4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
93 const struct qstr empty_name
= QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name
);
95 const struct qstr slash_name
= QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name
);
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
107 static unsigned int d_hash_mask __read_mostly
;
108 static unsigned int d_hash_shift __read_mostly
;
110 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
112 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
114 return dentry_hashtable
+ (hash
>> (32 - d_hash_shift
));
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
120 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
123 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
124 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat
= {
133 static DEFINE_PER_CPU(long, nr_dentry
);
134 static DEFINE_PER_CPU(long, nr_dentry_unused
);
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
150 static long get_nr_dentry(void)
154 for_each_possible_cpu(i
)
155 sum
+= per_cpu(nr_dentry
, i
);
156 return sum
< 0 ? 0 : sum
;
159 static long get_nr_dentry_unused(void)
163 for_each_possible_cpu(i
)
164 sum
+= per_cpu(nr_dentry_unused
, i
);
165 return sum
< 0 ? 0 : sum
;
168 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
169 size_t *lenp
, loff_t
*ppos
)
171 dentry_stat
.nr_dentry
= get_nr_dentry();
172 dentry_stat
.nr_unused
= get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 #include <asm/word-at-a-time.h>
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
193 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
195 unsigned long a
,b
,mask
;
198 a
= *(unsigned long *)cs
;
199 b
= load_unaligned_zeropad(ct
);
200 if (tcount
< sizeof(unsigned long))
202 if (unlikely(a
!= b
))
204 cs
+= sizeof(unsigned long);
205 ct
+= sizeof(unsigned long);
206 tcount
-= sizeof(unsigned long);
210 mask
= bytemask_from_count(tcount
);
211 return unlikely(!!((a
^ b
) & mask
));
216 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
230 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
248 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
250 return dentry_string_cmp(cs
, ct
, tcount
);
253 struct external_name
{
256 struct rcu_head head
;
258 unsigned char name
[];
261 static inline struct external_name
*external_name(struct dentry
*dentry
)
263 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
266 static void __d_free(struct rcu_head
*head
)
268 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
270 kmem_cache_free(dentry_cache
, dentry
);
273 static void __d_free_external_name(struct rcu_head
*head
)
275 struct external_name
*name
= container_of(head
, struct external_name
,
278 mod_node_page_state(page_pgdat(virt_to_page(name
)),
279 NR_INDIRECTLY_RECLAIMABLE_BYTES
,
285 static void __d_free_external(struct rcu_head
*head
)
287 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
289 __d_free_external_name(&external_name(dentry
)->u
.head
);
291 kmem_cache_free(dentry_cache
, dentry
);
294 static inline int dname_external(const struct dentry
*dentry
)
296 return dentry
->d_name
.name
!= dentry
->d_iname
;
299 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
301 spin_lock(&dentry
->d_lock
);
302 if (unlikely(dname_external(dentry
))) {
303 struct external_name
*p
= external_name(dentry
);
304 atomic_inc(&p
->u
.count
);
305 spin_unlock(&dentry
->d_lock
);
306 name
->name
= p
->name
;
308 memcpy(name
->inline_name
, dentry
->d_iname
,
309 dentry
->d_name
.len
+ 1);
310 spin_unlock(&dentry
->d_lock
);
311 name
->name
= name
->inline_name
;
314 EXPORT_SYMBOL(take_dentry_name_snapshot
);
316 void release_dentry_name_snapshot(struct name_snapshot
*name
)
318 if (unlikely(name
->name
!= name
->inline_name
)) {
319 struct external_name
*p
;
320 p
= container_of(name
->name
, struct external_name
, name
[0]);
321 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
322 call_rcu(&p
->u
.head
, __d_free_external_name
);
325 EXPORT_SYMBOL(release_dentry_name_snapshot
);
327 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
333 dentry
->d_inode
= inode
;
334 flags
= READ_ONCE(dentry
->d_flags
);
335 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
337 WRITE_ONCE(dentry
->d_flags
, flags
);
340 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
342 unsigned flags
= READ_ONCE(dentry
->d_flags
);
344 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
345 WRITE_ONCE(dentry
->d_flags
, flags
);
346 dentry
->d_inode
= NULL
;
349 static void dentry_free(struct dentry
*dentry
)
351 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
352 if (unlikely(dname_external(dentry
))) {
353 struct external_name
*p
= external_name(dentry
);
354 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
355 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
359 /* if dentry was never visible to RCU, immediate free is OK */
360 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
361 __d_free(&dentry
->d_u
.d_rcu
);
363 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
367 * Release the dentry's inode, using the filesystem
368 * d_iput() operation if defined.
370 static void dentry_unlink_inode(struct dentry
* dentry
)
371 __releases(dentry
->d_lock
)
372 __releases(dentry
->d_inode
->i_lock
)
374 struct inode
*inode
= dentry
->d_inode
;
376 raw_write_seqcount_begin(&dentry
->d_seq
);
377 __d_clear_type_and_inode(dentry
);
378 hlist_del_init(&dentry
->d_u
.d_alias
);
379 raw_write_seqcount_end(&dentry
->d_seq
);
380 spin_unlock(&dentry
->d_lock
);
381 spin_unlock(&inode
->i_lock
);
383 fsnotify_inoderemove(inode
);
384 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
385 dentry
->d_op
->d_iput(dentry
, inode
);
391 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
392 * is in use - which includes both the "real" per-superblock
393 * LRU list _and_ the DCACHE_SHRINK_LIST use.
395 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
396 * on the shrink list (ie not on the superblock LRU list).
398 * The per-cpu "nr_dentry_unused" counters are updated with
399 * the DCACHE_LRU_LIST bit.
401 * These helper functions make sure we always follow the
402 * rules. d_lock must be held by the caller.
404 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
405 static void d_lru_add(struct dentry
*dentry
)
407 D_FLAG_VERIFY(dentry
, 0);
408 dentry
->d_flags
|= DCACHE_LRU_LIST
;
409 this_cpu_inc(nr_dentry_unused
);
410 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
413 static void d_lru_del(struct dentry
*dentry
)
415 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
416 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
417 this_cpu_dec(nr_dentry_unused
);
418 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
421 static void d_shrink_del(struct dentry
*dentry
)
423 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
424 list_del_init(&dentry
->d_lru
);
425 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
426 this_cpu_dec(nr_dentry_unused
);
429 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
431 D_FLAG_VERIFY(dentry
, 0);
432 list_add(&dentry
->d_lru
, list
);
433 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
434 this_cpu_inc(nr_dentry_unused
);
438 * These can only be called under the global LRU lock, ie during the
439 * callback for freeing the LRU list. "isolate" removes it from the
440 * LRU lists entirely, while shrink_move moves it to the indicated
443 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
445 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
446 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
447 this_cpu_dec(nr_dentry_unused
);
448 list_lru_isolate(lru
, &dentry
->d_lru
);
451 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
452 struct list_head
*list
)
454 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
455 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
456 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
460 * dentry_lru_(add|del)_list) must be called with d_lock held.
462 static void dentry_lru_add(struct dentry
*dentry
)
464 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
466 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
467 dentry
->d_flags
|= DCACHE_REFERENCED
;
471 * d_drop - drop a dentry
472 * @dentry: dentry to drop
474 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
475 * be found through a VFS lookup any more. Note that this is different from
476 * deleting the dentry - d_delete will try to mark the dentry negative if
477 * possible, giving a successful _negative_ lookup, while d_drop will
478 * just make the cache lookup fail.
480 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
481 * reason (NFS timeouts or autofs deletes).
483 * __d_drop requires dentry->d_lock
484 * ___d_drop doesn't mark dentry as "unhashed"
485 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
487 static void ___d_drop(struct dentry
*dentry
)
489 if (!d_unhashed(dentry
)) {
490 struct hlist_bl_head
*b
;
492 * Hashed dentries are normally on the dentry hashtable,
493 * with the exception of those newly allocated by
494 * d_obtain_alias, which are always IS_ROOT:
496 if (unlikely(IS_ROOT(dentry
)))
497 b
= &dentry
->d_sb
->s_anon
;
499 b
= d_hash(dentry
->d_name
.hash
);
502 __hlist_bl_del(&dentry
->d_hash
);
504 /* After this call, in-progress rcu-walk path lookup will fail. */
505 write_seqcount_invalidate(&dentry
->d_seq
);
509 void __d_drop(struct dentry
*dentry
)
512 dentry
->d_hash
.pprev
= NULL
;
514 EXPORT_SYMBOL(__d_drop
);
516 void d_drop(struct dentry
*dentry
)
518 spin_lock(&dentry
->d_lock
);
520 spin_unlock(&dentry
->d_lock
);
522 EXPORT_SYMBOL(d_drop
);
524 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
528 * Inform d_walk() and shrink_dentry_list() that we are no longer
529 * attached to the dentry tree
531 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
532 if (unlikely(list_empty(&dentry
->d_child
)))
534 __list_del_entry(&dentry
->d_child
);
536 * Cursors can move around the list of children. While we'd been
537 * a normal list member, it didn't matter - ->d_child.next would've
538 * been updated. However, from now on it won't be and for the
539 * things like d_walk() it might end up with a nasty surprise.
540 * Normally d_walk() doesn't care about cursors moving around -
541 * ->d_lock on parent prevents that and since a cursor has no children
542 * of its own, we get through it without ever unlocking the parent.
543 * There is one exception, though - if we ascend from a child that
544 * gets killed as soon as we unlock it, the next sibling is found
545 * using the value left in its ->d_child.next. And if _that_
546 * pointed to a cursor, and cursor got moved (e.g. by lseek())
547 * before d_walk() regains parent->d_lock, we'll end up skipping
548 * everything the cursor had been moved past.
550 * Solution: make sure that the pointer left behind in ->d_child.next
551 * points to something that won't be moving around. I.e. skip the
554 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
555 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
556 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
558 dentry
->d_child
.next
= next
->d_child
.next
;
562 static void __dentry_kill(struct dentry
*dentry
)
564 struct dentry
*parent
= NULL
;
565 bool can_free
= true;
566 if (!IS_ROOT(dentry
))
567 parent
= dentry
->d_parent
;
570 * The dentry is now unrecoverably dead to the world.
572 lockref_mark_dead(&dentry
->d_lockref
);
575 * inform the fs via d_prune that this dentry is about to be
576 * unhashed and destroyed.
