2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
34 #define IOMMU_MAPPING_ERROR 0
36 struct iommu_dma_msi_page
{
37 struct list_head list
;
42 enum iommu_dma_cookie_type
{
43 IOMMU_DMA_IOVA_COOKIE
,
47 struct iommu_dma_cookie
{
48 enum iommu_dma_cookie_type type
;
50 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 struct iova_domain iovad
;
52 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
55 struct list_head msi_page_list
;
59 static inline size_t cookie_msi_granule(struct iommu_dma_cookie
*cookie
)
61 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
)
62 return cookie
->iovad
.granule
;
66 static struct iommu_dma_cookie
*cookie_alloc(enum iommu_dma_cookie_type type
)
68 struct iommu_dma_cookie
*cookie
;
70 cookie
= kzalloc(sizeof(*cookie
), GFP_KERNEL
);
72 spin_lock_init(&cookie
->msi_lock
);
73 INIT_LIST_HEAD(&cookie
->msi_page_list
);
79 int iommu_dma_init(void)
81 return iova_cache_get();
85 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86 * @domain: IOMMU domain to prepare for DMA-API usage
88 * IOMMU drivers should normally call this from their domain_alloc
89 * callback when domain->type == IOMMU_DOMAIN_DMA.
91 int iommu_get_dma_cookie(struct iommu_domain
*domain
)
93 if (domain
->iova_cookie
)
96 domain
->iova_cookie
= cookie_alloc(IOMMU_DMA_IOVA_COOKIE
);
97 if (!domain
->iova_cookie
)
102 EXPORT_SYMBOL(iommu_get_dma_cookie
);
105 * iommu_get_msi_cookie - Acquire just MSI remapping resources
106 * @domain: IOMMU domain to prepare
107 * @base: Start address of IOVA region for MSI mappings
109 * Users who manage their own IOVA allocation and do not want DMA API support,
110 * but would still like to take advantage of automatic MSI remapping, can use
111 * this to initialise their own domain appropriately. Users should reserve a
112 * contiguous IOVA region, starting at @base, large enough to accommodate the
113 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114 * used by the devices attached to @domain.
116 int iommu_get_msi_cookie(struct iommu_domain
*domain
, dma_addr_t base
)
118 struct iommu_dma_cookie
*cookie
;
120 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
123 if (domain
->iova_cookie
)
126 cookie
= cookie_alloc(IOMMU_DMA_MSI_COOKIE
);
130 cookie
->msi_iova
= base
;
131 domain
->iova_cookie
= cookie
;
134 EXPORT_SYMBOL(iommu_get_msi_cookie
);
137 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139 * iommu_get_msi_cookie()
141 * IOMMU drivers should normally call this from their domain_free callback.
143 void iommu_put_dma_cookie(struct iommu_domain
*domain
)
145 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
146 struct iommu_dma_msi_page
*msi
, *tmp
;
151 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
&& cookie
->iovad
.granule
)
152 put_iova_domain(&cookie
->iovad
);
154 list_for_each_entry_safe(msi
, tmp
, &cookie
->msi_page_list
, list
) {
155 list_del(&msi
->list
);
159 domain
->iova_cookie
= NULL
;
161 EXPORT_SYMBOL(iommu_put_dma_cookie
);
164 * iommu_dma_get_resv_regions - Reserved region driver helper
165 * @dev: Device from iommu_get_resv_regions()
166 * @list: Reserved region list from iommu_get_resv_regions()
168 * IOMMU drivers can use this to implement their .get_resv_regions callback
169 * for general non-IOMMU-specific reservations. Currently, this covers host
170 * bridge windows for PCI devices.
