2 /* trees.c -- output deflated data using Huffman coding
3 * Copyright (C) 1995-1996 Jean-loup Gailly
4 * For conditions of distribution and use, see copyright notice in zlib.h
10 * The "deflation" process uses several Huffman trees. The more
11 * common source values are represented by shorter bit sequences.
13 * Each code tree is stored in a compressed form which is itself
14 * a Huffman encoding of the lengths of all the code strings (in
15 * ascending order by source values). The actual code strings are
16 * reconstructed from the lengths in the inflate process, as described
17 * in the deflate specification.
21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
25 * Data Compression: Methods and Theory, pp. 49-50.
26 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
30 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
33 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
35 /* #include "deflate.h" */
37 #include <linux/zutil.h>
38 #include <linux/bitrev.h>
45 /* ===========================================================================
50 /* Bit length codes must not exceed MAX_BL_BITS bits */
53 /* end of block literal code */
56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
59 /* repeat a zero length 3-10 times (3 bits of repeat count) */
61 #define REPZ_11_138 18
62 /* repeat a zero length 11-138 times (7 bits of repeat count) */
64 static const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
65 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
67 static const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
68 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
70 static const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
71 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
73 static const uch bl_order
[BL_CODES
]
74 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
75 /* The lengths of the bit length codes are sent in order of decreasing
76 * probability, to avoid transmitting the lengths for unused bit length codes.
79 #define Buf_size (8 * 2*sizeof(char))
80 /* Number of bits used within bi_buf. (bi_buf might be implemented on
81 * more than 16 bits on some systems.)
84 /* ===========================================================================
85 * Local data. These are initialized only once.
88 static ct_data static_ltree
[L_CODES
+2];
89 /* The static literal tree. Since the bit lengths are imposed, there is no
90 * need for the L_CODES extra codes used during heap construction. However
91 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
95 static ct_data static_dtree
[D_CODES
];
96 /* The static distance tree. (Actually a trivial tree since all codes use
100 static uch dist_code
[512];
101 /* distance codes. The first 256 values correspond to the distances
102 * 3 .. 258, the last 256 values correspond to the top 8 bits of
103 * the 15 bit distances.
106 static uch length_code
[MAX_MATCH
-MIN_MATCH
+1];
107 /* length code for each normalized match length (0 == MIN_MATCH) */
109 static int base_length
[LENGTH_CODES
];
110 /* First normalized length for each code (0 = MIN_MATCH) */
112 static int base_dist
[D_CODES
];
113 /* First normalized distance for each code (0 = distance of 1) */
115 struct static_tree_desc_s
{
116 const ct_data
*static_tree
; /* static tree or NULL */
117 const int *extra_bits
; /* extra bits for each code or NULL */
118 int extra_base
; /* base index for extra_bits */
119 int elems
; /* max number of elements in the tree */
120 int max_length
; /* max bit length for the codes */
123 static static_tree_desc static_l_desc
=
124 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
126 static static_tree_desc static_d_desc
=
127 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
129 static static_tree_desc static_bl_desc
=
130 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
132 /* ===========================================================================
133 * Local (static) routines in this file.
136 static void tr_static_init (void);
137 static void init_block (deflate_state
*s
);
138 static void pqdownheap (deflate_state
*s
, ct_data
*tree
, int k
);
139 static void gen_bitlen (deflate_state
*s
, tree_desc
*desc
);
140 static void gen_codes (ct_data
*tree
, int max_code
, ush
*bl_count
);
141 static void build_tree (deflate_state
*s
, tree_desc
*desc
);
142 static void scan_tree (deflate_state
*s
, ct_data
*tree
, int max_code
);
143 static void send_tree (deflate_state
*s
, ct_data
*tree
, int max_code
);
144 static int build_bl_tree (deflate_state
*s
);
145 static void send_all_trees (deflate_state
*s
, int lcodes
, int dcodes
,
147 static void compress_block (deflate_state
*s
, ct_data
*ltree
,
149 static void set_data_type (deflate_state
*s
);
150 static void bi_windup (deflate_state
*s
);
151 static void bi_flush (deflate_state
*s
);
152 static void copy_block (deflate_state
*s
, char *buf
, unsigned len
,
156 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
157 /* Send a code of the given tree. c and tree must not have side effects */
159 #else /* DEBUG_ZLIB */
160 # define send_code(s, c, tree) \
161 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
162 send_bits(s, tree[c].Code, tree[c].Len); }
165 #define d_code(dist) \
166 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
167 /* Mapping from a distance to a distance code. dist is the distance - 1 and
168 * must not have side effects. dist_code[256] and dist_code[257] are never
172 /* ===========================================================================
173 * Send a value on a given number of bits.
