm(&tlb_ubc
->arch
, mm
);
607 tlb_ubc
->flush_required
= true;
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
614 mm
->tlb_flush_batched
= true;
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
622 tlb_ubc
->writable
= true;
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
629 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
631 bool should_defer
= false;
633 if (!(flags
& TTU_BATCH_FLUSH
))
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm
), get_cpu()) < nr_cpu_ids
)
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
659 void flush_tlb_batched_pending(struct mm_struct
*mm
)
661 if (mm
->tlb_flush_batched
) {
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
669 mm
->tlb_flush_batched
= false;
673 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
, bool writable
)
677 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
684 * At what user virtual address is page expected in vma?
685 * Caller should check the page is actually part of the vma.
687 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
689 unsigned long address
;
690 if (PageAnon(page
)) {
691 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
696 if (!vma
->anon_vma
|| !page__anon_vma
||
697 vma
->anon_vma
->root
!= page__anon_vma
->root
)
699 } else if (page
->mapping
) {
700 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
704 address
= __vma_address(page
, vma
);
705 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
710 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
718 pgd
= pgd_offset(mm
, address
);
719 if (!pgd_present(*pgd
))
722 p4d
= p4d_offset(pgd
, address
);
723 if (!p4d_present(*p4d
))
726 pud
= pud_offset(p4d
, address
);
727 if (!pud_present(*pud
))
730 pmd
= pmd_offset(pud
, address
);
732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
738 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
744 struct page_referenced_arg
{
747 unsigned long vm_flags
;
748 struct mem_cgroup
*memcg
;
751 * arg: page_referenced_arg will be passed
753 static bool page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
754 unsigned long address
, void *arg
)
756 struct page_referenced_arg
*pra
= arg
;
757 struct page_vma_mapped_walk pvmw
= {
764 while (page_vma_mapped_walk(&pvmw
)) {
765 address
= pvmw
.address
;
767 if (vma
->vm_flags
& VM_LOCKED
) {
768 page_vma_mapped_walk_done(&pvmw
);
769 pra
->vm_flags
|= VM_LOCKED
;
770 return false; /* To break the loop */
774 if (ptep_clear_flush_young_notify(vma
, address
,
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
784 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
788 if (pmdp_clear_flush_young_notify(vma
, address
,
792 /* unexpected pmd-mapped page? */
800 clear_page_idle(page
);
801 if (test_and_clear_page_young(page
))
806 pra
->vm_flags
|= vma
->vm_flags
;
810 return false; /* To break the loop */
815 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
817 struct page_referenced_arg
*pra
= arg
;
818 struct mem_cgroup
*memcg
= pra
->memcg
;
820 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
836 int page_referenced(struct page
*page
,
838 struct mem_cgroup
*memcg
,
839 unsigned long *vm_flags
)
842 struct page_referenced_arg pra
= {
843 .mapcount
= total_mapcount(page
),
846 struct rmap_walk_control rwc
= {
847 .rmap_one
= page_referenced_one
,
849 .anon_lock
= page_lock_anon_vma_read
,
853 if (!page_mapped(page
))
856 if (!page_rmapping(page
))
859 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
860 we_locked
= trylock_page(page
);
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
871 rwc
.invalid_vma
= invalid_page_referenced_vma
;
874 rmap_walk(page
, &rwc
);
875 *vm_flags
= pra
.vm_flags
;
880 return pra
.referenced
;
883 static bool page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
884 unsigned long address
, void *arg
)
886 struct page_vma_mapped_walk pvmw
= {
892 unsigned long start
= address
, end
;
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
899 end
= min(vma
->vm_end
