x86/mm/64: Rename the register_page_bootmem_memmap() 'size' parameter to 'nr_pages'
[linux-stable.git] / mm / huge_memory.c
blobeba34cdfc3e5b5a6adee7f613e49bbb18902c1e7
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
490 return (struct list_head *)&page[2].mapping;
493 void prep_transhuge_page(struct page *page)
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
524 addr += (off - addr) & (size - 1);
525 return addr;
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 if (unlikely(!pgtable)) {
566 ret = VM_FAULT_OOM;
567 goto release;
570 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
576 __SetPageUptodate(page);
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
580 goto unlock_release;
581 } else {
582 pmd_t entry;
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
592 spin_unlock(vmf->ptl);
593 mem_cgroup_cancel_charge(page, memcg, true);
594 put_page(page);
595 pte_free(vma->vm_mm, pgtable);
596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 page_add_new_anon_rmap(page, vma, haddr, true);
604 mem_cgroup_commit_charge(page, memcg, false, true);
605 lru_cache_add_active_or_unevictable(page, vma);
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
610 spin_unlock(vmf->ptl);
611 count_vm_event(THP_FAULT_ALLOC);
614 return 0;
615 unlock_release:
616 spin_unlock(vmf->ptl);
617 release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
649 return GFP_TRANSHUGE_LIGHT;
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 struct page *zero_page)
657 pmd_t entry;
658 if (!pmd_none(*pmd))
659 return false;
660 entry = mk_pmd(zero_page, vma->vm_page_prot);
661 entry = pmd_mkhuge(entry);
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 set_pmd_at(mm, haddr, pmd, entry);
665 atomic_long_inc(&mm->nr_ptes);
666 return true;
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
671 struct vm_area_struct *vma = vmf->vma;
672 gfp_t gfp;
673 struct page *page;
674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 return VM_FAULT_FALLBACK;
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 return VM_FAULT_OOM;
682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 !mm_forbids_zeropage(vma->vm_mm) &&
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
688 int ret;
689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 if (unlikely(!pgtable))
691 return VM_FAULT_OOM;
692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 if (unlikely(!zero_page)) {
694 pte_free(vma->vm_mm, pgtable);
695 count_vm_event(THP_FAULT_FALLBACK);
696 return VM_FAULT_FALLBACK;
698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 ret = 0;
700 set = false;
701 if (pmd_none(*vmf->pmd)) {
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
713 set = true;
715 } else
716 spin_unlock(vmf->ptl);
717 if (!set)
718 pte_free(vma->vm_mm, pgtable);
719 return ret;
721 gfp = alloc_hugepage_direct_gfpmask(vma);
722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
725 return VM_FAULT_FALLBACK;
727 prep_transhuge_page(page);
728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
739 ptl = pmd_lock(mm, pmd);
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
755 spin_unlock(ptl);
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd, pfn_t pfn, bool write)
761 pgprot_t pgprot = vma->vm_page_prot;
762 pgtable_t pgtable = NULL;
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 BUG_ON(!pfn_t_devmap(pfn));
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
783 track_pfn_insert(vma, &pgprot, pfn);
785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 return VM_FAULT_NOPAGE;
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
821 pgprot_t pgprot = vma->vm_page_prot;
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
836 track_pfn_insert(vma, &pgprot, pfn);
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd, int flags)
847 pmd_t _pmd;
849 _pmd = pmd_mkyoung(*pmd);
850 if (flags & FOLL_WRITE)
851 _pmd = pmd_mkdirty(_pmd);
852 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
853 pmd, _pmd, flags & FOLL_WRITE))
854 update_mmu_cache_pmd(vma, addr, pmd);
857 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
858 pmd_t *pmd, int flags)
860 unsigned long pfn = pmd_pfn(*pmd);
861 struct mm_struct *mm = vma->vm_mm;
862 struct dev_pagemap *pgmap;
863 struct page *page;
865 assert_spin_locked(pmd_lockptr(mm, pmd));
868 * When we COW a devmap PMD entry, we split it into PTEs, so we should
869 * not be in this function with `flags & FOLL_COW` set.
871 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
873 if (flags & FOLL_WRITE && !pmd_write(*pmd))
874 return NULL;
876 if (pmd_present(*pmd) && pmd_devmap(*pmd))
877 /* pass */;
878 else
879 return NULL;
881 if (flags & FOLL_TOUCH)
882 touch_pmd(vma, addr, pmd, flags);
885 * device mapped pages can only be returned if the
886 * caller will manage the page reference count.
888 if (!(flags & FOLL_GET))
889 return ERR_PTR(-EEXIST);
891 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
892 pgmap = get_dev_pagemap(pfn, NULL);
893 if (!pgmap)
894 return ERR_PTR(-EFAULT);
895 page = pfn_to_page(pfn);
896 get_page(page);
897 put_dev_pagemap(pgmap);
899 return page;
902 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
904 struct vm_area_struct *vma)
906 spinlock_t *dst_ptl, *src_ptl;
907 struct page *src_page;
908 pmd_t pmd;
909 pgtable_t pgtable = NULL;
910 int ret = -ENOMEM;
912 /* Skip if can be re-fill on fault */
913 if (!vma_is_anonymous(vma))
914 return 0;
916 pgtable = pte_alloc_one(dst_mm, addr);
917 if (unlikely(!pgtable))
918 goto out;
920 dst_ptl = pmd_lock(dst_mm, dst_pmd);
921 src_ptl = pmd_lockptr(src_mm, src_pmd);
922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924 ret = -EAGAIN;
925 pmd = *src_pmd;
927 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
928 if (unlikely(is_swap_pmd(pmd))) {
929 swp_entry_t entry = pmd_to_swp_entry(pmd);
931 VM_BUG_ON(!is_pmd_migration_entry(pmd));
932 if (is_write_migration_entry(entry)) {
933 make_migration_entry_read(&entry);
934 pmd = swp_entry_to_pmd(entry);
935 if (pmd_swp_soft_dirty(*src_pmd))
936 pmd = pmd_swp_mksoft_dirty(pmd);
937 set_pmd_at(src_mm, addr, src_pmd, pmd);
939 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
940 atomic_long_inc(&dst_mm->nr_ptes);
941 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
942 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
943 ret = 0;
944 goto out_unlock;
946 #endif
948 if (unlikely(!pmd_trans_huge(pmd))) {
949 pte_free(dst_mm, pgtable);
950 goto out_unlock;
953 * When page table lock is held, the huge zero pmd should not be
954 * under splitting since we don't split the page itself, only pmd to
955 * a page table.
957 if (is_huge_zero_pmd(pmd)) {
958 struct page *zero_page;
960 * get_huge_zero_page() will never allocate a new page here,
961 * since we already have a zero page to copy. It just takes a
962 * reference.
964 zero_page = mm_get_huge_zero_page(dst_mm);
965 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
966 zero_page);
967 ret = 0;
968 goto out_unlock;
971 src_page = pmd_page(pmd);
972 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
973 get_page(src_page);
974 page_dup_rmap(src_page, true);
975 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
976 atomic_long_inc(&dst_mm->nr_ptes);
977 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
979 pmdp_set_wrprotect(src_mm, addr, src_pmd);
980 pmd = pmd_mkold(pmd_wrprotect(pmd));
981 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
983 ret = 0;
984 out_unlock:
985 spin_unlock(src_ptl);
986 spin_unlock(dst_ptl);
987 out:
988 return ret;
991 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
992 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
993 pud_t *pud, int flags)
995 pud_t _pud;
997 _pud = pud_mkyoung(*pud);
998 if (flags & FOLL_WRITE)
999 _pud = pud_mkdirty(_pud);
1000 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001 pud, _pud, flags & FOLL_WRITE))
1002 update_mmu_cache_pud(vma, addr, pud);
1005 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006 pud_t *pud, int flags)
1008 unsigned long pfn = pud_pfn(*pud);
1009 struct mm_struct *mm = vma->vm_mm;
1010 struct dev_pagemap *pgmap;
1011 struct page *page;
1013 assert_spin_locked(pud_lockptr(mm, pud));
1015 if (flags & FOLL_WRITE && !pud_write(*pud))
1016 return NULL;
1018 if (pud_present(*pud) && pud_devmap(*pud))
1019 /* pass */;
1020 else
1021 return NULL;
1023 if (flags & FOLL_TOUCH)
1024 touch_pud(vma, addr, pud, flags);
1027 * device mapped pages can only be returned if the
1028 * caller will manage the page reference count.