578 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
579 dentry
->d_op
->d_prune(dentry
);
581 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
582 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
585 /* if it was on the hash then remove it */
587 dentry_unlist(dentry
, parent
);
589 spin_unlock(&parent
->d_lock
);
591 dentry_unlink_inode(dentry
);
593 spin_unlock(&dentry
->d_lock
);
594 this_cpu_dec(nr_dentry
);
595 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
596 dentry
->d_op
->d_release(dentry
);
598 spin_lock(&dentry
->d_lock
);
599 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
600 dentry
->d_flags
|= DCACHE_MAY_FREE
;
603 spin_unlock(&dentry
->d_lock
);
604 if (likely(can_free
))
609 * Finish off a dentry we've decided to kill.
610 * dentry->d_lock must be held, returns with it unlocked.
611 * If ref is non-zero, then decrement the refcount too.
612 * Returns dentry requiring refcount drop, or NULL if we're done.
614 static struct dentry
*dentry_kill(struct dentry
*dentry
)
615 __releases(dentry
->d_lock
)
617 struct inode
*inode
= dentry
->d_inode
;
618 struct dentry
*parent
= NULL
;
620 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
623 if (!IS_ROOT(dentry
)) {
624 parent
= dentry
->d_parent
;
625 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
627 spin_unlock(&inode
->i_lock
);
632 __dentry_kill(dentry
);
636 spin_unlock(&dentry
->d_lock
);
637 return dentry
; /* try again with same dentry */
640 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
642 struct dentry
*parent
= dentry
->d_parent
;
645 if (unlikely(dentry
->d_lockref
.count
< 0))
647 if (likely(spin_trylock(&parent
->d_lock
)))
650 spin_unlock(&dentry
->d_lock
);
652 parent
= ACCESS_ONCE(dentry
->d_parent
);
653 spin_lock(&parent
->d_lock
);
655 * We can't blindly lock dentry until we are sure
656 * that we won't violate the locking order.
657 * Any changes of dentry->d_parent must have
658 * been done with parent->d_lock held, so
659 * spin_lock() above is enough of a barrier
660 * for checking if it's still our child.
662 if (unlikely(parent
!= dentry
->d_parent
)) {
663 spin_unlock(&parent
->d_lock
);
666 if (parent
!= dentry
) {
667 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
668 if (unlikely(dentry
->d_lockref
.count
< 0)) {
669 spin_unlock(&parent
->d_lock
);
680 * Try to do a lockless dput(), and return whether that was successful.
682 * If unsuccessful, we return false, having already taken the dentry lock.
684 * The caller needs to hold the RCU read lock, so that the dentry is
685 * guaranteed to stay around even if the refcount goes down to zero!
687 static inline bool fast_dput(struct dentry
*dentry
)
690 unsigned int d_flags
;
693 * If we have a d_op->d_delete() operation, we sould not
694 * let the dentry count go to zero, so use "put_or_lock".
696 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
697 return lockref_put_or_lock(&dentry
->d_lockref
);
700 * .. otherwise, we can try to just decrement the
701 * lockref optimistically.
703 ret
= lockref_put_return(&dentry
->d_lockref
);
706 * If the lockref_put_return() failed due to the lock being held
707 * by somebody else, the fast path has failed. We will need to
708 * get the lock, and then check the count again.
710 if (unlikely(ret
< 0)) {
711 spin_lock(&dentry
->d_lock
);
712 if (dentry
->d_lockref
.count
> 1) {
713 dentry
->d_lockref
.count
--;
714 spin_unlock(&dentry
->d_lock
);
721 * If we weren't the last ref, we're done.
727 * Careful, careful. The reference count went down
728 * to zero, but we don't hold the dentry lock, so
729 * somebody else could get it again, and do another
730 * dput(), and we need to not race with that.
732 * However, there is a very special and common case
733 * where we don't care, because there is nothing to
734 * do: the dentry is still hashed, it does not have
735 * a 'delete' op, and it's referenced and already on
738 * NOTE! Since we aren't locked, these values are
739 * not "stable". However, it is sufficient that at
740 * some point after we dropped the reference the
741 * dentry was hashed and the flags had the proper
742 * value. Other dentry users may have re-gotten
743 * a reference to the dentry and change that, but
744 * our work is done - we can leave the dentry
745 * around with a zero refcount.
748 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
749 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
751 /* Nothing to do? Dropping the reference was all we needed? */
752 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
756 * Not the fast normal case? Get the lock. We've already decremented
757 * the refcount, but we'll need to re-check the situation after
760 spin_lock(&dentry
->d_lock
);
763 * Did somebody else grab a reference to it in the meantime, and
764 * we're no longer the last user after all? Alternatively, somebody
765 * else could have killed it and marked it dead. Either way, we
766 * don't need to do anything else.
768 if (dentry
->d_lockref
.count
) {
769 spin_unlock(&dentry
->d_lock
);
774 * Re-get the reference we optimistically dropped. We hold the
775 * lock, and we just tested that it was zero, so we can just
778 dentry
->d_lockref
.count
= 1;
786 * This is complicated by the fact that we do not want to put
787 * dentries that are no longer on any hash chain on the unused
788 * list: we'd much rather just get rid of them immediately.
790 * However, that implies that we have to traverse the dentry
791 * tree upwards to the parents which might _also_ now be
792 * scheduled for deletion (it may have been only waiting for
793 * its last child to go away).
795 * This tail recursion is done by hand as we don't want to depend
796 * on the compiler to always get this right (gcc generally doesn't).
797 * Real recursion would eat up our stack space.
801 * dput - release a dentry
802 * @dentry: dentry to release
804 * Release a dentry. This will drop the usage count and if appropriate
805 * call the dentry unlink method as well as removing it from the queues and
806 * releasing its resources. If the parent dentries were scheduled for release
807 * they too may now get deleted.
809 void dput(struct dentry
*dentry
)
811 if (unlikely(!dentry
))
818 if (likely(fast_dput(dentry
))) {
823 /* Slow case: now with the dentry lock held */
826 WARN_ON(d_in_lookup(dentry
));
828 /* Unreachable? Get rid of it */
829 if (unlikely(d_unhashed(dentry
)))
832 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
835 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
836 if (dentry
->d_op
->d_delete(dentry
))
840 dentry_lru_add(dentry
);
842 dentry
->d_lockref
.count
--;
843 spin_unlock(&dentry
->d_lock
);
847 dentry
= dentry_kill(dentry
);
856 /* This must be called with d_lock held */
857 static inline void __dget_dlock(struct dentry
*dentry
)
859 dentry
->d_lockref
.count
++;
862 static inline void __dget(struct dentry
*dentry
)
864 lockref_get(&dentry
->d_lockref
);
867 struct dentry
*dget_parent(struct dentry
*dentry
)
873 * Do optimistic parent lookup without any
877 ret
= ACCESS_ONCE(dentry
->d_parent
);
878 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
880 if (likely(gotref
)) {
881 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
888 * Don't need rcu_dereference because we re-check it was correct under
892 ret
= dentry
->d_parent
;
893 spin_lock(&ret
->d_lock
);
894 if (unlikely(ret
!= dentry
->d_parent
)) {
895 spin_unlock(&ret
->d_lock
);
900 BUG_ON(!ret
->d_lockref
.count
);
901 ret
->d_lockref
.count
++;
902 spin_unlock(&ret
->d_lock
);
905 EXPORT_SYMBOL(dget_parent
);
908 * d_find_alias - grab a hashed alias of inode
909 * @inode: inode in question
911 * If inode has a hashed alias, or is a directory and has any alias,
912 * acquire the reference to alias and return it. Otherwise return NULL.
913 * Notice that if inode is a directory there can be only one alias and
914 * it can be unhashed only if it has no children, or if it is the root
915 * of a filesystem, or if the directory was renamed and d_revalidate
916 * was the first vfs operation to notice.
918 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
919 * any other hashed alias over that one.
921 static struct dentry
*__d_find_alias(struct inode
*inode
)
923 struct dentry
*alias
, *discon_alias
;
927 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
928 spin_lock(&alias
->d_lock
);
929 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
930 if (IS_ROOT(alias
) &&
931 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
932 discon_alias
= alias
;
935 spin_unlock(&alias
->d_lock
);
939 spin_unlock(&alias
->d_lock
);
942 alias
= discon_alias
;
943 spin_lock(&alias
->d_lock
);
944 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
946 spin_unlock(&alias
->d_lock
);
949 spin_unlock(&alias
->d_lock
);
955 struct dentry
*d_find_alias(struct inode
*inode
)
957 struct dentry
*de
= NULL
;
959 if (!hlist_empty(&inode
->i_dentry
)) {
960 spin_lock(&inode
->i_lock
);
961 de
= __d_find_alias(inode
);
962 spin_unlock(&inode
->i_lock
);
966 EXPORT_SYMBOL(d_find_alias
);
969 * Try to kill dentries associated with this inode.
970 * WARNING: you must own a reference to inode.
972 void d_prune_aliases(struct inode
*inode
)
974 struct dentry
*dentry
;
976 spin_lock(&inode
->i_lock
);
977 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
978 spin_lock(&dentry
->d_lock
);
979 if (!dentry
->d_lockref
.count
) {
980 struct dentry
*parent
= lock_parent(dentry
);
981 if (likely(!dentry
->d_lockref
.count
)) {
982 __dentry_kill(dentry
);
987 spin_unlock(&parent
->d_lock
);
989 spin_unlock(&dentry
->d_lock
);
991 spin_unlock(&inode
->i_lock
);
993 EXPORT_SYMBOL(d_prune_aliases
);
995 static void shrink_dentry_list(struct list_head
*list
)
997 struct dentry
*dentry
, *parent
;
999 while (!list_empty(list
)) {
1000 struct inode
*inode
;
1001 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1002 spin_lock(&dentry
->d_lock
);
1003 parent
= lock_parent(dentry
);
1006 * The dispose list is isolated and dentries are not accounted
1007 * to the LRU here, so we can simply remove it from the list
1008 * here regardless of whether it is referenced or not.
1010 d_shrink_del(dentry
);
1013 * We found an inuse dentry which was not removed from
1014 * the LRU because of laziness during lookup. Do not free it.