, start
+ (PAGE_SIZE
<< compound_order(page
)));
900 mmu_notifier_invalidate_range_start(vma
->vm_mm
, start
, end
);
902 while (page_vma_mapped_walk(&pvmw
)) {
903 unsigned long cstart
, cend
;
906 cstart
= address
= pvmw
.address
;
909 pte_t
*pte
= pvmw
.pte
;
911 if (!pte_dirty(*pte
) && !pte_write(*pte
))
914 flush_cache_page(vma
, address
, pte_pfn(*pte
));
915 entry
= ptep_clear_flush(vma
, address
, pte
);
916 entry
= pte_wrprotect(entry
);
917 entry
= pte_mkclean(entry
);
918 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
919 cend
= cstart
+ PAGE_SIZE
;
922 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
923 pmd_t
*pmd
= pvmw
.pmd
;
926 if (!pmd_dirty(*pmd
) && !pmd_write(*pmd
))
929 flush_cache_page(vma
, address
, page_to_pfn(page
));
930 entry
= pmdp_huge_clear_flush(vma
, address
, pmd
);
931 entry
= pmd_wrprotect(entry
);
932 entry
= pmd_mkclean(entry
);
933 set_pmd_at(vma
->vm_mm
, address
, pmd
, entry
);
935 cend
= cstart
+ PMD_SIZE
;
938 /* unexpected pmd-mapped page? */
944 mmu_notifier_invalidate_range(vma
->vm_mm
, cstart
, cend
);
949 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
954 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
956 if (vma
->vm_flags
& VM_SHARED
)
962 int page_mkclean(struct page
*page
)
965 struct address_space
*mapping
;
966 struct rmap_walk_control rwc
= {
967 .arg
= (void *)&cleaned
,
968 .rmap_one
= page_mkclean_one
,
969 .invalid_vma
= invalid_mkclean_vma
,
972 BUG_ON(!PageLocked(page
));
974 if (!page_mapped(page
))
977 mapping
= page_mapping(page
);
981 rmap_walk(page
, &rwc
);
985 EXPORT_SYMBOL_GPL(page_mkclean
);
988 * page_move_anon_rmap - move a page to our anon_vma
989 * @page: the page to move to our anon_vma
990 * @vma: the vma the page belongs to
992 * When a page belongs exclusively to one process after a COW event,
993 * that page can be moved into the anon_vma that belongs to just that
994 * process, so the rmap code will not search the parent or sibling
997 void page_move_anon_rmap(struct page
*page
, struct vm_area_struct
*vma
)
999 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1001 page
= compound_head(page
);
1003 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1004 VM_BUG_ON_VMA(!anon_vma
, vma
);
1006 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1008 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1009 * simultaneously, so a concurrent reader (eg page_referenced()'s
1010 * PageAnon()) will not see one without the other.
1012 WRITE_ONCE(page
->mapping
, (struct address_space
*) anon_vma
);
1016 * __page_set_anon_rmap - set up new anonymous rmap
1017 * @page: Page to add to rmap
1018 * @vma: VM area to add page to.
1019 * @address: User virtual address of the mapping
1020 * @exclusive: the page is exclusively owned by the current process
1022 static void __page_set_anon_rmap(struct page
*page
,
1023 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1025 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1033 * If the page isn't exclusively mapped into this vma,
1034 * we must use the _oldest_ possible anon_vma for the
1038 anon_vma
= anon_vma
->root
;
1040 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1041 page
->mapping
= (struct address_space
*) anon_vma
;
1042 page
->index
= linear_page_index(vma
, address
);
1046 * __page_check_anon_rmap - sanity check anonymous rmap addition
1047 * @page: the page to add the mapping to
1048 * @vma: the vm area in which the mapping is added
1049 * @address: the user virtual address mapped
1051 static void __page_check_anon_rmap(struct page
*page
,
1052 struct vm_area_struct
*vma
, unsigned long address
)
1054 #ifdef CONFIG_DEBUG_VM
1056 * The page's anon-rmap details (mapping and index) are guaranteed to
1057 * be set up correctly at this point.
1059 * We have exclusion against page_add_anon_rmap because the caller
1060 * always holds the page locked, except if called from page_dup_rmap,
1061 * in which case the page is already known to be setup.