1030 if (!(flags & FOLL_GET))
1031 return ERR_PTR(-EEXIST);
1033 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034 pgmap = get_dev_pagemap(pfn, NULL);
1035 if (!pgmap)
1036 return ERR_PTR(-EFAULT);
1037 page = pfn_to_page(pfn);
1038 get_page(page);
1039 put_dev_pagemap(pgmap);
1041 return page;
1044 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046 struct vm_area_struct *vma)
1048 spinlock_t *dst_ptl, *src_ptl;
1049 pud_t pud;
1050 int ret;
1052 dst_ptl = pud_lock(dst_mm, dst_pud);
1053 src_ptl = pud_lockptr(src_mm, src_pud);
1054 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1056 ret = -EAGAIN;
1057 pud = *src_pud;
1058 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059 goto out_unlock;
1062 * When page table lock is held, the huge zero pud should not be
1063 * under splitting since we don't split the page itself, only pud to
1064 * a page table.
1066 if (is_huge_zero_pud(pud)) {
1067 /* No huge zero pud yet */
1070 pudp_set_wrprotect(src_mm, addr, src_pud);
1071 pud = pud_mkold(pud_wrprotect(pud));
1072 set_pud_at(dst_mm, addr, dst_pud, pud);
1074 ret = 0;
1075 out_unlock:
1076 spin_unlock(src_ptl);
1077 spin_unlock(dst_ptl);
1078 return ret;
1081 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1083 pud_t entry;
1084 unsigned long haddr;
1085 bool write = vmf->flags & FAULT_FLAG_WRITE;
1087 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089 goto unlock;
1091 entry = pud_mkyoung(orig_pud);
1092 if (write)
1093 entry = pud_mkdirty(entry);
1094 haddr = vmf->address & HPAGE_PUD_MASK;
1095 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1098 unlock:
1099 spin_unlock(vmf->ptl);
1101 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1103 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1105 pmd_t entry;
1106 unsigned long haddr;
1107 bool write = vmf->flags & FAULT_FLAG_WRITE;
1109 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111 goto unlock;
1113 entry = pmd_mkyoung(orig_pmd);
1114 if (write)
1115 entry = pmd_mkdirty(entry);
1116 haddr = vmf->address & HPAGE_PMD_MASK;
1117 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1120 unlock:
1121 spin_unlock(vmf->ptl);
1124 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125 struct page *page)
1127 struct vm_area_struct *vma = vmf->vma;
1128 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129 struct mem_cgroup *memcg;
1130 pgtable_t pgtable;
1131 pmd_t _pmd;
1132 int ret = 0, i;
1133 struct page **pages;
1134 unsigned long mmun_start; /* For mmu_notifiers */
1135 unsigned long mmun_end; /* For mmu_notifiers */
1137 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138 GFP_KERNEL);
1139 if (unlikely(!pages)) {
1140 ret |= VM_FAULT_OOM;
1141 goto out;
1144 for (i = 0; i < HPAGE_PMD_NR; i++) {
1145 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146 vmf->address, page_to_nid(page));
1147 if (unlikely(!pages[i] ||
1148 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149 GFP_KERNEL, &memcg, false))) {
1150 if (pages[i])
1151 put_page(pages[i]);
1152 while (--i >= 0) {
1153 memcg = (void *)page_private(pages[i]);
1154 set_page_private(pages[i], 0);
1155 mem_cgroup_cancel_charge(pages[i], memcg,
1156 false);
1157 put_page(pages[i]);
1159 kfree(pages);
1160 ret |= VM_FAULT_OOM;
1161 goto out;
1163 set_page_private(pages[i], (unsigned long)memcg);
1166 for (i = 0; i < HPAGE_PMD_NR; i++) {
1167 copy_user_highpage(pages[i], page + i,
1168 haddr + PAGE_SIZE * i, vma);
1169 __SetPageUptodate(pages[i]);
1170 cond_resched();
1173 mmun_start = haddr;
1174 mmun_end = haddr + HPAGE_PMD_SIZE;
1175 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1177 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179 goto out_free_pages;
1180 VM_BUG_ON_PAGE(!PageHead(page), page);
1182 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1183 /* leave pmd empty until pte is filled */
1185 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1186 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1188 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1189 pte_t entry;
1190 entry = mk_pte(pages[i], vma->vm_page_prot);
1191 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1192 memcg = (void *)page_private(pages[i]);
1193 set_page_private(pages[i], 0);
1194 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1195 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1196 lru_cache_add_active_or_unevictable(pages[i], vma);
1197 vmf->pte = pte_offset_map(&_pmd, haddr);
1198 VM_BUG_ON(!pte_none(*vmf->pte));
1199 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1200 pte_unmap(vmf->pte);
1202 kfree(pages);
1204 smp_wmb(); /* make pte visible before pmd */
1205 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1206 page_remove_rmap(page, true);
1207 spin_unlock(vmf->ptl);
1209 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1211 ret |= VM_FAULT_WRITE;
1212 put_page(page);
1214 out:
1215 return ret;
1217 out_free_pages:
1218 spin_unlock(vmf->ptl);
1219 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1220 for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 memcg = (void *)page_private(pages[i]);
1222 set_page_private(pages[i], 0);
1223 mem_cgroup_cancel_charge(pages[i], memcg, false);
1224 put_page(pages[i]);
1226 kfree(pages);
1227 goto out;
1230 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1232 struct vm_area_struct *vma = vmf->vma;
1233 struct page *page = NULL, *new_page;
1234 struct mem_cgroup *memcg;
1235 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1236 unsigned long mmun_start; /* For mmu_notifiers */
1237 unsigned long mmun_end; /* For mmu_notifiers */
1238 gfp_t huge_gfp; /* for allocation and charge */
1239 int ret = 0;
1241 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1242 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1243 if (is_huge_zero_pmd(orig_pmd))
1244 goto alloc;
1245 spin_lock(vmf->ptl);
1246 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247 goto out_unlock;
1249 page = pmd_page(orig_pmd);
1250 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1252 * We can only reuse the page if nobody else maps the huge page or it's
1253 * part.