172 void iommu_dma_get_resv_regions(struct device
*dev
, struct list_head
*list
)
174 struct pci_host_bridge
*bridge
;
175 struct resource_entry
*window
;
177 if (!dev_is_pci(dev
))
180 bridge
= pci_find_host_bridge(to_pci_dev(dev
)->bus
);
181 resource_list_for_each_entry(window
, &bridge
->windows
) {
182 struct iommu_resv_region
*region
;
186 if (resource_type(window
->res
) != IORESOURCE_MEM
)
189 start
= window
->res
->start
- window
->offset
;
190 length
= window
->res
->end
- window
->res
->start
+ 1;
191 region
= iommu_alloc_resv_region(start
, length
, 0,
192 IOMMU_RESV_RESERVED
);
196 list_add_tail(®ion
->list
, list
);
199 EXPORT_SYMBOL(iommu_dma_get_resv_regions
);
201 static int cookie_init_hw_msi_region(struct iommu_dma_cookie
*cookie
,
202 phys_addr_t start
, phys_addr_t end
)
204 struct iova_domain
*iovad
= &cookie
->iovad
;
205 struct iommu_dma_msi_page
*msi_page
;
208 start
-= iova_offset(iovad
, start
);
209 num_pages
= iova_align(iovad
, end
- start
) >> iova_shift(iovad
);
211 msi_page
= kcalloc(num_pages
, sizeof(*msi_page
), GFP_KERNEL
);
215 for (i
= 0; i
< num_pages
; i
++) {
216 msi_page
[i
].phys
= start
;
217 msi_page
[i
].iova
= start
;
218 INIT_LIST_HEAD(&msi_page
[i
].list
);
219 list_add(&msi_page
[i
].list
, &cookie
->msi_page_list
);
220 start
+= iovad
->granule
;
226 static int iova_reserve_iommu_regions(struct device
*dev
,
227 struct iommu_domain
*domain
)
229 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
230 struct iova_domain
*iovad
= &cookie
->iovad
;
231 struct iommu_resv_region
*region
;
232 LIST_HEAD(resv_regions
);
235 iommu_get_resv_regions(dev
, &resv_regions
);
236 list_for_each_entry(region
, &resv_regions
, list
) {
237 unsigned long lo
, hi
;
239 /* We ARE the software that manages these! */
240 if (region
->type
== IOMMU_RESV_SW_MSI
)
243 lo
= iova_pfn(iovad
, region
->start
);
244 hi
= iova_pfn(iovad
, region
->start
+ region
->length
- 1);
245 reserve_iova(iovad
, lo
, hi
);
247 if (region
->type
== IOMMU_RESV_MSI
)
248 ret
= cookie_init_hw_msi_region(cookie
, region
->start
,
249 region
->start
+ region
->length
);
253 iommu_put_resv_regions(dev
, &resv_regions
);
259 * iommu_dma_init_domain - Initialise a DMA mapping domain
260 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261 * @base: IOVA at which the mappable address space starts
262 * @size: Size of IOVA space
263 * @dev: Device the domain is being initialised for
265 * @base and @size should be exact multiples of IOMMU page granularity to
266 * avoid rounding surprises. If necessary, we reserve the page at address 0
267 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268 * any change which could make prior IOVAs invalid will fail.
270 int iommu_dma_init_domain(struct iommu_domain
*domain
, dma_addr_t base
,
271 u64 size
, struct device
*dev
)
273 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
274 struct iova_domain
*iovad
= &cookie
->iovad
;
275 unsigned long order
, base_pfn
, end_pfn
;
277 if (!cookie
|| cookie
->type
!= IOMMU_DMA_IOVA_COOKIE
)
280 /* Use the smallest supported page size for IOVA granularity */
281 order
= __ffs(domain
->pgsize_bitmap
);
282 base_pfn
= max_t(unsigned long, 1, base
>> order
);
283 end_pfn
= (base
+ size
- 1) >> order
;
285 /* Check the domain allows at least some access to the device... */
286 if (domain
->geometry
.force_aperture
) {
287 if (base
> domain
->geometry
.aperture_end
||
288 base
+ size
<= domain
->geometry
.aperture_start
) {
289 pr_warn("specified DMA range outside IOMMU capability\n");
292 /* ...then finally give it a kicking to make sure it fits */
293 base_pfn
= max_t(unsigned long, base_pfn
,
294 domain
->geometry
.aperture_start
>> order
);
295 end_pfn
= min_t(unsigned long, end_pfn
,
296 domain
->geometry
.aperture_end
>> order
);
299 * PCI devices may have larger DMA masks, but still prefer allocating
300 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
301 * apply to the typical platform device, so for those we may as well
302 * leave the cache limit at the top of their range to save an rb_last()
303 * traversal on every allocation.