1063 * We have exclusion against page_add_new_anon_rmap because those pages
1064 * are initially only visible via the pagetables, and the pte is locked
1065 * over the call to page_add_new_anon_rmap.
1067 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1068 BUG_ON(page_to_pgoff(page
) != linear_page_index(vma
, address
));
1073 * page_add_anon_rmap - add pte mapping to an anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 * @compound: charge the page as compound or small page
1079 * The caller needs to hold the pte lock, and the page must be locked in
1080 * the anon_vma case: to serialize mapping,index checking after setting,
1081 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1082 * (but PageKsm is never downgraded to PageAnon).
1084 void page_add_anon_rmap(struct page
*page
,
1085 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1087 do_page_add_anon_rmap(page
, vma
, address
, compound
? RMAP_COMPOUND
: 0);
1091 * Special version of the above for do_swap_page, which often runs
1092 * into pages that are exclusively owned by the current process.
1093 * Everybody else should continue to use page_add_anon_rmap above.
1095 void do_page_add_anon_rmap(struct page
*page
,
1096 struct vm_area_struct
*vma
, unsigned long address
, int flags
)
1098 bool compound
= flags
& RMAP_COMPOUND
;
1103 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1104 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1105 mapcount
= compound_mapcount_ptr(page
);
1106 first
= atomic_inc_and_test(mapcount
);
1108 first
= atomic_inc_and_test(&page
->_mapcount
);
1112 int nr
= compound
? hpage_nr_pages(page
) : 1;
1114 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1115 * these counters are not modified in interrupt context, and
1116 * pte lock(a spinlock) is held, which implies preemption
1120 __inc_node_page_state(page
, NR_ANON_THPS
);
1121 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1123 if (unlikely(PageKsm(page
)))
1126 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1128 /* address might be in next vma when migration races vma_adjust */
1130 __page_set_anon_rmap(page
, vma
, address
,
1131 flags
& RMAP_EXCLUSIVE
);
1133 __page_check_anon_rmap(page
, vma
, address
);
1137 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1138 * @page: the page to add the mapping to
1139 * @vma: the vm area in which the mapping is added
1140 * @address: the user virtual address mapped
1141 * @compound: charge the page as compound or small page
1143 * Same as page_add_anon_rmap but must only be called on *new* pages.
1144 * This means the inc-and-test can be bypassed.
1145 * Page does not have to be locked.
1147 void page_add_new_anon_rmap(struct page
*page
,
1148 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1150 int nr
= compound
? hpage_nr_pages(page
) : 1;
1152 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1153 __SetPageSwapBacked(page
);
1155 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1156 /* increment count (starts at -1) */
1157 atomic_set(compound_mapcount_ptr(page
), 0);
1158 __inc_node_page_state(page
, NR_ANON_THPS
);
1160 /* Anon THP always mapped first with PMD */
1161 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1162 /* increment count (starts at -1) */
1163 atomic_set(&page
->_mapcount
, 0);
1165 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1166 __page_set_anon_rmap(page
, vma
, address
, 1);
1170 * page_add_file_rmap - add pte mapping to a file page
1171 * @page: the page to add the mapping to
1173 * The caller needs to hold the pte lock.
