2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58 xlog_clear_stale_blocks(
63 xlog_recover_check_summary(
66 #define xlog_recover_check_summary(log)
69 xlog_do_recovery_pass(
70 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
73 * This structure is used during recovery to record the buf log items which
74 * have been canceled and should not be replayed.
76 struct xfs_buf_cancel
{
80 struct list_head bc_list
;
84 * Sector aligned buffer routines for buffer create/read/write/access
88 * Verify the given count of basic blocks is valid number of blocks
89 * to specify for an operation involving the given XFS log buffer.
90 * Returns nonzero if the count is valid, 0 otherwise.
94 xlog_buf_bbcount_valid(
98 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
102 * Allocate a buffer to hold log data. The buffer needs to be able
103 * to map to a range of nbblks basic blocks at any valid (basic
104 * block) offset within the log.
113 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
114 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
116 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
121 * We do log I/O in units of log sectors (a power-of-2
122 * multiple of the basic block size), so we round up the
123 * requested size to accommodate the basic blocks required
124 * for complete log sectors.
126 * In addition, the buffer may be used for a non-sector-
127 * aligned block offset, in which case an I/O of the
128 * requested size could extend beyond the end of the
129 * buffer. If the requested size is only 1 basic block it
130 * will never straddle a sector boundary, so this won't be
131 * an issue. Nor will this be a problem if the log I/O is
132 * done in basic blocks (sector size 1). But otherwise we
133 * extend the buffer by one extra log sector to ensure
134 * there's space to accommodate this possibility.
136 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
137 nbblks
+= log
->l_sectBBsize
;
138 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
140 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
154 * Return the address of the start of the given block number's data
155 * in a log buffer. The buffer covers a log sector-aligned region.
164 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
166 ASSERT(offset
+ nbblks
<= bp
->b_length
);
167 return bp
->b_addr
+ BBTOB(offset
);
172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
183 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
184 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
186 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
187 return -EFSCORRUPTED
;
190 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
191 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
194 ASSERT(nbblks
<= bp
->b_length
);
196 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
197 bp
->b_flags
|= XBF_READ
;
198 bp
->b_io_length
= nbblks
;
201 error
= xfs_buf_submit_wait(bp
);
202 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
203 xfs_buf_ioerror_alert(bp
, __func__
);
217 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
221 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
226 * Read at an offset into the buffer. Returns with the buffer in it's original
227 * state regardless of the result of the read.
232 xfs_daddr_t blk_no
, /* block to read from */
233 int nbblks
, /* blocks to read */
237 char *orig_offset
= bp
->b_addr
;
238 int orig_len
= BBTOB(bp
->b_length
);
241 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
245 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
247 /* must reset buffer pointer even on error */
248 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
255 * Write out the buffer at the given block for the given number of blocks.
256 * The buffer is kept locked across the write and is returned locked.
257 * This can only be used for synchronous log writes.
268 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
269 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
271 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
272 return -EFSCORRUPTED
;
275 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
276 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
279 ASSERT(nbblks
<= bp
->b_length
);
281 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
284 bp
->b_io_length
= nbblks
;
287 error
= xfs_bwrite(bp
);
289 xfs_buf_ioerror_alert(bp
, __func__
);
296 * dump debug superblock and log record information
299 xlog_header_check_dump(
301 xlog_rec_header_t
*head
)
303 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
304 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
305 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
306 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
309 #define xlog_header_check_dump(mp, head)
313 * check log record header for recovery
316 xlog_header_check_recover(
318 xlog_rec_header_t
*head
)
320 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
327 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp
, head
);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH
, mp
);
333 return -EFSCORRUPTED
;
334 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp
, head
);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH
, mp
);
340 return -EFSCORRUPTED
;
346 * read the head block of the log and check the header
349 xlog_header_check_mount(
351 xlog_rec_header_t
*head
)
353 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
355 if (uuid_is_null(&head
->h_fs_uuid
)) {
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is null, we assume this log was last mounted
359 * by IRIX and continue.
361 xfs_warn(mp
, "null uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
363 xfs_warn(mp
, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp
, head
);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH
, mp
);
367 return -EFSCORRUPTED
;
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
381 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
382 xfs_buf_ioerror_alert(bp
, __func__
);
383 xfs_force_shutdown(bp
->b_target
->bt_mount
,
384 SHUTDOWN_META_IO_ERROR
);
389 * On v5 supers, a bli could be attached to update the metadata LSN.
393 xfs_buf_item_relse(bp
);
394 ASSERT(bp
->b_fspriv
== NULL
);
401 * This routine finds (to an approximation) the first block in the physical
402 * log which contains the given cycle. It uses a binary search algorithm.
403 * Note that the algorithm can not be perfect because the disk will not
404 * necessarily be perfect.
407 xlog_find_cycle_start(
410 xfs_daddr_t first_blk
,
411 xfs_daddr_t
*last_blk
,
421 mid_blk
= BLK_AVG(first_blk
, end_blk
);
422 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
423 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
426 mid_cycle
= xlog_get_cycle(offset
);
427 if (mid_cycle
== cycle
)
428 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
430 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
431 mid_blk
= BLK_AVG(first_blk
, end_blk
);
433 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
434 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
442 * Check that a range of blocks does not contain stop_on_cycle_no.
443 * Fill in *new_blk with the block offset where such a block is
444 * found, or with -1 (an invalid block number) if there is no such
445 * block in the range. The scan needs to occur from front to back
446 * and the pointer into the region must be updated since a later
447 * routine will need to perform another test.
450 xlog_find_verify_cycle(
452 xfs_daddr_t start_blk
,
454 uint stop_on_cycle_no
,
455 xfs_daddr_t
*new_blk
)
465 * Greedily allocate a buffer big enough to handle the full
466 * range of basic blocks we'll be examining. If that fails,
467 * try a smaller size. We need to be able to read at least
468 * a log sector, or we're out of luck.
470 bufblks
= 1 << ffs(nbblks
);
471 while (bufblks
> log
->l_logBBsize
)
473 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
475 if (bufblks
< log
->l_sectBBsize
)
479 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
482 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
484 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
488 for (j
= 0; j
< bcount
; j
++) {
489 cycle
= xlog_get_cycle(buf
);
490 if (cycle
== stop_on_cycle_no
) {
507 * Potentially backup over partial log record write.
509 * In the typical case, last_blk is the number of the block directly after
510 * a good log record. Therefore, we subtract one to get the block number
511 * of the last block in the given buffer. extra_bblks contains the number
512 * of blocks we would have read on a previous read. This happens when the
513 * last log record is split over the end of the physical log.
515 * extra_bblks is the number of blocks potentially verified on a previous
516 * call to this routine.
519 xlog_find_verify_log_record(
521 xfs_daddr_t start_blk
,
522 xfs_daddr_t
*last_blk
,
528 xlog_rec_header_t
*head
= NULL
;
531 int num_blks
= *last_blk
- start_blk
;
534 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
536 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
537 if (!(bp
= xlog_get_bp(log
, 1)))
541 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
544 offset
+= ((num_blks
- 1) << BBSHIFT
);
547 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
549 /* valid log record not found */
551 "Log inconsistent (didn't find previous header)");
558 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
563 head
= (xlog_rec_header_t
*)offset
;
565 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
573 * We hit the beginning of the physical log & still no header. Return
574 * to caller. If caller can handle a return of -1, then this routine
575 * will be called again for the end of the physical log.
583 * We have the final block of the good log (the first block
584 * of the log record _before_ the head. So we check the uuid.
586 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
590 * We may have found a log record header before we expected one.
591 * last_blk will be the 1st block # with a given cycle #. We may end
592 * up reading an entire log record. In this case, we don't want to
593 * reset last_blk. Only when last_blk points in the middle of a log
594 * record do we update last_blk.
