serial: fix race between flush_to_ldisc and tty_open
[linux-stable.git] / drivers / iommu / dma-iommu.c
blob9d1cebe7f6cbb14517718f5fd6d03de7ee503956
1 /*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
29 #include <linux/mm.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
34 #define IOMMU_MAPPING_ERROR 0
36 struct iommu_dma_msi_page {
37 struct list_head list;
38 dma_addr_t iova;
39 phys_addr_t phys;
42 enum iommu_dma_cookie_type {
43 IOMMU_DMA_IOVA_COOKIE,
44 IOMMU_DMA_MSI_COOKIE,
47 struct iommu_dma_cookie {
48 enum iommu_dma_cookie_type type;
49 union {
50 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 struct iova_domain iovad;
52 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 dma_addr_t msi_iova;
55 struct list_head msi_page_list;
56 spinlock_t msi_lock;
59 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
61 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
62 return cookie->iovad.granule;
63 return PAGE_SIZE;
66 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
68 struct iommu_dma_cookie *cookie;
70 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 if (cookie) {
72 spin_lock_init(&cookie->msi_lock);
73 INIT_LIST_HEAD(&cookie->msi_page_list);
74 cookie->type = type;
76 return cookie;
79 int iommu_dma_init(void)
81 return iova_cache_get();
84 /**
85 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86 * @domain: IOMMU domain to prepare for DMA-API usage
88 * IOMMU drivers should normally call this from their domain_alloc
89 * callback when domain->type == IOMMU_DOMAIN_DMA.
91 int iommu_get_dma_cookie(struct iommu_domain *domain)
93 if (domain->iova_cookie)
94 return -EEXIST;
96 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
97 if (!domain->iova_cookie)
98 return -ENOMEM;
100 return 0;
102 EXPORT_SYMBOL(iommu_get_dma_cookie);
105 * iommu_get_msi_cookie - Acquire just MSI remapping resources
106 * @domain: IOMMU domain to prepare
107 * @base: Start address of IOVA region for MSI mappings
109 * Users who manage their own IOVA allocation and do not want DMA API support,
110 * but would still like to take advantage of automatic MSI remapping, can use
111 * this to initialise their own domain appropriately. Users should reserve a
112 * contiguous IOVA region, starting at @base, large enough to accommodate the
113 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114 * used by the devices attached to @domain.
116 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
118 struct iommu_dma_cookie *cookie;
120 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
121 return -EINVAL;
123 if (domain->iova_cookie)
124 return -EEXIST;
126 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
127 if (!cookie)
128 return -ENOMEM;
130 cookie->msi_iova = base;
131 domain->iova_cookie = cookie;
132 return 0;
134 EXPORT_SYMBOL(iommu_get_msi_cookie);
137 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139 * iommu_get_msi_cookie()
141 * IOMMU drivers should normally call this from their domain_free callback.
143 void iommu_put_dma_cookie(struct iommu_domain *domain)
145 struct iommu_dma_cookie *cookie = domain->iova_cookie;
146 struct iommu_dma_msi_page *msi, *tmp;
148 if (!cookie)
149 return;
151 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
152 put_iova_domain(&cookie->iovad);
154 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
155 list_del(&msi->list);
156 kfree(msi);
158 kfree(cookie);
159 domain->iova_cookie = NULL;
161 EXPORT_SYMBOL(iommu_put_dma_cookie);
164 * iommu_dma_get_resv_regions - Reserved region driver helper
165 * @dev: Device from iommu_get_resv_regions()
166 * @list: Reserved region list from iommu_get_resv_regions()
168 * IOMMU drivers can use this to implement their .get_resv_regions callback
169 * for general non-IOMMU-specific reservations. Currently, this covers host
170 * bridge windows for PCI devices.