1016 if (dentry
->d_lockref
.count
> 0) {
1017 spin_unlock(&dentry
->d_lock
);
1019 spin_unlock(&parent
->d_lock
);
1024 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1025 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1026 spin_unlock(&dentry
->d_lock
);
1028 spin_unlock(&parent
->d_lock
);
1030 dentry_free(dentry
);
1034 inode
= dentry
->d_inode
;
1035 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1036 d_shrink_add(dentry
, list
);
1037 spin_unlock(&dentry
->d_lock
);
1039 spin_unlock(&parent
->d_lock
);
1043 __dentry_kill(dentry
);
1046 * We need to prune ancestors too. This is necessary to prevent
1047 * quadratic behavior of shrink_dcache_parent(), but is also
1048 * expected to be beneficial in reducing dentry cache
1052 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1053 parent
= lock_parent(dentry
);
1054 if (dentry
->d_lockref
.count
!= 1) {
1055 dentry
->d_lockref
.count
--;
1056 spin_unlock(&dentry
->d_lock
);
1058 spin_unlock(&parent
->d_lock
);
1061 inode
= dentry
->d_inode
; /* can't be NULL */
1062 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1063 spin_unlock(&dentry
->d_lock
);
1065 spin_unlock(&parent
->d_lock
);
1069 __dentry_kill(dentry
);
1075 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1076 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1078 struct list_head
*freeable
= arg
;
1079 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1087 if (!spin_trylock(&dentry
->d_lock
))
1091 * Referenced dentries are still in use. If they have active
1092 * counts, just remove them from the LRU. Otherwise give them
1093 * another pass through the LRU.
1095 if (dentry
->d_lockref
.count
) {
1096 d_lru_isolate(lru
, dentry
);
1097 spin_unlock(&dentry
->d_lock
);
1101 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1102 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1103 spin_unlock(&dentry
->d_lock
);
1106 * The list move itself will be made by the common LRU code. At
1107 * this point, we've dropped the dentry->d_lock but keep the
1108 * lru lock. This is safe to do, since every list movement is
1109 * protected by the lru lock even if both locks are held.
1111 * This is guaranteed by the fact that all LRU management
1112 * functions are intermediated by the LRU API calls like
1113 * list_lru_add and list_lru_del. List movement in this file
1114 * only ever occur through this functions or through callbacks
1115 * like this one, that are called from the LRU API.
1117 * The only exceptions to this are functions like
1118 * shrink_dentry_list, and code that first checks for the
1119 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1120 * operating only with stack provided lists after they are
1121 * properly isolated from the main list. It is thus, always a
1127 d_lru_shrink_move(lru
, dentry
, freeable
);
1128 spin_unlock(&dentry
->d_lock
);
1134 * prune_dcache_sb - shrink the dcache
1136 * @sc: shrink control, passed to list_lru_shrink_walk()
1138 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1139 * is done when we need more memory and called from the superblock shrinker
1142 * This function may fail to free any resources if all the dentries are in
1145 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1150 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1151 dentry_lru_isolate
, &dispose
);
1152 shrink_dentry_list(&dispose
);
1156 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1157 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1159 struct list_head
*freeable
= arg
;
1160 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1163 * we are inverting the lru lock/dentry->d_lock here,
1164 * so use a trylock. If we fail to get the lock, just skip
1167 if (!spin_trylock(&dentry
->d_lock
))
1170 d_lru_shrink_move(lru
, dentry
, freeable
);
1171 spin_unlock(&dentry
->d_lock
);
1178 * shrink_dcache_sb - shrink dcache for a superblock
1181 * Shrink the dcache for the specified super block. This is used to free
1182 * the dcache before unmounting a file system.
1184 void shrink_dcache_sb(struct super_block
*sb
)
1189 list_lru_walk(&sb
->s_dentry_lru
,
1190 dentry_lru_isolate_shrink
, &dispose
, 1024);
1191 shrink_dentry_list(&dispose
);
1193 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1195 EXPORT_SYMBOL(shrink_dcache_sb
);
1198 * enum d_walk_ret - action to talke during tree walk
1199 * @D_WALK_CONTINUE: contrinue walk
1200 * @D_WALK_QUIT: quit walk
1201 * @D_WALK_NORETRY: quit when retry is needed
1202 * @D_WALK_SKIP: skip this dentry and its children
1212 * d_walk - walk the dentry tree
1213 * @parent: start of walk
1214 * @data: data passed to @enter() and @finish()
1215 * @enter: callback when first entering the dentry
1216 * @finish: callback when successfully finished the walk
1218 * The @enter() and @finish() callbacks are called with d_lock held.
1220 static void d_walk(struct dentry
*parent
, void *data
,
1221 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1222 void (*finish
)(void *))
1224 struct dentry
*this_parent
;
1225 struct list_head
*next
;
1227 enum d_walk_ret ret
;
1231 read_seqbegin_or_lock(&rename_lock
, &seq
);
1232 this_parent
= parent
;
1233 spin_lock(&this_parent
->d_lock
);
1235 ret
= enter(data
, this_parent
);
1237 case D_WALK_CONTINUE
:
1242 case D_WALK_NORETRY
:
1247 next
= this_parent
->d_subdirs
.next
;
1249 while (next
!= &this_parent
->d_subdirs
) {
1250 struct list_head
*tmp
= next
;
1251 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1254 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1257 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1259 ret
= enter(data
, dentry
);
1261 case D_WALK_CONTINUE
:
1264 spin_unlock(&dentry
->d_lock
);
1266 case D_WALK_NORETRY
:
1270 spin_unlock(&dentry
->d_lock
);
1274 if (!list_empty(&dentry
->d_subdirs
)) {
1275 spin_unlock(&this_parent
->d_lock
);
1276 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1277 this_parent
= dentry
;
1278 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1281 spin_unlock(&dentry
->d_lock
);
1284 * All done at this level ... ascend and resume the search.
1288 if (this_parent
!= parent
) {
1289 struct dentry
*child
= this_parent
;
1290 this_parent
= child
->d_parent
;
1292 spin_unlock(&child
->d_lock
);
1293 spin_lock(&this_parent
->d_lock
);
1295 /* might go back up the wrong parent if we have had a rename. */
1296 if (need_seqretry(&rename_lock
, seq
))
1298 /* go into the first sibling still alive */
1300 next
= child
->d_child
.next
;
1301 if (next
== &this_parent
->d_subdirs
)
1303 child
= list_entry(next
, struct dentry
, d_child
);
1304 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1308 if (need_seqretry(&rename_lock
, seq
))
1315 spin_unlock(&this_parent
->d_lock
);
1316 done_seqretry(&rename_lock
, seq
);
1320 spin_unlock(&this_parent
->d_lock
);
1329 struct check_mount
{
1330 struct vfsmount
*mnt
;
1331 unsigned int mounted
;
1334 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1336 struct check_mount
*info
= data
;
1337 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1339 if (likely(!d_mountpoint(dentry
)))
1340 return D_WALK_CONTINUE
;
1341 if (__path_is_mountpoint(&path
)) {
1345 return D_WALK_CONTINUE
;
1349 * path_has_submounts - check for mounts over a dentry in the
1350 * current namespace.
1351 * @parent: path to check.
1353 * Return true if the parent or its subdirectories contain
1354 * a mount point in the current namespace.
1356 int path_has_submounts(const struct path
*parent
)
1358 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1360 read_seqlock_excl(&mount_lock
);
1361 d_walk(parent
->dentry
, &data
, path_check_mount
, NULL
);
1362 read_sequnlock_excl(&mount_lock
);
1364 return data
.mounted
;
1366 EXPORT_SYMBOL(path_has_submounts
);
1369 * Called by mount code to set a mountpoint and check if the mountpoint is
1370 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1371 * subtree can become unreachable).
1373 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1374 * this reason take rename_lock and d_lock on dentry and ancestors.
1376 int d_set_mounted(struct dentry
*dentry
)
1380 write_seqlock(&rename_lock
);
1381 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1382 /* Need exclusion wrt. d_invalidate() */
1383 spin_lock(&p
->d_lock
);
1384 if (unlikely(d_unhashed(p
))) {
1385 spin_unlock(&p
->d_lock
);
1388 spin_unlock(&p
->d_lock
);
1390 spin_lock(&dentry
->d_lock
);
1391 if (!d_unlinked(dentry
)) {
1393 if (!d_mountpoint(dentry
)) {
1394 dentry
->d_flags
|= DCACHE_MOUNTED
;
1398 spin_unlock(&dentry
->d_lock
);
1400 write_sequnlock(&rename_lock
);
1405 * Search the dentry child list of the specified parent,
1406 * and move any unused dentries to the end of the unused
1407 * list for prune_dcache(). We descend to the next level
1408 * whenever the d_subdirs list is non-empty and continue
1411 * It returns zero iff there are no unused children,
1412 * otherwise it returns the number of children moved to
1413 * the end of the unused list. This may not be the total
1414 * number of unused children, because select_parent can
1415 * drop the lock and return early due to latency
1419 struct select_data
{
1420 struct dentry
*start
;
1421 struct list_head dispose
;
1425 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1427 struct select_data
*data
= _data
;
1428 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1430 if (data
->start
== dentry
)
1433 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1436 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1438 if (!dentry
->d_lockref
.count
) {
1439 d_shrink_add(dentry
, &data
->dispose
);
1444 * We can return to the caller if we have found some (this
1445 * ensures forward progress). We'll be coming back to find
1448 if (!list_empty(&data
->dispose
))
1449 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1455 * shrink_dcache_parent - prune dcache
1456 * @parent: parent of entries to prune
1458 * Prune the dcache to remove unused children of the parent dentry.
