1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
27 #ifdef CONFIG_COMPACTION
28 static inline void count_compact_event(enum vm_event_item item
)
33 static inline void count_compact_events(enum vm_event_item item
, long delta
)
35 count_vm_events(item
, delta
);
38 #define count_compact_event(item) do { } while (0)
39 #define count_compact_events(item, delta) do { } while (0)
42 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/compaction.h>
47 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52 static unsigned long release_freepages(struct list_head
*freelist
)
54 struct page
*page
, *next
;
55 unsigned long high_pfn
= 0;
57 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
58 unsigned long pfn
= page_to_pfn(page
);
68 static void map_pages(struct list_head
*list
)
70 unsigned int i
, order
, nr_pages
;
71 struct page
*page
, *next
;
74 list_for_each_entry_safe(page
, next
, list
, lru
) {
77 order
= page_private(page
);
78 nr_pages
= 1 << order
;
80 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
82 split_page(page
, order
);
84 for (i
= 0; i
< nr_pages
; i
++) {
85 list_add(&page
->lru
, &tmp_list
);
90 list_splice(&tmp_list
, list
);
93 #ifdef CONFIG_COMPACTION
95 int PageMovable(struct page
*page
)
97 struct address_space
*mapping
;
99 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
100 if (!__PageMovable(page
))
103 mapping
= page_mapping(page
);
104 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
109 EXPORT_SYMBOL(PageMovable
);
111 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
113 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
114 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
115 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
117 EXPORT_SYMBOL(__SetPageMovable
);
119 void __ClearPageMovable(struct page
*page
)
121 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
122 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
128 page
->mapping
= (void *)((unsigned long)page
->mapping
&
129 PAGE_MAPPING_MOVABLE
);
131 EXPORT_SYMBOL(__ClearPageMovable
);
133 /* Do not skip compaction more than 64 times */
134 #define COMPACT_MAX_DEFER_SHIFT 6
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 void defer_compaction(struct zone
*zone
, int order
)
143 zone
->compact_considered
= 0;
144 zone
->compact_defer_shift
++;
146 if (order
< zone
->compact_order_failed
)
147 zone
->compact_order_failed
= order
;
149 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
150 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
152 trace_mm_compaction_defer_compaction(zone
, order
);
155 /* Returns true if compaction should be skipped this time */
156 bool compaction_deferred(struct zone
*zone
, int order
)
158 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
160 if (order
< zone
->compact_order_failed
)
163 /* Avoid possible overflow */
164 if (++zone
->compact_considered
> defer_limit
)
165 zone
->compact_considered
= defer_limit
;
167 if (zone
->compact_considered
>= defer_limit
)
170 trace_mm_compaction_deferred(zone
, order
);
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
180 void compaction_defer_reset(struct zone
*zone
, int order
,
184 zone
->compact_considered
= 0;
185 zone
->compact_defer_shift
= 0;
187 if (order
>= zone
->compact_order_failed
)
188 zone
->compact_order_failed
= order
+ 1;
190 trace_mm_compaction_defer_reset(zone
, order
);
193 /* Returns true if restarting compaction after many failures */
194 bool compaction_restarting(struct zone
*zone
, int order
)
196 if (order
< zone
->compact_order_failed
)
199 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
200 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
203 /* Returns true if the pageblock should be scanned for pages to isolate. */
204 static inline bool isolation_suitable(struct compact_control
*cc
,
207 if (cc
->ignore_skip_hint
)
210 return !get_pageblock_skip(page
);
213 static void reset_cached_positions(struct zone
*zone
)
215 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
216 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
217 zone
->compact_cached_free_pfn
=
218 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
222 * This function is called to clear all cached information on pageblocks that
223 * should be skipped for page isolation when the migrate and free page scanner
226 static void __reset_isolation_suitable(struct zone
*zone
)
228 unsigned long start_pfn
= zone
->zone_start_pfn
;
229 unsigned long end_pfn
= zone_end_pfn(zone
);
232 zone
->compact_blockskip_flush
= false;
234 /* Walk the zone and mark every pageblock as suitable for isolation */
235 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
240 page
= pfn_to_online_page(pfn
);
243 if (zone
!= page_zone(page
))
246 clear_pageblock_skip(page
);
249 reset_cached_positions(zone
);
252 void reset_isolation_suitable(pg_data_t
*pgdat
)
256 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
257 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
258 if (!populated_zone(zone
))
261 /* Only flush if a full compaction finished recently */
262 if (zone
->compact_blockskip_flush
)
263 __reset_isolation_suitable(zone
);
268 * If no pages were isolated then mark this pageblock to be skipped in the
269 * future. The information is later cleared by __reset_isolation_suitable().
271 static void update_pageblock_skip(struct compact_control
*cc
,
272 struct page
*page
, unsigned long nr_isolated
,
273 bool migrate_scanner
)
275 struct zone
*zone
= cc
->zone
;
278 if (cc
->ignore_skip_hint
)
287 set_pageblock_skip(page
);
289 pfn
= page_to_pfn(page
);
291 /* Update where async and sync compaction should restart */
292 if (migrate_scanner
) {
293 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
294 zone
->compact_cached_migrate_pfn
[0] = pfn
;
295 if (cc
->mode
!= MIGRATE_ASYNC
&&
296 pfn
> zone
->compact_cached_migrate_pfn
[1])
297 zone
->compact_cached_migrate_pfn
[1] = pfn
;
299 if (pfn
< zone
->compact_cached_free_pfn
)
300 zone
->compact_cached_free_pfn
= pfn
;
304 static inline bool isolation_suitable(struct compact_control
*cc
,
310 static void update_pageblock_skip(struct compact_control
*cc
,
311 struct page
*page
, unsigned long nr_isolated
,
312 bool migrate_scanner
)
315 #endif /* CONFIG_COMPACTION */
318 * Compaction requires the taking of some coarse locks that are potentially
319 * very heavily contended. For async compaction, back out if the lock cannot
320 * be taken immediately. For sync compaction, spin on the lock if needed.