172 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
174 struct pci_host_bridge *bridge;
175 struct resource_entry *window;
177 if (!dev_is_pci(dev))
178 return;
180 bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
181 resource_list_for_each_entry(window, &bridge->windows) {
182 struct iommu_resv_region *region;
183 phys_addr_t start;
184 size_t length;
186 if (resource_type(window->res) != IORESOURCE_MEM)
187 continue;
189 start = window->res->start - window->offset;
190 length = window->res->end - window->res->start + 1;
191 region = iommu_alloc_resv_region(start, length, 0,
192 IOMMU_RESV_RESERVED);
193 if (!region)
194 return;
196 list_add_tail(&region->list, list);
199 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
201 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
202 phys_addr_t start, phys_addr_t end)
204 struct iova_domain *iovad = &cookie->iovad;
205 struct iommu_dma_msi_page *msi_page;
206 int i, num_pages;
208 start -= iova_offset(iovad, start);
209 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
211 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
212 if (!msi_page)
213 return -ENOMEM;
215 for (i = 0; i < num_pages; i++) {
216 msi_page[i].phys = start;
217 msi_page[i].iova = start;
218 INIT_LIST_HEAD(&msi_page[i].list);
219 list_add(&msi_page[i].list, &cookie->msi_page_list);
220 start += iovad->granule;
223 return 0;
226 static int iova_reserve_iommu_regions(struct device *dev,
227 struct iommu_domain *domain)
229 struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 struct iova_domain *iovad = &cookie->iovad;
231 struct iommu_resv_region *region;
232 LIST_HEAD(resv_regions);
233 int ret = 0;
235 iommu_get_resv_regions(dev, &resv_regions);
236 list_for_each_entry(region, &resv_regions, list) {
237 unsigned long lo, hi;
239 /* We ARE the software that manages these! */
240 if (region->type == IOMMU_RESV_SW_MSI)
241 continue;
243 lo = iova_pfn(iovad, region->start);
244 hi = iova_pfn(iovad, region->start + region->length - 1);
245 reserve_iova(iovad, lo, hi);
247 if (region->type == IOMMU_RESV_MSI)
248 ret = cookie_init_hw_msi_region(cookie, region->start,
249 region->start + region->length);
250 if (ret)
251 break;
253 iommu_put_resv_regions(dev, &resv_regions);
255 return ret;
259 * iommu_dma_init_domain - Initialise a DMA mapping domain
260 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261 * @base: IOVA at which the mappable address space starts
262 * @size: Size of IOVA space
263 * @dev: Device the domain is being initialised for
265 * @base and @size should be exact multiples of IOMMU page granularity to
266 * avoid rounding surprises. If necessary, we reserve the page at address 0
267 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268 * any change which could make prior IOVAs invalid will fail.
270 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
271 u64 size, struct device *dev)
273 struct iommu_dma_cookie *cookie = domain->iova_cookie;
274 struct iova_domain *iovad = &cookie->iovad;
275 unsigned long order, base_pfn, end_pfn;
277 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
278 return -EINVAL;
280 /* Use the smallest supported page size for IOVA granularity */
281 order = __ffs(domain->pgsize_bitmap);
282 base_pfn = max_t(unsigned long, 1, base >> order);
283 end_pfn = (base + size - 1) >> order;
285 /* Check the domain allows at least some access to the device... */
286 if (domain->geometry.force_aperture) {
287 if (base > domain->geometry.aperture_end ||
288 base + size <= domain->geometry.aperture_start) {
289 pr_warn("specified DMA range outside IOMMU capability\n");
290 return -EFAULT;
292 /* ...then finally give it a kicking to make sure it fits */
293 base_pfn = max_t(unsigned long, base_pfn,
294 domain->geometry.aperture_start >> order);
295 end_pfn = min_t(unsigned long, end_pfn,
296 domain->geometry.aperture_end >> order);
299 * PCI devices may have larger DMA masks, but still prefer allocating
300 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
301 * apply to the typical platform device, so for those we may as well
302 * leave the cache limit at the top of their range to save an rb_last()
303 * traversal on every allocation.
305 if (dev && dev_is_pci(dev))
306 end_pfn &= DMA_BIT_MASK(32) >> order;
308 /* start_pfn is always nonzero for an already-initialised domain */
309 if (iovad->start_pfn) {
310 if (1UL << order != iovad->granule ||
311 base_pfn != iovad->start_pfn) {
312 pr_warn("Incompatible range for DMA domain\n");
313 return -EFAULT;
316 * If we have devices with different DMA masks, move the free
317 * area cache limit down for the benefit of the smaller one.