174 * IN assertion: length <= 16 and value fits in length bits.
177 static void send_bits (deflate_state
*s
, int value
, int length
);
179 static void send_bits(
181 int value
, /* value to send */
182 int length
/* number of bits */
185 Tracevv((stderr
," l %2d v %4x ", length
, value
));
186 Assert(length
> 0 && length
<= 15, "invalid length");
187 s
->bits_sent
+= (ulg
)length
;
189 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
190 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
191 * unused bits in value.
193 if (s
->bi_valid
> (int)Buf_size
- length
) {
194 s
->bi_buf
|= (value
<< s
->bi_valid
);
195 put_short(s
, s
->bi_buf
);
196 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
197 s
->bi_valid
+= length
- Buf_size
;
199 s
->bi_buf
|= value
<< s
->bi_valid
;
200 s
->bi_valid
+= length
;
203 #else /* !DEBUG_ZLIB */
205 #define send_bits(s, value, length) \
207 if (s->bi_valid > (int)Buf_size - len) {\
209 s->bi_buf |= (val << s->bi_valid);\
210 put_short(s, s->bi_buf);\
211 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
212 s->bi_valid += len - Buf_size;\
214 s->bi_buf |= (value) << s->bi_valid;\
218 #endif /* DEBUG_ZLIB */
220 /* ===========================================================================
221 * Initialize the various 'constant' tables. In a multi-threaded environment,
222 * this function may be called by two threads concurrently, but this is
223 * harmless since both invocations do exactly the same thing.
225 static void tr_static_init(void)
227 static int static_init_done
;
228 int n
; /* iterates over tree elements */
229 int bits
; /* bit counter */
230 int length
; /* length value */
231 int code
; /* code value */
232 int dist
; /* distance index */
233 ush bl_count
[MAX_BITS
+1];
234 /* number of codes at each bit length for an optimal tree */
236 if (static_init_done
) return;
238 /* Initialize the mapping length (0..255) -> length code (0..28) */
240 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
241 base_length
[code
] = length
;
242 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
243 length_code
[length
++] = (uch
)code
;
246 Assert (length
== 256, "tr_static_init: length != 256");
247 /* Note that the length 255 (match length 258) can be represented
248 * in two different ways: code 284 + 5 bits or code 285, so we
249 * overwrite length_code[255] to use the best encoding:
251 length_code
[length
-1] = (uch
)code
;
253 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
255 for (code
= 0 ; code
< 16; code
++) {
256 base_dist
[code
] = dist
;
257 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
258 dist_code
[dist
++] = (uch
)code
;
261 Assert (dist
== 256, "tr_static_init: dist != 256");
262 dist
>>= 7; /* from now on, all distances are divided by 128 */
263 for ( ; code
< D_CODES
; code
++) {
264 base_dist
[code
] = dist
<< 7;
265 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
266 dist_code
[256 + dist
++] = (uch
)code
;
269 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
271 /* Construct the codes of the static literal tree */
272 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
274 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
275 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
276 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
277 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
278 /* Codes 286 and 287 do not exist, but we must include them in the
279 * tree construction to get a canonical Huffman tree (longest code
282 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
284 /* The static distance tree is trivial: */
285 for (n
= 0; n
< D_CODES
; n
++) {
286 static_dtree
[n
].Len
= 5;
287 static_dtree
[n
].Code
= bitrev32((u32
)n
) >> (32 - 5);
289 static_init_done
= 1;
292 /* ===========================================================================
293 * Initialize the tree data structures for a new zlib stream.
301 s
->compressed_len
= 0L;
303 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
304 s
->l_desc
.stat_desc
= &static_l_desc
;
306 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
307 s
->d_desc
.stat_desc
= &static_d_desc
;
309 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
310 s
->bl_desc
.stat_desc
= &static_bl_desc
;
314 s
->last_eob_len
= 8; /* enough lookahead for inflate */
319 /* Initialize the first block of the first file: */
323 /* ===========================================================================
324 * Initialize a new block.