322 * Returns true if the lock is held
323 * Returns false if the lock is not held and compaction should abort
325 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
326 struct compact_control
*cc
)
328 if (cc
->mode
== MIGRATE_ASYNC
) {
329 if (!spin_trylock_irqsave(lock
, *flags
)) {
330 cc
->contended
= true;
334 spin_lock_irqsave(lock
, *flags
);
341 * Compaction requires the taking of some coarse locks that are potentially
342 * very heavily contended. The lock should be periodically unlocked to avoid
343 * having disabled IRQs for a long time, even when there is nobody waiting on
344 * the lock. It might also be that allowing the IRQs will result in
345 * need_resched() becoming true. If scheduling is needed, async compaction
346 * aborts. Sync compaction schedules.
347 * Either compaction type will also abort if a fatal signal is pending.
348 * In either case if the lock was locked, it is dropped and not regained.
350 * Returns true if compaction should abort due to fatal signal pending, or
351 * async compaction due to need_resched()
352 * Returns false when compaction can continue (sync compaction might have
355 static bool compact_unlock_should_abort(spinlock_t
*lock
,
356 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
359 spin_unlock_irqrestore(lock
, flags
);
363 if (fatal_signal_pending(current
)) {
364 cc
->contended
= true;
368 if (need_resched()) {
369 if (cc
->mode
== MIGRATE_ASYNC
) {
370 cc
->contended
= true;
380 * Aside from avoiding lock contention, compaction also periodically checks
381 * need_resched() and either schedules in sync compaction or aborts async
382 * compaction. This is similar to what compact_unlock_should_abort() does, but
383 * is used where no lock is concerned.
385 * Returns false when no scheduling was needed, or sync compaction scheduled.
386 * Returns true when async compaction should abort.
388 static inline bool compact_should_abort(struct compact_control
*cc
)
390 /* async compaction aborts if contended */
391 if (need_resched()) {
392 if (cc
->mode
== MIGRATE_ASYNC
) {
393 cc
->contended
= true;
404 * Isolate free pages onto a private freelist. If @strict is true, will abort
405 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
406 * (even though it may still end up isolating some pages).
408 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
409 unsigned long *start_pfn
,
410 unsigned long end_pfn
,
411 struct list_head
*freelist
,
414 int nr_scanned
= 0, total_isolated
= 0;
415 struct page
*cursor
, *valid_page
= NULL
;
416 unsigned long flags
= 0;
418 unsigned long blockpfn
= *start_pfn
;
421 cursor
= pfn_to_page(blockpfn
);
423 /* Isolate free pages. */
424 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
426 struct page
*page
= cursor
;
429 * Periodically drop the lock (if held) regardless of its
430 * contention, to give chance to IRQs. Abort if fatal signal
431 * pending or async compaction detects need_resched()
433 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
434 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
439 if (!pfn_valid_within(blockpfn
))
446 * For compound pages such as THP and hugetlbfs, we can save
447 * potentially a lot of iterations if we skip them at once.
448 * The check is racy, but we can consider only valid values
449 * and the only danger is skipping too much.
451 if (PageCompound(page
)) {
452 unsigned int comp_order
= compound_order(page
);
454 if (likely(comp_order
< MAX_ORDER
)) {
455 blockpfn
+= (1UL << comp_order
) - 1;
456 cursor
+= (1UL << comp_order
) - 1;
462 if (!PageBuddy(page
))
466 * If we already hold the lock, we can skip some rechecking.
467 * Note that if we hold the lock now, checked_pageblock was
468 * already set in some previous iteration (or strict is true),
469 * so it is correct to skip the suitable migration target
474 * The zone lock must be held to isolate freepages.
475 * Unfortunately this is a very coarse lock and can be
476 * heavily contended if there are parallel allocations
477 * or parallel compactions. For async compaction do not
478 * spin on the lock and we acquire the lock as late as
481 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
486 /* Recheck this is a buddy page under lock */
487 if (!PageBuddy(page
))
491 /* Found a free page, will break it into order-0 pages */
492 order
= page_order(page
);
493 isolated
= __isolate_free_page(page
, order
);
496 set_page_private(page
, order
);
498 total_isolated
+= isolated
;
499 cc
->nr_freepages
+= isolated
;
500 list_add_tail(&page
->lru
, freelist
);
502 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
503 blockpfn
+= isolated
;
506 /* Advance to the end of split page */
507 blockpfn
+= isolated
- 1;
508 cursor
+= isolated
- 1;
520 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
523 * There is a tiny chance that we have read bogus compound_order(),
524 * so be careful to not go outside of the pageblock.
526 if (unlikely(blockpfn
> end_pfn
))
529 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
530 nr_scanned
, total_isolated
);
532 /* Record how far we have got within the block */
533 *start_pfn
= blockpfn
;
536 * If strict isolation is requested by CMA then check that all the
537 * pages requested were isolated. If there were any failures, 0 is
538 * returned and CMA will fail.
540 if (strict
&& blockpfn
< end_pfn
)
543 /* Update the pageblock-skip if the whole pageblock was scanned */
544 if (blockpfn
== end_pfn
)
545 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
547 cc
->total_free_scanned
+= nr_scanned
;
549 count_compact_events(COMPACTISOLATED
, total_isolated
);
550 return total_isolated
;
554 * isolate_freepages_range() - isolate free pages.
555 * @start_pfn: The first PFN to start isolating.
556 * @end_pfn: The one-past-last PFN.
558 * Non-free pages, invalid PFNs, or zone boundaries within the
559 * [start_pfn, end_pfn) range are considered errors, cause function to
560 * undo its actions and return zero.
562 * Otherwise, function returns one-past-the-last PFN of isolated page
563 * (which may be greater then end_pfn if end fell in a middle of
567 isolate_freepages_range(struct compact_control
*cc
,
568 unsigned long start_pfn
, unsigned long end_pfn
)
570 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
574 block_start_pfn
= pageblock_start_pfn(pfn
);
575 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
576 block_start_pfn
= cc
->zone
->zone_start_pfn
;
577 block_end_pfn
= pageblock_end_pfn(pfn
);
579 for (; pfn
< end_pfn
; pfn
+= isolated
,
580 block_start_pfn
= block_end_pfn
,
581 block_end_pfn
+= pageblock_nr_pages
) {
582 /* Protect pfn from changing by isolate_freepages_block */
583 unsigned long isolate_start_pfn
= pfn
;
585 block_end_pfn
= min(block_end_pfn
, end_pfn
);
588 * pfn could pass the block_end_pfn if isolated freepage
589 * is more than pageblock order. In this case, we adjust
590 * scanning range to right one.