305 if (dev
&& dev_is_pci(dev
))
306 end_pfn
&= DMA_BIT_MASK(32) >> order
;
308 /* start_pfn is always nonzero for an already-initialised domain */
309 if (iovad
->start_pfn
) {
310 if (1UL << order
!= iovad
->granule
||
311 base_pfn
!= iovad
->start_pfn
) {
312 pr_warn("Incompatible range for DMA domain\n");
316 * If we have devices with different DMA masks, move the free
317 * area cache limit down for the benefit of the smaller one.
319 iovad
->dma_32bit_pfn
= min(end_pfn
+ 1, iovad
->dma_32bit_pfn
);
324 init_iova_domain(iovad
, 1UL << order
, base_pfn
, end_pfn
);
328 return iova_reserve_iommu_regions(dev
, domain
);
330 EXPORT_SYMBOL(iommu_dma_init_domain
);
333 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
335 * @dir: Direction of DMA transfer
336 * @coherent: Is the DMA master cache-coherent?
337 * @attrs: DMA attributes for the mapping
339 * Return: corresponding IOMMU API page protection flags
341 int dma_info_to_prot(enum dma_data_direction dir
, bool coherent
,
344 int prot
= coherent
? IOMMU_CACHE
: 0;
346 if (attrs
& DMA_ATTR_PRIVILEGED
)
350 case DMA_BIDIRECTIONAL
:
351 return prot
| IOMMU_READ
| IOMMU_WRITE
;
353 return prot
| IOMMU_READ
;
354 case DMA_FROM_DEVICE
:
355 return prot
| IOMMU_WRITE
;
361 static dma_addr_t
iommu_dma_alloc_iova(struct iommu_domain
*domain
,
362 size_t size
, dma_addr_t dma_limit
, struct device
*dev
)
364 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
365 struct iova_domain
*iovad
= &cookie
->iovad
;
366 unsigned long shift
, iova_len
, iova
= 0;
368 if (cookie
->type
== IOMMU_DMA_MSI_COOKIE
) {
369 cookie
->msi_iova
+= size
;
370 return cookie
->msi_iova
- size
;
373 shift
= iova_shift(iovad
);
374 iova_len
= size
>> shift
;
376 * Freeing non-power-of-two-sized allocations back into the IOVA caches
377 * will come back to bite us badly, so we have to waste a bit of space
378 * rounding up anything cacheable to make sure that can't happen. The
379 * order of the unadjusted size will still match upon freeing.