1255 if (!trylock_page(page)) {
1256 get_page(page);
1257 spin_unlock(vmf->ptl);
1258 lock_page(page);
1259 spin_lock(vmf->ptl);
1260 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1261 unlock_page(page);
1262 put_page(page);
1263 goto out_unlock;
1265 put_page(page);
1267 if (reuse_swap_page(page, NULL)) {
1268 pmd_t entry;
1269 entry = pmd_mkyoung(orig_pmd);
1270 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1271 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1272 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1273 ret |= VM_FAULT_WRITE;
1274 unlock_page(page);
1275 goto out_unlock;
1277 unlock_page(page);
1278 get_page(page);
1279 spin_unlock(vmf->ptl);
1280 alloc:
1281 if (transparent_hugepage_enabled(vma) &&
1282 !transparent_hugepage_debug_cow()) {
1283 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1284 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1285 } else
1286 new_page = NULL;
1288 if (likely(new_page)) {
1289 prep_transhuge_page(new_page);
1290 } else {
1291 if (!page) {
1292 split_huge_pmd(vma, vmf->pmd, vmf->address);
1293 ret |= VM_FAULT_FALLBACK;
1294 } else {
1295 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1296 if (ret & VM_FAULT_OOM) {
1297 split_huge_pmd(vma, vmf->pmd, vmf->address);
1298 ret |= VM_FAULT_FALLBACK;
1300 put_page(page);
1302 count_vm_event(THP_FAULT_FALLBACK);
1303 goto out;
1306 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1307 huge_gfp, &memcg, true))) {
1308 put_page(new_page);
1309 split_huge_pmd(vma, vmf->pmd, vmf->address);
1310 if (page)
1311 put_page(page);
1312 ret |= VM_FAULT_FALLBACK;
1313 count_vm_event(THP_FAULT_FALLBACK);
1314 goto out;
1317 count_vm_event(THP_FAULT_ALLOC);
1319 if (!page)
1320 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1321 else
1322 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1323 __SetPageUptodate(new_page);
1325 mmun_start = haddr;
1326 mmun_end = haddr + HPAGE_PMD_SIZE;
1327 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1329 spin_lock(vmf->ptl);
1330 if (page)
1331 put_page(page);
1332 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1333 spin_unlock(vmf->ptl);
1334 mem_cgroup_cancel_charge(new_page, memcg, true);
1335 put_page(new_page);
1336 goto out_mn;
1337 } else {
1338 pmd_t entry;
1339 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1340 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1341 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1342 page_add_new_anon_rmap(new_page, vma, haddr, true);
1343 mem_cgroup_commit_charge(new_page, memcg, false, true);
1344 lru_cache_add_active_or_unevictable(new_page, vma);
1345 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1346 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1347 if (!page) {
1348 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1349 } else {
1350 VM_BUG_ON_PAGE(!PageHead(page), page);
1351 page_remove_rmap(page, true);
1352 put_page(page);
1354 ret |= VM_FAULT_WRITE;
1356 spin_unlock(vmf->ptl);
1357 out_mn:
1358 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1359 out:
1360 return ret;
1361 out_unlock:
1362 spin_unlock(vmf->ptl);
1363 return ret;
1367 * FOLL_FORCE can write to even unwritable pmd's, but only
1368 * after we've gone through a COW cycle and they are dirty.
1370 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1372 return pmd_write(pmd) ||
1373 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1376 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1377 unsigned long addr,
1378 pmd_t *pmd,
1379 unsigned int flags)
1381 struct mm_struct *mm = vma->vm_mm;
1382 struct page *page = NULL;
1384 assert_spin_locked(pmd_lockptr(mm, pmd));
1386 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1387 goto out;
1389 /* Avoid dumping huge zero page */
1390 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1391 return ERR_PTR(-EFAULT);
1393 /* Full NUMA hinting faults to serialise migration in fault paths */
1394 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1395 goto out;
1397 page = pmd_page(*pmd);
1398 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1399 if (flags & FOLL_TOUCH)
1400 touch_pmd(vma, addr, pmd, flags);
1401 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1403 * We don't mlock() pte-mapped THPs. This way we can avoid
1404 * leaking mlocked pages into non-VM_LOCKED VMAs.
1406 * For anon THP:
1408 * In most cases the pmd is the only mapping of the page as we
1409 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1410 * writable private mappings in populate_vma_page_range().
1412 * The only scenario when we have the page shared here is if we
1413 * mlocking read-only mapping shared over fork(). We skip
1414 * mlocking such pages.
1416 * For file THP:
1418 * We can expect PageDoubleMap() to be stable under page lock:
1419 * for file pages we set it in page_add_file_rmap(), which
1420 * requires page to be locked.
1423 if (PageAnon(page) && compound_mapcount(page) != 1)
1424 goto skip_mlock;
1425 if (PageDoubleMap(page) || !page->mapping)
1426 goto skip_mlock;
1427 if (!trylock_page(page))
1428 goto skip_mlock;
1429 lru_add_drain();
1430 if (page->mapping && !PageDoubleMap(page))
1431 mlock_vma_page(page);
1432 unlock_page(page);
1434 skip_mlock:
1435 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1436 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1437 if (flags & FOLL_GET)
1438 get_page(page);
1440 out:
1441 return page;
1444 /* NUMA hinting page fault entry point for trans huge pmds */
1445 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1447 struct vm_area_struct *vma = vmf->vma;
1448 struct anon_vma *anon_vma = NULL;
1449 struct page *page;
1450 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1451 int page_nid = -1, this_nid = numa_node_id();
1452 int target_nid, last_cpupid = -1;
1453 bool page_locked;
1454 bool migrated = false;
1455 bool was_writable;
1456 int flags = 0;
1458 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1459 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1460 goto out_unlock;
1463 * If there are potential migrations, wait for completion and retry
1464 * without disrupting NUMA hinting information. Do not relock and
1465 * check_same as the page may no longer be mapped.
1467 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1468 page = pmd_page(*vmf->pmd);
1469 if (!get_page_unless_zero(page))
1470 goto out_unlock;
1471 spin_unlock(vmf->ptl);
1472 wait_on_page_locked(page);
1473 put_page(page);
1474 goto out;
1477 page = pmd_page(pmd);
1478 BUG_ON(is_huge_zero_page(page));
1479 page_nid = page_to_nid(page);
1480 last_cpupid = page_cpupid_last(page);
1481 count_vm_numa_event(NUMA_HINT_FAULTS);
1482 if (page_nid == this_nid) {
1483 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1484 flags |= TNF_FAULT_LOCAL;
1487 /* See similar comment in do_numa_page for explanation */
1488 if (!pmd_savedwrite(pmd))
1489 flags |= TNF_NO_GROUP;
1492 * Acquire the page lock to serialise THP migrations but avoid dropping
1493 * page_table_lock if at all possible
1495 page_locked = trylock_page(page);
1496 target_nid = mpol_misplaced(page, vma, haddr);
1497 if (target_nid == -1) {
1498 /* If the page was locked, there are no parallel migrations */
1499 if (page_locked)
1500 goto clear_pmdnuma;
1503 /* Migration could have started since the pmd_trans_migrating check */
1504 if (!page_locked) {
1505 page_nid = -1;
1506 if (!get_page_unless_zero(page))
1507 goto out_unlock;
1508 spin_unlock(vmf->ptl);
1509 wait_on_page_locked(page);
1510 put_page(page);
1511 goto out;
1515 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1516 * to serialises splits
1518 get_page(page);
1519 spin_unlock(vmf->ptl);
1520 anon_vma = page_lock_anon_vma_read(page);
1522 /* Confirm the PMD did not change while page_table_lock was released */
1523 spin_lock(vmf->ptl);
1524 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1525 unlock_page(page);
1526 put_page(page);
1527 page_nid = -1;
1528 goto out_unlock;
1531 /* Bail if we fail to protect against THP splits for any reason */
1532 if (unlikely(!anon_vma)) {
1533 put_page(page);
1534 page_nid = -1;
1535 goto clear_pmdnuma;
1539 * Since we took the NUMA fault, we must have observed the !accessible
1540 * bit. Make sure all other CPUs agree with that, to avoid them
1541 * modifying the page we're about to migrate.
1543 * Must be done under PTL such that we'll observe the relevant
1544 * inc_tlb_flush_pending().
1546 * We are not sure a pending tlb flush here is for a huge page
1547 * mapping or not. Hence use the tlb range variant
1549 if (mm_tlb_flush_pending(vma->vm_mm))
1550 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1553 * Migrate the THP to the requested node, returns with page unlocked
1554 * and access rights restored.