592 if (pfn
>= block_end_pfn
) {
593 block_start_pfn
= pageblock_start_pfn(pfn
);
594 block_end_pfn
= pageblock_end_pfn(pfn
);
595 block_end_pfn
= min(block_end_pfn
, end_pfn
);
598 if (!pageblock_pfn_to_page(block_start_pfn
,
599 block_end_pfn
, cc
->zone
))
602 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
603 block_end_pfn
, &freelist
, true);
606 * In strict mode, isolate_freepages_block() returns 0 if
607 * there are any holes in the block (ie. invalid PFNs or
614 * If we managed to isolate pages, it is always (1 << n) *
615 * pageblock_nr_pages for some non-negative n. (Max order
616 * page may span two pageblocks).
620 /* __isolate_free_page() does not map the pages */
621 map_pages(&freelist
);
624 /* Loop terminated early, cleanup. */
625 release_freepages(&freelist
);
629 /* We don't use freelists for anything. */
633 /* Similar to reclaim, but different enough that they don't share logic */
634 static bool too_many_isolated(struct zone
*zone
)
636 unsigned long active
, inactive
, isolated
;
638 inactive
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
639 node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
640 active
= node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
) +
641 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_ANON
);
642 isolated
= node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
) +
643 node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
);
645 return isolated
> (inactive
+ active
) / 2;
649 * isolate_migratepages_block() - isolate all migrate-able pages within
651 * @cc: Compaction control structure.
652 * @low_pfn: The first PFN to isolate
653 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
654 * @isolate_mode: Isolation mode to be used.
656 * Isolate all pages that can be migrated from the range specified by
657 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
658 * Returns zero if there is a fatal signal pending, otherwise PFN of the
659 * first page that was not scanned (which may be both less, equal to or more
662 * The pages are isolated on cc->migratepages list (not required to be empty),
663 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
664 * is neither read nor updated.
667 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
668 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
670 struct zone
*zone
= cc
->zone
;
671 unsigned long nr_scanned
= 0, nr_isolated
= 0;
672 struct lruvec
*lruvec
;
673 unsigned long flags
= 0;
675 struct page
*page
= NULL
, *valid_page
= NULL
;
676 unsigned long start_pfn
= low_pfn
;
677 bool skip_on_failure
= false;
678 unsigned long next_skip_pfn
= 0;
681 * Ensure that there are not too many pages isolated from the LRU
682 * list by either parallel reclaimers or compaction. If there are,
683 * delay for some time until fewer pages are isolated
685 while (unlikely(too_many_isolated(zone
))) {
686 /* async migration should just abort */
687 if (cc
->mode
== MIGRATE_ASYNC
)
690 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
692 if (fatal_signal_pending(current
))
696 if (compact_should_abort(cc
))
699 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
700 skip_on_failure
= true;
701 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
704 /* Time to isolate some pages for migration */
705 for (; low_pfn
< end_pfn
; low_pfn
++) {
707 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
709 * We have isolated all migration candidates in the
710 * previous order-aligned block, and did not skip it due
711 * to failure. We should migrate the pages now and
712 * hopefully succeed compaction.
718 * We failed to isolate in the previous order-aligned
719 * block. Set the new boundary to the end of the
720 * current block. Note we can't simply increase
721 * next_skip_pfn by 1 << order, as low_pfn might have
722 * been incremented by a higher number due to skipping
723 * a compound or a high-order buddy page in the
724 * previous loop iteration.
726 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
730 * Periodically drop the lock (if held) regardless of its
731 * contention, to give chance to IRQs. Abort async compaction
734 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
735 && compact_unlock_should_abort(zone_lru_lock(zone
), flags
,
739 if (!pfn_valid_within(low_pfn
))
743 page
= pfn_to_page(low_pfn
);
749 * Skip if free. We read page order here without zone lock
750 * which is generally unsafe, but the race window is small and
751 * the worst thing that can happen is that we skip some
752 * potential isolation targets.
754 if (PageBuddy(page
)) {
755 unsigned long freepage_order
= page_order_unsafe(page
);
758 * Without lock, we cannot be sure that what we got is
759 * a valid page order. Consider only values in the
760 * valid order range to prevent low_pfn overflow.
762 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
763 low_pfn
+= (1UL << freepage_order
) - 1;
768 * Regardless of being on LRU, compound pages such as THP and
769 * hugetlbfs are not to be compacted. We can potentially save
770 * a lot of iterations if we skip them at once. The check is
771 * racy, but we can consider only valid values and the only
772 * danger is skipping too much.
774 if (PageCompound(page
)) {
775 unsigned int comp_order
= compound_order(page
);
777 if (likely(comp_order
< MAX_ORDER
))
778 low_pfn
+= (1UL << comp_order
) - 1;
784 * Check may be lockless but that's ok as we recheck later.
785 * It's possible to migrate LRU and non-lru movable pages.
786 * Skip any other type of page
788 if (!PageLRU(page
)) {
790 * __PageMovable can return false positive so we need
791 * to verify it under page_lock.
793 if (unlikely(__PageMovable(page
)) &&
794 !PageIsolated(page
)) {
796 spin_unlock_irqrestore(zone_lru_lock(zone
),
801 if (!isolate_movable_page(page
, isolate_mode
))
802 goto isolate_success
;
809 * Migration will fail if an anonymous page is pinned in memory,
810 * so avoid taking lru_lock and isolating it unnecessarily in an
811 * admittedly racy check.
813 if (!page_mapping(page
) &&
814 page_count(page
) > page_mapcount(page
))
818 * Only allow to migrate anonymous pages in GFP_NOFS context
819 * because those do not depend on fs locks.
821 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
824 /* If we already hold the lock, we can skip some rechecking */
826 locked
= compact_trylock_irqsave(zone_lru_lock(zone
),
831 /* Recheck PageLRU and PageCompound under lock */
836 * Page become compound since the non-locked check,
837 * and it's on LRU. It can only be a THP so the order
838 * is safe to read and it's 0 for tail pages.