1175 void page_add_file_rmap(struct page
*page
, bool compound
)
1179 VM_BUG_ON_PAGE(compound
&& !PageTransHuge(page
), page
);
1180 lock_page_memcg(page
);
1181 if (compound
&& PageTransHuge(page
)) {
1182 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1183 if (atomic_inc_and_test(&page
[i
]._mapcount
))
1186 if (!atomic_inc_and_test(compound_mapcount_ptr(page
)))
1188 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1189 __inc_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1191 if (PageTransCompound(page
) && page_mapping(page
)) {
1192 VM_WARN_ON_ONCE(!PageLocked(page
));
1194 SetPageDoubleMap(compound_head(page
));
1195 if (PageMlocked(page
))
1196 clear_page_mlock(compound_head(page
));
1198 if (!atomic_inc_and_test(&page
->_mapcount
))
1201 __mod_lruvec_page_state(page
, NR_FILE_MAPPED
, nr
);
1203 unlock_page_memcg(page
);
1206 static void page_remove_file_rmap(struct page
*page
, bool compound
)
1210 VM_BUG_ON_PAGE(compound
&& !PageHead(page
), page
);
1211 lock_page_memcg(page
);
1213 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1214 if (unlikely(PageHuge(page
))) {
1215 /* hugetlb pages are always mapped with pmds */
1216 atomic_dec(compound_mapcount_ptr(page
));
1220 /* page still mapped by someone else? */
1221 if (compound
&& PageTransHuge(page
)) {
1222 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1223 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1226 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1228 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1229 __dec_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1231 if (!atomic_add_negative(-1, &page
->_mapcount
))
1236 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1237 * these counters are not modified in interrupt context, and
1238 * pte lock(a spinlock) is held, which implies preemption disabled.
1240 __mod_lruvec_page_state(page
, NR_FILE_MAPPED
, -nr
);
1242 if (unlikely(PageMlocked(page
)))
1243 clear_page_mlock(page
);
1245 unlock_page_memcg(page
);
1248 static void page_remove_anon_compound_rmap(struct page
*page
)
1252 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1255 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1256 if (unlikely(PageHuge(page
)))
1259 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
))
1262 __dec_node_page_state(page
, NR_ANON_THPS
);
1264 if (TestClearPageDoubleMap(page
)) {
1266 * Subpages can be mapped with PTEs too. Check how many of
1267 * themi are still mapped.
1269 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1270 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1277 if (unlikely(PageMlocked(page
)))
1278 clear_page_mlock(page
);
1281 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, -nr
);
1282 deferred_split_huge_page(page
);
1287 * page_remove_rmap - take down pte mapping from a page
1288 * @page: page to remove mapping from
1289 * @compound: uncharge the page as compound or small page
1291 * The caller needs to hold the pte lock.
1293 void page_remove_rmap(struct page
*page
, bool compound
)
1295 if (!PageAnon(page
))
1296 return page_remove_file_rmap(page
, compound
);
1299 return page_remove_anon_compound_rmap(page
);
1301 /* page still mapped by someone else? */
1302 if (!atomic_add_negative(-1, &page
->_mapcount
))
1306 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1307 * these counters are not modified in interrupt context, and
1308 * pte lock(a spinlock) is held, which implies preemption disabled.
1310 __dec_node_page_state(page
, NR_ANON_MAPPED
);
1312 if (unlikely(PageMlocked(page
)))
1313 clear_page_mlock(page
);
1315 if (PageTransCompound(page
))
1316 deferred_split_huge_page(compound_head(page
));
1319 * It would be tidy to reset the PageAnon mapping here,
1320 * but that might overwrite a racing page_add_anon_rmap
1321 * which increments mapcount after us but sets mapping
1322 * before us: so leave the reset to free_hot_cold_page,
1323 * and remember that it's only reliable while mapped.
1324 * Leaving it set also helps swapoff to reinstate ptes
1325 * faster for those pages still in swapcache.
1330 * @arg: enum ttu_flags will be passed to this argument
1332 static bool try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1333 unsigned long address
, void *arg
)
1335 struct mm_struct
*mm
= vma
->vm_mm
;
1336 struct page_vma_mapped_walk pvmw
= {
1342 struct page
*subpage
;
1344 unsigned long start
= address
, end
;
1345 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1347 /* munlock has nothing to gain from examining un-locked vmas */
1348 if ((flags
& TTU_MUNLOCK
) && !(vma
->vm_flags
& VM_LOCKED
))
1351 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1352 is_zone_device_page(page
) && !is_device_private_page(page
))
1355 if (flags
& TTU_SPLIT_HUGE_PMD
) {
1356 split_huge_pmd_address(vma
, address
,
1357 flags
& TTU_SPLIT_FREEZE
, page
);
1361 * For THP, we have to assume the worse case ie pmd for invalidation.