326 static void init_block(
330 int n
; /* iterates over tree elements */
332 /* Initialize the trees. */
333 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
334 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
335 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
337 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
338 s
->opt_len
= s
->static_len
= 0L;
339 s
->last_lit
= s
->matches
= 0;
343 /* Index within the heap array of least frequent node in the Huffman tree */
346 /* ===========================================================================
347 * Remove the smallest element from the heap and recreate the heap with
348 * one less element. Updates heap and heap_len.
350 #define pqremove(s, tree, top) \
352 top = s->heap[SMALLEST]; \
353 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
354 pqdownheap(s, tree, SMALLEST); \
357 /* ===========================================================================
358 * Compares to subtrees, using the tree depth as tie breaker when
359 * the subtrees have equal frequency. This minimizes the worst case length.
361 #define smaller(tree, n, m, depth) \
362 (tree[n].Freq < tree[m].Freq || \
363 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
365 /* ===========================================================================
366 * Restore the heap property by moving down the tree starting at node k,
367 * exchanging a node with the smallest of its two sons if necessary, stopping
368 * when the heap property is re-established (each father smaller than its
371 static void pqdownheap(
373 ct_data
*tree
, /* the tree to restore */
374 int k
/* node to move down */
378 int j
= k
<< 1; /* left son of k */
379 while (j
<= s
->heap_len
) {
380 /* Set j to the smallest of the two sons: */
381 if (j
< s
->heap_len
&&
382 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
385 /* Exit if v is smaller than both sons */
386 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
388 /* Exchange v with the smallest son */
389 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
391 /* And continue down the tree, setting j to the left son of k */
397 /* ===========================================================================
398 * Compute the optimal bit lengths for a tree and update the total bit length
399 * for the current block.
400 * IN assertion: the fields freq and dad are set, heap[heap_max] and
401 * above are the tree nodes sorted by increasing frequency.
402 * OUT assertions: the field len is set to the optimal bit length, the
403 * array bl_count contains the frequencies for each bit length.
404 * The length opt_len is updated; static_len is also updated if stree is
407 static void gen_bitlen(
409 tree_desc
*desc
/* the tree descriptor */
412 ct_data
*tree
= desc
->dyn_tree
;
413 int max_code
= desc
->max_code
;
414 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
415 const int *extra
= desc
->stat_desc
->extra_bits
;
416 int base
= desc
->stat_desc
->extra_base
;
417 int max_length
= desc
->stat_desc
->max_length
;
418 int h
; /* heap index */
419 int n
, m
; /* iterate over the tree elements */
420 int bits
; /* bit length */
421 int xbits
; /* extra bits */
422 ush f
; /* frequency */
423 int overflow
= 0; /* number of elements with bit length too large */
425 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
427 /* In a first pass, compute the optimal bit lengths (which may
428 * overflow in the case of the bit length tree).
430 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
432 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
434 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
435 if (bits
> max_length
) bits
= max_length
, overflow
++;
436 tree
[n
].Len
= (ush
)bits
;
437 /* We overwrite tree[n].Dad which is no longer needed */
439 if (n
> max_code
) continue; /* not a leaf node */
443 if (n
>= base
) xbits
= extra
[n
-base
];
445 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
446 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
448 if (overflow
== 0) return;
450 Trace((stderr
,"\nbit length overflow\n"));
451 /* This happens for example on obj2 and pic of the Calgary corpus */
453 /* Find the first bit length which could increase: */
456 while (s
->bl_count
[bits
] == 0) bits
--;
457 s
->bl_count
[bits
]--; /* move one leaf down the tree */
458 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
459 s
->bl_count
[max_length
]--;
460 /* The brother of the overflow item also moves one step up,
461 * but this does not affect bl_count[max_length]
464 } while (overflow
> 0);
466 /* Now recompute all bit lengths, scanning in increasing frequency.
467 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
468 * lengths instead of fixing only the wrong ones. This idea is taken
469 * from 'ar' written by Haruhiko Okumura.)