840 if (unlikely(PageCompound(page
))) {
841 low_pfn
+= (1UL << compound_order(page
)) - 1;
846 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
848 /* Try isolate the page */
849 if (__isolate_lru_page(page
, isolate_mode
) != 0)
852 VM_BUG_ON_PAGE(PageCompound(page
), page
);
854 /* Successfully isolated */
855 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
856 inc_node_page_state(page
,
857 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
860 list_add(&page
->lru
, &cc
->migratepages
);
861 cc
->nr_migratepages
++;
865 * Record where we could have freed pages by migration and not
866 * yet flushed them to buddy allocator.
867 * - this is the lowest page that was isolated and likely be
868 * then freed by migration.
870 if (!cc
->last_migrated_pfn
)
871 cc
->last_migrated_pfn
= low_pfn
;
873 /* Avoid isolating too much */
874 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
881 if (!skip_on_failure
)
885 * We have isolated some pages, but then failed. Release them
886 * instead of migrating, as we cannot form the cc->order buddy
891 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
894 putback_movable_pages(&cc
->migratepages
);
895 cc
->nr_migratepages
= 0;
896 cc
->last_migrated_pfn
= 0;
900 if (low_pfn
< next_skip_pfn
) {
901 low_pfn
= next_skip_pfn
- 1;
903 * The check near the loop beginning would have updated
904 * next_skip_pfn too, but this is a bit simpler.
906 next_skip_pfn
+= 1UL << cc
->order
;
911 * The PageBuddy() check could have potentially brought us outside
912 * the range to be scanned.
914 if (unlikely(low_pfn
> end_pfn
))
918 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
921 * Update the pageblock-skip information and cached scanner pfn,
922 * if the whole pageblock was scanned without isolating any page.
924 if (low_pfn
== end_pfn
)
925 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
927 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
928 nr_scanned
, nr_isolated
);
930 cc
->total_migrate_scanned
+= nr_scanned
;
932 count_compact_events(COMPACTISOLATED
, nr_isolated
);
938 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
939 * @cc: Compaction control structure.
940 * @start_pfn: The first PFN to start isolating.
941 * @end_pfn: The one-past-last PFN.
943 * Returns zero if isolation fails fatally due to e.g. pending signal.
944 * Otherwise, function returns one-past-the-last PFN of isolated page
945 * (which may be greater than end_pfn if end fell in a middle of a THP page).
948 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
949 unsigned long end_pfn
)
951 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
953 /* Scan block by block. First and last block may be incomplete */
955 block_start_pfn
= pageblock_start_pfn(pfn
);
956 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
957 block_start_pfn
= cc
->zone
->zone_start_pfn
;
958 block_end_pfn
= pageblock_end_pfn(pfn
);
960 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
961 block_start_pfn
= block_end_pfn
,
962 block_end_pfn
+= pageblock_nr_pages
) {
964 block_end_pfn
= min(block_end_pfn
, end_pfn
);
966 if (!pageblock_pfn_to_page(block_start_pfn
,
967 block_end_pfn
, cc
->zone
))
970 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
971 ISOLATE_UNEVICTABLE
);
976 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
983 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
984 #ifdef CONFIG_COMPACTION
986 static bool suitable_migration_source(struct compact_control
*cc
,
991 if ((cc
->mode
!= MIGRATE_ASYNC
) || !cc
->direct_compaction
)
994 block_mt
= get_pageblock_migratetype(page
);
996 if (cc
->migratetype
== MIGRATE_MOVABLE
)
997 return is_migrate_movable(block_mt
);
999 return block_mt
== cc
->migratetype
;
1002 /* Returns true if the page is within a block suitable for migration to */
1003 static bool suitable_migration_target(struct compact_control
*cc
,
1006 /* If the page is a large free page, then disallow migration */
1007 if (PageBuddy(page
)) {
1009 * We are checking page_order without zone->lock taken. But
1010 * the only small danger is that we skip a potentially suitable
1011 * pageblock, so it's not worth to check order for valid range.
1013 if (page_order_unsafe(page
) >= pageblock_order
)
1017 if (cc
->ignore_block_suitable
)
1020 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1021 if (is_migrate_movable(get_pageblock_migratetype(page
)))
1024 /* Otherwise skip the block */
1029 * Test whether the free scanner has reached the same or lower pageblock than
1030 * the migration scanner, and compaction should thus terminate.
1032 static inline bool compact_scanners_met(struct compact_control
*cc
)
1034 return (cc
->free_pfn
>> pageblock_order
)
1035 <= (cc
->migrate_pfn
>> pageblock_order
);
1039 * Based on information in the current compact_control, find blocks
1040 * suitable for isolating free pages from and then isolate them.
1042 static void isolate_freepages(struct compact_control
*cc
)
1044 struct zone
*zone
= cc
->zone
;
1046 unsigned long block_start_pfn
; /* start of current pageblock */
1047 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1048 unsigned long block_end_pfn
; /* end of current pageblock */
1049 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1050 struct list_head
*freelist
= &cc
->freepages
;
1053 * Initialise the free scanner. The starting point is where we last
1054 * successfully isolated from, zone-cached value, or the end of the
1055 * zone when isolating for the first time. For looping we also need
1056 * this pfn aligned down to the pageblock boundary, because we do
1057 * block_start_pfn -= pageblock_nr_pages in the for loop.
1058 * For ending point, take care when isolating in last pageblock of a
1059 * a zone which ends in the middle of a pageblock.
1060 * The low boundary is the end of the pageblock the migration scanner
1063 isolate_start_pfn
= cc
->free_pfn
;
1064 block_start_pfn
= pageblock_start_pfn(cc
->free_pfn
);
1065 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1066 zone_end_pfn(zone
));
1067 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1070 * Isolate free pages until enough are available to migrate the
1071 * pages on cc->migratepages. We stop searching if the migrate
1072 * and free page scanners meet or enough free pages are isolated.
1074 for (; block_start_pfn
>= low_pfn
;
1075 block_end_pfn
= block_start_pfn
,
1076 block_start_pfn
-= pageblock_nr_pages
,
1077 isolate_start_pfn
= block_start_pfn
) {
1079 * This can iterate a massively long zone without finding any
1080 * suitable migration targets, so periodically check if we need
1081 * to schedule, or even abort async compaction.