1556 spin_unlock(vmf->ptl);
1558 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1559 vmf->pmd, pmd, vmf->address, page, target_nid);
1560 if (migrated) {
1561 flags |= TNF_MIGRATED;
1562 page_nid = target_nid;
1563 } else
1564 flags |= TNF_MIGRATE_FAIL;
1566 goto out;
1567 clear_pmdnuma:
1568 BUG_ON(!PageLocked(page));
1569 was_writable = pmd_savedwrite(pmd);
1570 pmd = pmd_modify(pmd, vma->vm_page_prot);
1571 pmd = pmd_mkyoung(pmd);
1572 if (was_writable)
1573 pmd = pmd_mkwrite(pmd);
1574 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1575 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1576 unlock_page(page);
1577 out_unlock:
1578 spin_unlock(vmf->ptl);
1580 out:
1581 if (anon_vma)
1582 page_unlock_anon_vma_read(anon_vma);
1584 if (page_nid != -1)
1585 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1586 flags);
1588 return 0;
1592 * Return true if we do MADV_FREE successfully on entire pmd page.
1593 * Otherwise, return false.
1595 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1596 pmd_t *pmd, unsigned long addr, unsigned long next)
1598 spinlock_t *ptl;
1599 pmd_t orig_pmd;
1600 struct page *page;
1601 struct mm_struct *mm = tlb->mm;
1602 bool ret = false;
1604 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1606 ptl = pmd_trans_huge_lock(pmd, vma);
1607 if (!ptl)
1608 goto out_unlocked;
1610 orig_pmd = *pmd;
1611 if (is_huge_zero_pmd(orig_pmd))
1612 goto out;
1614 if (unlikely(!pmd_present(orig_pmd))) {
1615 VM_BUG_ON(thp_migration_supported() &&
1616 !is_pmd_migration_entry(orig_pmd));
1617 goto out;
1620 page = pmd_page(orig_pmd);
1622 * If other processes are mapping this page, we couldn't discard
1623 * the page unless they all do MADV_FREE so let's skip the page.
1625 if (page_mapcount(page) != 1)
1626 goto out;
1628 if (!trylock_page(page))
1629 goto out;
1632 * If user want to discard part-pages of THP, split it so MADV_FREE
1633 * will deactivate only them.
1635 if (next - addr != HPAGE_PMD_SIZE) {
1636 get_page(page);
1637 spin_unlock(ptl);
1638 split_huge_page(page);
1639 unlock_page(page);
1640 put_page(page);
1641 goto out_unlocked;
1644 if (PageDirty(page))
1645 ClearPageDirty(page);
1646 unlock_page(page);
1648 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1649 pmdp_invalidate(vma, addr, pmd);
1650 orig_pmd = pmd_mkold(orig_pmd);
1651 orig_pmd = pmd_mkclean(orig_pmd);
1653 set_pmd_at(mm, addr, pmd, orig_pmd);
1654 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1657 mark_page_lazyfree(page);
1658 ret = true;
1659 out:
1660 spin_unlock(ptl);
1661 out_unlocked:
1662 return ret;
1665 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1667 pgtable_t pgtable;
1669 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1670 pte_free(mm, pgtable);
1671 atomic_long_dec(&mm->nr_ptes);
1674 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1675 pmd_t *pmd, unsigned long addr)
1677 pmd_t orig_pmd;
1678 spinlock_t *ptl;
1680 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1682 ptl = __pmd_trans_huge_lock(pmd, vma);
1683 if (!ptl)
1684 return 0;
1686 * For architectures like ppc64 we look at deposited pgtable
1687 * when calling pmdp_huge_get_and_clear. So do the
1688 * pgtable_trans_huge_withdraw after finishing pmdp related
1689 * operations.
1691 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1692 tlb->fullmm);
1693 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1694 if (vma_is_dax(vma)) {
1695 if (arch_needs_pgtable_deposit())
1696 zap_deposited_table(tlb->mm, pmd);
1697 spin_unlock(ptl);
1698 if (is_huge_zero_pmd(orig_pmd))
1699 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1700 } else if (is_huge_zero_pmd(orig_pmd)) {
1701 zap_deposited_table(tlb->mm, pmd);
1702 spin_unlock(ptl);
1703 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1704 } else {
1705 struct page *page = NULL;
1706 int flush_needed = 1;
1708 if (pmd_present(orig_pmd)) {
1709 page = pmd_page(orig_pmd);
1710 page_remove_rmap(page, true);
1711 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1712 VM_BUG_ON_PAGE(!PageHead(page), page);
1713 } else if (thp_migration_supported()) {
1714 swp_entry_t entry;
1716 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1717 entry = pmd_to_swp_entry(orig_pmd);
1718 page = pfn_to_page(swp_offset(entry));
1719 flush_needed = 0;
1720 } else
1721 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1723 if (PageAnon(page)) {
1724 zap_deposited_table(tlb->mm, pmd);
1725 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1726 } else {
1727 if (arch_needs_pgtable_deposit())
1728 zap_deposited_table(tlb->mm, pmd);
1729 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1732 spin_unlock(ptl);
1733 if (flush_needed)
1734 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1736 return 1;
1739 #ifndef pmd_move_must_withdraw
1740 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1741 spinlock_t *old_pmd_ptl,
1742 struct vm_area_struct *vma)
1745 * With split pmd lock we also need to move preallocated
1746 * PTE page table if new_pmd is on different PMD page table.
1748 * We also don't deposit and withdraw tables for file pages.
1750 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1752 #endif
1754 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1756 #ifdef CONFIG_MEM_SOFT_DIRTY
1757 if (unlikely(is_pmd_migration_entry(pmd)))
1758 pmd = pmd_swp_mksoft_dirty(pmd);
1759 else if (pmd_present(pmd))
1760 pmd = pmd_mksoft_dirty(pmd);
1761 #endif
1762 return pmd;
1765 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1766 unsigned long new_addr, unsigned long old_end,
1767 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1769 spinlock_t *old_ptl, *new_ptl;
1770 pmd_t pmd;
1771 struct mm_struct *mm = vma->vm_mm;
1772 bool force_flush = false;
1774 if ((old_addr & ~HPAGE_PMD_MASK) ||
1775 (new_addr & ~HPAGE_PMD_MASK) ||
1776 old_end - old_addr < HPAGE_PMD_SIZE)
1777 return false;
1780 * The destination pmd shouldn't be established, free_pgtables()
1781 * should have release it.
1783 if (WARN_ON(!pmd_none(*new_pmd))) {
1784 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1785 return false;
1789 * We don't have to worry about the ordering of src and dst
1790 * ptlocks because exclusive mmap_sem prevents deadlock.
1792 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1793 if (old_ptl) {
1794 new_ptl = pmd_lockptr(mm, new_pmd);
1795 if (new_ptl != old_ptl)
1796 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1797 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1798 if (pmd_present(pmd) && pmd_dirty(pmd))
1799 force_flush = true;
1800 VM_BUG_ON(!pmd_none(*new_pmd));
1802 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1803 pgtable_t pgtable;
1804 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1805 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1807 pmd = move_soft_dirty_pmd(pmd);
1808 set_pmd_at(mm, new_addr, new_pmd, pmd);
1809 if (new_ptl != old_ptl)
1810 spin_unlock(new_ptl);
1811 if (force_flush)
1812 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1813 else
1814 *need_flush = true;
1815 spin_unlock(old_ptl);
1816 return true;
1818 return false;
1822 * Returns
1823 * - 0 if PMD could not be locked
1824 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1825 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1827 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1828 unsigned long addr, pgprot_t newprot, int prot_numa)
1830 struct mm_struct *mm = vma->vm_mm;
1831 spinlock_t *ptl;
1832 pmd_t entry;
1833 bool preserve_write;
1834 int ret;
1836 ptl = __pmd_trans_huge_lock(pmd, vma);
1837 if (!ptl)
1838 return 0;
1840 preserve_write = prot_numa && pmd_write(*pmd);
1841 ret = 1;
1843 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1844 if (is_swap_pmd(*pmd)) {
1845 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1848 if (is_write_migration_entry(entry)) {
1849 pmd_t newpmd;
1851 * A protection check is difficult so
1852 * just be safe and disable write
1854 make_migration_entry_read(&entry);
1855 newpmd = swp_entry_to_pmd(entry);
1856 if (pmd_swp_soft_dirty(*pmd))
1857 newpmd = pmd_swp_mksoft_dirty(newpmd);
1858 set_pmd_at(mm, addr, pmd, newpmd);
1860 goto unlock;
1862 #endif
1865 * Avoid trapping faults against the zero page. The read-only
1866 * data is likely to be read-cached on the local CPU and
1867 * local/remote hits to the zero page are not interesting.