596 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
597 uint h_size
= be32_to_cpu(head
->h_size
);
599 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
600 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
606 if (*last_blk
- i
+ extra_bblks
!=
607 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
616 * Head is defined to be the point of the log where the next log write
617 * could go. This means that incomplete LR writes at the end are
618 * eliminated when calculating the head. We aren't guaranteed that previous
619 * LR have complete transactions. We only know that a cycle number of
620 * current cycle number -1 won't be present in the log if we start writing
621 * from our current block number.
623 * last_blk contains the block number of the first block with a given
626 * Return: zero if normal, non-zero if error.
631 xfs_daddr_t
*return_head_blk
)
635 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
637 uint first_half_cycle
, last_half_cycle
;
639 int error
, log_bbnum
= log
->l_logBBsize
;
641 /* Is the end of the log device zeroed? */
642 error
= xlog_find_zeroed(log
, &first_blk
);
644 xfs_warn(log
->l_mp
, "empty log check failed");
648 *return_head_blk
= first_blk
;
650 /* Is the whole lot zeroed? */
652 /* Linux XFS shouldn't generate totally zeroed logs -
653 * mkfs etc write a dummy unmount record to a fresh
654 * log so we can store the uuid in there
656 xfs_warn(log
->l_mp
, "totally zeroed log");
662 first_blk
= 0; /* get cycle # of 1st block */
663 bp
= xlog_get_bp(log
, 1);
667 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
671 first_half_cycle
= xlog_get_cycle(offset
);
673 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
674 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
678 last_half_cycle
= xlog_get_cycle(offset
);
679 ASSERT(last_half_cycle
!= 0);
682 * If the 1st half cycle number is equal to the last half cycle number,
683 * then the entire log is stamped with the same cycle number. In this
684 * case, head_blk can't be set to zero (which makes sense). The below
685 * math doesn't work out properly with head_blk equal to zero. Instead,
686 * we set it to log_bbnum which is an invalid block number, but this
687 * value makes the math correct. If head_blk doesn't changed through
688 * all the tests below, *head_blk is set to zero at the very end rather
689 * than log_bbnum. In a sense, log_bbnum and zero are the same block
690 * in a circular file.
692 if (first_half_cycle
== last_half_cycle
) {
694 * In this case we believe that the entire log should have
695 * cycle number last_half_cycle. We need to scan backwards
696 * from the end verifying that there are no holes still
697 * containing last_half_cycle - 1. If we find such a hole,
698 * then the start of that hole will be the new head. The
699 * simple case looks like
700 * x | x ... | x - 1 | x
701 * Another case that fits this picture would be
702 * x | x + 1 | x ... | x
703 * In this case the head really is somewhere at the end of the
704 * log, as one of the latest writes at the beginning was
707 * x | x + 1 | x ... | x - 1 | x
708 * This is really the combination of the above two cases, and
709 * the head has to end up at the start of the x-1 hole at the
712 * In the 256k log case, we will read from the beginning to the
713 * end of the log and search for cycle numbers equal to x-1.
714 * We don't worry about the x+1 blocks that we encounter,
715 * because we know that they cannot be the head since the log
718 head_blk
= log_bbnum
;
719 stop_on_cycle
= last_half_cycle
- 1;
722 * In this case we want to find the first block with cycle
723 * number matching last_half_cycle. We expect the log to be
725 * x + 1 ... | x ... | x
726 * The first block with cycle number x (last_half_cycle) will
727 * be where the new head belongs. First we do a binary search
728 * for the first occurrence of last_half_cycle. The binary
729 * search may not be totally accurate, so then we scan back
730 * from there looking for occurrences of last_half_cycle before
731 * us. If that backwards scan wraps around the beginning of
732 * the log, then we look for occurrences of last_half_cycle - 1
733 * at the end of the log. The cases we're looking for look
735 * v binary search stopped here
736 * x + 1 ... | x | x + 1 | x ... | x
737 * ^ but we want to locate this spot
739 * <---------> less than scan distance
740 * x + 1 ... | x ... | x - 1 | x
741 * ^ we want to locate this spot
743 stop_on_cycle
= last_half_cycle
;
744 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
745 &head_blk
, last_half_cycle
)))
750 * Now validate the answer. Scan back some number of maximum possible
751 * blocks and make sure each one has the expected cycle number. The
752 * maximum is determined by the total possible amount of buffering
753 * in the in-core log. The following number can be made tighter if
754 * we actually look at the block size of the filesystem.
756 num_scan_bblks
= min_t(int, log_bbnum
, XLOG_TOTAL_REC_SHIFT(log
));
757 if (head_blk
>= num_scan_bblks
) {
759 * We are guaranteed that the entire check can be performed
762 start_blk
= head_blk
- num_scan_bblks
;
763 if ((error
= xlog_find_verify_cycle(log
,
764 start_blk
, num_scan_bblks
,
765 stop_on_cycle
, &new_blk
)))
769 } else { /* need to read 2 parts of log */
771 * We are going to scan backwards in the log in two parts.
772 * First we scan the physical end of the log. In this part
773 * of the log, we are looking for blocks with cycle number
774 * last_half_cycle - 1.
775 * If we find one, then we know that the log starts there, as
776 * we've found a hole that didn't get written in going around
777 * the end of the physical log. The simple case for this is
778 * x + 1 ... | x ... | x - 1 | x
779 * <---------> less than scan distance
780 * If all of the blocks at the end of the log have cycle number
781 * last_half_cycle, then we check the blocks at the start of
782 * the log looking for occurrences of last_half_cycle. If we
783 * find one, then our current estimate for the location of the
784 * first occurrence of last_half_cycle is wrong and we move
785 * back to the hole we've found. This case looks like
786 * x + 1 ... | x | x + 1 | x ...
787 * ^ binary search stopped here
788 * Another case we need to handle that only occurs in 256k
790 * x + 1 ... | x ... | x+1 | x ...
791 * ^ binary search stops here
792 * In a 256k log, the scan at the end of the log will see the
793 * x + 1 blocks. We need to skip past those since that is
794 * certainly not the head of the log. By searching for
795 * last_half_cycle-1 we accomplish that.
797 ASSERT(head_blk
<= INT_MAX
&&
798 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
799 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
800 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
801 num_scan_bblks
- (int)head_blk
,
802 (stop_on_cycle
- 1), &new_blk
)))
810 * Scan beginning of log now. The last part of the physical
811 * log is good. This scan needs to verify that it doesn't find
812 * the last_half_cycle.
815 ASSERT(head_blk
<= INT_MAX
);
816 if ((error
= xlog_find_verify_cycle(log
,
817 start_blk
, (int)head_blk
,
818 stop_on_cycle
, &new_blk
)))
826 * Now we need to make sure head_blk is not pointing to a block in
827 * the middle of a log record.
829 num_scan_bblks
= XLOG_REC_SHIFT(log
);
830 if (head_blk
>= num_scan_bblks
) {
831 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
833 /* start ptr at last block ptr before head_blk */
834 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
841 ASSERT(head_blk
<= INT_MAX
);
842 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
846 /* We hit the beginning of the log during our search */
847 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
849 ASSERT(start_blk
<= INT_MAX
&&
850 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
851 ASSERT(head_blk
<= INT_MAX
);
852 error
= xlog_find_verify_log_record(log
, start_blk
,
853 &new_blk
, (int)head_blk
);
858 if (new_blk
!= log_bbnum
)
865 if (head_blk
== log_bbnum
)
866 *return_head_blk
= 0;
868 *return_head_blk
= head_blk
;
870 * When returning here, we have a good block number. Bad block
871 * means that during a previous crash, we didn't have a clean break
872 * from cycle number N to cycle number N-1. In this case, we need
873 * to find the first block with cycle number N-1.