381 if (iova_len
< (1 << (IOVA_RANGE_CACHE_MAX_SIZE
- 1)))
382 iova_len
= roundup_pow_of_two(iova_len
);
384 if (domain
->geometry
.force_aperture
)
385 dma_limit
= min(dma_limit
, domain
->geometry
.aperture_end
);
387 /* Try to get PCI devices a SAC address */
388 if (dma_limit
> DMA_BIT_MASK(32) && dev_is_pci(dev
))
389 iova
= alloc_iova_fast(iovad
, iova_len
, DMA_BIT_MASK(32) >> shift
);
392 iova
= alloc_iova_fast(iovad
, iova_len
, dma_limit
>> shift
);
394 return (dma_addr_t
)iova
<< shift
;
397 static void iommu_dma_free_iova(struct iommu_dma_cookie
*cookie
,
398 dma_addr_t iova
, size_t size
)
400 struct iova_domain
*iovad
= &cookie
->iovad
;
402 /* The MSI case is only ever cleaning up its most recent allocation */
403 if (cookie
->type
== IOMMU_DMA_MSI_COOKIE
)
404 cookie
->msi_iova
-= size
;
406 free_iova_fast(iovad
, iova_pfn(iovad
, iova
),
407 size
>> iova_shift(iovad
));
410 static void __iommu_dma_unmap(struct iommu_domain
*domain
, dma_addr_t dma_addr
,
413 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
414 struct iova_domain
*iovad
= &cookie
->iovad
;
415 size_t iova_off
= iova_offset(iovad
, dma_addr
);
417 dma_addr
-= iova_off
;
418 size
= iova_align(iovad
, size
+ iova_off
);
420 WARN_ON(iommu_unmap(domain
, dma_addr
, size
) != size
);
421 iommu_dma_free_iova(cookie
, dma_addr
, size
);
424 static void __iommu_dma_free_pages(struct page
**pages
, int count
)
427 __free_page(pages
[count
]);
431 static struct page
**__iommu_dma_alloc_pages(unsigned int count
,
432 unsigned long order_mask
, gfp_t gfp
)
435 unsigned int i
= 0, array_size
= count
* sizeof(*pages
);
437 order_mask
&= (2U << MAX_ORDER
) - 1;
441 if (array_size
<= PAGE_SIZE
)
442 pages
= kzalloc(array_size
, GFP_KERNEL
);
444 pages
= vzalloc(array_size
);
448 /* IOMMU can map any pages, so himem can also be used here */
449 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
452 struct page
*page
= NULL
;
453 unsigned int order_size
;
456 * Higher-order allocations are a convenience rather
457 * than a necessity, hence using __GFP_NORETRY until
458 * falling back to minimum-order allocations.
460 for (order_mask
&= (2U << __fls(count
)) - 1;
461 order_mask
; order_mask
&= ~order_size
) {
462 unsigned int order
= __fls(order_mask
);
464 order_size
= 1U << order
;
465 page
= alloc_pages((order_mask
- order_size
) ?
466 gfp
| __GFP_NORETRY
: gfp
, order
);
471 if (!PageCompound(page
)) {
472 split_page(page
, order
);
474 } else if (!split_huge_page(page
)) {
477 __free_pages(page
, order
);
480 __iommu_dma_free_pages(pages
, i
);
491 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
492 * @dev: Device which owns this buffer
493 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
494 * @size: Size of buffer in bytes
495 * @handle: DMA address of buffer
497 * Frees both the pages associated with the buffer, and the array
500 void iommu_dma_free(struct device
*dev
, struct page
**pages
, size_t size
,
503 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), *handle
, size
);
504 __iommu_dma_free_pages(pages
, PAGE_ALIGN(size
) >> PAGE_SHIFT
);
505 *handle
= IOMMU_MAPPING_ERROR
;
509 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
510 * @dev: Device to allocate memory for. Must be a real device
511 * attached to an iommu_dma_domain
512 * @size: Size of buffer in bytes
513 * @gfp: Allocation flags
514 * @attrs: DMA attributes for this allocation
515 * @prot: IOMMU mapping flags
516 * @handle: Out argument for allocated DMA handle
517 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
518 * given VA/PA are visible to the given non-coherent device.
520 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
521 * but an IOMMU which supports smaller pages might not map the whole thing.
523 * Return: Array of struct page pointers describing the buffer,
524 * or NULL on failure.