1869 if (prot_numa && is_huge_zero_pmd(*pmd))
1870 goto unlock;
1872 if (prot_numa && pmd_protnone(*pmd))
1873 goto unlock;
1876 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1877 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1878 * which is also under down_read(mmap_sem):
1880 * CPU0: CPU1:
1881 * change_huge_pmd(prot_numa=1)
1882 * pmdp_huge_get_and_clear_notify()
1883 * madvise_dontneed()
1884 * zap_pmd_range()
1885 * pmd_trans_huge(*pmd) == 0 (without ptl)
1886 * // skip the pmd
1887 * set_pmd_at();
1888 * // pmd is re-established
1890 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1891 * which may break userspace.
1893 * pmdp_invalidate() is required to make sure we don't miss
1894 * dirty/young flags set by hardware.
1896 entry = *pmd;
1897 pmdp_invalidate(vma, addr, pmd);
1900 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1901 * corrupt them.
1903 if (pmd_dirty(*pmd))
1904 entry = pmd_mkdirty(entry);
1905 if (pmd_young(*pmd))
1906 entry = pmd_mkyoung(entry);
1908 entry = pmd_modify(entry, newprot);
1909 if (preserve_write)
1910 entry = pmd_mk_savedwrite(entry);
1911 ret = HPAGE_PMD_NR;
1912 set_pmd_at(mm, addr, pmd, entry);
1913 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1914 unlock:
1915 spin_unlock(ptl);
1916 return ret;
1920 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1922 * Note that if it returns page table lock pointer, this routine returns without
1923 * unlocking page table lock. So callers must unlock it.
1925 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1927 spinlock_t *ptl;
1928 ptl = pmd_lock(vma->vm_mm, pmd);
1929 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1930 pmd_devmap(*pmd)))
1931 return ptl;
1932 spin_unlock(ptl);
1933 return NULL;
1937 * Returns true if a given pud maps a thp, false otherwise.
1939 * Note that if it returns true, this routine returns without unlocking page
1940 * table lock. So callers must unlock it.
1942 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1944 spinlock_t *ptl;
1946 ptl = pud_lock(vma->vm_mm, pud);
1947 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1948 return ptl;
1949 spin_unlock(ptl);
1950 return NULL;
1953 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1954 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1955 pud_t *pud, unsigned long addr)
1957 pud_t orig_pud;
1958 spinlock_t *ptl;
1960 ptl = __pud_trans_huge_lock(pud, vma);
1961 if (!ptl)
1962 return 0;
1964 * For architectures like ppc64 we look at deposited pgtable
1965 * when calling pudp_huge_get_and_clear. So do the
1966 * pgtable_trans_huge_withdraw after finishing pudp related
1967 * operations.
1969 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1970 tlb->fullmm);
1971 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1972 if (vma_is_dax(vma)) {
1973 spin_unlock(ptl);
1974 /* No zero page support yet */
1975 } else {
1976 /* No support for anonymous PUD pages yet */
1977 BUG();
1979 return 1;
1982 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1983 unsigned long haddr)
1985 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1986 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1987 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1988 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1990 count_vm_event(THP_SPLIT_PUD);
1992 pudp_huge_clear_flush_notify(vma, haddr, pud);
1995 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1996 unsigned long address)
1998 spinlock_t *ptl;
1999 struct mm_struct *mm = vma->vm_mm;
2000 unsigned long haddr = address & HPAGE_PUD_MASK;
2002 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2003 ptl = pud_lock(mm, pud);
2004 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2005 goto out;
2006 __split_huge_pud_locked(vma, pud, haddr);
2008 out:
2009 spin_unlock(ptl);
2010 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2012 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2014 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2015 unsigned long haddr, pmd_t *pmd)
2017 struct mm_struct *mm = vma->vm_mm;
2018 pgtable_t pgtable;
2019 pmd_t _pmd;
2020 int i;
2022 /* leave pmd empty until pte is filled */
2023 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2025 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2026 pmd_populate(mm, &_pmd, pgtable);
2028 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2029 pte_t *pte, entry;
2030 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2031 entry = pte_mkspecial(entry);
2032 pte = pte_offset_map(&_pmd, haddr);
2033 VM_BUG_ON(!pte_none(*pte));
2034 set_pte_at(mm, haddr, pte, entry);
2035 pte_unmap(pte);
2037 smp_wmb(); /* make pte visible before pmd */
2038 pmd_populate(mm, pmd, pgtable);
2041 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2042 unsigned long haddr, bool freeze)
2044 struct mm_struct *mm = vma->vm_mm;
2045 struct page *page;
2046 pgtable_t pgtable;
2047 pmd_t _pmd;
2048 bool young, write, dirty, soft_dirty, pmd_migration = false;
2049 unsigned long addr;
2050 int i;
2052 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2053 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2054 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2055 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2056 && !pmd_devmap(*pmd));
2058 count_vm_event(THP_SPLIT_PMD);
2060 if (!vma_is_anonymous(vma)) {
2061 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2063 * We are going to unmap this huge page. So
2064 * just go ahead and zap it
2066 if (arch_needs_pgtable_deposit())
2067 zap_deposited_table(mm, pmd);
2068 if (vma_is_dax(vma))
2069 return;
2070 page = pmd_page(_pmd);
2071 if (!PageReferenced(page) && pmd_young(_pmd))
2072 SetPageReferenced(page);
2073 page_remove_rmap(page, true);
2074 put_page(page);
2075 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2076 return;
2077 } else if (is_huge_zero_pmd(*pmd)) {
2078 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2081 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2082 pmd_migration = is_pmd_migration_entry(*pmd);
2083 if (pmd_migration) {
2084 swp_entry_t entry;
2086 entry = pmd_to_swp_entry(*pmd);
2087 page = pfn_to_page(swp_offset(entry));
2088 } else
2089 #endif
2090 page = pmd_page(*pmd);
2091 VM_BUG_ON_PAGE(!page_count(page), page);
2092 page_ref_add(page, HPAGE_PMD_NR - 1);
2093 write = pmd_write(*pmd);
2094 young = pmd_young(*pmd);
2095 dirty = pmd_dirty(*pmd);
2096 soft_dirty = pmd_soft_dirty(*pmd);
2098 pmdp_huge_split_prepare(vma, haddr, pmd);
2099 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2100 pmd_populate(mm, &_pmd, pgtable);
2102 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2103 pte_t entry, *pte;
2105 * Note that NUMA hinting access restrictions are not
2106 * transferred to avoid any possibility of altering
2107 * permissions across VMAs.