1362 * For hugetlb, it could be much worse if we need to do pud
1363 * invalidation in the case of pmd sharing.
1365 * Note that the page can not be free in this function as call of
1366 * try_to_unmap() must hold a reference on the page.
1368 end
= min(vma
->vm_end
, start
+ (PAGE_SIZE
<< compound_order(page
)));
1369 if (PageHuge(page
)) {
1371 * If sharing is possible, start and end will be adjusted
1374 adjust_range_if_pmd_sharing_possible(vma
, &start
, &end
);
1376 mmu_notifier_invalidate_range_start(vma
->vm_mm
, start
, end
);
1378 while (page_vma_mapped_walk(&pvmw
)) {
1379 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1380 /* PMD-mapped THP migration entry */
1381 if (!pvmw
.pte
&& (flags
& TTU_MIGRATION
)) {
1382 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
1384 if (!PageAnon(page
))
1387 set_pmd_migration_entry(&pvmw
, page
);
1393 * If the page is mlock()d, we cannot swap it out.
1394 * If it's recently referenced (perhaps page_referenced
1395 * skipped over this mm) then we should reactivate it.
1397 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1398 if (vma
->vm_flags
& VM_LOCKED
) {
1399 /* PTE-mapped THP are never mlocked */
1400 if (!PageTransCompound(page
)) {
1402 * Holding pte lock, we do *not* need
1405 mlock_vma_page(page
);
1408 page_vma_mapped_walk_done(&pvmw
);
1411 if (flags
& TTU_MUNLOCK
)
1415 /* Unexpected PMD-mapped THP? */
1416 VM_BUG_ON_PAGE(!pvmw
.pte
, page
);
1418 subpage
= page
- page_to_pfn(page
) + pte_pfn(*pvmw
.pte
);
1419 address
= pvmw
.address
;
1421 if (PageHuge(page
)) {
1422 if (huge_pmd_unshare(mm
, &address
, pvmw
.pte
)) {
1424 * huge_pmd_unshare unmapped an entire PMD
1425 * page. There is no way of knowing exactly
1426 * which PMDs may be cached for this mm, so
1427 * we must flush them all. start/end were
1428 * already adjusted above to cover this range.
1430 flush_cache_range(vma
, start
, end
);
1431 flush_tlb_range(vma
, start
, end
);
1432 mmu_notifier_invalidate_range(mm
, start
, end
);
1435 * The ref count of the PMD page was dropped
1436 * which is part of the way map counting
1437 * is done for shared PMDs. Return 'true'
1438 * here. When there is no other sharing,
1439 * huge_pmd_unshare returns false and we will
1440 * unmap the actual page and drop map count
1443 page_vma_mapped_walk_done(&pvmw
);
1448 if (IS_ENABLED(CONFIG_MIGRATION
) &&
1449 (flags
& TTU_MIGRATION
) &&
1450 is_zone_device_page(page
)) {
1454 pteval
= ptep_get_and_clear(mm
, pvmw
.address
, pvmw
.pte
);
1457 * Store the pfn of the page in a special migration
1458 * pte. do_swap_page() will wait until the migration
1459 * pte is removed and then restart fault handling.
1461 entry
= make_migration_entry(page
, 0);
1462 swp_pte
= swp_entry_to_pte(entry
);
1463 if (pte_soft_dirty(pteval
))
1464 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1465 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, swp_pte
);
1469 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1470 if (ptep_clear_flush_young_notify(vma
, address
,
1473 page_vma_mapped_walk_done(&pvmw
);
1478 /* Nuke the page table entry. */
1479 flush_cache_page(vma
, address
, pte_pfn(*pvmw
.pte
));
1480 if (should_defer_flush(mm
, flags
)) {
1482 * We clear the PTE but do not flush so potentially
1483 * a remote CPU could still be writing to the page.