881 xfs_warn(log
->l_mp
, "failed to find log head");
886 * Seek backwards in the log for log record headers.
888 * Given a starting log block, walk backwards until we find the provided number
889 * of records or hit the provided tail block. The return value is the number of
890 * records encountered or a negative error code. The log block and buffer
891 * pointer of the last record seen are returned in rblk and rhead respectively.
894 xlog_rseek_logrec_hdr(
896 xfs_daddr_t head_blk
,
897 xfs_daddr_t tail_blk
,
901 struct xlog_rec_header
**rhead
,
913 * Walk backwards from the head block until we hit the tail or the first
916 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
917 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
918 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
922 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
924 *rhead
= (struct xlog_rec_header
*) offset
;
925 if (++found
== count
)
931 * If we haven't hit the tail block or the log record header count,
932 * start looking again from the end of the physical log. Note that
933 * callers can pass head == tail if the tail is not yet known.
935 if (tail_blk
>= head_blk
&& found
!= count
) {
936 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
937 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
941 if (*(__be32
*)offset
==
942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
945 *rhead
= (struct xlog_rec_header
*) offset
;
946 if (++found
== count
)
959 * Seek forward in the log for log record headers.
961 * Given head and tail blocks, walk forward from the tail block until we find
962 * the provided number of records or hit the head block. The return value is the
963 * number of records encountered or a negative error code. The log block and
964 * buffer pointer of the last record seen are returned in rblk and rhead
968 xlog_seek_logrec_hdr(
970 xfs_daddr_t head_blk
,
971 xfs_daddr_t tail_blk
,
975 struct xlog_rec_header
**rhead
,
987 * Walk forward from the tail block until we hit the head or the last
990 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
991 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
992 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
996 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
998 *rhead
= (struct xlog_rec_header
*) offset
;
999 if (++found
== count
)
1005 * If we haven't hit the head block or the log record header count,
1006 * start looking again from the start of the physical log.
1008 if (tail_blk
> head_blk
&& found
!= count
) {
1009 for (i
= 0; i
< (int) head_blk
; i
++) {
1010 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1014 if (*(__be32
*)offset
==
1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1018 *rhead
= (struct xlog_rec_header
*) offset
;
1019 if (++found
== count
)
1032 * Calculate distance from head to tail (i.e., unused space in the log).
1037 xfs_daddr_t head_blk
,
1038 xfs_daddr_t tail_blk
)
1040 if (head_blk
< tail_blk
)
1041 return tail_blk
- head_blk
;
1043 return tail_blk
+ (log
->l_logBBsize
- head_blk
);
1047 * Verify the log tail. This is particularly important when torn or incomplete
1048 * writes have been detected near the front of the log and the head has been
1049 * walked back accordingly.
1051 * We also have to handle the case where the tail was pinned and the head
1052 * blocked behind the tail right before a crash. If the tail had been pushed
1053 * immediately prior to the crash and the subsequent checkpoint was only
1054 * partially written, it's possible it overwrote the last referenced tail in the
1055 * log with garbage. This is not a coherency problem because the tail must have
1056 * been pushed before it can be overwritten, but appears as log corruption to
1057 * recovery because we have no way to know the tail was updated if the
1058 * subsequent checkpoint didn't write successfully.
1060 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1061 * offending record is within max iclog bufs from the head, walk the tail
1062 * forward and retry until a valid tail is found or corruption is detected out
1063 * of the range of a possible overwrite.
1068 xfs_daddr_t head_blk
,
1069 xfs_daddr_t
*tail_blk
,
1072 struct xlog_rec_header
*thead
;
1074 xfs_daddr_t first_bad
;
1077 xfs_daddr_t tmp_tail
;
1078 xfs_daddr_t orig_tail
= *tail_blk
;
1080 bp
= xlog_get_bp(log
, 1);
1085 * Make sure the tail points to a record (returns positive count on
1088 error
= xlog_seek_logrec_hdr(log
, head_blk
, *tail_blk
, 1, bp
,
1089 &tmp_tail
, &thead
, &wrapped
);
1092 if (*tail_blk
!= tmp_tail
)
1093 *tail_blk
= tmp_tail
;
1096 * Run a CRC check from the tail to the head. We can't just check
1097 * MAX_ICLOGS records past the tail because the tail may point to stale
1098 * blocks cleared during the search for the head/tail. These blocks are
1099 * overwritten with zero-length records and thus record count is not a
1100 * reliable indicator of the iclog state before a crash.
1103 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1104 XLOG_RECOVER_CRCPASS
, &first_bad
);
1105 while ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1109 * Is corruption within range of the head? If so, retry from
1110 * the next record. Otherwise return an error.
1112 tail_distance
= xlog_tail_distance(log
, head_blk
, first_bad
);
1113 if (tail_distance
> BTOBB(XLOG_MAX_ICLOGS
* hsize
))
1116 /* skip to the next record; returns positive count on success */
1117 error
= xlog_seek_logrec_hdr(log
, head_blk
, first_bad
, 2, bp
,
1118 &tmp_tail
, &thead
, &wrapped
);
1122 *tail_blk
= tmp_tail
;
1124 error
= xlog_do_recovery_pass(log
, head_blk
, *tail_blk
,
1125 XLOG_RECOVER_CRCPASS
, &first_bad
);
1128 if (!error
&& *tail_blk
!= orig_tail
)
1130 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1131 orig_tail
, *tail_blk
);
1138 * Detect and trim torn writes from the head of the log.
1140 * Storage without sector atomicity guarantees can result in torn writes in the
1141 * log in the event of a crash. Our only means to detect this scenario is via
1142 * CRC verification. While we can't always be certain that CRC verification
1143 * failure is due to a torn write vs. an unrelated corruption, we do know that
1144 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1145 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1146 * the log and treat failures in this range as torn writes as a matter of
1147 * policy. In the event of CRC failure, the head is walked back to the last good
1148 * record in the log and the tail is updated from that record and verified.
1153 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1154 xfs_daddr_t
*tail_blk
, /* out: tail block */
1156 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1157 struct xlog_rec_header
**rhead
, /* ptr to last record */
1158 bool *wrapped
) /* last rec. wraps phys. log */
1160 struct xlog_rec_header
*tmp_rhead
;
1161 struct xfs_buf
*tmp_bp
;
1162 xfs_daddr_t first_bad
;
1163 xfs_daddr_t tmp_rhead_blk
;
1169 * Check the head of the log for torn writes. Search backwards from the
1170 * head until we hit the tail or the maximum number of log record I/Os
1171 * that could have been in flight at one time. Use a temporary buffer so
1172 * we don't trash the rhead/bp pointers from the caller.
1174 tmp_bp
= xlog_get_bp(log
, 1);
1177 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1178 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1179 &tmp_rhead
, &tmp_wrapped
);
1180 xlog_put_bp(tmp_bp
);
1185 * Now run a CRC verification pass over the records starting at the
1186 * block found above to the current head. If a CRC failure occurs, the
1187 * log block of the first bad record is saved in first_bad.
1189 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1190 XLOG_RECOVER_CRCPASS
, &first_bad
);
1191 if ((error
== -EFSBADCRC
|| error
== -EFSCORRUPTED
) && first_bad
) {
1193 * We've hit a potential torn write. Reset the error and warn
1198 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1199 first_bad
, *head_blk
);
1202 * Get the header block and buffer pointer for the last good
1203 * record before the bad record.
1205 * Note that xlog_find_tail() clears the blocks at the new head
1206 * (i.e., the records with invalid CRC) if the cycle number
1207 * matches the the current cycle.