1460 void shrink_dcache_parent(struct dentry
*parent
)
1463 struct select_data data
;
1465 INIT_LIST_HEAD(&data
.dispose
);
1466 data
.start
= parent
;
1469 d_walk(parent
, &data
, select_collect
, NULL
);
1473 shrink_dentry_list(&data
.dispose
);
1477 EXPORT_SYMBOL(shrink_dcache_parent
);
1479 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1481 /* it has busy descendents; complain about those instead */
1482 if (!list_empty(&dentry
->d_subdirs
))
1483 return D_WALK_CONTINUE
;
1485 /* root with refcount 1 is fine */
1486 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1487 return D_WALK_CONTINUE
;
1489 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1490 " still in use (%d) [unmount of %s %s]\n",
1493 dentry
->d_inode
->i_ino
: 0UL,
1495 dentry
->d_lockref
.count
,
1496 dentry
->d_sb
->s_type
->name
,
1497 dentry
->d_sb
->s_id
);
1499 return D_WALK_CONTINUE
;
1502 static void do_one_tree(struct dentry
*dentry
)
1504 shrink_dcache_parent(dentry
);
1505 d_walk(dentry
, dentry
, umount_check
, NULL
);
1511 * destroy the dentries attached to a superblock on unmounting
1513 void shrink_dcache_for_umount(struct super_block
*sb
)
1515 struct dentry
*dentry
;
1517 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1519 dentry
= sb
->s_root
;
1521 do_one_tree(dentry
);
1523 while (!hlist_bl_empty(&sb
->s_anon
)) {
1524 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1525 do_one_tree(dentry
);
1529 struct detach_data
{
1530 struct select_data select
;
1531 struct dentry
*mountpoint
;
1533 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1535 struct detach_data
*data
= _data
;
1537 if (d_mountpoint(dentry
)) {
1538 __dget_dlock(dentry
);
1539 data
->mountpoint
= dentry
;
1543 return select_collect(&data
->select
, dentry
);
1546 static void check_and_drop(void *_data
)
1548 struct detach_data
*data
= _data
;
1550 if (!data
->mountpoint
&& list_empty(&data
->select
.dispose
))
1551 __d_drop(data
->select
.start
);
1555 * d_invalidate - detach submounts, prune dcache, and drop
1556 * @dentry: dentry to invalidate (aka detach, prune and drop)
1560 * The final d_drop is done as an atomic operation relative to
1561 * rename_lock ensuring there are no races with d_set_mounted. This
1562 * ensures there are no unhashed dentries on the path to a mountpoint.
1564 void d_invalidate(struct dentry
*dentry
)
1567 * If it's already been dropped, return OK.
1569 spin_lock(&dentry
->d_lock
);
1570 if (d_unhashed(dentry
)) {
1571 spin_unlock(&dentry
->d_lock
);
1574 spin_unlock(&dentry
->d_lock
);
1576 /* Negative dentries can be dropped without further checks */
1577 if (!dentry
->d_inode
) {
1583 struct detach_data data
;
1585 data
.mountpoint
= NULL
;
1586 INIT_LIST_HEAD(&data
.select
.dispose
);
1587 data
.select
.start
= dentry
;
1588 data
.select
.found
= 0;
1590 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1592 if (!list_empty(&data
.select
.dispose
))
1593 shrink_dentry_list(&data
.select
.dispose
);
1594 else if (!data
.mountpoint
)
1597 if (data
.mountpoint
) {
1598 detach_mounts(data
.mountpoint
);
1599 dput(data
.mountpoint
);
1604 EXPORT_SYMBOL(d_invalidate
);
1607 * __d_alloc - allocate a dcache entry
1608 * @sb: filesystem it will belong to
1609 * @name: qstr of the name
1611 * Allocates a dentry. It returns %NULL if there is insufficient memory
1612 * available. On a success the dentry is returned. The name passed in is
1613 * copied and the copy passed in may be reused after this call.
1616 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1618 struct external_name
*ext
= NULL
;
1619 struct dentry
*dentry
;
1623 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1628 * We guarantee that the inline name is always NUL-terminated.
1629 * This way the memcpy() done by the name switching in rename
1630 * will still always have a NUL at the end, even if we might
1631 * be overwriting an internal NUL character
1633 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1634 if (unlikely(!name
)) {
1636 dname
= dentry
->d_iname
;
1637 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1638 size_t size
= offsetof(struct external_name
, name
[1]);
1639 ext
= kmalloc(size
+ name
->len
, GFP_KERNEL_ACCOUNT
);
1641 kmem_cache_free(dentry_cache
, dentry
);
1644 atomic_set(&ext
->u
.count
, 1);
1646 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1647 kasan_unpoison_shadow(dname
,
1648 round_up(name
->len
+ 1, sizeof(unsigned long)));
1650 dname
= dentry
->d_iname
;
1653 dentry
->d_name
.len
= name
->len
;
1654 dentry
->d_name
.hash
= name
->hash
;
1655 memcpy(dname
, name
->name
, name
->len
);
1656 dname
[name
->len
] = 0;
1658 /* Make sure we always see the terminating NUL character */
1660 dentry
->d_name
.name
= dname
;
1662 dentry
->d_lockref
.count
= 1;
1663 dentry
->d_flags
= 0;
1664 spin_lock_init(&dentry
->d_lock
);
1665 seqcount_init(&dentry
->d_seq
);
1666 dentry
->d_inode
= NULL
;
1667 dentry
->d_parent
= dentry
;
1669 dentry
->d_op
= NULL
;
1670 dentry
->d_fsdata
= NULL
;
1671 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1672 INIT_LIST_HEAD(&dentry
->d_lru
);
1673 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1674 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1675 INIT_LIST_HEAD(&dentry
->d_child
);
1676 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1678 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1679 err
= dentry
->d_op
->d_init(dentry
);
1681 if (dname_external(dentry
))
1682 kfree(external_name(dentry
));
1683 kmem_cache_free(dentry_cache
, dentry
);
1688 if (unlikely(ext
)) {
1689 pg_data_t
*pgdat
= page_pgdat(virt_to_page(ext
));
1690 mod_node_page_state(pgdat
, NR_INDIRECTLY_RECLAIMABLE_BYTES
,
1694 this_cpu_inc(nr_dentry
);
1700 * d_alloc - allocate a dcache entry
1701 * @parent: parent of entry to allocate
1702 * @name: qstr of the name
1704 * Allocates a dentry. It returns %NULL if there is insufficient memory
1705 * available. On a success the dentry is returned. The name passed in is
1706 * copied and the copy passed in may be reused after this call.
1708 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1710 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1713 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1714 spin_lock(&parent
->d_lock
);
1716 * don't need child lock because it is not subject
1717 * to concurrency here
1719 __dget_dlock(parent
);
1720 dentry
->d_parent
= parent
;
1721 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1722 spin_unlock(&parent
->d_lock
);
1726 EXPORT_SYMBOL(d_alloc
);
1728 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1730 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, NULL
);
1732 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1733 dentry
->d_parent
= dget(parent
);
1739 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1740 * @sb: the superblock
1741 * @name: qstr of the name
1743 * For a filesystem that just pins its dentries in memory and never
1744 * performs lookups at all, return an unhashed IS_ROOT dentry.
1746 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1748 return __d_alloc(sb
, name
);
1750 EXPORT_SYMBOL(d_alloc_pseudo
);
1752 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1757 q
.hash_len
= hashlen_string(parent
, name
);
1758 return d_alloc(parent
, &q
);
1760 EXPORT_SYMBOL(d_alloc_name
);
1762 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1764 WARN_ON_ONCE(dentry
->d_op
);
1765 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1767 DCACHE_OP_REVALIDATE
|
1768 DCACHE_OP_WEAK_REVALIDATE
|
1775 dentry
->d_flags
|= DCACHE_OP_HASH
;
1777 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1778 if (op
->d_revalidate
)
1779 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1780 if (op
->d_weak_revalidate
)
1781 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1783 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1785 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1787 dentry
->d_flags
|= DCACHE_OP_REAL
;
1790 EXPORT_SYMBOL(d_set_d_op
);
1794 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1795 * @dentry - The dentry to mark
1797 * Mark a dentry as falling through to the lower layer (as set with
1798 * d_pin_lower()). This flag may be recorded on the medium.
1800 void d_set_fallthru(struct dentry
*dentry
)
1802 spin_lock(&dentry
->d_lock
);
1803 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1804 spin_unlock(&dentry
->d_lock
);
1806 EXPORT_SYMBOL(d_set_fallthru
);
1808 static unsigned d_flags_for_inode(struct inode
*inode
)
1810 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1813 return DCACHE_MISS_TYPE
;
1815 if (S_ISDIR(inode
->i_mode
)) {
1816 add_flags
= DCACHE_DIRECTORY_TYPE
;
1817 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1818 if (unlikely(!inode
->i_op
->lookup
))
1819 add_flags
= DCACHE_AUTODIR_TYPE
;
1821 inode
->i_opflags
|= IOP_LOOKUP
;
1823 goto type_determined
;
1826 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1827 if (unlikely(inode
->i_op
->get_link
)) {
1828 add_flags
= DCACHE_SYMLINK_TYPE
;
1829 goto type_determined
;
1831 inode
->i_opflags
|= IOP_NOFOLLOW
;
1834 if (unlikely(!S_ISREG(inode
->i_mode
)))
1835 add_flags
= DCACHE_SPECIAL_TYPE
;
1838 if (unlikely(IS_AUTOMOUNT(inode
)))
1839 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1843 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1845 unsigned add_flags
= d_flags_for_inode(inode
);
1846 WARN_ON(d_in_lookup(dentry
));
1848 spin_lock(&dentry
->d_lock
);
1849 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1850 raw_write_seqcount_begin(&dentry
->d_seq
);
1851 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1852 raw_write_seqcount_end(&dentry
->d_seq
);
1853 fsnotify_update_flags(dentry
);
1854 spin_unlock(&dentry
->d_lock
);
1858 * d_instantiate - fill in inode information for a dentry
1859 * @entry: dentry to complete
1860 * @inode: inode to attach to this dentry
1862 * Fill in inode information in the entry.
1864 * This turns negative dentries into productive full members
1867 * NOTE! This assumes that the inode count has been incremented
1868 * (or otherwise set) by the caller to indicate that it is now
1869 * in use by the dcache.
1872 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1874 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1876 security_d_instantiate(entry
, inode
);
1877 spin_lock(&inode
->i_lock
);
1878 __d_instantiate(entry
, inode
);
1879 spin_unlock(&inode
->i_lock
);
1882 EXPORT_SYMBOL(d_instantiate
);
1885 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1886 * with lockdep-related part of unlock_new_inode() done before
1887 * anything else. Use that instead of open-coding d_instantiate()/
1888 * unlock_new_inode() combinations.