526 struct page
**iommu_dma_alloc(struct device
*dev
, size_t size
, gfp_t gfp
,
527 unsigned long attrs
, int prot
, dma_addr_t
*handle
,
528 void (*flush_page
)(struct device
*, const void *, phys_addr_t
))
530 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
531 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
532 struct iova_domain
*iovad
= &cookie
->iovad
;
536 unsigned int count
, min_size
, alloc_sizes
= domain
->pgsize_bitmap
;
538 *handle
= IOMMU_MAPPING_ERROR
;
540 min_size
= alloc_sizes
& -alloc_sizes
;
541 if (min_size
< PAGE_SIZE
) {
542 min_size
= PAGE_SIZE
;
543 alloc_sizes
|= PAGE_SIZE
;
545 size
= ALIGN(size
, min_size
);
547 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
548 alloc_sizes
= min_size
;
550 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
551 pages
= __iommu_dma_alloc_pages(count
, alloc_sizes
>> PAGE_SHIFT
, gfp
);
555 size
= iova_align(iovad
, size
);
556 iova
= iommu_dma_alloc_iova(domain
, size
, dev
->coherent_dma_mask
, dev
);
560 if (sg_alloc_table_from_pages(&sgt
, pages
, count
, 0, size
, GFP_KERNEL
))
563 if (!(prot
& IOMMU_CACHE
)) {
564 struct sg_mapping_iter miter
;
566 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
567 * sufficient here, so skip it by using the "wrong" direction.
569 sg_miter_start(&miter
, sgt
.sgl
, sgt
.orig_nents
, SG_MITER_FROM_SG
);
570 while (sg_miter_next(&miter
))
571 flush_page(dev
, miter
.addr
, page_to_phys(miter
.page
));
572 sg_miter_stop(&miter
);
575 if (iommu_map_sg(domain
, iova
, sgt
.sgl
, sgt
.orig_nents
, prot
)
586 iommu_dma_free_iova(cookie
, iova
, size
);
588 __iommu_dma_free_pages(pages
, count
);
593 * iommu_dma_mmap - Map a buffer into provided user VMA
594 * @pages: Array representing buffer from iommu_dma_alloc()
595 * @size: Size of buffer in bytes
596 * @vma: VMA describing requested userspace mapping
598 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
599 * for verifying the correct size and protection of @vma beforehand.
602 int iommu_dma_mmap(struct page
**pages
, size_t size
, struct vm_area_struct
*vma
)
604 unsigned long uaddr
= vma
->vm_start
;
605 unsigned int i
, count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
608 for (i
= vma
->vm_pgoff
; i
< count
&& uaddr
< vma
->vm_end
; i
++) {
609 ret
= vm_insert_page(vma
, uaddr
, pages
[i
]);
617 static dma_addr_t
__iommu_dma_map(struct device
*dev
, phys_addr_t phys
,
618 size_t size
, int prot
)
620 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
621 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
625 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
) {
626 iova_off
= iova_offset(&cookie
->iovad
, phys
);
627 size
= iova_align(&cookie
->iovad
, size
+ iova_off
);
630 iova
= iommu_dma_alloc_iova(domain
, size
, dma_get_mask(dev
), dev
);
632 return IOMMU_MAPPING_ERROR
;
634 if (iommu_map(domain
, iova
, phys
- iova_off
, size
, prot
)) {
635 iommu_dma_free_iova(cookie
, iova
, size
);
636 return IOMMU_MAPPING_ERROR
;
638 return iova
+ iova_off
;
641 dma_addr_t
iommu_dma_map_page(struct device
*dev
, struct page
*page
,
642 unsigned long offset
, size_t size
, int prot
)
644 return __iommu_dma_map(dev
, page_to_phys(page
) + offset
, size
, prot
);
647 void iommu_dma_unmap_page(struct device
*dev
, dma_addr_t handle
, size_t size
,
648 enum dma_data_direction dir
, unsigned long attrs
)
650 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
, size
);
654 * Prepare a successfully-mapped scatterlist to give back to the caller.
656 * At this point the segments are already laid out by iommu_dma_map_sg() to
657 * avoid individually crossing any boundaries, so we merely need to check a
658 * segment's start address to avoid concatenating across one.
660 static int __finalise_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
663 struct scatterlist
*s
, *cur
= sg
;
664 unsigned long seg_mask
= dma_get_seg_boundary(dev
);
665 unsigned int cur_len
= 0, max_len
= dma_get_max_seg_size(dev
);
668 for_each_sg(sg
, s
, nents
, i
) {
669 /* Restore this segment's original unaligned fields first */
670 unsigned int s_iova_off
= sg_dma_address(s
);
671 unsigned int s_length
= sg_dma_len(s
);
672 unsigned int s_iova_len
= s
->length
;
674 s
->offset
+= s_iova_off
;
675 s
->length
= s_length
;
676 sg_dma_address(s
) = IOMMU_MAPPING_ERROR
;
680 * Now fill in the real DMA data. If...