471 for (bits
= max_length
; bits
!= 0; bits
--) {
472 n
= s
->bl_count
[bits
];
475 if (m
> max_code
) continue;
476 if (tree
[m
].Len
!= (unsigned) bits
) {
477 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
478 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
480 tree
[m
].Len
= (ush
)bits
;
487 /* ===========================================================================
488 * Generate the codes for a given tree and bit counts (which need not be
490 * IN assertion: the array bl_count contains the bit length statistics for
491 * the given tree and the field len is set for all tree elements.
492 * OUT assertion: the field code is set for all tree elements of non
495 static void gen_codes(
496 ct_data
*tree
, /* the tree to decorate */
497 int max_code
, /* largest code with non zero frequency */
498 ush
*bl_count
/* number of codes at each bit length */
501 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
502 ush code
= 0; /* running code value */
503 int bits
; /* bit index */
504 int n
; /* code index */
506 /* The distribution counts are first used to generate the code values
507 * without bit reversal.
509 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
510 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
512 /* Check that the bit counts in bl_count are consistent. The last code
515 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
516 "inconsistent bit counts");
517 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
519 for (n
= 0; n
<= max_code
; n
++) {
520 int len
= tree
[n
].Len
;
521 if (len
== 0) continue;
522 /* Now reverse the bits */
523 tree
[n
].Code
= bitrev32((u32
)(next_code
[len
]++)) >> (32 - len
);
525 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
526 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
530 /* ===========================================================================
531 * Construct one Huffman tree and assigns the code bit strings and lengths.
532 * Update the total bit length for the current block.
533 * IN assertion: the field freq is set for all tree elements.
534 * OUT assertions: the fields len and code are set to the optimal bit length
535 * and corresponding code. The length opt_len is updated; static_len is
536 * also updated if stree is not null. The field max_code is set.
538 static void build_tree(
540 tree_desc
*desc
/* the tree descriptor */
543 ct_data
*tree
= desc
->dyn_tree
;
544 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
545 int elems
= desc
->stat_desc
->elems
;
546 int n
, m
; /* iterate over heap elements */
547 int max_code
= -1; /* largest code with non zero frequency */
548 int node
; /* new node being created */
550 /* Construct the initial heap, with least frequent element in
551 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
552 * heap[0] is not used.
554 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
556 for (n
= 0; n
< elems
; n
++) {
557 if (tree
[n
].Freq
!= 0) {
558 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
565 /* The pkzip format requires that at least one distance code exists,
566 * and that at least one bit should be sent even if there is only one
567 * possible code. So to avoid special checks later on we force at least
568 * two codes of non zero frequency.
570 while (s
->heap_len
< 2) {
571 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
574 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
575 /* node is 0 or 1 so it does not have extra bits */
577 desc
->max_code
= max_code
;
579 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
580 * establish sub-heaps of increasing lengths:
582 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
584 /* Construct the Huffman tree by repeatedly combining the least two
587 node
= elems
; /* next internal node of the tree */
589 pqremove(s
, tree
, n
); /* n = node of least frequency */
590 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
592 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
593 s
->heap
[--(s
->heap_max
)] = m
;
595 /* Create a new node father of n and m */
596 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
597 s
->depth
[node
] = (uch
) (max(s
->depth
[n
], s
->depth
[m
]) + 1);
598 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
600 if (tree
== s
->bl_tree
) {
601 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
602 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
605 /* and insert the new node in the heap */
606 s
->heap
[SMALLEST
] = node
++;
607 pqdownheap(s
, tree
, SMALLEST
);
609 } while (s
->heap_len
>= 2);
611 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
613 /* At this point, the fields freq and dad are set. We can now
614 * generate the bit lengths.
616 gen_bitlen(s
, (tree_desc
*)desc
);
618 /* The field len is now set, we can generate the bit codes */
619 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
622 /* ===========================================================================
623 * Scan a literal or distance tree to determine the frequencies of the codes
624 * in the bit length tree.