2109 if (freeze || pmd_migration) {
2110 swp_entry_t swp_entry;
2111 swp_entry = make_migration_entry(page + i, write);
2112 entry = swp_entry_to_pte(swp_entry);
2113 if (soft_dirty)
2114 entry = pte_swp_mksoft_dirty(entry);
2115 } else {
2116 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117 entry = maybe_mkwrite(entry, vma);
2118 if (!write)
2119 entry = pte_wrprotect(entry);
2120 if (!young)
2121 entry = pte_mkold(entry);
2122 if (soft_dirty)
2123 entry = pte_mksoft_dirty(entry);
2125 if (dirty)
2126 SetPageDirty(page + i);
2127 pte = pte_offset_map(&_pmd, addr);
2128 BUG_ON(!pte_none(*pte));
2129 set_pte_at(mm, addr, pte, entry);
2130 atomic_inc(&page[i]._mapcount);
2131 pte_unmap(pte);
2135 * Set PG_double_map before dropping compound_mapcount to avoid
2136 * false-negative page_mapped().
2138 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2139 for (i = 0; i < HPAGE_PMD_NR; i++)
2140 atomic_inc(&page[i]._mapcount);
2143 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2144 /* Last compound_mapcount is gone. */
2145 __dec_node_page_state(page, NR_ANON_THPS);
2146 if (TestClearPageDoubleMap(page)) {
2147 /* No need in mapcount reference anymore */
2148 for (i = 0; i < HPAGE_PMD_NR; i++)
2149 atomic_dec(&page[i]._mapcount);
2153 smp_wmb(); /* make pte visible before pmd */
2155 * Up to this point the pmd is present and huge and userland has the
2156 * whole access to the hugepage during the split (which happens in
2157 * place). If we overwrite the pmd with the not-huge version pointing
2158 * to the pte here (which of course we could if all CPUs were bug
2159 * free), userland could trigger a small page size TLB miss on the
2160 * small sized TLB while the hugepage TLB entry is still established in
2161 * the huge TLB. Some CPU doesn't like that.
2162 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2163 * 383 on page 93. Intel should be safe but is also warns that it's
2164 * only safe if the permission and cache attributes of the two entries
2165 * loaded in the two TLB is identical (which should be the case here).
2166 * But it is generally safer to never allow small and huge TLB entries
2167 * for the same virtual address to be loaded simultaneously. So instead
2168 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2169 * current pmd notpresent (atomically because here the pmd_trans_huge
2170 * and pmd_trans_splitting must remain set at all times on the pmd
2171 * until the split is complete for this pmd), then we flush the SMP TLB
2172 * and finally we write the non-huge version of the pmd entry with
2173 * pmd_populate.
2175 pmdp_invalidate(vma, haddr, pmd);
2176 pmd_populate(mm, pmd, pgtable);
2178 if (freeze) {
2179 for (i = 0; i < HPAGE_PMD_NR; i++) {
2180 page_remove_rmap(page + i, false);
2181 put_page(page + i);
2186 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2187 unsigned long address, bool freeze, struct page *page)
2189 spinlock_t *ptl;
2190 struct mm_struct *mm = vma->vm_mm;
2191 unsigned long haddr = address & HPAGE_PMD_MASK;
2193 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2194 ptl = pmd_lock(mm, pmd);
2197 * If caller asks to setup a migration entries, we need a page to check
2198 * pmd against. Otherwise we can end up replacing wrong page.
2200 VM_BUG_ON(freeze && !page);
2201 if (page && page != pmd_page(*pmd))
2202 goto out;
2204 if (pmd_trans_huge(*pmd)) {
2205 page = pmd_page(*pmd);
2206 if (PageMlocked(page))
2207 clear_page_mlock(page);
2208 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2209 goto out;
2210 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2211 out:
2212 spin_unlock(ptl);
2213 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2216 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2217 bool freeze, struct page *page)
2219 pgd_t *pgd;
2220 p4d_t *p4d;
2221 pud_t *pud;
2222 pmd_t *pmd;
2224 pgd = pgd_offset(vma->vm_mm, address);
2225 if (!pgd_present(*pgd))
2226 return;
2228 p4d = p4d_offset(pgd, address);
2229 if (!p4d_present(*p4d))
2230 return;
2232 pud = pud_offset(p4d, address);
2233 if (!pud_present(*pud))
2234 return;
2236 pmd = pmd_offset(pud, address);
2238 __split_huge_pmd(vma, pmd, address, freeze, page);
2241 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2242 unsigned long start,
2243 unsigned long end,
2244 long adjust_next)
2247 * If the new start address isn't hpage aligned and it could
2248 * previously contain an hugepage: check if we need to split
2249 * an huge pmd.
2251 if (start & ~HPAGE_PMD_MASK &&
2252 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2253 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2254 split_huge_pmd_address(vma, start, false, NULL);
2257 * If the new end address isn't hpage aligned and it could
2258 * previously contain an hugepage: check if we need to split
2259 * an huge pmd.
2261 if (end & ~HPAGE_PMD_MASK &&
2262 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2263 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2264 split_huge_pmd_address(vma, end, false, NULL);
2267 * If we're also updating the vma->vm_next->vm_start, if the new
2268 * vm_next->vm_start isn't page aligned and it could previously
2269 * contain an hugepage: check if we need to split an huge pmd.
2271 if (adjust_next > 0) {
2272 struct vm_area_struct *next = vma->vm_next;
2273 unsigned long nstart = next->vm_start;
2274 nstart += adjust_next << PAGE_SHIFT;
2275 if (nstart & ~HPAGE_PMD_MASK &&
2276 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2277 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2278 split_huge_pmd_address(next, nstart, false, NULL);
2282 static void freeze_page(struct page *page)
2284 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2285 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2286 bool unmap_success;
2288 VM_BUG_ON_PAGE(!PageHead(page), page);
2290 if (PageAnon(page))
2291 ttu_flags |= TTU_SPLIT_FREEZE;
2293 unmap_success = try_to_unmap(page, ttu_flags);
2294 VM_BUG_ON_PAGE(!unmap_success, page);
2297 static void unfreeze_page(struct page *page)
2299 int i;
2300 if (PageTransHuge(page)) {
2301 remove_migration_ptes(page, page, true);
2302 } else {
2303 for (i = 0; i < HPAGE_PMD_NR; i++)
2304 remove_migration_ptes(page + i, page + i, true);
2308 static void __split_huge_page_tail(struct page *head, int tail,
2309 struct lruvec *lruvec, struct list_head *list)
2311 struct page *page_tail = head + tail;
2313 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2314 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2317 * tail_page->_refcount is zero and not changing from under us. But
2318 * get_page_unless_zero() may be running from under us on the
2319 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2320 * atomic_add(), we would then run atomic_set() concurrently with
2321 * get_page_unless_zero(), and atomic_set() is implemented in C not
2322 * using locked ops. spin_unlock on x86 sometime uses locked ops
2323 * because of PPro errata 66, 92, so unless somebody can guarantee
2324 * atomic_set() here would be safe on all archs (and not only on x86),
2325 * it's safer to use atomic_inc()/atomic_add().
2327 if (PageAnon(head) && !PageSwapCache(head)) {
2328 page_ref_inc(page_tail);
2329 } else {
2330 /* Additional pin to radix tree */
2331 page_ref_add(page_tail, 2);
2334 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2335 page_tail->flags |= (head->flags &
2336 ((1L << PG_referenced) |
2337 (1L << PG_swapbacked) |
2338 (1L << PG_swapcache) |
2339 (1L << PG_mlocked) |
2340 (1L << PG_uptodate) |
2341 (1L << PG_active) |
2342 (1L << PG_locked) |
2343 (1L << PG_unevictable) |
2344 (1L << PG_dirty)));
2347 * After clearing PageTail the gup refcount can be released.
2348 * Page flags also must be visible before we make the page non-compound.