681 * - there is a valid output segment to append to
682 * - and this segment starts on an IOVA page boundary
683 * - but doesn't fall at a segment boundary
684 * - and wouldn't make the resulting output segment too long
686 if (cur_len
&& !s_iova_off
&& (dma_addr
& seg_mask
) &&
687 (cur_len
+ s_length
<= max_len
)) {
688 /* ...then concatenate it with the previous one */
691 /* Otherwise start the next output segment */
697 sg_dma_address(cur
) = dma_addr
+ s_iova_off
;
700 sg_dma_len(cur
) = cur_len
;
701 dma_addr
+= s_iova_len
;
703 if (s_length
+ s_iova_off
< s_iova_len
)
710 * If mapping failed, then just restore the original list,
711 * but making sure the DMA fields are invalidated.
713 static void __invalidate_sg(struct scatterlist
*sg
, int nents
)
715 struct scatterlist
*s
;
718 for_each_sg(sg
, s
, nents
, i
) {
719 if (sg_dma_address(s
) != IOMMU_MAPPING_ERROR
)
720 s
->offset
+= sg_dma_address(s
);
722 s
->length
= sg_dma_len(s
);
723 sg_dma_address(s
) = IOMMU_MAPPING_ERROR
;
729 * The DMA API client is passing in a scatterlist which could describe
730 * any old buffer layout, but the IOMMU API requires everything to be
731 * aligned to IOMMU pages. Hence the need for this complicated bit of
732 * impedance-matching, to be able to hand off a suitably-aligned list,
733 * but still preserve the original offsets and sizes for the caller.
735 int iommu_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
,
738 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
739 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
740 struct iova_domain
*iovad
= &cookie
->iovad
;
741 struct scatterlist
*s
, *prev
= NULL
;
744 unsigned long mask
= dma_get_seg_boundary(dev
);
748 * Work out how much IOVA space we need, and align the segments to
749 * IOVA granules for the IOMMU driver to handle. With some clever
750 * trickery we can modify the list in-place, but reversibly, by
751 * stashing the unaligned parts in the as-yet-unused DMA fields.
753 for_each_sg(sg
, s
, nents
, i
) {
754 size_t s_iova_off
= iova_offset(iovad
, s
->offset
);
755 size_t s_length
= s
->length
;
756 size_t pad_len
= (mask
- iova_len
+ 1) & mask
;
758 sg_dma_address(s
) = s_iova_off
;
759 sg_dma_len(s
) = s_length
;
760 s
->offset
-= s_iova_off
;
761 s_length
= iova_align(iovad
, s_length
+ s_iova_off
);
762 s
->length
= s_length
;
765 * Due to the alignment of our single IOVA allocation, we can
766 * depend on these assumptions about the segment boundary mask:
767 * - If mask size >= IOVA size, then the IOVA range cannot
768 * possibly fall across a boundary, so we don't care.
769 * - If mask size < IOVA size, then the IOVA range must start
770 * exactly on a boundary, therefore we can lay things out
771 * based purely on segment lengths without needing to know
772 * the actual addresses beforehand.
773 * - The mask must be a power of 2, so pad_len == 0 if
774 * iova_len == 0, thus we cannot dereference prev the first
775 * time through here (i.e. before it has a meaningful value).
777 if (pad_len
&& pad_len
< s_length
- 1) {
778 prev
->length
+= pad_len
;
782 iova_len
+= s_length
;
786 iova
= iommu_dma_alloc_iova(domain
, iova_len
, dma_get_mask(dev
), dev
);
791 * We'll leave any physical concatenation to the IOMMU driver's
792 * implementation - it knows better than we do.