319 iovad->dma_32bit_pfn = min(end_pfn + 1, iovad->dma_32bit_pfn);
321 return 0;
324 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
325 if (!dev)
326 return 0;
328 return iova_reserve_iommu_regions(dev, domain);
330 EXPORT_SYMBOL(iommu_dma_init_domain);
333 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
334 * page flags.
335 * @dir: Direction of DMA transfer
336 * @coherent: Is the DMA master cache-coherent?
337 * @attrs: DMA attributes for the mapping
339 * Return: corresponding IOMMU API page protection flags
341 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
342 unsigned long attrs)
344 int prot = coherent ? IOMMU_CACHE : 0;
346 if (attrs & DMA_ATTR_PRIVILEGED)
347 prot |= IOMMU_PRIV;
349 switch (dir) {
350 case DMA_BIDIRECTIONAL:
351 return prot | IOMMU_READ | IOMMU_WRITE;
352 case DMA_TO_DEVICE:
353 return prot | IOMMU_READ;
354 case DMA_FROM_DEVICE:
355 return prot | IOMMU_WRITE;
356 default:
357 return 0;
361 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
362 size_t size, dma_addr_t dma_limit, struct device *dev)
364 struct iommu_dma_cookie *cookie = domain->iova_cookie;
365 struct iova_domain *iovad = &cookie->iovad;
366 unsigned long shift, iova_len, iova = 0;
368 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
369 cookie->msi_iova += size;
370 return cookie->msi_iova - size;
373 shift = iova_shift(iovad);
374 iova_len = size >> shift;
376 * Freeing non-power-of-two-sized allocations back into the IOVA caches
377 * will come back to bite us badly, so we have to waste a bit of space
378 * rounding up anything cacheable to make sure that can't happen. The
379 * order of the unadjusted size will still match upon freeing.
381 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
382 iova_len = roundup_pow_of_two(iova_len);
384 if (domain->geometry.force_aperture)
385 dma_limit = min(dma_limit, domain->geometry.aperture_end);
387 /* Try to get PCI devices a SAC address */
388 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
389 iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift);
391 if (!iova)
392 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift);
394 return (dma_addr_t)iova << shift;
397 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
398 dma_addr_t iova, size_t size)
400 struct iova_domain *iovad = &cookie->iovad;
402 /* The MSI case is only ever cleaning up its most recent allocation */
403 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
404 cookie->msi_iova -= size;
405 else
406 free_iova_fast(iovad, iova_pfn(iovad, iova),
407 size >> iova_shift(iovad));
410 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
411 size_t size)
413 struct iommu_dma_cookie *cookie = domain->iova_cookie;
414 struct iova_domain *iovad = &cookie->iovad;
415 size_t iova_off = iova_offset(iovad, dma_addr);
417 dma_addr -= iova_off;
418 size = iova_align(iovad, size + iova_off);
420 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
421 iommu_dma_free_iova(cookie, dma_addr, size);
424 static void __iommu_dma_free_pages(struct page **pages, int count)
426 while (count--)
427 __free_page(pages[count]);
428 kvfree(pages);
431 static struct page **__iommu_dma_alloc_pages(unsigned int count,
432 unsigned long order_mask, gfp_t gfp)
434 struct page **pages;
435 unsigned int i = 0, array_size = count * sizeof(*pages);
437 order_mask &= (2U << MAX_ORDER) - 1;
438 if (!order_mask)
439 return NULL;
441 if (array_size <= PAGE_SIZE)
442 pages = kzalloc(array_size, GFP_KERNEL);
443 else
444 pages = vzalloc(array_size);
445 if (!pages)
446 return NULL;
448 /* IOMMU can map any pages, so himem can also be used here */
449 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
451 while (count) {
452 struct page *page = NULL;
453 unsigned int order_size;
456 * Higher-order allocations are a convenience rather
457 * than a necessity, hence using __GFP_NORETRY until
458 * falling back to minimum-order allocations.