1484 * If the entry was previously clean then the
1485 * architecture must guarantee that a clear->dirty
1486 * transition on a cached TLB entry is written through
1487 * and traps if the PTE is unmapped.
1489 pteval
= ptep_get_and_clear(mm
, address
, pvmw
.pte
);
1491 set_tlb_ubc_flush_pending(mm
, pte_dirty(pteval
));
1493 pteval
= ptep_clear_flush(vma
, address
, pvmw
.pte
);
1496 /* Move the dirty bit to the page. Now the pte is gone. */
1497 if (pte_dirty(pteval
))
1498 set_page_dirty(page
);
1500 /* Update high watermark before we lower rss */
1501 update_hiwater_rss(mm
);
1503 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1504 pteval
= swp_entry_to_pte(make_hwpoison_entry(subpage
));
1505 if (PageHuge(page
)) {
1506 int nr
= 1 << compound_order(page
);
1507 hugetlb_count_sub(nr
, mm
);
1508 set_huge_swap_pte_at(mm
, address
,
1510 vma_mmu_pagesize(vma
));
1512 dec_mm_counter(mm
, mm_counter(page
));
1513 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1516 } else if (pte_unused(pteval
) && !userfaultfd_armed(vma
)) {
1518 * The guest indicated that the page content is of no
1519 * interest anymore. Simply discard the pte, vmscan
1520 * will take care of the rest.
1521 * A future reference will then fault in a new zero
1522 * page. When userfaultfd is active, we must not drop
1523 * this page though, as its main user (postcopy
1524 * migration) will not expect userfaults on already
1527 dec_mm_counter(mm
, mm_counter(page
));
1528 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1529 (flags
& (TTU_MIGRATION
|TTU_SPLIT_FREEZE
))) {
1533 * Store the pfn of the page in a special migration
1534 * pte. do_swap_page() will wait until the migration
1535 * pte is removed and then restart fault handling.
1537 entry
= make_migration_entry(subpage
,
1539 swp_pte
= swp_entry_to_pte(entry
);
1540 if (pte_soft_dirty(pteval
))
1541 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1542 set_pte_at(mm
, address
, pvmw
.pte
, swp_pte
);
1543 } else if (PageAnon(page
)) {
1544 swp_entry_t entry
= { .val
= page_private(subpage
) };
1547 * Store the swap location in the pte.
1548 * See handle_pte_fault() ...
1550 if (unlikely(PageSwapBacked(page
) != PageSwapCache(page
))) {
1553 /* We have to invalidate as we cleared the pte */
1554 page_vma_mapped_walk_done(&pvmw
);
1558 /* MADV_FREE page check */
1559 if (!PageSwapBacked(page
)) {
1560 if (!PageDirty(page
)) {
1561 dec_mm_counter(mm
, MM_ANONPAGES
);
1566 * If the page was redirtied, it cannot be
1567 * discarded. Remap the page to page table.
1569 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1570 SetPageSwapBacked(page
);
1572 page_vma_mapped_walk_done(&pvmw
);
1576 if (swap_duplicate(entry
) < 0) {
1577 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1579 page_vma_mapped_walk_done(&pvmw
);
1582 if (list_empty(&mm
->mmlist
)) {
1583 spin_lock(&mmlist_lock
);
1584 if (list_empty(&mm
->mmlist
))
1585 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1586 spin_unlock(&mmlist_lock
);
1588 dec_mm_counter(mm
, MM_ANONPAGES
);
1589 inc_mm_counter(mm
, MM_SWAPENTS
);
1590 swp_pte
= swp_entry_to_pte(entry
);
1591 if (pte_soft_dirty(pteval
))
1592 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1593 set_pte_at(mm
, address
, pvmw
.pte
, swp_pte
);
1595 dec_mm_counter(mm
, mm_counter_file(page
));
1597 page_remove_rmap(subpage
, PageHuge(page
));
1599 mmu_notifier_invalidate_range(mm
, address
,
1600 address
+ PAGE_SIZE
);
1603 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
1608 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1610 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1615 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1616 VM_STACK_INCOMPLETE_SETUP
)
1622 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1624 return is_vma_temporary_stack(vma
);
1627 static int page_mapcount_is_zero(struct page
*page
)
1629 return !total_mapcount(page
);
1633 * try_to_unmap - try to remove all page table mappings to a page
1634 * @page: the page to get unmapped
1635 * @flags: action and flags
1637 * Tries to remove all the page table entries which are mapping this
1638 * page, used in the pageout path. Caller must hold the page lock.