1209 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1210 rhead_blk
, rhead
, wrapped
);
1213 if (found
== 0) /* XXX: right thing to do here? */
1217 * Reset the head block to the starting block of the first bad
1218 * log record and set the tail block based on the last good
1221 * Bail out if the updated head/tail match as this indicates
1222 * possible corruption outside of the acceptable
1223 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1225 *head_blk
= first_bad
;
1226 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1227 if (*head_blk
== *tail_blk
) {
1235 return xlog_verify_tail(log
, *head_blk
, tail_blk
,
1236 be32_to_cpu((*rhead
)->h_size
));
1240 * Check whether the head of the log points to an unmount record. In other
1241 * words, determine whether the log is clean. If so, update the in-core state
1245 xlog_check_unmount_rec(
1247 xfs_daddr_t
*head_blk
,
1248 xfs_daddr_t
*tail_blk
,
1249 struct xlog_rec_header
*rhead
,
1250 xfs_daddr_t rhead_blk
,
1254 struct xlog_op_header
*op_head
;
1255 xfs_daddr_t umount_data_blk
;
1256 xfs_daddr_t after_umount_blk
;
1264 * Look for unmount record. If we find it, then we know there was a
1265 * clean unmount. Since 'i' could be the last block in the physical
1266 * log, we convert to a log block before comparing to the head_blk.
1268 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1269 * below. We won't want to clear the unmount record if there is one, so
1270 * we pass the lsn of the unmount record rather than the block after it.
1272 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1273 int h_size
= be32_to_cpu(rhead
->h_size
);
1274 int h_version
= be32_to_cpu(rhead
->h_version
);
1276 if ((h_version
& XLOG_VERSION_2
) &&
1277 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1278 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1279 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1287 after_umount_blk
= rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
));
1288 after_umount_blk
= do_mod(after_umount_blk
, log
->l_logBBsize
);
1289 if (*head_blk
== after_umount_blk
&&
1290 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1291 umount_data_blk
= rhead_blk
+ hblks
;
1292 umount_data_blk
= do_mod(umount_data_blk
, log
->l_logBBsize
);
1293 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1297 op_head
= (struct xlog_op_header
*)offset
;
1298 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1300 * Set tail and last sync so that newly written log
1301 * records will point recovery to after the current
1304 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1305 log
->l_curr_cycle
, after_umount_blk
);
1306 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1307 log
->l_curr_cycle
, after_umount_blk
);
1308 *tail_blk
= after_umount_blk
;
1320 xfs_daddr_t head_blk
,
1321 struct xlog_rec_header
*rhead
,
1322 xfs_daddr_t rhead_blk
,
1326 * Reset log values according to the state of the log when we
1327 * crashed. In the case where head_blk == 0, we bump curr_cycle
1328 * one because the next write starts a new cycle rather than
1329 * continuing the cycle of the last good log record. At this
1330 * point we have guaranteed that all partial log records have been
1331 * accounted for. Therefore, we know that the last good log record
1332 * written was complete and ended exactly on the end boundary
1333 * of the physical log.
1335 log
->l_prev_block
= rhead_blk
;
1336 log
->l_curr_block
= (int)head_blk
;
1337 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1339 log
->l_curr_cycle
++;
1340 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1341 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1342 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1343 BBTOB(log
->l_curr_block
));
1344 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1345 BBTOB(log
->l_curr_block
));
1349 * Find the sync block number or the tail of the log.
1351 * This will be the block number of the last record to have its
1352 * associated buffers synced to disk. Every log record header has
1353 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1354 * to get a sync block number. The only concern is to figure out which
1355 * log record header to believe.
1357 * The following algorithm uses the log record header with the largest
1358 * lsn. The entire log record does not need to be valid. We only care
1359 * that the header is valid.
1361 * We could speed up search by using current head_blk buffer, but it is not
1367 xfs_daddr_t
*head_blk
,
1368 xfs_daddr_t
*tail_blk
)
1370 xlog_rec_header_t
*rhead
;
1371 char *offset
= NULL
;
1374 xfs_daddr_t rhead_blk
;
1376 bool wrapped
= false;
1380 * Find previous log record
1382 if ((error
= xlog_find_head(log
, head_blk
)))
1384 ASSERT(*head_blk
< INT_MAX
);
1386 bp
= xlog_get_bp(log
, 1);
1389 if (*head_blk
== 0) { /* special case */
1390 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1394 if (xlog_get_cycle(offset
) == 0) {
1396 /* leave all other log inited values alone */
1402 * Search backwards through the log looking for the log record header
1403 * block. This wraps all the way back around to the head so something is
1404 * seriously wrong if we can't find it.
1406 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1407 &rhead_blk
, &rhead
, &wrapped
);
1411 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1414 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1417 * Set the log state based on the current head record.
1419 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1420 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1423 * Look for an unmount record at the head of the log. This sets the log
1424 * state to determine whether recovery is necessary.
1426 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1427 rhead_blk
, bp
, &clean
);
1432 * Verify the log head if the log is not clean (e.g., we have anything
1433 * but an unmount record at the head). This uses CRC verification to
1434 * detect and trim torn writes. If discovered, CRC failures are
1435 * considered torn writes and the log head is trimmed accordingly.
1437 * Note that we can only run CRC verification when the log is dirty
1438 * because there's no guarantee that the log data behind an unmount
1439 * record is compatible with the current architecture.
1442 xfs_daddr_t orig_head
= *head_blk
;
1444 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1445 &rhead_blk
, &rhead
, &wrapped
);
1449 /* update in-core state again if the head changed */
1450 if (*head_blk
!= orig_head
) {
1451 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1453 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1454 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1455 rhead
, rhead_blk
, bp
,
1463 * Note that the unmount was clean. If the unmount was not clean, we
1464 * need to know this to rebuild the superblock counters from the perag
1465 * headers if we have a filesystem using non-persistent counters.
1468 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1471 * Make sure that there are no blocks in front of the head
1472 * with the same cycle number as the head. This can happen
1473 * because we allow multiple outstanding log writes concurrently,
1474 * and the later writes might make it out before earlier ones.
1476 * We use the lsn from before modifying it so that we'll never
1477 * overwrite the unmount record after a clean unmount.
1479 * Do this only if we are going to recover the filesystem
1481 * NOTE: This used to say "if (!readonly)"
1482 * However on Linux, we can & do recover a read-only filesystem.
1483 * We only skip recovery if NORECOVERY is specified on mount,
1484 * in which case we would not be here.
1486 * But... if the -device- itself is readonly, just skip this.
1487 * We can't recover this device anyway, so it won't matter.
1489 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1490 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1496 xfs_warn(log
->l_mp
, "failed to locate log tail");
1501 * Is the log zeroed at all?
1503 * The last binary search should be changed to perform an X block read
1504 * once X becomes small enough. You can then search linearly through
1505 * the X blocks. This will cut down on the number of reads we need to do.
1507 * If the log is partially zeroed, this routine will pass back the blkno
1508 * of the first block with cycle number 0. It won't have a complete LR
1512 * 0 => the log is completely written to
1513 * 1 => use *blk_no as the first block of the log
1514 * <0 => error has occurred
1519 xfs_daddr_t
*blk_no
)
1523 uint first_cycle
, last_cycle
;
1524 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1525 xfs_daddr_t num_scan_bblks
;
1526 int error
, log_bbnum
= log
->l_logBBsize
;
1530 /* check totally zeroed log */
1531 bp
= xlog_get_bp(log
, 1);
1534 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1538 first_cycle
= xlog_get_cycle(offset
);
1539 if (first_cycle
== 0) { /* completely zeroed log */
1545 /* check partially zeroed log */
1546 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1550 last_cycle
= xlog_get_cycle(offset
);
1551 if (last_cycle
!= 0) { /* log completely written to */
1554 } else if (first_cycle
!= 1) {
1556 * If the cycle of the last block is zero, the cycle of
1557 * the first block must be 1. If it's not, maybe we're
1558 * not looking at a log... Bail out.