1890 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1892 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1894 lockdep_annotate_inode_mutex_key(inode
);
1895 security_d_instantiate(entry
, inode
);
1896 spin_lock(&inode
->i_lock
);
1897 __d_instantiate(entry
, inode
);
1898 WARN_ON(!(inode
->i_state
& I_NEW
));
1899 inode
->i_state
&= ~I_NEW
;
1901 wake_up_bit(&inode
->i_state
, __I_NEW
);
1902 spin_unlock(&inode
->i_lock
);
1904 EXPORT_SYMBOL(d_instantiate_new
);
1907 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1908 * @entry: dentry to complete
1909 * @inode: inode to attach to this dentry
1911 * Fill in inode information in the entry. If a directory alias is found, then
1912 * return an error (and drop inode). Together with d_materialise_unique() this
1913 * guarantees that a directory inode may never have more than one alias.
1915 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1917 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1919 security_d_instantiate(entry
, inode
);
1920 spin_lock(&inode
->i_lock
);
1921 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1922 spin_unlock(&inode
->i_lock
);
1926 __d_instantiate(entry
, inode
);
1927 spin_unlock(&inode
->i_lock
);
1931 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1933 struct dentry
*d_make_root(struct inode
*root_inode
)
1935 struct dentry
*res
= NULL
;
1938 res
= __d_alloc(root_inode
->i_sb
, NULL
);
1940 res
->d_flags
|= DCACHE_RCUACCESS
;
1941 d_instantiate(res
, root_inode
);
1948 EXPORT_SYMBOL(d_make_root
);
1950 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1952 struct dentry
*alias
;
1954 if (hlist_empty(&inode
->i_dentry
))
1956 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1962 * d_find_any_alias - find any alias for a given inode
1963 * @inode: inode to find an alias for
1965 * If any aliases exist for the given inode, take and return a
1966 * reference for one of them. If no aliases exist, return %NULL.
1968 struct dentry
*d_find_any_alias(struct inode
*inode
)
1972 spin_lock(&inode
->i_lock
);
1973 de
= __d_find_any_alias(inode
);
1974 spin_unlock(&inode
->i_lock
);
1977 EXPORT_SYMBOL(d_find_any_alias
);
1979 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1986 return ERR_PTR(-ESTALE
);
1988 return ERR_CAST(inode
);
1990 res
= d_find_any_alias(inode
);
1994 tmp
= __d_alloc(inode
->i_sb
, NULL
);
1996 res
= ERR_PTR(-ENOMEM
);
2000 security_d_instantiate(tmp
, inode
);
2001 spin_lock(&inode
->i_lock
);
2002 res
= __d_find_any_alias(inode
);
2004 spin_unlock(&inode
->i_lock
);
2009 /* attach a disconnected dentry */
2010 add_flags
= d_flags_for_inode(inode
);
2013 add_flags
|= DCACHE_DISCONNECTED
;
2015 spin_lock(&tmp
->d_lock
);
2016 __d_set_inode_and_type(tmp
, inode
, add_flags
);
2017 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
2018 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
2019 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
2020 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
2021 spin_unlock(&tmp
->d_lock
);
2022 spin_unlock(&inode
->i_lock
);
2032 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2033 * @inode: inode to allocate the dentry for
2035 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2036 * similar open by handle operations. The returned dentry may be anonymous,
2037 * or may have a full name (if the inode was already in the cache).
2039 * When called on a directory inode, we must ensure that the inode only ever
2040 * has one dentry. If a dentry is found, that is returned instead of
2041 * allocating a new one.
2043 * On successful return, the reference to the inode has been transferred
2044 * to the dentry. In case of an error the reference on the inode is released.
2045 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2046 * be passed in and the error will be propagated to the return value,
2047 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2049 struct dentry
*d_obtain_alias(struct inode
*inode
)
2051 return __d_obtain_alias(inode
, 1);
2053 EXPORT_SYMBOL(d_obtain_alias
);
2056 * d_obtain_root - find or allocate a dentry for a given inode
2057 * @inode: inode to allocate the dentry for
2059 * Obtain an IS_ROOT dentry for the root of a filesystem.
2061 * We must ensure that directory inodes only ever have one dentry. If a
2062 * dentry is found, that is returned instead of allocating a new one.
2064 * On successful return, the reference to the inode has been transferred
2065 * to the dentry. In case of an error the reference on the inode is
2066 * released. A %NULL or IS_ERR inode may be passed in and will be the
2067 * error will be propagate to the return value, with a %NULL @inode
2068 * replaced by ERR_PTR(-ESTALE).
2070 struct dentry
*d_obtain_root(struct inode
*inode
)
2072 return __d_obtain_alias(inode
, 0);
2074 EXPORT_SYMBOL(d_obtain_root
);
2077 * d_add_ci - lookup or allocate new dentry with case-exact name
2078 * @inode: the inode case-insensitive lookup has found
2079 * @dentry: the negative dentry that was passed to the parent's lookup func
2080 * @name: the case-exact name to be associated with the returned dentry
2082 * This is to avoid filling the dcache with case-insensitive names to the
2083 * same inode, only the actual correct case is stored in the dcache for
2084 * case-insensitive filesystems.
2086 * For a case-insensitive lookup match and if the the case-exact dentry
2087 * already exists in in the dcache, use it and return it.
2089 * If no entry exists with the exact case name, allocate new dentry with
2090 * the exact case, and return the spliced entry.
2092 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2095 struct dentry
*found
, *res
;
2098 * First check if a dentry matching the name already exists,
2099 * if not go ahead and create it now.
2101 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2106 if (d_in_lookup(dentry
)) {
2107 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2109 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2114 found
= d_alloc(dentry
->d_parent
, name
);
2117 return ERR_PTR(-ENOMEM
);
2120 res
= d_splice_alias(inode
, found
);
2127 EXPORT_SYMBOL(d_add_ci
);
2130 static inline bool d_same_name(const struct dentry
*dentry
,
2131 const struct dentry
*parent
,
2132 const struct qstr
*name
)
2134 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2135 if (dentry
->d_name
.len
!= name
->len
)
2137 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2139 return parent
->d_op
->d_compare(dentry
,
2140 dentry
->d_name
.len
, dentry
->d_name
.name
,
2145 * __d_lookup_rcu - search for a dentry (racy, store-free)
2146 * @parent: parent dentry
2147 * @name: qstr of name we wish to find
2148 * @seqp: returns d_seq value at the point where the dentry was found
2149 * Returns: dentry, or NULL
2151 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2152 * resolution (store-free path walking) design described in
2153 * Documentation/filesystems/path-lookup.txt.
2155 * This is not to be used outside core vfs.
2157 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2158 * held, and rcu_read_lock held. The returned dentry must not be stored into
2159 * without taking d_lock and checking d_seq sequence count against @seq
2162 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2165 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2166 * the returned dentry, so long as its parent's seqlock is checked after the
2167 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2168 * is formed, giving integrity down the path walk.
2170 * NOTE! The caller *has* to check the resulting dentry against the sequence
2171 * number we've returned before using any of the resulting dentry state!
2173 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2174 const struct qstr
*name
,
2177 u64 hashlen
= name
->hash_len
;
2178 const unsigned char *str
= name
->name
;
2179 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2180 struct hlist_bl_node
*node
;
2181 struct dentry
*dentry
;
2184 * Note: There is significant duplication with __d_lookup_rcu which is
2185 * required to prevent single threaded performance regressions
2186 * especially on architectures where smp_rmb (in seqcounts) are costly.
2187 * Keep the two functions in sync.
2191 * The hash list is protected using RCU.
2193 * Carefully use d_seq when comparing a candidate dentry, to avoid
2194 * races with d_move().
2196 * It is possible that concurrent renames can mess up our list
2197 * walk here and result in missing our dentry, resulting in the
2198 * false-negative result. d_lookup() protects against concurrent
2199 * renames using rename_lock seqlock.
2201 * See Documentation/filesystems/path-lookup.txt for more details.
2203 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2208 * The dentry sequence count protects us from concurrent
2209 * renames, and thus protects parent and name fields.
2211 * The caller must perform a seqcount check in order
2212 * to do anything useful with the returned dentry.
2214 * NOTE! We do a "raw" seqcount_begin here. That means that
2215 * we don't wait for the sequence count to stabilize if it
2216 * is in the middle of a sequence change. If we do the slow
2217 * dentry compare, we will do seqretries until it is stable,
2218 * and if we end up with a successful lookup, we actually
2219 * want to exit RCU lookup anyway.
2221 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2222 * we are still guaranteed NUL-termination of ->d_name.name.
2224 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2225 if (dentry
->d_parent
!= parent
)
2227 if (d_unhashed(dentry
))
2230 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2233 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2235 tlen
= dentry
->d_name
.len
;
2236 tname
= dentry
->d_name
.name
;
2237 /* we want a consistent (name,len) pair */
2238 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2242 if (parent
->d_op
->d_compare(dentry
,
2243 tlen
, tname
, name
) != 0)
2246 if (dentry
->d_name
.hash_len
!= hashlen
)
2248 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2258 * d_lookup - search for a dentry
2259 * @parent: parent dentry
2260 * @name: qstr of name we wish to find
2261 * Returns: dentry, or NULL
2263 * d_lookup searches the children of the parent dentry for the name in
2264 * question. If the dentry is found its reference count is incremented and the
2265 * dentry is returned. The caller must use dput to free the entry when it has
2266 * finished using it. %NULL is returned if the dentry does not exist.
2268 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2270 struct dentry
*dentry
;
2274 seq
= read_seqbegin(&rename_lock
);
2275 dentry
= __d_lookup(parent
, name
);
2278 } while (read_seqretry(&rename_lock
, seq
));
2281 EXPORT_SYMBOL(d_lookup
);
2284 * __d_lookup - search for a dentry (racy)
2285 * @parent: parent dentry
2286 * @name: qstr of name we wish to find
2287 * Returns: dentry, or NULL
2289 * __d_lookup is like d_lookup, however it may (rarely) return a
2290 * false-negative result due to unrelated rename activity.
2292 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2293 * however it must be used carefully, eg. with a following d_lookup in
2294 * the case of failure.
2296 * __d_lookup callers must be commented.
2298 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2300 unsigned int hash
= name
->hash
;
2301 struct hlist_bl_head
*b
= d_hash(hash
);
2302 struct hlist_bl_node
*node
;
2303 struct dentry
*found
= NULL
;
2304 struct dentry
*dentry
;
2307 * Note: There is significant duplication with __d_lookup_rcu which is
2308 * required to prevent single threaded performance regressions
2309 * especially on architectures where smp_rmb (in seqcounts) are costly.