1640 * If unmap is successful, return true. Otherwise, false.
1642 bool try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1644 struct rmap_walk_control rwc
= {
1645 .rmap_one
= try_to_unmap_one
,
1646 .arg
= (void *)flags
,
1647 .done
= page_mapcount_is_zero
,
1648 .anon_lock
= page_lock_anon_vma_read
,
1652 * During exec, a temporary VMA is setup and later moved.
1653 * The VMA is moved under the anon_vma lock but not the
1654 * page tables leading to a race where migration cannot
1655 * find the migration ptes. Rather than increasing the
1656 * locking requirements of exec(), migration skips
1657 * temporary VMAs until after exec() completes.
1659 if ((flags
& (TTU_MIGRATION
|TTU_SPLIT_FREEZE
))
1660 && !PageKsm(page
) && PageAnon(page
))
1661 rwc
.invalid_vma
= invalid_migration_vma
;
1663 if (flags
& TTU_RMAP_LOCKED
)
1664 rmap_walk_locked(page
, &rwc
);
1666 rmap_walk(page
, &rwc
);
1668 return !page_mapcount(page
) ? true : false;
1671 static int page_not_mapped(struct page
*page
)
1673 return !page_mapped(page
);
1677 * try_to_munlock - try to munlock a page
1678 * @page: the page to be munlocked
1680 * Called from munlock code. Checks all of the VMAs mapping the page
1681 * to make sure nobody else has this page mlocked. The page will be
1682 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1685 void try_to_munlock(struct page
*page
)
1687 struct rmap_walk_control rwc
= {
1688 .rmap_one
= try_to_unmap_one
,
1689 .arg
= (void *)TTU_MUNLOCK
,
1690 .done
= page_not_mapped
,
1691 .anon_lock
= page_lock_anon_vma_read
,
1695 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1696 VM_BUG_ON_PAGE(PageCompound(page
) && PageDoubleMap(page
), page
);
1698 rmap_walk(page
, &rwc
);
1701 void __put_anon_vma(struct anon_vma
*anon_vma
)
1703 struct anon_vma
*root
= anon_vma
->root
;
1705 anon_vma_free(anon_vma
);
1706 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1707 anon_vma_free(root
);
1710 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1711 struct rmap_walk_control
*rwc
)
1713 struct anon_vma
*anon_vma
;
1716 return rwc
->anon_lock(page
);
1719 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1720 * because that depends on page_mapped(); but not all its usages
1721 * are holding mmap_sem. Users without mmap_sem are required to
1722 * take a reference count to prevent the anon_vma disappearing
1724 anon_vma
= page_anon_vma(page
);
1728 anon_vma_lock_read(anon_vma
);
1733 * rmap_walk_anon - do something to anonymous page using the object-based
1735 * @page: the page to be handled
1736 * @rwc: control variable according to each walk type
1738 * Find all the mappings of a page using the mapping pointer and the vma chains
1739 * contained in the anon_vma struct it points to.