1083 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1084 && compact_should_abort(cc
))
1087 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1092 /* Check the block is suitable for migration */
1093 if (!suitable_migration_target(cc
, page
))
1096 /* If isolation recently failed, do not retry */
1097 if (!isolation_suitable(cc
, page
))
1100 /* Found a block suitable for isolating free pages from. */
1101 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1105 * If we isolated enough freepages, or aborted due to lock
1106 * contention, terminate.
1108 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1110 if (isolate_start_pfn
>= block_end_pfn
) {
1112 * Restart at previous pageblock if more
1113 * freepages can be isolated next time.
1116 block_start_pfn
- pageblock_nr_pages
;
1119 } else if (isolate_start_pfn
< block_end_pfn
) {
1121 * If isolation failed early, do not continue
1128 /* __isolate_free_page() does not map the pages */
1129 map_pages(freelist
);
1132 * Record where the free scanner will restart next time. Either we
1133 * broke from the loop and set isolate_start_pfn based on the last
1134 * call to isolate_freepages_block(), or we met the migration scanner
1135 * and the loop terminated due to isolate_start_pfn < low_pfn
1137 cc
->free_pfn
= isolate_start_pfn
;
1141 * This is a migrate-callback that "allocates" freepages by taking pages
1142 * from the isolated freelists in the block we are migrating to.
1144 static struct page
*compaction_alloc(struct page
*migratepage
,
1148 struct compact_control
*cc
= (struct compact_control
*)data
;
1149 struct page
*freepage
;
1152 * Isolate free pages if necessary, and if we are not aborting due to
1155 if (list_empty(&cc
->freepages
)) {
1157 isolate_freepages(cc
);
1159 if (list_empty(&cc
->freepages
))
1163 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1164 list_del(&freepage
->lru
);
1171 * This is a migrate-callback that "frees" freepages back to the isolated
1172 * freelist. All pages on the freelist are from the same zone, so there is no
1173 * special handling needed for NUMA.
1175 static void compaction_free(struct page
*page
, unsigned long data
)
1177 struct compact_control
*cc
= (struct compact_control
*)data
;
1179 list_add(&page
->lru
, &cc
->freepages
);
1183 /* possible outcome of isolate_migratepages */
1185 ISOLATE_ABORT
, /* Abort compaction now */
1186 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1187 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1188 } isolate_migrate_t
;
1191 * Allow userspace to control policy on scanning the unevictable LRU for
1192 * compactable pages.
1194 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1197 * Isolate all pages that can be migrated from the first suitable block,
1198 * starting at the block pointed to by the migrate scanner pfn within
1201 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1202 struct compact_control
*cc
)
1204 unsigned long block_start_pfn
;
1205 unsigned long block_end_pfn
;
1206 unsigned long low_pfn
;
1208 const isolate_mode_t isolate_mode
=
1209 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1210 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1213 * Start at where we last stopped, or beginning of the zone as
1214 * initialized by compact_zone()
1216 low_pfn
= cc
->migrate_pfn
;
1217 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1218 if (block_start_pfn
< zone
->zone_start_pfn
)
1219 block_start_pfn
= zone
->zone_start_pfn
;
1221 /* Only scan within a pageblock boundary */
1222 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1225 * Iterate over whole pageblocks until we find the first suitable.
1226 * Do not cross the free scanner.
1228 for (; block_end_pfn
<= cc
->free_pfn
;
1229 low_pfn
= block_end_pfn
,
1230 block_start_pfn
= block_end_pfn
,
1231 block_end_pfn
+= pageblock_nr_pages
) {
1234 * This can potentially iterate a massively long zone with
1235 * many pageblocks unsuitable, so periodically check if we
1236 * need to schedule, or even abort async compaction.
1238 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1239 && compact_should_abort(cc
))
1242 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1247 /* If isolation recently failed, do not retry */
1248 if (!isolation_suitable(cc
, page
))
1252 * For async compaction, also only scan in MOVABLE blocks.
1253 * Async compaction is optimistic to see if the minimum amount
1254 * of work satisfies the allocation.
1256 if (!suitable_migration_source(cc
, page
))
1259 /* Perform the isolation */
1260 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1261 block_end_pfn
, isolate_mode
);
1263 if (!low_pfn
|| cc
->contended
)
1264 return ISOLATE_ABORT
;
1267 * Either we isolated something and proceed with migration. Or
1268 * we failed and compact_zone should decide if we should
1274 /* Record where migration scanner will be restarted. */
1275 cc
->migrate_pfn
= low_pfn
;
1277 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1281 * order == -1 is expected when compacting via
1282 * /proc/sys/vm/compact_memory
1284 static inline bool is_via_compact_memory(int order
)
1289 static enum compact_result
__compact_finished(struct zone
*zone
,
1290 struct compact_control
*cc
)
1293 const int migratetype
= cc
->migratetype
;
1295 if (cc
->contended
|| fatal_signal_pending(current
))
1296 return COMPACT_CONTENDED
;
1298 /* Compaction run completes if the migrate and free scanner meet */
1299 if (compact_scanners_met(cc
)) {
1300 /* Let the next compaction start anew. */
1301 reset_cached_positions(zone
);
1304 * Mark that the PG_migrate_skip information should be cleared
1305 * by kswapd when it goes to sleep. kcompactd does not set the
1306 * flag itself as the decision to be clear should be directly
1307 * based on an allocation request.
1309 if (cc
->direct_compaction
)
1310 zone
->compact_blockskip_flush
= true;
1313 return COMPACT_COMPLETE
;
1315 return COMPACT_PARTIAL_SKIPPED
;
1318 if (is_via_compact_memory(cc
->order
))
1319 return COMPACT_CONTINUE
;
1321 if (cc
->finishing_block
) {
1323 * We have finished the pageblock, but better check again that
1324 * we really succeeded.
1326 if (IS_ALIGNED(cc
->migrate_pfn
, pageblock_nr_pages
))
1327 cc
->finishing_block
= false;
1329 return COMPACT_CONTINUE
;
1332 /* Direct compactor: Is a suitable page free? */
1333 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1334 struct free_area
*area
= &zone
->free_area
[order
];
1337 /* Job done if page is free of the right migratetype */
1338 if (!list_empty(&area
->free_list
[migratetype
]))
1339 return COMPACT_SUCCESS
;
1342 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1343 if (migratetype
== MIGRATE_MOVABLE
&&
1344 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1345 return COMPACT_SUCCESS
;
1348 * Job done if allocation would steal freepages from
1349 * other migratetype buddy lists.