2310 * Keep the two functions in sync.
2314 * The hash list is protected using RCU.
2316 * Take d_lock when comparing a candidate dentry, to avoid races
2319 * It is possible that concurrent renames can mess up our list
2320 * walk here and result in missing our dentry, resulting in the
2321 * false-negative result. d_lookup() protects against concurrent
2322 * renames using rename_lock seqlock.
2324 * See Documentation/filesystems/path-lookup.txt for more details.
2328 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2330 if (dentry
->d_name
.hash
!= hash
)
2333 spin_lock(&dentry
->d_lock
);
2334 if (dentry
->d_parent
!= parent
)
2336 if (d_unhashed(dentry
))
2339 if (!d_same_name(dentry
, parent
, name
))
2342 dentry
->d_lockref
.count
++;
2344 spin_unlock(&dentry
->d_lock
);
2347 spin_unlock(&dentry
->d_lock
);
2355 * d_hash_and_lookup - hash the qstr then search for a dentry
2356 * @dir: Directory to search in
2357 * @name: qstr of name we wish to find
2359 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2361 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2364 * Check for a fs-specific hash function. Note that we must
2365 * calculate the standard hash first, as the d_op->d_hash()
2366 * routine may choose to leave the hash value unchanged.
2368 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2369 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2370 int err
= dir
->d_op
->d_hash(dir
, name
);
2371 if (unlikely(err
< 0))
2372 return ERR_PTR(err
);
2374 return d_lookup(dir
, name
);
2376 EXPORT_SYMBOL(d_hash_and_lookup
);
2379 * When a file is deleted, we have two options:
2380 * - turn this dentry into a negative dentry
2381 * - unhash this dentry and free it.
2383 * Usually, we want to just turn this into
2384 * a negative dentry, but if anybody else is
2385 * currently using the dentry or the inode
2386 * we can't do that and we fall back on removing
2387 * it from the hash queues and waiting for
2388 * it to be deleted later when it has no users
2392 * d_delete - delete a dentry
2393 * @dentry: The dentry to delete
2395 * Turn the dentry into a negative dentry if possible, otherwise
2396 * remove it from the hash queues so it can be deleted later
2399 void d_delete(struct dentry
* dentry
)
2401 struct inode
*inode
;
2404 * Are we the only user?
2407 spin_lock(&dentry
->d_lock
);
2408 inode
= dentry
->d_inode
;
2409 isdir
= S_ISDIR(inode
->i_mode
);
2410 if (dentry
->d_lockref
.count
== 1) {
2411 if (!spin_trylock(&inode
->i_lock
)) {
2412 spin_unlock(&dentry
->d_lock
);
2416 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2417 dentry_unlink_inode(dentry
);
2418 fsnotify_nameremove(dentry
, isdir
);
2422 if (!d_unhashed(dentry
))
2425 spin_unlock(&dentry
->d_lock
);
2427 fsnotify_nameremove(dentry
, isdir
);
2429 EXPORT_SYMBOL(d_delete
);
2431 static void __d_rehash(struct dentry
*entry
)
2433 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2436 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2441 * d_rehash - add an entry back to the hash
2442 * @entry: dentry to add to the hash
2444 * Adds a dentry to the hash according to its name.
2447 void d_rehash(struct dentry
* entry
)
2449 spin_lock(&entry
->d_lock
);
2451 spin_unlock(&entry
->d_lock
);
2453 EXPORT_SYMBOL(d_rehash
);
2455 static inline unsigned start_dir_add(struct inode
*dir
)
2459 unsigned n
= dir
->i_dir_seq
;
2460 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2466 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2468 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2471 static void d_wait_lookup(struct dentry
*dentry
)
2473 if (d_in_lookup(dentry
)) {
2474 DECLARE_WAITQUEUE(wait
, current
);
2475 add_wait_queue(dentry
->d_wait
, &wait
);
2477 set_current_state(TASK_UNINTERRUPTIBLE
);
2478 spin_unlock(&dentry
->d_lock
);
2480 spin_lock(&dentry
->d_lock
);
2481 } while (d_in_lookup(dentry
));
2485 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2486 const struct qstr
*name
,
2487 wait_queue_head_t
*wq
)
2489 unsigned int hash
= name
->hash
;
2490 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2491 struct hlist_bl_node
*node
;
2492 struct dentry
*new = d_alloc(parent
, name
);
2493 struct dentry
*dentry
;
2494 unsigned seq
, r_seq
, d_seq
;
2497 return ERR_PTR(-ENOMEM
);
2501 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2502 r_seq
= read_seqbegin(&rename_lock
);
2503 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2504 if (unlikely(dentry
)) {
2505 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2509 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2518 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2523 if (unlikely(seq
& 1)) {
2529 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2535 * No changes for the parent since the beginning of d_lookup().
2536 * Since all removals from the chain happen with hlist_bl_lock(),
2537 * any potential in-lookup matches are going to stay here until
2538 * we unlock the chain. All fields are stable in everything
2541 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2542 if (dentry
->d_name
.hash
!= hash
)
2544 if (dentry
->d_parent
!= parent
)
2546 if (!d_same_name(dentry
, parent
, name
))
2549 /* now we can try to grab a reference */
2550 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2557 * somebody is likely to be still doing lookup for it;
2558 * wait for them to finish
2560 spin_lock(&dentry
->d_lock
);
2561 d_wait_lookup(dentry
);
2563 * it's not in-lookup anymore; in principle we should repeat
2564 * everything from dcache lookup, but it's likely to be what
2565 * d_lookup() would've found anyway. If it is, just return it;
2566 * otherwise we really have to repeat the whole thing.
2568 if (unlikely(dentry
->d_name
.hash
!= hash
))
2570 if (unlikely(dentry
->d_parent
!= parent
))
2572 if (unlikely(d_unhashed(dentry
)))
2574 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2576 /* OK, it *is* a hashed match; return it */
2577 spin_unlock(&dentry
->d_lock
);
2582 /* we can't take ->d_lock here; it's OK, though. */
2583 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2585 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2589 spin_unlock(&dentry
->d_lock
);
2593 EXPORT_SYMBOL(d_alloc_parallel
);
2595 void __d_lookup_done(struct dentry
*dentry
)
2597 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2598 dentry
->d_name
.hash
);
2600 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2601 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2602 wake_up_all(dentry
->d_wait
);
2603 dentry
->d_wait
= NULL
;
2605 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2606 INIT_LIST_HEAD(&dentry
->d_lru
);
2608 EXPORT_SYMBOL(__d_lookup_done
);
2610 /* inode->i_lock held if inode is non-NULL */
2612 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2614 struct inode
*dir
= NULL
;
2616 spin_lock(&dentry
->d_lock
);
2617 if (unlikely(d_in_lookup(dentry
))) {
2618 dir
= dentry
->d_parent
->d_inode
;
2619 n
= start_dir_add(dir
);
2620 __d_lookup_done(dentry
);
2623 unsigned add_flags
= d_flags_for_inode(inode
);
2624 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2625 raw_write_seqcount_begin(&dentry
->d_seq
);
2626 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2627 raw_write_seqcount_end(&dentry
->d_seq
);
2628 fsnotify_update_flags(dentry
);
2632 end_dir_add(dir
, n
);
2633 spin_unlock(&dentry
->d_lock
);
2635 spin_unlock(&inode
->i_lock
);
2639 * d_add - add dentry to hash queues
2640 * @entry: dentry to add
2641 * @inode: The inode to attach to this dentry
2643 * This adds the entry to the hash queues and initializes @inode.
2644 * The entry was actually filled in earlier during d_alloc().
2647 void d_add(struct dentry
*entry
, struct inode
*inode
)
2650 security_d_instantiate(entry
, inode
);
2651 spin_lock(&inode
->i_lock
);
2653 __d_add(entry
, inode
);
2655 EXPORT_SYMBOL(d_add
);
2658 * d_exact_alias - find and hash an exact unhashed alias
2659 * @entry: dentry to add
2660 * @inode: The inode to go with this dentry
2662 * If an unhashed dentry with the same name/parent and desired
2663 * inode already exists, hash and return it. Otherwise, return
2666 * Parent directory should be locked.
2668 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2670 struct dentry
*alias
;
2671 unsigned int hash
= entry
->d_name
.hash
;
2673 spin_lock(&inode
->i_lock
);
2674 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2676 * Don't need alias->d_lock here, because aliases with
2677 * d_parent == entry->d_parent are not subject to name or
2678 * parent changes, because the parent inode i_mutex is held.
2680 if (alias
->d_name
.hash
!= hash
)
2682 if (alias
->d_parent
!= entry
->d_parent
)
2684 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2686 spin_lock(&alias
->d_lock
);
2687 if (!d_unhashed(alias
)) {
2688 spin_unlock(&alias
->d_lock
);
2691 __dget_dlock(alias
);
2693 spin_unlock(&alias
->d_lock
);
2695 spin_unlock(&inode
->i_lock
);
2698 spin_unlock(&inode
->i_lock
);
2701 EXPORT_SYMBOL(d_exact_alias
);
2704 * dentry_update_name_case - update case insensitive dentry with a new name
2705 * @dentry: dentry to be updated
2708 * Update a case insensitive dentry with new case of name.
2710 * dentry must have been returned by d_lookup with name @name. Old and new
2711 * name lengths must match (ie. no d_compare which allows mismatched name
2714 * Parent inode i_mutex must be held over d_lookup and into this call (to
2715 * keep renames and concurrent inserts, and readdir(2) away).
2717 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2719 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2720 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2722 spin_lock(&dentry
->d_lock
);
2723 write_seqcount_begin(&dentry
->d_seq
);
2724 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2725 write_seqcount_end(&dentry
->d_seq
);
2726 spin_unlock(&dentry
->d_lock
);
2728 EXPORT_SYMBOL(dentry_update_name_case
);
2730 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2732 if (unlikely(dname_external(target
))) {
2733 if (unlikely(dname_external(dentry
))) {
2735 * Both external: swap the pointers
2737 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2740 * dentry:internal, target:external. Steal target's
2741 * storage and make target internal.