1561 "Log inconsistent or not a log (last==0, first!=1)");
1566 /* we have a partially zeroed log */
1567 last_blk
= log_bbnum
-1;
1568 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1572 * Validate the answer. Because there is no way to guarantee that
1573 * the entire log is made up of log records which are the same size,
1574 * we scan over the defined maximum blocks. At this point, the maximum
1575 * is not chosen to mean anything special. XXXmiken
1577 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1578 ASSERT(num_scan_bblks
<= INT_MAX
);
1580 if (last_blk
< num_scan_bblks
)
1581 num_scan_bblks
= last_blk
;
1582 start_blk
= last_blk
- num_scan_bblks
;
1585 * We search for any instances of cycle number 0 that occur before
1586 * our current estimate of the head. What we're trying to detect is
1587 * 1 ... | 0 | 1 | 0...
1588 * ^ binary search ends here
1590 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1591 (int)num_scan_bblks
, 0, &new_blk
)))
1597 * Potentially backup over partial log record write. We don't need
1598 * to search the end of the log because we know it is zero.
1600 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1615 * These are simple subroutines used by xlog_clear_stale_blocks() below
1616 * to initialize a buffer full of empty log record headers and write
1617 * them into the log.
1628 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1630 memset(buf
, 0, BBSIZE
);
1631 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1632 recp
->h_cycle
= cpu_to_be32(cycle
);
1633 recp
->h_version
= cpu_to_be32(
1634 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1635 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1636 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1637 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1638 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1642 xlog_write_log_records(
1653 int sectbb
= log
->l_sectBBsize
;
1654 int end_block
= start_block
+ blocks
;
1660 * Greedily allocate a buffer big enough to handle the full
1661 * range of basic blocks to be written. If that fails, try
1662 * a smaller size. We need to be able to write at least a
1663 * log sector, or we're out of luck.
1665 bufblks
= 1 << ffs(blocks
);
1666 while (bufblks
> log
->l_logBBsize
)
1668 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1670 if (bufblks
< sectbb
)
1674 /* We may need to do a read at the start to fill in part of
1675 * the buffer in the starting sector not covered by the first
1678 balign
= round_down(start_block
, sectbb
);
1679 if (balign
!= start_block
) {
1680 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1684 j
= start_block
- balign
;
1687 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1688 int bcount
, endcount
;
1690 bcount
= min(bufblks
, end_block
- start_block
);
1691 endcount
= bcount
- j
;
1693 /* We may need to do a read at the end to fill in part of
1694 * the buffer in the final sector not covered by the write.
1695 * If this is the same sector as the above read, skip it.
1697 ealign
= round_down(end_block
, sectbb
);
1698 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1699 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1700 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1707 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1708 for (; j
< endcount
; j
++) {
1709 xlog_add_record(log
, offset
, cycle
, i
+j
,
1710 tail_cycle
, tail_block
);
1713 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1716 start_block
+= endcount
;
1726 * This routine is called to blow away any incomplete log writes out
1727 * in front of the log head. We do this so that we won't become confused
1728 * if we come up, write only a little bit more, and then crash again.
1729 * If we leave the partial log records out there, this situation could
1730 * cause us to think those partial writes are valid blocks since they
1731 * have the current cycle number. We get rid of them by overwriting them
1732 * with empty log records with the old cycle number rather than the
1735 * The tail lsn is passed in rather than taken from
1736 * the log so that we will not write over the unmount record after a
1737 * clean unmount in a 512 block log. Doing so would leave the log without
1738 * any valid log records in it until a new one was written. If we crashed
1739 * during that time we would not be able to recover.
1742 xlog_clear_stale_blocks(
1746 int tail_cycle
, head_cycle
;
1747 int tail_block
, head_block
;
1748 int tail_distance
, max_distance
;
1752 tail_cycle
= CYCLE_LSN(tail_lsn
);
1753 tail_block
= BLOCK_LSN(tail_lsn
);
1754 head_cycle
= log
->l_curr_cycle
;
1755 head_block
= log
->l_curr_block
;
1758 * Figure out the distance between the new head of the log
1759 * and the tail. We want to write over any blocks beyond the
1760 * head that we may have written just before the crash, but
1761 * we don't want to overwrite the tail of the log.
1763 if (head_cycle
== tail_cycle
) {
1765 * The tail is behind the head in the physical log,
1766 * so the distance from the head to the tail is the
1767 * distance from the head to the end of the log plus
1768 * the distance from the beginning of the log to the
1771 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1772 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1773 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1774 return -EFSCORRUPTED
;
1776 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1779 * The head is behind the tail in the physical log,
1780 * so the distance from the head to the tail is just
1781 * the tail block minus the head block.
1783 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1784 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1785 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1786 return -EFSCORRUPTED
;
1788 tail_distance
= tail_block
- head_block
;
1792 * If the head is right up against the tail, we can't clear
1795 if (tail_distance
<= 0) {
1796 ASSERT(tail_distance
== 0);
1800 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1802 * Take the smaller of the maximum amount of outstanding I/O
1803 * we could have and the distance to the tail to clear out.
1804 * We take the smaller so that we don't overwrite the tail and
1805 * we don't waste all day writing from the head to the tail
1808 max_distance
= MIN(max_distance
, tail_distance
);
1810 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1812 * We can stomp all the blocks we need to without
1813 * wrapping around the end of the log. Just do it
1814 * in a single write. Use the cycle number of the
1815 * current cycle minus one so that the log will look like:
1818 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1819 head_block
, max_distance
, tail_cycle
,
1825 * We need to wrap around the end of the physical log in
1826 * order to clear all the blocks. Do it in two separate
1827 * I/Os. The first write should be from the head to the
1828 * end of the physical log, and it should use the current
1829 * cycle number minus one just like above.
1831 distance
= log
->l_logBBsize
- head_block
;
1832 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1833 head_block
, distance
, tail_cycle
,
1840 * Now write the blocks at the start of the physical log.
1841 * This writes the remainder of the blocks we want to clear.
1842 * It uses the current cycle number since we're now on the
1843 * same cycle as the head so that we get:
1844 * n ... n ... | n - 1 ...
1845 * ^^^^^ blocks we're writing
1847 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1848 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1849 tail_cycle
, tail_block
);
1857 /******************************************************************************
1859 * Log recover routines
1861 ******************************************************************************
1865 * Sort the log items in the transaction.
1867 * The ordering constraints are defined by the inode allocation and unlink
1868 * behaviour. The rules are:
1870 * 1. Every item is only logged once in a given transaction. Hence it
1871 * represents the last logged state of the item. Hence ordering is
1872 * dependent on the order in which operations need to be performed so
1873 * required initial conditions are always met.
1875 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1876 * there's nothing to replay from them so we can simply cull them
1877 * from the transaction. However, we can't do that until after we've
1878 * replayed all the other items because they may be dependent on the
1879 * cancelled buffer and replaying the cancelled buffer can remove it
1880 * form the cancelled buffer table. Hence they have tobe done last.
1882 * 3. Inode allocation buffers must be replayed before inode items that
1883 * read the buffer and replay changes into it. For filesystems using the
1884 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1885 * treated the same as inode allocation buffers as they create and
1886 * initialise the buffers directly.
1888 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1889 * This ensures that inodes are completely flushed to the inode buffer
1890 * in a "free" state before we remove the unlinked inode list pointer.
1892 * Hence the ordering needs to be inode allocation buffers first, inode items
1893 * second, inode unlink buffers third and cancelled buffers last.
1895 * But there's a problem with that - we can't tell an inode allocation buffer
1896 * apart from a regular buffer, so we can't separate them. We can, however,
1897 * tell an inode unlink buffer from the others, and so we can separate them out
1898 * from all the other buffers and move them to last.