1351 if (find_suitable_fallback(area
, order
, migratetype
,
1352 true, &can_steal
) != -1) {
1354 /* movable pages are OK in any pageblock */
1355 if (migratetype
== MIGRATE_MOVABLE
)
1356 return COMPACT_SUCCESS
;
1359 * We are stealing for a non-movable allocation. Make
1360 * sure we finish compacting the current pageblock
1361 * first so it is as free as possible and we won't
1362 * have to steal another one soon. This only applies
1363 * to sync compaction, as async compaction operates
1364 * on pageblocks of the same migratetype.
1366 if (cc
->mode
== MIGRATE_ASYNC
||
1367 IS_ALIGNED(cc
->migrate_pfn
,
1368 pageblock_nr_pages
)) {
1369 return COMPACT_SUCCESS
;
1372 cc
->finishing_block
= true;
1373 return COMPACT_CONTINUE
;
1377 return COMPACT_NO_SUITABLE_PAGE
;
1380 static enum compact_result
compact_finished(struct zone
*zone
,
1381 struct compact_control
*cc
)
1385 ret
= __compact_finished(zone
, cc
);
1386 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1387 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1388 ret
= COMPACT_CONTINUE
;
1394 * compaction_suitable: Is this suitable to run compaction on this zone now?
1396 * COMPACT_SKIPPED - If there are too few free pages for compaction
1397 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1398 * COMPACT_CONTINUE - If compaction should run now
1400 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1401 unsigned int alloc_flags
,
1403 unsigned long wmark_target
)
1405 unsigned long watermark
;
1407 if (is_via_compact_memory(order
))
1408 return COMPACT_CONTINUE
;
1410 watermark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1412 * If watermarks for high-order allocation are already met, there
1413 * should be no need for compaction at all.
1415 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1417 return COMPACT_SUCCESS
;
1420 * Watermarks for order-0 must be met for compaction to be able to
1421 * isolate free pages for migration targets. This means that the
1422 * watermark and alloc_flags have to match, or be more pessimistic than
1423 * the check in __isolate_free_page(). We don't use the direct
1424 * compactor's alloc_flags, as they are not relevant for freepage
1425 * isolation. We however do use the direct compactor's classzone_idx to
1426 * skip over zones where lowmem reserves would prevent allocation even
1427 * if compaction succeeds.
1428 * For costly orders, we require low watermark instead of min for
1429 * compaction to proceed to increase its chances.
1430 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1431 * suitable migration targets
1433 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1434 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1435 watermark
+= compact_gap(order
);
1436 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1437 ALLOC_CMA
, wmark_target
))
1438 return COMPACT_SKIPPED
;
1440 return COMPACT_CONTINUE
;
1443 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1444 unsigned int alloc_flags
,
1447 enum compact_result ret
;
1450 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1451 zone_page_state(zone
, NR_FREE_PAGES
));
1453 * fragmentation index determines if allocation failures are due to
1454 * low memory or external fragmentation
1456 * index of -1000 would imply allocations might succeed depending on
1457 * watermarks, but we already failed the high-order watermark check
1458 * index towards 0 implies failure is due to lack of memory
1459 * index towards 1000 implies failure is due to fragmentation
1461 * Only compact if a failure would be due to fragmentation. Also
1462 * ignore fragindex for non-costly orders where the alternative to
1463 * a successful reclaim/compaction is OOM. Fragindex and the
1464 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1465 * excessive compaction for costly orders, but it should not be at the
1466 * expense of system stability.
1468 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
1469 fragindex
= fragmentation_index(zone
, order
);
1470 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1471 ret
= COMPACT_NOT_SUITABLE_ZONE
;
1474 trace_mm_compaction_suitable(zone
, order
, ret
);
1475 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1476 ret
= COMPACT_SKIPPED
;
1481 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
1488 * Make sure at least one zone would pass __compaction_suitable if we continue
1489 * retrying the reclaim.
1491 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1493 unsigned long available
;
1494 enum compact_result compact_result
;
1497 * Do not consider all the reclaimable memory because we do not
1498 * want to trash just for a single high order allocation which
1499 * is even not guaranteed to appear even if __compaction_suitable
1500 * is happy about the watermark check.
1502 available
= zone_reclaimable_pages(zone
) / order
;
1503 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
1504 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
1505 ac_classzone_idx(ac
), available
);
1506 if (compact_result
!= COMPACT_SKIPPED
)
1513 static enum compact_result
compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1515 enum compact_result ret
;
1516 unsigned long start_pfn
= zone
->zone_start_pfn
;
1517 unsigned long end_pfn
= zone_end_pfn(zone
);
1518 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1520 cc
->migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1521 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1523 /* Compaction is likely to fail */
1524 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
1527 /* huh, compaction_suitable is returning something unexpected */
1528 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
1531 * Clear pageblock skip if there were failures recently and compaction
1532 * is about to be retried after being deferred.
1534 if (compaction_restarting(zone
, cc
->order
))
1535 __reset_isolation_suitable(zone
);
1538 * Setup to move all movable pages to the end of the zone. Used cached
1539 * information on where the scanners should start (unless we explicitly
1540 * want to compact the whole zone), but check that it is initialised
1541 * by ensuring the values are within zone boundaries.
1543 if (cc
->whole_zone
) {
1544 cc
->migrate_pfn
= start_pfn
;
1545 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1547 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1548 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1549 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1550 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1551 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1553 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1554 cc
->migrate_pfn
= start_pfn
;
1555 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1556 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1559 if (cc
->migrate_pfn
== start_pfn
)
1560 cc
->whole_zone
= true;
1563 cc
->last_migrated_pfn
= 0;
1565 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1566 cc
->free_pfn
, end_pfn
, sync
);
1568 migrate_prep_local();
1570 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
1573 switch (isolate_migratepages(zone
, cc
)) {
1575 ret
= COMPACT_CONTENDED
;
1576 putback_movable_pages(&cc
->migratepages
);
1577 cc
->nr_migratepages
= 0;
1581 * We haven't isolated and migrated anything, but
1582 * there might still be unflushed migrations from
1583 * previous cc->order aligned block.