2743 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2744 dentry
->d_name
.len
+ 1);
2745 dentry
->d_name
.name
= target
->d_name
.name
;
2746 target
->d_name
.name
= target
->d_iname
;
2749 if (unlikely(dname_external(dentry
))) {
2751 * dentry:external, target:internal. Give dentry's
2752 * storage to target and make dentry internal
2754 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2755 target
->d_name
.len
+ 1);
2756 target
->d_name
.name
= dentry
->d_name
.name
;
2757 dentry
->d_name
.name
= dentry
->d_iname
;
2760 * Both are internal.
2763 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2764 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2765 swap(((long *) &dentry
->d_iname
)[i
],
2766 ((long *) &target
->d_iname
)[i
]);
2770 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2773 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2775 struct external_name
*old_name
= NULL
;
2776 if (unlikely(dname_external(dentry
)))
2777 old_name
= external_name(dentry
);
2778 if (unlikely(dname_external(target
))) {
2779 atomic_inc(&external_name(target
)->u
.count
);
2780 dentry
->d_name
= target
->d_name
;
2782 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2783 target
->d_name
.len
+ 1);
2784 dentry
->d_name
.name
= dentry
->d_iname
;
2785 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2787 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2788 call_rcu(&old_name
->u
.head
, __d_free_external_name
);
2791 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2794 * XXXX: do we really need to take target->d_lock?
2796 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2797 spin_lock(&target
->d_parent
->d_lock
);
2799 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2800 spin_lock(&dentry
->d_parent
->d_lock
);
2801 spin_lock_nested(&target
->d_parent
->d_lock
,
2802 DENTRY_D_LOCK_NESTED
);
2804 spin_lock(&target
->d_parent
->d_lock
);
2805 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2806 DENTRY_D_LOCK_NESTED
);
2809 if (target
< dentry
) {
2810 spin_lock_nested(&target
->d_lock
, 2);
2811 spin_lock_nested(&dentry
->d_lock
, 3);
2813 spin_lock_nested(&dentry
->d_lock
, 2);
2814 spin_lock_nested(&target
->d_lock
, 3);
2818 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2820 if (target
->d_parent
!= dentry
->d_parent
)
2821 spin_unlock(&dentry
->d_parent
->d_lock
);
2822 if (target
->d_parent
!= target
)
2823 spin_unlock(&target
->d_parent
->d_lock
);
2824 spin_unlock(&target
->d_lock
);
2825 spin_unlock(&dentry
->d_lock
);
2829 * When switching names, the actual string doesn't strictly have to
2830 * be preserved in the target - because we're dropping the target
2831 * anyway. As such, we can just do a simple memcpy() to copy over
2832 * the new name before we switch, unless we are going to rehash
2833 * it. Note that if we *do* unhash the target, we are not allowed
2834 * to rehash it without giving it a new name/hash key - whether
2835 * we swap or overwrite the names here, resulting name won't match
2836 * the reality in filesystem; it's only there for d_path() purposes.
2837 * Note that all of this is happening under rename_lock, so the
2838 * any hash lookup seeing it in the middle of manipulations will
2839 * be discarded anyway. So we do not care what happens to the hash
2843 * __d_move - move a dentry
2844 * @dentry: entry to move
2845 * @target: new dentry
2846 * @exchange: exchange the two dentries
2848 * Update the dcache to reflect the move of a file name. Negative
2849 * dcache entries should not be moved in this way. Caller must hold
2850 * rename_lock, the i_mutex of the source and target directories,
2851 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2853 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2856 struct inode
*dir
= NULL
;
2858 if (!dentry
->d_inode
)
2859 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2861 BUG_ON(d_ancestor(dentry
, target
));
2862 BUG_ON(d_ancestor(target
, dentry
));
2864 dentry_lock_for_move(dentry
, target
);
2865 if (unlikely(d_in_lookup(target
))) {
2866 dir
= target
->d_parent
->d_inode
;
2867 n
= start_dir_add(dir
);
2868 __d_lookup_done(target
);
2871 write_seqcount_begin(&dentry
->d_seq
);
2872 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2875 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2879 /* Switch the names.. */
2881 swap_names(dentry
, target
);
2883 copy_name(dentry
, target
);
2885 /* rehash in new place(s) */
2890 target
->d_hash
.pprev
= NULL
;
2892 /* ... and switch them in the tree */
2893 if (IS_ROOT(dentry
)) {
2894 /* splicing a tree */
2895 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2896 dentry
->d_parent
= target
->d_parent
;
2897 target
->d_parent
= target
;
2898 list_del_init(&target
->d_child
);
2899 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2901 /* swapping two dentries */
2902 swap(dentry
->d_parent
, target
->d_parent
);
2903 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2904 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2906 fsnotify_update_flags(target
);
2907 fsnotify_update_flags(dentry
);
2910 write_seqcount_end(&target
->d_seq
);
2911 write_seqcount_end(&dentry
->d_seq
);
2914 end_dir_add(dir
, n
);
2915 dentry_unlock_for_move(dentry
, target
);
2919 * d_move - move a dentry
2920 * @dentry: entry to move
2921 * @target: new dentry
2923 * Update the dcache to reflect the move of a file name. Negative
2924 * dcache entries should not be moved in this way. See the locking
2925 * requirements for __d_move.
2927 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2929 write_seqlock(&rename_lock
);
2930 __d_move(dentry
, target
, false);
2931 write_sequnlock(&rename_lock
);
2933 EXPORT_SYMBOL(d_move
);
2936 * d_exchange - exchange two dentries
2937 * @dentry1: first dentry
2938 * @dentry2: second dentry
2940 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2942 write_seqlock(&rename_lock
);
2944 WARN_ON(!dentry1
->d_inode
);
2945 WARN_ON(!dentry2
->d_inode
);
2946 WARN_ON(IS_ROOT(dentry1
));
2947 WARN_ON(IS_ROOT(dentry2
));
2949 __d_move(dentry1
, dentry2
, true);
2951 write_sequnlock(&rename_lock
);
2955 * d_ancestor - search for an ancestor
2956 * @p1: ancestor dentry
2959 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2960 * an ancestor of p2, else NULL.
2962 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2966 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2967 if (p
->d_parent
== p1
)
2974 * This helper attempts to cope with remotely renamed directories
2976 * It assumes that the caller is already holding
2977 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2979 * Note: If ever the locking in lock_rename() changes, then please
2980 * remember to update this too...
2982 static int __d_unalias(struct inode
*inode
,
2983 struct dentry
*dentry
, struct dentry
*alias
)
2985 struct mutex
*m1
= NULL
;
2986 struct rw_semaphore
*m2
= NULL
;
2989 /* If alias and dentry share a parent, then no extra locks required */
2990 if (alias
->d_parent
== dentry
->d_parent
)
2993 /* See lock_rename() */
2994 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2996 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2997 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2999 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
3001 __d_move(alias
, dentry
, false);
3012 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3013 * @inode: the inode which may have a disconnected dentry
3014 * @dentry: a negative dentry which we want to point to the inode.
3016 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3017 * place of the given dentry and return it, else simply d_add the inode
3018 * to the dentry and return NULL.
3020 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3021 * we should error out: directories can't have multiple aliases.
3023 * This is needed in the lookup routine of any filesystem that is exportable
3024 * (via knfsd) so that we can build dcache paths to directories effectively.
3026 * If a dentry was found and moved, then it is returned. Otherwise NULL
3027 * is returned. This matches the expected return value of ->lookup.
3029 * Cluster filesystems may call this function with a negative, hashed dentry.
3030 * In that case, we know that the inode will be a regular file, and also this
3031 * will only occur during atomic_open. So we need to check for the dentry
3032 * being already hashed only in the final case.
3034 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
3037 return ERR_CAST(inode
);
3039 BUG_ON(!d_unhashed(dentry
));
3044 security_d_instantiate(dentry
, inode
);
3045 spin_lock(&inode
->i_lock
);
3046 if (S_ISDIR(inode
->i_mode
)) {
3047 struct dentry
*new = __d_find_any_alias(inode
);
3048 if (unlikely(new)) {
3049 /* The reference to new ensures it remains an alias */
3050 spin_unlock(&inode
->i_lock
);
3051 write_seqlock(&rename_lock
);
3052 if (unlikely(d_ancestor(new, dentry
))) {
3053 write_sequnlock(&rename_lock
);
3055 new = ERR_PTR(-ELOOP
);
3056 pr_warn_ratelimited(
3057 "VFS: Lookup of '%s' in %s %s"
3058 " would have caused loop\n",
3059 dentry
->d_name
.name
,
3060 inode
->i_sb
->s_type
->name
,
3062 } else if (!IS_ROOT(new)) {
3063 int err
= __d_unalias(inode
, dentry
, new);
3064 write_sequnlock(&rename_lock
);
3070 __d_move(new, dentry
, false);
3071 write_sequnlock(&rename_lock
);
3078 __d_add(dentry
, inode
);
3081 EXPORT_SYMBOL(d_splice_alias
);
3083 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3087 return -ENAMETOOLONG
;
3089 memcpy(*buffer
, str
, namelen
);
3094 * prepend_name - prepend a pathname in front of current buffer pointer
3095 * @buffer: buffer pointer
3096 * @buflen: allocated length of the buffer
3097 * @name: name string and length qstr structure
3099 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3100 * make sure that either the old or the new name pointer and length are
3101 * fetched. However, there may be mismatch between length and pointer.
3102 * The length cannot be trusted, we need to copy it byte-by-byte until
3103 * the length is reached or a null byte is found. It also prepends "/" at
3104 * the beginning of the name. The sequence number check at the caller will
3105 * retry it again when a d_move() does happen. So any garbage in the buffer
3106 * due to mismatched pointer and length will be discarded.
3108 * Data dependency barrier is needed to make sure that we see that terminating
3109 * NUL. Alpha strikes again, film at 11...
3111 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3113 const char *dname
= ACCESS_ONCE(name
->name
);
3114 u32 dlen
= ACCESS_ONCE(name
->len
);
3117 smp_read_barrier_depends();
3119 *buflen
-= dlen
+ 1;
3121 return -ENAMETOOLONG
;
3122 p
= *buffer
-= dlen
+ 1;
3134 * prepend_path - Prepend path string to a buffer
3135 * @path: the dentry/vfsmount to report
3136 * @root: root vfsmnt/dentry
3137 * @buffer: pointer to the end of the buffer
3138 * @buflen: pointer to buffer length
3140 * The function will first try to write out the pathname without taking any
3141 * lock other than the RCU read lock to make sure that dentries won't go away.