460 for (order_mask &= (2U << __fls(count)) - 1;
461 order_mask; order_mask &= ~order_size) {
462 unsigned int order = __fls(order_mask);
464 order_size = 1U << order;
465 page = alloc_pages((order_mask - order_size) ?
466 gfp | __GFP_NORETRY : gfp, order);
467 if (!page)
468 continue;
469 if (!order)
470 break;
471 if (!PageCompound(page)) {
472 split_page(page, order);
473 break;
474 } else if (!split_huge_page(page)) {
475 break;
477 __free_pages(page, order);
479 if (!page) {
480 __iommu_dma_free_pages(pages, i);
481 return NULL;
483 count -= order_size;
484 while (order_size--)
485 pages[i++] = page++;
487 return pages;
491 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
492 * @dev: Device which owns this buffer
493 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
494 * @size: Size of buffer in bytes
495 * @handle: DMA address of buffer
497 * Frees both the pages associated with the buffer, and the array
498 * describing them
500 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
501 dma_addr_t *handle)
503 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
504 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
505 *handle = IOMMU_MAPPING_ERROR;
509 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
510 * @dev: Device to allocate memory for. Must be a real device
511 * attached to an iommu_dma_domain
512 * @size: Size of buffer in bytes
513 * @gfp: Allocation flags
514 * @attrs: DMA attributes for this allocation
515 * @prot: IOMMU mapping flags
516 * @handle: Out argument for allocated DMA handle
517 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
518 * given VA/PA are visible to the given non-coherent device.
520 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
521 * but an IOMMU which supports smaller pages might not map the whole thing.
523 * Return: Array of struct page pointers describing the buffer,
524 * or NULL on failure.
526 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
527 unsigned long attrs, int prot, dma_addr_t *handle,
528 void (*flush_page)(struct device *, const void *, phys_addr_t))
530 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
531 struct iommu_dma_cookie *cookie = domain->iova_cookie;
532 struct iova_domain *iovad = &cookie->iovad;
533 struct page **pages;
534 struct sg_table sgt;
535 dma_addr_t iova;
536 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
538 *handle = IOMMU_MAPPING_ERROR;
540 min_size = alloc_sizes & -alloc_sizes;
541 if (min_size < PAGE_SIZE) {
542 min_size = PAGE_SIZE;
543 alloc_sizes |= PAGE_SIZE;
544 } else {
545 size = ALIGN(size, min_size);
547 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
548 alloc_sizes = min_size;
550 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
551 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
552 if (!pages)
553 return NULL;
555 size = iova_align(iovad, size);
556 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
557 if (!iova)
558 goto out_free_pages;
560 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
561 goto out_free_iova;
563 if (!(prot & IOMMU_CACHE)) {
564 struct sg_mapping_iter miter;
566 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
567 * sufficient here, so skip it by using the "wrong" direction.
569 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
570 while (sg_miter_next(&miter))
571 flush_page(dev, miter.addr, page_to_phys(miter.page));
572 sg_miter_stop(&miter);
575 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
576 < size)
577 goto out_free_sg;
579 *handle = iova;
580 sg_free_table(&sgt);
581 return pages;
583 out_free_sg:
584 sg_free_table(&sgt);
585 out_free_iova:
586 iommu_dma_free_iova(cookie, iova, size);
587 out_free_pages:
588 __iommu_dma_free_pages(pages, count);
589 return NULL;
593 * iommu_dma_mmap - Map a buffer into provided user VMA
594 * @pages: Array representing buffer from iommu_dma_alloc()
595 * @size: Size of buffer in bytes
596 * @vma: VMA describing requested userspace mapping
598 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
599 * for verifying the correct size and protection of @vma beforehand.
602 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
604 unsigned long uaddr = vma->vm_start;
605 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
606 int ret = -ENXIO;
608 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
609 ret = vm_insert_page(vma, uaddr, pages[i]);
610 if (ret)
611 break;
612 uaddr += PAGE_SIZE;
614 return ret;
617 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
618 size_t size, int prot)
620 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
621 struct iommu_dma_cookie *cookie = domain->iova_cookie;
622 size_t iova_off = 0;
623 dma_addr_t iova;
625 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
626 iova_off = iova_offset(&cookie->iovad, phys);
627 size = iova_align(&cookie->iovad, size + iova_off);
630 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
631 if (!iova)
632 return IOMMU_MAPPING_ERROR;
634 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
635 iommu_dma_free_iova(cookie, iova, size);
636 return IOMMU_MAPPING_ERROR;
638 return iova + iova_off;
641 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
642 unsigned long offset, size_t size, int prot)
644 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
647 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
648 enum dma_data_direction dir, unsigned long attrs)
650 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
654 * Prepare a successfully-mapped scatterlist to give back to the caller.