1586 case ISOLATE_SUCCESS
:
1590 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1591 compaction_free
, (unsigned long)cc
, cc
->mode
,
1594 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1597 /* All pages were either migrated or will be released */
1598 cc
->nr_migratepages
= 0;
1600 putback_movable_pages(&cc
->migratepages
);
1602 * migrate_pages() may return -ENOMEM when scanners meet
1603 * and we want compact_finished() to detect it
1605 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1606 ret
= COMPACT_CONTENDED
;
1610 * We failed to migrate at least one page in the current
1611 * order-aligned block, so skip the rest of it.
1613 if (cc
->direct_compaction
&&
1614 (cc
->mode
== MIGRATE_ASYNC
)) {
1615 cc
->migrate_pfn
= block_end_pfn(
1616 cc
->migrate_pfn
- 1, cc
->order
);
1617 /* Draining pcplists is useless in this case */
1618 cc
->last_migrated_pfn
= 0;
1625 * Has the migration scanner moved away from the previous
1626 * cc->order aligned block where we migrated from? If yes,
1627 * flush the pages that were freed, so that they can merge and
1628 * compact_finished() can detect immediately if allocation
1631 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1633 unsigned long current_block_start
=
1634 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
1636 if (cc
->last_migrated_pfn
< current_block_start
) {
1638 lru_add_drain_cpu(cpu
);
1639 drain_local_pages(zone
);
1641 /* No more flushing until we migrate again */
1642 cc
->last_migrated_pfn
= 0;
1650 * Release free pages and update where the free scanner should restart,
1651 * so we don't leave any returned pages behind in the next attempt.
1653 if (cc
->nr_freepages
> 0) {
1654 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1656 cc
->nr_freepages
= 0;
1657 VM_BUG_ON(free_pfn
== 0);
1658 /* The cached pfn is always the first in a pageblock */
1659 free_pfn
= pageblock_start_pfn(free_pfn
);
1661 * Only go back, not forward. The cached pfn might have been
1662 * already reset to zone end in compact_finished()
1664 if (free_pfn
> zone
->compact_cached_free_pfn
)
1665 zone
->compact_cached_free_pfn
= free_pfn
;
1668 count_compact_events(COMPACTMIGRATE_SCANNED
, cc
->total_migrate_scanned
);
1669 count_compact_events(COMPACTFREE_SCANNED
, cc
->total_free_scanned
);
1671 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1672 cc
->free_pfn
, end_pfn
, sync
, ret
);
1677 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
1678 gfp_t gfp_mask
, enum compact_priority prio
,
1679 unsigned int alloc_flags
, int classzone_idx
)
1681 enum compact_result ret
;
1682 struct compact_control cc
= {
1684 .nr_migratepages
= 0,
1685 .total_migrate_scanned
= 0,
1686 .total_free_scanned
= 0,
1688 .gfp_mask
= gfp_mask
,
1690 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
1691 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
1692 .alloc_flags
= alloc_flags
,
1693 .classzone_idx
= classzone_idx
,
1694 .direct_compaction
= true,
1695 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
1696 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
1697 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
1699 INIT_LIST_HEAD(&cc
.freepages
);
1700 INIT_LIST_HEAD(&cc
.migratepages
);
1702 ret
= compact_zone(zone
, &cc
);
1704 VM_BUG_ON(!list_empty(&cc
.freepages
));
1705 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1710 int sysctl_extfrag_threshold
= 500;
1713 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1714 * @gfp_mask: The GFP mask of the current allocation
1715 * @order: The order of the current allocation
1716 * @alloc_flags: The allocation flags of the current allocation
1717 * @ac: The context of current allocation
1718 * @mode: The migration mode for async, sync light, or sync migration
1720 * This is the main entry point for direct page compaction.
1722 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1723 unsigned int alloc_flags
, const struct alloc_context
*ac
,
1724 enum compact_priority prio
)
1726 int may_perform_io
= gfp_mask
& __GFP_IO
;
1729 enum compact_result rc
= COMPACT_SKIPPED
;
1732 * Check if the GFP flags allow compaction - GFP_NOIO is really
1733 * tricky context because the migration might require IO
1735 if (!may_perform_io
)
1736 return COMPACT_SKIPPED
;
1738 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
1740 /* Compact each zone in the list */
1741 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1743 enum compact_result status
;
1745 if (prio
> MIN_COMPACT_PRIORITY
1746 && compaction_deferred(zone
, order
)) {
1747 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
1751 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
1752 alloc_flags
, ac_classzone_idx(ac
));
1753 rc
= max(status
, rc
);
1755 /* The allocation should succeed, stop compacting */
1756 if (status
== COMPACT_SUCCESS
) {
1758 * We think the allocation will succeed in this zone,
1759 * but it is not certain, hence the false. The caller
1760 * will repeat this with true if allocation indeed
1761 * succeeds in this zone.
1763 compaction_defer_reset(zone
, order
, false);
1768 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
1769 status
== COMPACT_PARTIAL_SKIPPED
))
1771 * We think that allocation won't succeed in this zone
1772 * so we defer compaction there. If it ends up
1773 * succeeding after all, it will be reset.