626 static void scan_tree(
628 ct_data
*tree
, /* the tree to be scanned */
629 int max_code
/* and its largest code of non zero frequency */
632 int n
; /* iterates over all tree elements */
633 int prevlen
= -1; /* last emitted length */
634 int curlen
; /* length of current code */
635 int nextlen
= tree
[0].Len
; /* length of next code */
636 int count
= 0; /* repeat count of the current code */
637 int max_count
= 7; /* max repeat count */
638 int min_count
= 4; /* min repeat count */
640 if (nextlen
== 0) max_count
= 138, min_count
= 3;
641 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
643 for (n
= 0; n
<= max_code
; n
++) {
644 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
645 if (++count
< max_count
&& curlen
== nextlen
) {
647 } else if (count
< min_count
) {
648 s
->bl_tree
[curlen
].Freq
+= count
;
649 } else if (curlen
!= 0) {
650 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
651 s
->bl_tree
[REP_3_6
].Freq
++;
652 } else if (count
<= 10) {
653 s
->bl_tree
[REPZ_3_10
].Freq
++;
655 s
->bl_tree
[REPZ_11_138
].Freq
++;
657 count
= 0; prevlen
= curlen
;
659 max_count
= 138, min_count
= 3;
660 } else if (curlen
== nextlen
) {
661 max_count
= 6, min_count
= 3;
663 max_count
= 7, min_count
= 4;
668 /* ===========================================================================
669 * Send a literal or distance tree in compressed form, using the codes in
672 static void send_tree(
674 ct_data
*tree
, /* the tree to be scanned */
675 int max_code
/* and its largest code of non zero frequency */
678 int n
; /* iterates over all tree elements */
679 int prevlen
= -1; /* last emitted length */
680 int curlen
; /* length of current code */
681 int nextlen
= tree
[0].Len
; /* length of next code */
682 int count
= 0; /* repeat count of the current code */
683 int max_count
= 7; /* max repeat count */
684 int min_count
= 4; /* min repeat count */
686 /* tree[max_code+1].Len = -1; */ /* guard already set */
687 if (nextlen
== 0) max_count
= 138, min_count
= 3;
689 for (n
= 0; n
<= max_code
; n
++) {
690 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
691 if (++count
< max_count
&& curlen
== nextlen
) {
693 } else if (count
< min_count
) {
694 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
696 } else if (curlen
!= 0) {
697 if (curlen
!= prevlen
) {
698 send_code(s
, curlen
, s
->bl_tree
); count
--;
700 Assert(count
>= 3 && count
<= 6, " 3_6?");
701 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
703 } else if (count
<= 10) {
704 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
707 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
709 count
= 0; prevlen
= curlen
;
711 max_count
= 138, min_count
= 3;
712 } else if (curlen
== nextlen
) {
713 max_count
= 6, min_count
= 3;
715 max_count
= 7, min_count
= 4;
720 /* ===========================================================================
721 * Construct the Huffman tree for the bit lengths and return the index in
722 * bl_order of the last bit length code to send.
724 static int build_bl_tree(
728 int max_blindex
; /* index of last bit length code of non zero freq */
730 /* Determine the bit length frequencies for literal and distance trees */
731 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
732 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
734 /* Build the bit length tree: */
735 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
736 /* opt_len now includes the length of the tree representations, except
737 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
740 /* Determine the number of bit length codes to send. The pkzip format
741 * requires that at least 4 bit length codes be sent. (appnote.txt says
742 * 3 but the actual value used is 4.)
744 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
745 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
747 /* Update opt_len to include the bit length tree and counts */
748 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
749 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
750 s
->opt_len
, s
->static_len
));
755 /* ===========================================================================
756 * Send the header for a block using dynamic Huffman trees: the counts, the
757 * lengths of the bit length codes, the literal tree and the distance tree.
758 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
760 static void send_all_trees(
762 int lcodes
, /* number of codes for each tree */
763 int dcodes
, /* number of codes for each tree */
764 int blcodes
/* number of codes for each tree */
767 int rank
; /* index in bl_order */
769 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
770 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
772 Tracev((stderr
, "\nbl counts: "));
773 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
774 send_bits(s
, dcodes
-1, 5);
775 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
776 for (rank
= 0; rank
< blcodes
; rank
++) {
777 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
778 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
780 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
782 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
783 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
785 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
786 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
789 /* ===========================================================================
790 * Send a stored block
792 void zlib_tr_stored_block(
794 char *buf
, /* input block */
795 ulg stored_len
, /* length of input block */
796 int eof
/* true if this is the last block for a file */
799 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
800 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
801 s
->compressed_len
+= (stored_len
+ 4) << 3;
803 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
806 /* Send just the `stored block' type code without any length bytes or data.