2350 smp_wmb();
2352 clear_compound_head(page_tail);
2354 if (page_is_young(head))
2355 set_page_young(page_tail);
2356 if (page_is_idle(head))
2357 set_page_idle(page_tail);
2359 /* ->mapping in first tail page is compound_mapcount */
2360 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2361 page_tail);
2362 page_tail->mapping = head->mapping;
2364 page_tail->index = head->index + tail;
2365 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2366 lru_add_page_tail(head, page_tail, lruvec, list);
2369 static void __split_huge_page(struct page *page, struct list_head *list,
2370 unsigned long flags)
2372 struct page *head = compound_head(page);
2373 struct zone *zone = page_zone(head);
2374 struct lruvec *lruvec;
2375 pgoff_t end = -1;
2376 int i;
2378 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2380 /* complete memcg works before add pages to LRU */
2381 mem_cgroup_split_huge_fixup(head);
2383 if (!PageAnon(page))
2384 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2386 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2387 __split_huge_page_tail(head, i, lruvec, list);
2388 /* Some pages can be beyond i_size: drop them from page cache */
2389 if (head[i].index >= end) {
2390 __ClearPageDirty(head + i);
2391 __delete_from_page_cache(head + i, NULL);
2392 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2393 shmem_uncharge(head->mapping->host, 1);
2394 put_page(head + i);
2398 ClearPageCompound(head);
2399 /* See comment in __split_huge_page_tail() */
2400 if (PageAnon(head)) {
2401 /* Additional pin to radix tree of swap cache */
2402 if (PageSwapCache(head))
2403 page_ref_add(head, 2);
2404 else
2405 page_ref_inc(head);
2406 } else {
2407 /* Additional pin to radix tree */
2408 page_ref_add(head, 2);
2409 spin_unlock(&head->mapping->tree_lock);
2412 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2414 unfreeze_page(head);
2416 for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 struct page *subpage = head + i;
2418 if (subpage == page)
2419 continue;
2420 unlock_page(subpage);
2423 * Subpages may be freed if there wasn't any mapping
2424 * like if add_to_swap() is running on a lru page that
2425 * had its mapping zapped. And freeing these pages
2426 * requires taking the lru_lock so we do the put_page
2427 * of the tail pages after the split is complete.
2429 put_page(subpage);
2433 int total_mapcount(struct page *page)
2435 int i, compound, ret;
2437 VM_BUG_ON_PAGE(PageTail(page), page);
2439 if (likely(!PageCompound(page)))
2440 return atomic_read(&page->_mapcount) + 1;
2442 compound = compound_mapcount(page);
2443 if (PageHuge(page))
2444 return compound;
2445 ret = compound;
2446 for (i = 0; i < HPAGE_PMD_NR; i++)
2447 ret += atomic_read(&page[i]._mapcount) + 1;
2448 /* File pages has compound_mapcount included in _mapcount */
2449 if (!PageAnon(page))
2450 return ret - compound * HPAGE_PMD_NR;
2451 if (PageDoubleMap(page))
2452 ret -= HPAGE_PMD_NR;
2453 return ret;
2457 * This calculates accurately how many mappings a transparent hugepage
2458 * has (unlike page_mapcount() which isn't fully accurate). This full
2459 * accuracy is primarily needed to know if copy-on-write faults can
2460 * reuse the page and change the mapping to read-write instead of
2461 * copying them. At the same time this returns the total_mapcount too.
2463 * The function returns the highest mapcount any one of the subpages
2464 * has. If the return value is one, even if different processes are
2465 * mapping different subpages of the transparent hugepage, they can
2466 * all reuse it, because each process is reusing a different subpage.
2468 * The total_mapcount is instead counting all virtual mappings of the
2469 * subpages. If the total_mapcount is equal to "one", it tells the
2470 * caller all mappings belong to the same "mm" and in turn the
2471 * anon_vma of the transparent hugepage can become the vma->anon_vma
2472 * local one as no other process may be mapping any of the subpages.
2474 * It would be more accurate to replace page_mapcount() with
2475 * page_trans_huge_mapcount(), however we only use
2476 * page_trans_huge_mapcount() in the copy-on-write faults where we
2477 * need full accuracy to avoid breaking page pinning, because
2478 * page_trans_huge_mapcount() is slower than page_mapcount().
2480 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2482 int i, ret, _total_mapcount, mapcount;
2484 /* hugetlbfs shouldn't call it */
2485 VM_BUG_ON_PAGE(PageHuge(page), page);
2487 if (likely(!PageTransCompound(page))) {
2488 mapcount = atomic_read(&page->_mapcount) + 1;
2489 if (total_mapcount)
2490 *total_mapcount = mapcount;
2491 return mapcount;
2494 page = compound_head(page);
2496 _total_mapcount = ret = 0;
2497 for (i = 0; i < HPAGE_PMD_NR; i++) {
2498 mapcount = atomic_read(&page[i]._mapcount) + 1;
2499 ret = max(ret, mapcount);
2500 _total_mapcount += mapcount;
2502 if (PageDoubleMap(page)) {
2503 ret -= 1;
2504 _total_mapcount -= HPAGE_PMD_NR;
2506 mapcount = compound_mapcount(page);
2507 ret += mapcount;
2508 _total_mapcount += mapcount;
2509 if (total_mapcount)
2510 *total_mapcount = _total_mapcount;
2511 return ret;
2514 /* Racy check whether the huge page can be split */
2515 bool can_split_huge_page(struct page *page, int *pextra_pins)
2517 int extra_pins;
2519 /* Additional pins from radix tree */
2520 if (PageAnon(page))
2521 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2522 else
2523 extra_pins = HPAGE_PMD_NR;
2524 if (pextra_pins)
2525 *pextra_pins = extra_pins;
2526 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2530 * This function splits huge page into normal pages. @page can point to any
2531 * subpage of huge page to split. Split doesn't change the position of @page.
2533 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2534 * The huge page must be locked.
2536 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2538 * Both head page and tail pages will inherit mapping, flags, and so on from
2539 * the hugepage.
2541 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2542 * they are not mapped.
2544 * Returns 0 if the hugepage is split successfully.
2545 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2546 * us.
2548 int split_huge_page_to_list(struct page *page, struct list_head *list)
2550 struct page *head = compound_head(page);
2551 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2552 struct anon_vma *anon_vma = NULL;
2553 struct address_space *mapping = NULL;
2554 int count, mapcount, extra_pins, ret;
2555 bool mlocked;
2556 unsigned long flags;
2558 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2559 VM_BUG_ON_PAGE(!PageLocked(page), page);
2560 VM_BUG_ON_PAGE(!PageCompound(page), page);
2562 if (PageWriteback(page))
2563 return -EBUSY;
2565 if (PageAnon(head)) {
2567 * The caller does not necessarily hold an mmap_sem that would
2568 * prevent the anon_vma disappearing so we first we take a
2569 * reference to it and then lock the anon_vma for write. This
2570 * is similar to page_lock_anon_vma_read except the write lock
2571 * is taken to serialise against parallel split or collapse
2572 * operations.
2574 anon_vma = page_get_anon_vma(head);
2575 if (!anon_vma) {
2576 ret = -EBUSY;
2577 goto out;
2579 mapping = NULL;
2580 anon_vma_lock_write(anon_vma);
2581 } else {
2582 mapping = head->mapping;
2584 /* Truncated ? */
2585 if (!mapping) {
2586 ret = -EBUSY;
2587 goto out;
2590 anon_vma = NULL;
2591 i_mmap_lock_read(mapping);
2595 * Racy check if we can split the page, before freeze_page() will
2596 * split PMDs
2598 if (!can_split_huge_page(head, &extra_pins)) {
2599 ret = -EBUSY;
2600 goto out_unlock;
2603 mlocked = PageMlocked(page);
2604 freeze_page(head);
2605 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2607 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2608 if (mlocked)
2609 lru_add_drain();
2611 /* prevent PageLRU to go away from under us, and freeze lru stats */
2612 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2614 if (mapping) {
2615 void **pslot;
2617 spin_lock(&mapping->tree_lock);
2618 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2619 page_index(head));
2621 * Check if the head page is present in radix tree.