656 * At this point the segments are already laid out by iommu_dma_map_sg() to
657 * avoid individually crossing any boundaries, so we merely need to check a
658 * segment's start address to avoid concatenating across one.
660 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
661 dma_addr_t dma_addr)
663 struct scatterlist *s, *cur = sg;
664 unsigned long seg_mask = dma_get_seg_boundary(dev);
665 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
666 int i, count = 0;
668 for_each_sg(sg, s, nents, i) {
669 /* Restore this segment's original unaligned fields first */
670 unsigned int s_iova_off = sg_dma_address(s);
671 unsigned int s_length = sg_dma_len(s);
672 unsigned int s_iova_len = s->length;
674 s->offset += s_iova_off;
675 s->length = s_length;
676 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
677 sg_dma_len(s) = 0;
680 * Now fill in the real DMA data. If...
681 * - there is a valid output segment to append to
682 * - and this segment starts on an IOVA page boundary
683 * - but doesn't fall at a segment boundary
684 * - and wouldn't make the resulting output segment too long
686 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
687 (cur_len + s_length <= max_len)) {
688 /* ...then concatenate it with the previous one */
689 cur_len += s_length;
690 } else {
691 /* Otherwise start the next output segment */
692 if (i > 0)
693 cur = sg_next(cur);
694 cur_len = s_length;
695 count++;
697 sg_dma_address(cur) = dma_addr + s_iova_off;
700 sg_dma_len(cur) = cur_len;
701 dma_addr += s_iova_len;
703 if (s_length + s_iova_off < s_iova_len)
704 cur_len = 0;
706 return count;
710 * If mapping failed, then just restore the original list,
711 * but making sure the DMA fields are invalidated.
713 static void __invalidate_sg(struct scatterlist *sg, int nents)
715 struct scatterlist *s;
716 int i;
718 for_each_sg(sg, s, nents, i) {
719 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
720 s->offset += sg_dma_address(s);
721 if (sg_dma_len(s))
722 s->length = sg_dma_len(s);
723 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
724 sg_dma_len(s) = 0;
729 * The DMA API client is passing in a scatterlist which could describe
730 * any old buffer layout, but the IOMMU API requires everything to be
731 * aligned to IOMMU pages. Hence the need for this complicated bit of
732 * impedance-matching, to be able to hand off a suitably-aligned list,
733 * but still preserve the original offsets and sizes for the caller.
735 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
736 int nents, int prot)
738 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
739 struct iommu_dma_cookie *cookie = domain->iova_cookie;
740 struct iova_domain *iovad = &cookie->iovad;
741 struct scatterlist *s, *prev = NULL;
742 dma_addr_t iova;
743 size_t iova_len = 0;
744 unsigned long mask = dma_get_seg_boundary(dev);
745 int i;
748 * Work out how much IOVA space we need, and align the segments to
749 * IOVA granules for the IOMMU driver to handle. With some clever
750 * trickery we can modify the list in-place, but reversibly, by
751 * stashing the unaligned parts in the as-yet-unused DMA fields.
753 for_each_sg(sg, s, nents, i) {
754 size_t s_iova_off = iova_offset(iovad, s->offset);
755 size_t s_length = s->length;
756 size_t pad_len = (mask - iova_len + 1) & mask;
758 sg_dma_address(s) = s_iova_off;
759 sg_dma_len(s) = s_length;
760 s->offset -= s_iova_off;
761 s_length = iova_align(iovad, s_length + s_iova_off);
762 s->length = s_length;
765 * Due to the alignment of our single IOVA allocation, we can
766 * depend on these assumptions about the segment boundary mask:
767 * - If mask size >= IOVA size, then the IOVA range cannot
768 * possibly fall across a boundary, so we don't care.