1741 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1742 * where the page was found will be held for write. So, we won't recheck
1743 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1746 static void rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
,
1749 struct anon_vma
*anon_vma
;
1750 pgoff_t pgoff_start
, pgoff_end
;
1751 struct anon_vma_chain
*avc
;
1754 anon_vma
= page_anon_vma(page
);
1755 /* anon_vma disappear under us? */
1756 VM_BUG_ON_PAGE(!anon_vma
, page
);
1758 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1763 pgoff_start
= page_to_pgoff(page
);
1764 pgoff_end
= pgoff_start
+ hpage_nr_pages(page
) - 1;
1765 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
,
1766 pgoff_start
, pgoff_end
) {
1767 struct vm_area_struct
*vma
= avc
->vma
;
1768 unsigned long address
= vma_address(page
, vma
);
1772 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1775 if (!rwc
->rmap_one(page
, vma
, address
, rwc
->arg
))
1777 if (rwc
->done
&& rwc
->done(page
))
1782 anon_vma_unlock_read(anon_vma
);
1786 * rmap_walk_file - do something to file page using the object-based rmap method
1787 * @page: the page to be handled
1788 * @rwc: control variable according to each walk type
1790 * Find all the mappings of a page using the mapping pointer and the vma chains
1791 * contained in the address_space struct it points to.
1793 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1794 * where the page was found will be held for write. So, we won't recheck
1795 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1798 static void rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
,
1801 struct address_space
*mapping
= page_mapping(page
);
1802 pgoff_t pgoff_start
, pgoff_end
;
1803 struct vm_area_struct
*vma
;
1806 * The page lock not only makes sure that page->mapping cannot
1807 * suddenly be NULLified by truncation, it makes sure that the
1808 * structure at mapping cannot be freed and reused yet,
1809 * so we can safely take mapping->i_mmap_rwsem.
1811 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1816 pgoff_start
= page_to_pgoff(page
);
1817 pgoff_end
= pgoff_start
+ hpage_nr_pages(page
) - 1;
1819 i_mmap_lock_read(mapping
);
1820 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
,
1821 pgoff_start
, pgoff_end
) {
1822 unsigned long address
= vma_address(page
, vma
);
1826 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1829 if (!rwc
->rmap_one(page
, vma
, address
, rwc
->arg
))
1831 if (rwc
->done
&& rwc
->done(page
))
1837 i_mmap_unlock_read(mapping
);
1840 void rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1842 if (unlikely(PageKsm(page
)))
1843 rmap_walk_ksm(page
, rwc
);
1844 else if (PageAnon(page
))
1845 rmap_walk_anon(page
, rwc
, false);
1847 rmap_walk_file(page
, rwc
, false);
1850 /* Like rmap_walk, but caller holds relevant rmap lock */
1851 void rmap_walk_locked(struct page
*page
, struct rmap_walk_control
*rwc
)
1853 /* no ksm support for now */
1854 VM_BUG_ON_PAGE(PageKsm(page
), page
);
1856 rmap_walk_anon(page
, rwc
, true);
1858 rmap_walk_file(page
, rwc
, true);
1861 #ifdef CONFIG_HUGETLB_PAGE
1863 * The following three functions are for anonymous (private mapped) hugepages.
1864 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1865 * and no lru code, because we handle hugepages differently from common pages.
1867 static void __hugepage_set_anon_rmap(struct page
*page
,
1868 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1870 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1877 anon_vma
= anon_vma
->root
;
1879 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1880 page
->mapping
= (struct address_space
*) anon_vma
;
1881 page
->index
= linear_page_index(vma
, address
);
1884 void hugepage_add_anon_rmap(struct page
*page
,
1885 struct vm_area_struct
*vma
, unsigned long address
)
1887 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1890 BUG_ON(!PageLocked(page
));
1892 /* address might be in next vma when migration races vma_adjust */
1893 first
= atomic_inc_and_test(compound_mapcount_ptr(page
));
1895 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1898 void hugepage_add_new_anon_rmap(struct page
*page
,
1899 struct vm_area_struct
*vma
, unsigned long address
)
1901 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1902 atomic_set(compound_mapcount_ptr(page
), 0);
1903 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1905 #endif /* CONFIG_HUGETLB_PAGE */