1775 defer_compaction(zone
, order
);
1778 * We might have stopped compacting due to need_resched() in
1779 * async compaction, or due to a fatal signal detected. In that
1780 * case do not try further zones
1782 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
1783 || fatal_signal_pending(current
))
1791 /* Compact all zones within a node */
1792 static void compact_node(int nid
)
1794 pg_data_t
*pgdat
= NODE_DATA(nid
);
1797 struct compact_control cc
= {
1799 .total_migrate_scanned
= 0,
1800 .total_free_scanned
= 0,
1801 .mode
= MIGRATE_SYNC
,
1802 .ignore_skip_hint
= true,
1804 .gfp_mask
= GFP_KERNEL
,
1808 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1810 zone
= &pgdat
->node_zones
[zoneid
];
1811 if (!populated_zone(zone
))
1814 cc
.nr_freepages
= 0;
1815 cc
.nr_migratepages
= 0;
1817 INIT_LIST_HEAD(&cc
.freepages
);
1818 INIT_LIST_HEAD(&cc
.migratepages
);
1820 compact_zone(zone
, &cc
);
1822 VM_BUG_ON(!list_empty(&cc
.freepages
));
1823 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1827 /* Compact all nodes in the system */
1828 static void compact_nodes(void)
1832 /* Flush pending updates to the LRU lists */
1833 lru_add_drain_all();
1835 for_each_online_node(nid
)
1839 /* The written value is actually unused, all memory is compacted */
1840 int sysctl_compact_memory
;
1843 * This is the entry point for compacting all nodes via
1844 * /proc/sys/vm/compact_memory
1846 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1847 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1855 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1856 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1858 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1863 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1864 static ssize_t
sysfs_compact_node(struct device
*dev
,
1865 struct device_attribute
*attr
,
1866 const char *buf
, size_t count
)
1870 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1871 /* Flush pending updates to the LRU lists */
1872 lru_add_drain_all();
1879 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1881 int compaction_register_node(struct node
*node
)
1883 return device_create_file(&node
->dev
, &dev_attr_compact
);
1886 void compaction_unregister_node(struct node
*node
)
1888 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1890 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1892 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1894 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
1897 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1901 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1903 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
1904 zone
= &pgdat
->node_zones
[zoneid
];
1906 if (!populated_zone(zone
))
1909 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1910 classzone_idx
) == COMPACT_CONTINUE
)
1917 static void kcompactd_do_work(pg_data_t
*pgdat
)
1920 * With no special task, compact all zones so that a page of requested
1921 * order is allocatable.
1925 struct compact_control cc
= {
1926 .order
= pgdat
->kcompactd_max_order
,
1927 .total_migrate_scanned
= 0,
1928 .total_free_scanned
= 0,
1929 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1930 .mode
= MIGRATE_SYNC_LIGHT
,
1931 .ignore_skip_hint
= true,
1932 .gfp_mask
= GFP_KERNEL
,
1935 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1937 count_compact_event(KCOMPACTD_WAKE
);
1939 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
1942 zone
= &pgdat
->node_zones
[zoneid
];
1943 if (!populated_zone(zone
))
1946 if (compaction_deferred(zone
, cc
.order
))
1949 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1953 cc
.nr_freepages
= 0;
1954 cc
.nr_migratepages
= 0;
1955 cc
.total_migrate_scanned
= 0;
1956 cc
.total_free_scanned
= 0;
1958 INIT_LIST_HEAD(&cc
.freepages
);
1959 INIT_LIST_HEAD(&cc
.migratepages
);
1961 if (kthread_should_stop())
1963 status
= compact_zone(zone
, &cc
);
1965 if (status
== COMPACT_SUCCESS
) {
1966 compaction_defer_reset(zone
, cc
.order
, false);
1967 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
1969 * We use sync migration mode here, so we defer like
1970 * sync direct compaction does.
1972 defer_compaction(zone
, cc
.order
);
1975 count_compact_events(KCOMPACTD_MIGRATE_SCANNED
,
1976 cc
.total_migrate_scanned
);
1977 count_compact_events(KCOMPACTD_FREE_SCANNED
,
1978 cc
.total_free_scanned
);
1980 VM_BUG_ON(!list_empty(&cc
.freepages
));
1981 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1985 * Regardless of success, we are done until woken up next. But remember
1986 * the requested order/classzone_idx in case it was higher/tighter than
1989 if (pgdat
->kcompactd_max_order
<= cc
.order
)
1990 pgdat
->kcompactd_max_order
= 0;
1991 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
1992 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1995 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2000 if (pgdat
->kcompactd_max_order
< order
)
2001 pgdat
->kcompactd_max_order
= order
;
2003 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
2004 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
2007 * Pairs with implicit barrier in wait_event_freezable()
2008 * such that wakeups are not missed.
2010 if (!wq_has_sleeper(&pgdat
->kcompactd_wait
))
2013 if (!kcompactd_node_suitable(pgdat
))
2016 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
2018 wake_up_interruptible(&pgdat
->kcompactd_wait
);
2022 * The background compaction daemon, started as a kernel thread
2023 * from the init process.
2025 static int kcompactd(void *p
)
2027 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2028 struct task_struct
*tsk
= current
;
2030 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2032 if (!cpumask_empty(cpumask
))
2033 set_cpus_allowed_ptr(tsk
, cpumask
);
2037 pgdat
->kcompactd_max_order
= 0;
2038 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
2040 while (!kthread_should_stop()) {
2041 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
2042 wait_event_freezable(pgdat
->kcompactd_wait
,
2043 kcompactd_work_requested(pgdat
));
2045 kcompactd_do_work(pgdat
);
2052 * This kcompactd start function will be called by init and node-hot-add.
2053 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2055 int kcompactd_run(int nid
)
2057 pg_data_t
*pgdat
= NODE_DATA(nid
);
2060 if (pgdat
->kcompactd
)
2063 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2064 if (IS_ERR(pgdat
->kcompactd
)) {
2065 pr_err("Failed to start kcompactd on node %d\n", nid
);
2066 ret
= PTR_ERR(pgdat
->kcompactd
);
2067 pgdat
->kcompactd
= NULL
;
2073 * Called by memory hotplug when all memory in a node is offlined. Caller must
2074 * hold mem_hotplug_begin/end().
2076 void kcompactd_stop(int nid
)
2078 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2081 kthread_stop(kcompactd
);
2082 NODE_DATA(nid
)->kcompactd
= NULL
;
2087 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2088 * not required for correctness. So if the last cpu in a node goes
2089 * away, we get changed to run anywhere: as the first one comes back,
2090 * restore their cpu bindings.
2092 static int kcompactd_cpu_online(unsigned int cpu
)
2096 for_each_node_state(nid
, N_MEMORY
) {
2097 pg_data_t
*pgdat
= NODE_DATA(nid
);
2098 const struct cpumask
*mask
;
2100 mask
= cpumask_of_node(pgdat
->node_id
);
2102 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2103 /* One of our CPUs online: restore mask */
2104 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2109 static int __init
kcompactd_init(void)
2114 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2115 "mm/compaction:online",
2116 kcompactd_cpu_online
, NULL
);
2118 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2122 for_each_node_state(nid
, N_MEMORY
)
2126 subsys_initcall(kcompactd_init
)
2128 #endif /* CONFIG_COMPACTION */