1900 * Hence, 4 lists, in order from head to tail:
1901 * - buffer_list for all buffers except cancelled/inode unlink buffers
1902 * - item_list for all non-buffer items
1903 * - inode_buffer_list for inode unlink buffers
1904 * - cancel_list for the cancelled buffers
1906 * Note that we add objects to the tail of the lists so that first-to-last
1907 * ordering is preserved within the lists. Adding objects to the head of the
1908 * list means when we traverse from the head we walk them in last-to-first
1909 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1910 * but for all other items there may be specific ordering that we need to
1914 xlog_recover_reorder_trans(
1916 struct xlog_recover
*trans
,
1919 xlog_recover_item_t
*item
, *n
;
1921 LIST_HEAD(sort_list
);
1922 LIST_HEAD(cancel_list
);
1923 LIST_HEAD(buffer_list
);
1924 LIST_HEAD(inode_buffer_list
);
1925 LIST_HEAD(inode_list
);
1927 list_splice_init(&trans
->r_itemq
, &sort_list
);
1928 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1929 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1931 switch (ITEM_TYPE(item
)) {
1932 case XFS_LI_ICREATE
:
1933 list_move_tail(&item
->ri_list
, &buffer_list
);
1936 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1937 trace_xfs_log_recover_item_reorder_head(log
,
1939 list_move(&item
->ri_list
, &cancel_list
);
1942 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1943 list_move(&item
->ri_list
, &inode_buffer_list
);
1946 list_move_tail(&item
->ri_list
, &buffer_list
);
1950 case XFS_LI_QUOTAOFF
:
1959 trace_xfs_log_recover_item_reorder_tail(log
,
1961 list_move_tail(&item
->ri_list
, &inode_list
);
1965 "%s: unrecognized type of log operation",
1969 * return the remaining items back to the transaction
1970 * item list so they can be freed in caller.
1972 if (!list_empty(&sort_list
))
1973 list_splice_init(&sort_list
, &trans
->r_itemq
);
1979 ASSERT(list_empty(&sort_list
));
1980 if (!list_empty(&buffer_list
))
1981 list_splice(&buffer_list
, &trans
->r_itemq
);
1982 if (!list_empty(&inode_list
))
1983 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1984 if (!list_empty(&inode_buffer_list
))
1985 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1986 if (!list_empty(&cancel_list
))
1987 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1992 * Build up the table of buf cancel records so that we don't replay
1993 * cancelled data in the second pass. For buffer records that are
1994 * not cancel records, there is nothing to do here so we just return.
1996 * If we get a cancel record which is already in the table, this indicates
1997 * that the buffer was cancelled multiple times. In order to ensure
1998 * that during pass 2 we keep the record in the table until we reach its
1999 * last occurrence in the log, we keep a reference count in the cancel
2000 * record in the table to tell us how many times we expect to see this
2001 * record during the second pass.
2004 xlog_recover_buffer_pass1(
2006 struct xlog_recover_item
*item
)
2008 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2009 struct list_head
*bucket
;
2010 struct xfs_buf_cancel
*bcp
;
2013 * If this isn't a cancel buffer item, then just return.
2015 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
2016 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
2021 * Insert an xfs_buf_cancel record into the hash table of them.
2022 * If there is already an identical record, bump its reference count.
2024 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
2025 list_for_each_entry(bcp
, bucket
, bc_list
) {
2026 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
2027 bcp
->bc_len
== buf_f
->blf_len
) {
2029 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
2034 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
2035 bcp
->bc_blkno
= buf_f
->blf_blkno
;
2036 bcp
->bc_len
= buf_f
->blf_len
;
2037 bcp
->bc_refcount
= 1;
2038 list_add_tail(&bcp
->bc_list
, bucket
);
2040 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2045 * Check to see whether the buffer being recovered has a corresponding
2046 * entry in the buffer cancel record table. If it is, return the cancel
2047 * buffer structure to the caller.
2049 STATIC
struct xfs_buf_cancel
*
2050 xlog_peek_buffer_cancelled(
2054 unsigned short flags
)
2056 struct list_head
*bucket
;
2057 struct xfs_buf_cancel
*bcp
;
2059 if (!log
->l_buf_cancel_table
) {
2060 /* empty table means no cancelled buffers in the log */
2061 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2065 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2066 list_for_each_entry(bcp
, bucket
, bc_list
) {
2067 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2072 * We didn't find a corresponding entry in the table, so return 0 so
2073 * that the buffer is NOT cancelled.
2075 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2080 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2081 * otherwise return 0. If the buffer is actually a buffer cancel item
2082 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2083 * table and remove it from the table if this is the last reference.
2085 * We remove the cancel record from the table when we encounter its last
2086 * occurrence in the log so that if the same buffer is re-used again after its
2087 * last cancellation we actually replay the changes made at that point.
2090 xlog_check_buffer_cancelled(
2094 unsigned short flags
)
2096 struct xfs_buf_cancel
*bcp
;
2098 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2103 * We've go a match, so return 1 so that the recovery of this buffer
2104 * is cancelled. If this buffer is actually a buffer cancel log
2105 * item, then decrement the refcount on the one in the table and
2106 * remove it if this is the last reference.
2108 if (flags
& XFS_BLF_CANCEL
) {
2109 if (--bcp
->bc_refcount
== 0) {
2110 list_del(&bcp
->bc_list
);
2118 * Perform recovery for a buffer full of inodes. In these buffers, the only
2119 * data which should be recovered is that which corresponds to the
2120 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2121 * data for the inodes is always logged through the inodes themselves rather
2122 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2124 * The only time when buffers full of inodes are fully recovered is when the
2125 * buffer is full of newly allocated inodes. In this case the buffer will
2126 * not be marked as an inode buffer and so will be sent to
2127 * xlog_recover_do_reg_buffer() below during recovery.
2130 xlog_recover_do_inode_buffer(
2131 struct xfs_mount
*mp
,
2132 xlog_recover_item_t
*item
,
2134 xfs_buf_log_format_t
*buf_f
)
2140 int reg_buf_offset
= 0;
2141 int reg_buf_bytes
= 0;
2142 int next_unlinked_offset
;
2144 xfs_agino_t
*logged_nextp
;
2145 xfs_agino_t
*buffer_nextp
;
2147 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2150 * Post recovery validation only works properly on CRC enabled
2153 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2154 bp
->b_ops
= &xfs_inode_buf_ops
;
2156 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2157 for (i
= 0; i
< inodes_per_buf
; i
++) {
2158 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2159 offsetof(xfs_dinode_t
, di_next_unlinked
);
2161 while (next_unlinked_offset
>=
2162 (reg_buf_offset
+ reg_buf_bytes
)) {
2164 * The next di_next_unlinked field is beyond
2165 * the current logged region. Find the next
2166 * logged region that contains or is beyond
2167 * the current di_next_unlinked field.
2170 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2171 buf_f
->blf_map_size
, bit
);
2174 * If there are no more logged regions in the
2175 * buffer, then we're done.
2180 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2181 buf_f
->blf_map_size
, bit
);
2183 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2184 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2189 * If the current logged region starts after the current
2190 * di_next_unlinked field, then move on to the next
2191 * di_next_unlinked field.
2193 if (next_unlinked_offset
< reg_buf_offset
)
2196 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2197 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2198 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2199 BBTOB(bp
->b_io_length
));
2202 * The current logged region contains a copy of the
2203 * current di_next_unlinked field. Extract its value
2204 * and copy it to the buffer copy.