808 void zlib_tr_stored_type_only(
812 send_bits(s
, (STORED_BLOCK
<< 1), 3);
814 s
->compressed_len
= (s
->compressed_len
+ 3) & ~7L;
818 /* ===========================================================================
819 * Send one empty static block to give enough lookahead for inflate.
820 * This takes 10 bits, of which 7 may remain in the bit buffer.
821 * The current inflate code requires 9 bits of lookahead. If the
822 * last two codes for the previous block (real code plus EOB) were coded
823 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
824 * the last real code. In this case we send two empty static blocks instead
825 * of one. (There are no problems if the previous block is stored or fixed.)
826 * To simplify the code, we assume the worst case of last real code encoded
833 send_bits(s
, STATIC_TREES
<<1, 3);
834 send_code(s
, END_BLOCK
, static_ltree
);
835 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
837 /* Of the 10 bits for the empty block, we have already sent
838 * (10 - bi_valid) bits. The lookahead for the last real code (before
839 * the EOB of the previous block) was thus at least one plus the length
840 * of the EOB plus what we have just sent of the empty static block.
842 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
843 send_bits(s
, STATIC_TREES
<<1, 3);
844 send_code(s
, END_BLOCK
, static_ltree
);
845 s
->compressed_len
+= 10L;
851 /* ===========================================================================
852 * Determine the best encoding for the current block: dynamic trees, static
853 * trees or store, and output the encoded block to the zip file. This function
854 * returns the total compressed length for the file so far.
856 ulg
zlib_tr_flush_block(
858 char *buf
, /* input block, or NULL if too old */
859 ulg stored_len
, /* length of input block */
860 int eof
/* true if this is the last block for a file */
863 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
864 int max_blindex
= 0; /* index of last bit length code of non zero freq */
866 /* Build the Huffman trees unless a stored block is forced */
869 /* Check if the file is ascii or binary */
870 if (s
->data_type
== Z_UNKNOWN
) set_data_type(s
);
872 /* Construct the literal and distance trees */
873 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
874 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
877 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
878 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
880 /* At this point, opt_len and static_len are the total bit lengths of
881 * the compressed block data, excluding the tree representations.
884 /* Build the bit length tree for the above two trees, and get the index
885 * in bl_order of the last bit length code to send.
887 max_blindex
= build_bl_tree(s
);
889 /* Determine the best encoding. Compute first the block length in bytes*/
890 opt_lenb
= (s
->opt_len
+3+7)>>3;
891 static_lenb
= (s
->static_len
+3+7)>>3;
893 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
894 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
897 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
900 Assert(buf
!= (char*)0, "lost buf");
901 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
904 /* If compression failed and this is the first and last block,
905 * and if the .zip file can be seeked (to rewrite the local header),
906 * the whole file is transformed into a stored file:
908 #ifdef STORED_FILE_OK
909 # ifdef FORCE_STORED_FILE
910 if (eof
&& s
->compressed_len
== 0L) { /* force stored file */
912 if (stored_len
<= opt_lenb
&& eof
&& s
->compressed_len
==0L && seekable()) {
914 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
915 if (buf
== (char*)0) error ("block vanished");
917 copy_block(s
, buf
, (unsigned)stored_len
, 0); /* without header */
918 s
->compressed_len
= stored_len
<< 3;
921 #endif /* STORED_FILE_OK */
924 if (buf
!= (char*)0) { /* force stored block */
926 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
927 /* 4: two words for the lengths */
929 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
930 * Otherwise we can't have processed more than WSIZE input bytes since
931 * the last block flush, because compression would have been
932 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
933 * transform a block into a stored block.
935 zlib_tr_stored_block(s
, buf
, stored_len
, eof
);
938 } else if (static_lenb
>= 0) { /* force static trees */
940 } else if (static_lenb
== opt_lenb
) {
942 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
943 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
944 s
->compressed_len
+= 3 + s
->static_len
;
946 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
947 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
949 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
950 s
->compressed_len
+= 3 + s
->opt_len
;
952 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
957 s
->compressed_len
+= 7; /* align on byte boundary */
959 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
960 s
->compressed_len
-7*eof
));
962 return s
->compressed_len
>> 3;
965 /* ===========================================================================
966 * Save the match info and tally the frequency counts. Return true if
967 * the current block must be flushed.