2622 * We assume all tail are present too, if head is there.
2624 if (radix_tree_deref_slot_protected(pslot,
2625 &mapping->tree_lock) != head)
2626 goto fail;
2629 /* Prevent deferred_split_scan() touching ->_refcount */
2630 spin_lock(&pgdata->split_queue_lock);
2631 count = page_count(head);
2632 mapcount = total_mapcount(head);
2633 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2634 if (!list_empty(page_deferred_list(head))) {
2635 pgdata->split_queue_len--;
2636 list_del(page_deferred_list(head));
2638 if (mapping)
2639 __dec_node_page_state(page, NR_SHMEM_THPS);
2640 spin_unlock(&pgdata->split_queue_lock);
2641 __split_huge_page(page, list, flags);
2642 if (PageSwapCache(head)) {
2643 swp_entry_t entry = { .val = page_private(head) };
2645 ret = split_swap_cluster(entry);
2646 } else
2647 ret = 0;
2648 } else {
2649 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2650 pr_alert("total_mapcount: %u, page_count(): %u\n",
2651 mapcount, count);
2652 if (PageTail(page))
2653 dump_page(head, NULL);
2654 dump_page(page, "total_mapcount(head) > 0");
2655 BUG();
2657 spin_unlock(&pgdata->split_queue_lock);
2658 fail: if (mapping)
2659 spin_unlock(&mapping->tree_lock);
2660 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2661 unfreeze_page(head);
2662 ret = -EBUSY;
2665 out_unlock:
2666 if (anon_vma) {
2667 anon_vma_unlock_write(anon_vma);
2668 put_anon_vma(anon_vma);
2670 if (mapping)
2671 i_mmap_unlock_read(mapping);
2672 out:
2673 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2674 return ret;
2677 void free_transhuge_page(struct page *page)
2679 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2680 unsigned long flags;
2682 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2683 if (!list_empty(page_deferred_list(page))) {
2684 pgdata->split_queue_len--;
2685 list_del(page_deferred_list(page));
2687 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2688 free_compound_page(page);
2691 void deferred_split_huge_page(struct page *page)
2693 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2694 unsigned long flags;
2696 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2698 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2699 if (list_empty(page_deferred_list(page))) {
2700 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2701 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2702 pgdata->split_queue_len++;
2704 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2707 static unsigned long deferred_split_count(struct shrinker *shrink,
2708 struct shrink_control *sc)
2710 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2711 return ACCESS_ONCE(pgdata->split_queue_len);
2714 static unsigned long deferred_split_scan(struct shrinker *shrink,
2715 struct shrink_control *sc)
2717 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2718 unsigned long flags;
2719 LIST_HEAD(list), *pos, *next;
2720 struct page *page;
2721 int split = 0;
2723 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2724 /* Take pin on all head pages to avoid freeing them under us */
2725 list_for_each_safe(pos, next, &pgdata->split_queue) {
2726 page = list_entry((void *)pos, struct page, mapping);
2727 page = compound_head(page);
2728 if (get_page_unless_zero(page)) {
2729 list_move(page_deferred_list(page), &list);
2730 } else {
2731 /* We lost race with put_compound_page() */
2732 list_del_init(page_deferred_list(page));
2733 pgdata->split_queue_len--;
2735 if (!--sc->nr_to_scan)
2736 break;
2738 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2740 list_for_each_safe(pos, next, &list) {
2741 page = list_entry((void *)pos, struct page, mapping);
2742 lock_page(page);
2743 /* split_huge_page() removes page from list on success */
2744 if (!split_huge_page(page))
2745 split++;
2746 unlock_page(page);
2747 put_page(page);
2750 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2751 list_splice_tail(&list, &pgdata->split_queue);
2752 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2755 * Stop shrinker if we didn't split any page, but the queue is empty.
2756 * This can happen if pages were freed under us.
2758 if (!split && list_empty(&pgdata->split_queue))
2759 return SHRINK_STOP;
2760 return split;
2763 static struct shrinker deferred_split_shrinker = {
2764 .count_objects = deferred_split_count,
2765 .scan_objects = deferred_split_scan,
2766 .seeks = DEFAULT_SEEKS,
2767 .flags = SHRINKER_NUMA_AWARE,
2770 #ifdef CONFIG_DEBUG_FS
2771 static int split_huge_pages_set(void *data, u64 val)
2773 struct zone *zone;
2774 struct page *page;
2775 unsigned long pfn, max_zone_pfn;
2776 unsigned long total = 0, split = 0;
2778 if (val != 1)
2779 return -EINVAL;
2781 for_each_populated_zone(zone) {
2782 max_zone_pfn = zone_end_pfn(zone);
2783 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2784 if (!pfn_valid(pfn))
2785 continue;
2787 page = pfn_to_page(pfn);
2788 if (!get_page_unless_zero(page))
2789 continue;
2791 if (zone != page_zone(page))
2792 goto next;
2794 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2795 goto next;
2797 total++;
2798 lock_page(page);
2799 if (!split_huge_page(page))
2800 split++;
2801 unlock_page(page);
2802 next:
2803 put_page(page);
2807 pr_info("%lu of %lu THP split\n", split, total);
2809 return 0;
2811 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2812 "%llu\n");
2814 static int __init split_huge_pages_debugfs(void)
2816 void *ret;
2818 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2819 &split_huge_pages_fops);
2820 if (!ret)
2821 pr_warn("Failed to create split_huge_pages in debugfs");
2822 return 0;
2824 late_initcall(split_huge_pages_debugfs);
2825 #endif
2827 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2828 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2829 struct page *page)
2831 struct vm_area_struct *vma = pvmw->vma;
2832 struct mm_struct *mm = vma->vm_mm;
2833 unsigned long address = pvmw->address;
2834 pmd_t pmdval;
2835 swp_entry_t entry;
2836 pmd_t pmdswp;
2838 if (!(pvmw->pmd && !pvmw->pte))
2839 return;
2841 mmu_notifier_invalidate_range_start(mm, address,
2842 address + HPAGE_PMD_SIZE);
2844 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2845 pmdval = *pvmw->pmd;
2846 pmdp_invalidate(vma, address, pvmw->pmd);
2847 if (pmd_dirty(pmdval))
2848 set_page_dirty(page);
2849 entry = make_migration_entry(page, pmd_write(pmdval));
2850 pmdswp = swp_entry_to_pmd(entry);
2851 if (pmd_soft_dirty(pmdval))
2852 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2853 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2854 page_remove_rmap(page, true);
2855 put_page(page);
2857 mmu_notifier_invalidate_range_end(mm, address,
2858 address + HPAGE_PMD_SIZE);
2861 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2863 struct vm_area_struct *vma = pvmw->vma;
2864 struct mm_struct *mm = vma->vm_mm;
2865 unsigned long address = pvmw->address;
2866 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2867 pmd_t pmde;
2868 swp_entry_t entry;
2870 if (!(pvmw->pmd && !pvmw->pte))
2871 return;
2873 entry = pmd_to_swp_entry(*pvmw->pmd);
2874 get_page(new);
2875 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2876 if (pmd_swp_soft_dirty(*pvmw->pmd))
2877 pmde = pmd_mksoft_dirty(pmde);
2878 if (is_write_migration_entry(entry))
2879 pmde = maybe_pmd_mkwrite(pmde, vma);
2881 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2882 page_add_anon_rmap(new, vma, mmun_start, true);
2883 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2884 if (vma->vm_flags & VM_LOCKED)
2885 mlock_vma_page(new);
2886 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2888 #endif