3142 * It only checks the sequence number of the global rename_lock as any change
3143 * in the dentry's d_seq will be preceded by changes in the rename_lock
3144 * sequence number. If the sequence number had been changed, it will restart
3145 * the whole pathname back-tracing sequence again by taking the rename_lock.
3146 * In this case, there is no need to take the RCU read lock as the recursive
3147 * parent pointer references will keep the dentry chain alive as long as no
3148 * rename operation is performed.
3150 static int prepend_path(const struct path
*path
,
3151 const struct path
*root
,
3152 char **buffer
, int *buflen
)
3154 struct dentry
*dentry
;
3155 struct vfsmount
*vfsmnt
;
3158 unsigned seq
, m_seq
= 0;
3164 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3171 dentry
= path
->dentry
;
3173 mnt
= real_mount(vfsmnt
);
3174 read_seqbegin_or_lock(&rename_lock
, &seq
);
3175 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3176 struct dentry
* parent
;
3178 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3179 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3181 if (dentry
!= vfsmnt
->mnt_root
) {
3188 if (mnt
!= parent
) {
3189 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3195 error
= is_mounted(vfsmnt
) ? 1 : 2;
3198 parent
= dentry
->d_parent
;
3200 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3208 if (need_seqretry(&rename_lock
, seq
)) {
3212 done_seqretry(&rename_lock
, seq
);
3216 if (need_seqretry(&mount_lock
, m_seq
)) {
3220 done_seqretry(&mount_lock
, m_seq
);
3222 if (error
>= 0 && bptr
== *buffer
) {
3224 error
= -ENAMETOOLONG
;
3234 * __d_path - return the path of a dentry
3235 * @path: the dentry/vfsmount to report
3236 * @root: root vfsmnt/dentry
3237 * @buf: buffer to return value in
3238 * @buflen: buffer length
3240 * Convert a dentry into an ASCII path name.
3242 * Returns a pointer into the buffer or an error code if the
3243 * path was too long.
3245 * "buflen" should be positive.
3247 * If the path is not reachable from the supplied root, return %NULL.
3249 char *__d_path(const struct path
*path
,
3250 const struct path
*root
,
3251 char *buf
, int buflen
)
3253 char *res
= buf
+ buflen
;
3256 prepend(&res
, &buflen
, "\0", 1);
3257 error
= prepend_path(path
, root
, &res
, &buflen
);
3260 return ERR_PTR(error
);
3266 char *d_absolute_path(const struct path
*path
,
3267 char *buf
, int buflen
)
3269 struct path root
= {};
3270 char *res
= buf
+ buflen
;
3273 prepend(&res
, &buflen
, "\0", 1);
3274 error
= prepend_path(path
, &root
, &res
, &buflen
);
3279 return ERR_PTR(error
);
3284 * same as __d_path but appends "(deleted)" for unlinked files.
3286 static int path_with_deleted(const struct path
*path
,
3287 const struct path
*root
,
3288 char **buf
, int *buflen
)
3290 prepend(buf
, buflen
, "\0", 1);
3291 if (d_unlinked(path
->dentry
)) {
3292 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3297 return prepend_path(path
, root
, buf
, buflen
);
3300 static int prepend_unreachable(char **buffer
, int *buflen
)
3302 return prepend(buffer
, buflen
, "(unreachable)", 13);
3305 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3310 seq
= read_seqcount_begin(&fs
->seq
);
3312 } while (read_seqcount_retry(&fs
->seq
, seq
));
3316 * d_path - return the path of a dentry
3317 * @path: path to report
3318 * @buf: buffer to return value in
3319 * @buflen: buffer length
3321 * Convert a dentry into an ASCII path name. If the entry has been deleted
3322 * the string " (deleted)" is appended. Note that this is ambiguous.
3324 * Returns a pointer into the buffer or an error code if the path was
3325 * too long. Note: Callers should use the returned pointer, not the passed
3326 * in buffer, to use the name! The implementation often starts at an offset
3327 * into the buffer, and may leave 0 bytes at the start.
3329 * "buflen" should be positive.
3331 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3333 char *res
= buf
+ buflen
;
3338 * We have various synthetic filesystems that never get mounted. On
3339 * these filesystems dentries are never used for lookup purposes, and
3340 * thus don't need to be hashed. They also don't need a name until a
3341 * user wants to identify the object in /proc/pid/fd/. The little hack
3342 * below allows us to generate a name for these objects on demand:
3344 * Some pseudo inodes are mountable. When they are mounted
3345 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3346 * and instead have d_path return the mounted path.
3348 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3349 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3350 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3353 get_fs_root_rcu(current
->fs
, &root
);
3354 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3358 res
= ERR_PTR(error
);
3361 EXPORT_SYMBOL(d_path
);
3364 * Helper function for dentry_operations.d_dname() members
3366 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3367 const char *fmt
, ...)
3373 va_start(args
, fmt
);
3374 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3377 if (sz
> sizeof(temp
) || sz
> buflen
)
3378 return ERR_PTR(-ENAMETOOLONG
);
3380 buffer
+= buflen
- sz
;
3381 return memcpy(buffer
, temp
, sz
);
3384 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3386 char *end
= buffer
+ buflen
;
3387 /* these dentries are never renamed, so d_lock is not needed */
3388 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3389 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3390 prepend(&end
, &buflen
, "/", 1))
3391 end
= ERR_PTR(-ENAMETOOLONG
);
3394 EXPORT_SYMBOL(simple_dname
);
3397 * Write full pathname from the root of the filesystem into the buffer.
3399 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3401 struct dentry
*dentry
;
3414 prepend(&end
, &len
, "\0", 1);
3418 read_seqbegin_or_lock(&rename_lock
, &seq
);
3419 while (!IS_ROOT(dentry
)) {
3420 struct dentry
*parent
= dentry
->d_parent
;
3423 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3432 if (need_seqretry(&rename_lock
, seq
)) {
3436 done_seqretry(&rename_lock
, seq
);
3441 return ERR_PTR(-ENAMETOOLONG
);
3444 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3446 return __dentry_path(dentry
, buf
, buflen
);
3448 EXPORT_SYMBOL(dentry_path_raw
);
3450 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3455 if (d_unlinked(dentry
)) {
3457 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3461 retval
= __dentry_path(dentry
, buf
, buflen
);
3462 if (!IS_ERR(retval
) && p
)
3463 *p
= '/'; /* restore '/' overriden with '\0' */
3466 return ERR_PTR(-ENAMETOOLONG
);
3469 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3475 seq
= read_seqcount_begin(&fs
->seq
);
3478 } while (read_seqcount_retry(&fs
->seq
, seq
));
3482 * NOTE! The user-level library version returns a
3483 * character pointer. The kernel system call just
3484 * returns the length of the buffer filled (which
3485 * includes the ending '\0' character), or a negative
3486 * error value. So libc would do something like
3488 * char *getcwd(char * buf, size_t size)
3492 * retval = sys_getcwd(buf, size);
3499 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3502 struct path pwd
, root
;
3503 char *page
= __getname();
3509 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3512 if (!d_unlinked(pwd
.dentry
)) {
3514 char *cwd
= page
+ PATH_MAX
;
3515 int buflen
= PATH_MAX
;
3517 prepend(&cwd
, &buflen
, "\0", 1);
3518 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3524 /* Unreachable from current root */
3526 error
= prepend_unreachable(&cwd
, &buflen
);
3532 len
= PATH_MAX
+ page
- cwd
;
3535 if (copy_to_user(buf
, cwd
, len
))
3548 * Test whether new_dentry is a subdirectory of old_dentry.
3550 * Trivially implemented using the dcache structure
3554 * is_subdir - is new dentry a subdirectory of old_dentry
3555 * @new_dentry: new dentry
3556 * @old_dentry: old dentry
3558 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3559 * Returns false otherwise.
3560 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3563 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3568 if (new_dentry
== old_dentry
)
3572 /* for restarting inner loop in case of seq retry */
3573 seq
= read_seqbegin(&rename_lock
);
3575 * Need rcu_readlock to protect against the d_parent trashing
3579 if (d_ancestor(old_dentry
, new_dentry
))
3584 } while (read_seqretry(&rename_lock
, seq
));
3589 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3591 struct dentry
*root
= data
;
3592 if (dentry
!= root
) {
3593 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3596 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3597 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3598 dentry
->d_lockref
.count
--;
3601 return D_WALK_CONTINUE
;
3604 void d_genocide(struct dentry
*parent
)
3606 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3609 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3611 inode_dec_link_count(inode
);
3612 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3613 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3614 !d_unlinked(dentry
));
3615 spin_lock(&dentry
->d_parent
->d_lock
);
3616 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3617 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3618 (unsigned long long)inode
->i_ino
);
3619 spin_unlock(&dentry
->d_lock
);
3620 spin_unlock(&dentry
->d_parent
->d_lock
);
3621 d_instantiate(dentry
, inode
);
3623 EXPORT_SYMBOL(d_tmpfile
);
3625 static __initdata
unsigned long dhash_entries
;
3626 static int __init
set_dhash_entries(char *str
)
3630 dhash_entries
= simple_strtoul(str
, &str
, 0);
3633 __setup("dhash_entries=", set_dhash_entries
);
3635 static void __init
dcache_init_early(void)
3637 /* If hashes are distributed across NUMA nodes, defer
3638 * hash allocation until vmalloc space is available.
3644 alloc_large_system_hash("Dentry cache",
3645 sizeof(struct hlist_bl_head
),
3648 HASH_EARLY
| HASH_ZERO
,
3655 static void __init
dcache_init(void)
3658 * A constructor could be added for stable state like the lists,
3659 * but it is probably not worth it because of the cache nature
3662 dentry_cache
= KMEM_CACHE(dentry
,
3663 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
);
3665 /* Hash may have been set up in dcache_init_early */
3670 alloc_large_system_hash("Dentry cache",
3671 sizeof(struct hlist_bl_head
),
3681 /* SLAB cache for __getname() consumers */
3682 struct kmem_cache
*names_cachep __read_mostly
;
3683 EXPORT_SYMBOL(names_cachep
);
3685 EXPORT_SYMBOL(d_genocide
);
3687 void __init
vfs_caches_init_early(void)
3691 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3692 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3694 dcache_init_early();
3698 void __init
vfs_caches_init(void)
3700 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3701 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3706 files_maxfiles_init();