769 * - If mask size < IOVA size, then the IOVA range must start
770 * exactly on a boundary, therefore we can lay things out
771 * based purely on segment lengths without needing to know
772 * the actual addresses beforehand.
773 * - The mask must be a power of 2, so pad_len == 0 if
774 * iova_len == 0, thus we cannot dereference prev the first
775 * time through here (i.e. before it has a meaningful value).
777 if (pad_len && pad_len < s_length - 1) {
778 prev->length += pad_len;
779 iova_len += pad_len;
782 iova_len += s_length;
783 prev = s;
786 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
787 if (!iova)
788 goto out_restore_sg;
791 * We'll leave any physical concatenation to the IOMMU driver's
792 * implementation - it knows better than we do.
794 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
795 goto out_free_iova;
797 return __finalise_sg(dev, sg, nents, iova);
799 out_free_iova:
800 iommu_dma_free_iova(cookie, iova, iova_len);
801 out_restore_sg:
802 __invalidate_sg(sg, nents);
803 return 0;
806 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
807 enum dma_data_direction dir, unsigned long attrs)
809 dma_addr_t start, end;
810 struct scatterlist *tmp;
811 int i;
813 * The scatterlist segments are mapped into a single
814 * contiguous IOVA allocation, so this is incredibly easy.
816 start = sg_dma_address(sg);
817 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
818 if (sg_dma_len(tmp) == 0)
819 break;
820 sg = tmp;
822 end = sg_dma_address(sg) + sg_dma_len(sg);
823 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
826 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
827 size_t size, enum dma_data_direction dir, unsigned long attrs)
829 return __iommu_dma_map(dev, phys, size,
830 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
833 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
834 size_t size, enum dma_data_direction dir, unsigned long attrs)
836 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
839 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
841 return dma_addr == IOMMU_MAPPING_ERROR;
844 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
845 phys_addr_t msi_addr, struct iommu_domain *domain)
847 struct iommu_dma_cookie *cookie = domain->iova_cookie;
848 struct iommu_dma_msi_page *msi_page;
849 dma_addr_t iova;
850 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
851 size_t size = cookie_msi_granule(cookie);
853 msi_addr &= ~(phys_addr_t)(size - 1);
854 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
855 if (msi_page->phys == msi_addr)
856 return msi_page;
858 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
859 if (!msi_page)
860 return NULL;
862 iova = __iommu_dma_map(dev, msi_addr, size, prot);
863 if (iommu_dma_mapping_error(dev, iova))
864 goto out_free_page;
866 INIT_LIST_HEAD(&msi_page->list);
867 msi_page->phys = msi_addr;
868 msi_page->iova = iova;
869 list_add(&msi_page->list, &cookie->msi_page_list);
870 return msi_page;
872 out_free_page:
873 kfree(msi_page);
874 return NULL;
877 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
879 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
880 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
881 struct iommu_dma_cookie *cookie;
882 struct iommu_dma_msi_page *msi_page;
883 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
884 unsigned long flags;
886 if (!domain || !domain->iova_cookie)
887 return;
889 cookie = domain->iova_cookie;
892 * We disable IRQs to rule out a possible inversion against
893 * irq_desc_lock if, say, someone tries to retarget the affinity
894 * of an MSI from within an IPI handler.
896 spin_lock_irqsave(&cookie->msi_lock, flags);
897 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
898 spin_unlock_irqrestore(&cookie->msi_lock, flags);
900 if (WARN_ON(!msi_page)) {
902 * We're called from a void callback, so the best we can do is
903 * 'fail' by filling the message with obviously bogus values.
904 * Since we got this far due to an IOMMU being present, it's
905 * not like the existing address would have worked anyway...
907 msg->address_hi = ~0U;
908 msg->address_lo = ~0U;
909 msg->data = ~0U;
910 } else {
911 msg->address_hi = upper_32_bits(msi_page->iova);
912 msg->address_lo &= cookie_msi_granule(cookie) - 1;
913 msg->address_lo += lower_32_bits(msi_page->iova);