794 if (iommu_map_sg(domain
, iova
, sg
, nents
, prot
) < iova_len
)
797 return __finalise_sg(dev
, sg
, nents
, iova
);
800 iommu_dma_free_iova(cookie
, iova
, iova_len
);
802 __invalidate_sg(sg
, nents
);
806 void iommu_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
807 enum dma_data_direction dir
, unsigned long attrs
)
809 dma_addr_t start
, end
;
810 struct scatterlist
*tmp
;
813 * The scatterlist segments are mapped into a single
814 * contiguous IOVA allocation, so this is incredibly easy.
816 start
= sg_dma_address(sg
);
817 for_each_sg(sg_next(sg
), tmp
, nents
- 1, i
) {
818 if (sg_dma_len(tmp
) == 0)
822 end
= sg_dma_address(sg
) + sg_dma_len(sg
);
823 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), start
, end
- start
);
826 dma_addr_t
iommu_dma_map_resource(struct device
*dev
, phys_addr_t phys
,
827 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
829 return __iommu_dma_map(dev
, phys
, size
,
830 dma_info_to_prot(dir
, false, attrs
) | IOMMU_MMIO
);
833 void iommu_dma_unmap_resource(struct device
*dev
, dma_addr_t handle
,
834 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
836 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
, size
);
839 int iommu_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
841 return dma_addr
== IOMMU_MAPPING_ERROR
;
844 static struct iommu_dma_msi_page
*iommu_dma_get_msi_page(struct device
*dev
,
845 phys_addr_t msi_addr
, struct iommu_domain
*domain
)
847 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
848 struct iommu_dma_msi_page
*msi_page
;
850 int prot
= IOMMU_WRITE
| IOMMU_NOEXEC
| IOMMU_MMIO
;
851 size_t size
= cookie_msi_granule(cookie
);
853 msi_addr
&= ~(phys_addr_t
)(size
- 1);
854 list_for_each_entry(msi_page
, &cookie
->msi_page_list
, list
)
855 if (msi_page
->phys
== msi_addr
)
858 msi_page
= kzalloc(sizeof(*msi_page
), GFP_ATOMIC
);
862 iova
= __iommu_dma_map(dev
, msi_addr
, size
, prot
);
863 if (iommu_dma_mapping_error(dev
, iova
))
866 INIT_LIST_HEAD(&msi_page
->list
);
867 msi_page
->phys
= msi_addr
;
868 msi_page
->iova
= iova
;
869 list_add(&msi_page
->list
, &cookie
->msi_page_list
);
877 void iommu_dma_map_msi_msg(int irq
, struct msi_msg
*msg
)
879 struct device
*dev
= msi_desc_to_dev(irq_get_msi_desc(irq
));
880 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
881 struct iommu_dma_cookie
*cookie
;
882 struct iommu_dma_msi_page
*msi_page
;
883 phys_addr_t msi_addr
= (u64
)msg
->address_hi
<< 32 | msg
->address_lo
;
886 if (!domain
|| !domain
->iova_cookie
)
889 cookie
= domain
->iova_cookie
;
892 * We disable IRQs to rule out a possible inversion against
893 * irq_desc_lock if, say, someone tries to retarget the affinity
894 * of an MSI from within an IPI handler.
896 spin_lock_irqsave(&cookie
->msi_lock
, flags
);
897 msi_page
= iommu_dma_get_msi_page(dev
, msi_addr
, domain
);
898 spin_unlock_irqrestore(&cookie
->msi_lock
, flags
);
900 if (WARN_ON(!msi_page
)) {
902 * We're called from a void callback, so the best we can do is
903 * 'fail' by filling the message with obviously bogus values.
904 * Since we got this far due to an IOMMU being present, it's
905 * not like the existing address would have worked anyway...
907 msg
->address_hi
= ~0U;
908 msg
->address_lo
= ~0U;
911 msg
->address_hi
= upper_32_bits(msi_page
->iova
);
912 msg
->address_lo
&= cookie_msi_granule(cookie
) - 1;
913 msg
->address_lo
+= lower_32_bits(msi_page
->iova
);