971 unsigned dist
, /* distance of matched string */
972 unsigned lc
/* match length-MIN_MATCH or unmatched char (if dist==0) */
975 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
976 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
978 /* lc is the unmatched char */
979 s
->dyn_ltree
[lc
].Freq
++;
982 /* Here, lc is the match length - MIN_MATCH */
983 dist
--; /* dist = match distance - 1 */
984 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
985 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
986 (ush
)d_code(dist
) < (ush
)D_CODES
, "zlib_tr_tally: bad match");
988 s
->dyn_ltree
[length_code
[lc
]+LITERALS
+1].Freq
++;
989 s
->dyn_dtree
[d_code(dist
)].Freq
++;
992 /* Try to guess if it is profitable to stop the current block here */
993 if ((s
->last_lit
& 0xfff) == 0 && s
->level
> 2) {
994 /* Compute an upper bound for the compressed length */
995 ulg out_length
= (ulg
)s
->last_lit
*8L;
996 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
998 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
999 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1000 (5L+extra_dbits
[dcode
]);
1003 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1004 s
->last_lit
, in_length
, out_length
,
1005 100L - out_length
*100L/in_length
));
1006 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1008 return (s
->last_lit
== s
->lit_bufsize
-1);
1009 /* We avoid equality with lit_bufsize because of wraparound at 64K
1010 * on 16 bit machines and because stored blocks are restricted to
1015 /* ===========================================================================
1016 * Send the block data compressed using the given Huffman trees
1018 static void compress_block(
1020 ct_data
*ltree
, /* literal tree */
1021 ct_data
*dtree
/* distance tree */
1024 unsigned dist
; /* distance of matched string */
1025 int lc
; /* match length or unmatched char (if dist == 0) */
1026 unsigned lx
= 0; /* running index in l_buf */
1027 unsigned code
; /* the code to send */
1028 int extra
; /* number of extra bits to send */
1030 if (s
->last_lit
!= 0) do {
1031 dist
= s
->d_buf
[lx
];
1032 lc
= s
->l_buf
[lx
++];
1034 send_code(s
, lc
, ltree
); /* send a literal byte */
1035 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1037 /* Here, lc is the match length - MIN_MATCH */
1038 code
= length_code
[lc
];
1039 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1040 extra
= extra_lbits
[code
];
1042 lc
-= base_length
[code
];
1043 send_bits(s
, lc
, extra
); /* send the extra length bits */
1045 dist
--; /* dist is now the match distance - 1 */
1046 code
= d_code(dist
);
1047 Assert (code
< D_CODES
, "bad d_code");
1049 send_code(s
, code
, dtree
); /* send the distance code */
1050 extra
= extra_dbits
[code
];
1052 dist
-= base_dist
[code
];
1053 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1055 } /* literal or match pair ? */
1057 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1058 Assert(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
1060 } while (lx
< s
->last_lit
);
1062 send_code(s
, END_BLOCK
, ltree
);
1063 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1066 /* ===========================================================================
1067 * Set the data type to ASCII or BINARY, using a crude approximation:
1068 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1069 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1070 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1072 static void set_data_type(
1077 unsigned ascii_freq
= 0;
1078 unsigned bin_freq
= 0;
1079 while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1080 while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].Freq
;
1081 while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1082 s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
1085 /* ===========================================================================
1086 * Copy a stored block, storing first the length and its
1087 * one's complement if requested.
1089 static void copy_block(
1091 char *buf
, /* the input data */
1092 unsigned len
, /* its length */
1093 int header
/* true if block header must be written */
1096 bi_windup(s
); /* align on byte boundary */
1097 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1100 put_short(s
, (ush
)len
);
1101 put_short(s
, (ush
)~len
);
1103 s
->bits_sent
+= 2*16;
1107 s
->bits_sent
+= (ulg
)len
<<3;
1109 /* bundle up the put_byte(s, *buf++) calls */
1110 memcpy(&s
->pending_buf
[s
->pending
], buf
, len
);