2206 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2207 next_unlinked_offset
- reg_buf_offset
;
2208 if (unlikely(*logged_nextp
== 0)) {
2210 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2211 "Trying to replay bad (0) inode di_next_unlinked field.",
2213 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2214 XFS_ERRLEVEL_LOW
, mp
);
2215 return -EFSCORRUPTED
;
2218 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2219 *buffer_nextp
= *logged_nextp
;
2222 * If necessary, recalculate the CRC in the on-disk inode. We
2223 * have to leave the inode in a consistent state for whoever
2226 xfs_dinode_calc_crc(mp
,
2227 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2235 * V5 filesystems know the age of the buffer on disk being recovered. We can
2236 * have newer objects on disk than we are replaying, and so for these cases we
2237 * don't want to replay the current change as that will make the buffer contents
2238 * temporarily invalid on disk.
2240 * The magic number might not match the buffer type we are going to recover
2241 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2242 * extract the LSN of the existing object in the buffer based on it's current
2243 * magic number. If we don't recognise the magic number in the buffer, then
2244 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2245 * so can recover the buffer.
2247 * Note: we cannot rely solely on magic number matches to determine that the
2248 * buffer has a valid LSN - we also need to verify that it belongs to this
2249 * filesystem, so we need to extract the object's LSN and compare it to that
2250 * which we read from the superblock. If the UUIDs don't match, then we've got a
2251 * stale metadata block from an old filesystem instance that we need to recover
2255 xlog_recover_get_buf_lsn(
2256 struct xfs_mount
*mp
,
2262 void *blk
= bp
->b_addr
;
2266 /* v4 filesystems always recover immediately */
2267 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2268 goto recover_immediately
;
2270 magic32
= be32_to_cpu(*(__be32
*)blk
);
2272 case XFS_ABTB_CRC_MAGIC
:
2273 case XFS_ABTC_CRC_MAGIC
:
2274 case XFS_ABTB_MAGIC
:
2275 case XFS_ABTC_MAGIC
:
2276 case XFS_RMAP_CRC_MAGIC
:
2277 case XFS_REFC_CRC_MAGIC
:
2278 case XFS_IBT_CRC_MAGIC
:
2279 case XFS_IBT_MAGIC
: {
2280 struct xfs_btree_block
*btb
= blk
;
2282 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2283 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2286 case XFS_BMAP_CRC_MAGIC
:
2287 case XFS_BMAP_MAGIC
: {
2288 struct xfs_btree_block
*btb
= blk
;
2290 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2291 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2295 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2296 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2298 case XFS_AGFL_MAGIC
:
2299 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2300 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2303 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2304 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2306 case XFS_SYMLINK_MAGIC
:
2307 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2308 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2310 case XFS_DIR3_BLOCK_MAGIC
:
2311 case XFS_DIR3_DATA_MAGIC
:
2312 case XFS_DIR3_FREE_MAGIC
:
2313 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2314 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2316 case XFS_ATTR3_RMT_MAGIC
:
2318 * Remote attr blocks are written synchronously, rather than
2319 * being logged. That means they do not contain a valid LSN
2320 * (i.e. transactionally ordered) in them, and hence any time we
2321 * see a buffer to replay over the top of a remote attribute
2322 * block we should simply do so.
2324 goto recover_immediately
;
2327 * superblock uuids are magic. We may or may not have a
2328 * sb_meta_uuid on disk, but it will be set in the in-core
2329 * superblock. We set the uuid pointer for verification
2330 * according to the superblock feature mask to ensure we check
2331 * the relevant UUID in the superblock.
2333 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2334 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2335 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2337 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2343 if (lsn
!= (xfs_lsn_t
)-1) {
2344 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2345 goto recover_immediately
;
2349 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2351 case XFS_DIR3_LEAF1_MAGIC
:
2352 case XFS_DIR3_LEAFN_MAGIC
:
2353 case XFS_DA3_NODE_MAGIC
:
2354 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2355 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2361 if (lsn
!= (xfs_lsn_t
)-1) {
2362 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2363 goto recover_immediately
;
2368 * We do individual object checks on dquot and inode buffers as they
2369 * have their own individual LSN records. Also, we could have a stale
2370 * buffer here, so we have to at least recognise these buffer types.
2372 * A notd complexity here is inode unlinked list processing - it logs
2373 * the inode directly in the buffer, but we don't know which inodes have
2374 * been modified, and there is no global buffer LSN. Hence we need to
2375 * recover all inode buffer types immediately. This problem will be
2376 * fixed by logical logging of the unlinked list modifications.
2378 magic16
= be16_to_cpu(*(__be16
*)blk
);
2380 case XFS_DQUOT_MAGIC
:
2381 case XFS_DINODE_MAGIC
:
2382 goto recover_immediately
;
2387 /* unknown buffer contents, recover immediately */
2389 recover_immediately
:
2390 return (xfs_lsn_t
)-1;
2395 * Validate the recovered buffer is of the correct type and attach the
2396 * appropriate buffer operations to them for writeback. Magic numbers are in a
2398 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2399 * the first 32 bits of the buffer (most blocks),
2400 * inside a struct xfs_da_blkinfo at the start of the buffer.
2403 xlog_recover_validate_buf_type(
2404 struct xfs_mount
*mp
,
2406 xfs_buf_log_format_t
*buf_f
,
2407 xfs_lsn_t current_lsn
)
2409 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2413 char *warnmsg
= NULL
;
2416 * We can only do post recovery validation on items on CRC enabled
2417 * fielsystems as we need to know when the buffer was written to be able
2418 * to determine if we should have replayed the item. If we replay old
2419 * metadata over a newer buffer, then it will enter a temporarily
2420 * inconsistent state resulting in verification failures. Hence for now
2421 * just avoid the verification stage for non-crc filesystems
2423 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2426 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2427 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2428 magicda
= be16_to_cpu(info
->magic
);
2429 switch (xfs_blft_from_flags(buf_f
)) {
2430 case XFS_BLFT_BTREE_BUF
:
2432 case XFS_ABTB_CRC_MAGIC
:
2433 case XFS_ABTC_CRC_MAGIC
:
2434 case XFS_ABTB_MAGIC
:
2435 case XFS_ABTC_MAGIC
:
2436 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2438 case XFS_IBT_CRC_MAGIC
:
2439 case XFS_FIBT_CRC_MAGIC
:
2441 case XFS_FIBT_MAGIC
:
2442 bp
->b_ops
= &xfs_inobt_buf_ops
;
2444 case XFS_BMAP_CRC_MAGIC
:
2445 case XFS_BMAP_MAGIC
:
2446 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2448 case XFS_RMAP_CRC_MAGIC
:
2449 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
2451 case XFS_REFC_CRC_MAGIC
:
2452 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
2455 warnmsg
= "Bad btree block magic!";
2459 case XFS_BLFT_AGF_BUF
:
2460 if (magic32
!= XFS_AGF_MAGIC
) {
2461 warnmsg
= "Bad AGF block magic!";
2464 bp
->b_ops
= &xfs_agf_buf_ops
;
2466 case XFS_BLFT_AGFL_BUF
:
2467 if (magic32
!= XFS_AGFL_MAGIC
) {
2468 warnmsg
= "Bad AGFL block magic!";
2471 bp
->b_ops
= &xfs_agfl_buf_ops
;
2473 case XFS_BLFT_AGI_BUF
:
2474 if (magic32
!= XFS_AGI_MAGIC
) {
2475 warnmsg
= "Bad AGI block magic!";
2478 bp
->b_ops
= &xfs_agi_buf_ops
;
2480 case XFS_BLFT_UDQUOT_BUF
:
2481 case XFS_BLFT_PDQUOT_BUF
:
2482 case XFS_BLFT_GDQUOT_BUF
:
2483 #ifdef CONFIG_XFS_QUOTA
2484 if (magic16
!= XFS_DQUOT_MAGIC
) {
2485 warnmsg
= "Bad DQUOT block magic!";
2488 bp
->b_ops
= &xfs_dquot_buf_ops
;
2491 "Trying to recover dquots without QUOTA support built in!");
2495 case XFS_BLFT_DINO_BUF
:
2496 if (magic16
!= XFS_DINODE_MAGIC
) {
2497 warnmsg
= "Bad INODE block magic!";
2500 bp
->b_ops
= &xfs_inode_buf_ops
;
2502 case XFS_BLFT_SYMLINK_BUF
:
2503 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2504 warnmsg
= "Bad symlink block magic!";
2507 bp
->b_ops
= &xfs_symlink_buf_ops
;
2509 case XFS_BLFT_DIR_BLOCK_BUF
:
2510 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2511 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2512 warnmsg
= "Bad dir block magic!";
2515 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2517 case XFS_BLFT_DIR_DATA_BUF
:
2518 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2519 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2520 warnmsg
= "Bad dir data magic!";
2523 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2525 case XFS_BLFT_DIR_FREE_BUF
:
2526 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2527 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2528 warnmsg
= "Bad dir3 free magic!";
2531 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2533 case XFS_BLFT_DIR_LEAF1_BUF
:
2534 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2535 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2536 warnmsg
= "Bad dir leaf1 magic!";
2539 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2541 case XFS_BLFT_DIR_LEAFN_BUF
:
2542 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2543 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2544 warnmsg
= "Bad dir leafn magic!";
2547 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2549 case XFS_BLFT_DA_NODE_BUF
:
2550 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2551 magicda
!= XFS_DA3_NODE_MAGIC
) {
2552 warnmsg
= "Bad da node magic!";
2555 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2557 case XFS_BLFT_ATTR_LEAF_BUF
:
2558 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2559 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2560 warnmsg
= "Bad attr leaf magic!";
2563 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2565 case XFS_BLFT_ATTR_RMT_BUF
:
2566 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2567 warnmsg
= "Bad attr remote magic!";
2570 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2572 case XFS_BLFT_SB_BUF
:
2573 if (magic32
!= XFS_SB_MAGIC
) {
2574 warnmsg
= "Bad SB block magic!";
2577 bp
->b_ops
= &xfs_sb_buf_ops
;
2579 #ifdef CONFIG_XFS_RT
2580 case XFS_BLFT_RTBITMAP_BUF
:
2581 case XFS_BLFT_RTSUMMARY_BUF
:
2582 /* no magic numbers for verification of RT buffers */
2583 bp
->b_ops
= &xfs_rtbuf_ops
;
2585 #endif /* CONFIG_XFS_RT */
2587 xfs_warn(mp
, "Unknown buffer type %d!",
2588 xfs_blft_from_flags(buf_f
));
2593 * Nothing else to do in the case of a NULL current LSN as this means
2594 * the buffer is more recent than the change in the log and will be
2597 if (current_lsn
== NULLCOMMITLSN
)
2601 xfs_warn(mp
, warnmsg
);
2606 * We must update the metadata LSN of the buffer as it is written out to
2607 * ensure that older transactions never replay over this one and corrupt
2608 * the buffer. This can occur if log recovery is interrupted at some
2609 * point after the current transaction completes, at which point a
2610 * subsequent mount starts recovery from the beginning.
2612 * Write verifiers update the metadata LSN from log items attached to
2613 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2614 * the verifier. We'll clean it up in our ->iodone() callback.
2617 struct xfs_buf_log_item
*bip
;
2619 ASSERT(!bp
->b_iodone
|| bp
->b_iodone
== xlog_recover_iodone
);
2620 bp
->b_iodone
= xlog_recover_iodone
;
2621 xfs_buf_item_init(bp
, mp
);
2623 bip
->bli_item
.li_lsn
= current_lsn
;
2628 * Perform a 'normal' buffer recovery. Each logged region of the
2629 * buffer should be copied over the corresponding region in the
2630 * given buffer. The bitmap in the buf log format structure indicates
2631 * where to place the logged data.
2634 xlog_recover_do_reg_buffer(
2635 struct xfs_mount
*mp
,
2636 xlog_recover_item_t
*item
,
2638 xfs_buf_log_format_t
*buf_f
,
2639 xfs_lsn_t current_lsn
)
2646 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2649 i
= 1; /* 0 is the buf format structure */
2651 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2652 buf_f
->blf_map_size
, bit
);
2655 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2656 buf_f
->blf_map_size
, bit
);
2658 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2659 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2660 ASSERT(BBTOB(bp
->b_io_length
) >=
2661 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2664 * The dirty regions logged in the buffer, even though
2665 * contiguous, may span multiple chunks. This is because the
2666 * dirty region may span a physical page boundary in a buffer
2667 * and hence be split into two separate vectors for writing into
2668 * the log. Hence we need to trim nbits back to the length of
2669 * the current region being copied out of the log.
2671 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2672 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2675 * Do a sanity check if this is a dquot buffer. Just checking
2676 * the first dquot in the buffer should do. XXXThis is
2677 * probably a good thing to do for other buf types also.
2680 if (buf_f
->blf_flags
&
2681 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2682 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2684 "XFS: NULL dquot in %s.", __func__
);
2687 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2689 "XFS: dquot too small (%d) in %s.",
2690 item
->ri_buf
[i
].i_len
, __func__
);
2693 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2694 -1, 0, XFS_QMOPT_DOWARN
,
2695 "dquot_buf_recover");
2700 memcpy(xfs_buf_offset(bp
,
2701 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2702 item
->ri_buf
[i
].i_addr
, /* source */
2703 nbits
<<XFS_BLF_SHIFT
); /* length */
2709 /* Shouldn't be any more regions */
2710 ASSERT(i
== item
->ri_total
);
2712 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
2716 * Perform a dquot buffer recovery.
2717 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2718 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2719 * Else, treat it as a regular buffer and do recovery.
2721 * Return false if the buffer was tossed and true if we recovered the buffer to
2722 * indicate to the caller if the buffer needs writing.
2725 xlog_recover_do_dquot_buffer(
2726 struct xfs_mount
*mp
,
2728 struct xlog_recover_item
*item
,
2730 struct xfs_buf_log_format
*buf_f
)
2734 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2737 * Filesystems are required to send in quota flags at mount time.
2743 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2744 type
|= XFS_DQ_USER
;
2745 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2746 type
|= XFS_DQ_PROJ
;
2747 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2748 type
|= XFS_DQ_GROUP
;
2750 * This type of quotas was turned off, so ignore this buffer
2752 if (log
->l_quotaoffs_flag
& type
)
2755 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
2760 * This routine replays a modification made to a buffer at runtime.
2761 * There are actually two types of buffer, regular and inode, which
2762 * are handled differently. Inode buffers are handled differently
2763 * in that we only recover a specific set of data from them, namely
2764 * the inode di_next_unlinked fields. This is because all other inode
2765 * data is actually logged via inode records and any data we replay
2766 * here which overlaps that may be stale.
2768 * When meta-data buffers are freed at run time we log a buffer item
2769 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2770 * of the buffer in the log should not be replayed at recovery time.
2771 * This is so that if the blocks covered by the buffer are reused for
2772 * file data before we crash we don't end up replaying old, freed
2773 * meta-data into a user's file.
2775 * To handle the cancellation of buffer log items, we make two passes
2776 * over the log during recovery. During the first we build a table of
2777 * those buffers which have been cancelled, and during the second we
2778 * only replay those buffers which do not have corresponding cancel
2779 * records in the table. See xlog_recover_buffer_pass[1,2] above
2780 * for more details on the implementation of the table of cancel records.
2783 xlog_recover_buffer_pass2(
2785 struct list_head
*buffer_list
,
2786 struct xlog_recover_item
*item
,
2787 xfs_lsn_t current_lsn
)
2789 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2790 xfs_mount_t
*mp
= log
->l_mp
;
2797 * In this pass we only want to recover all the buffers which have
2798 * not been cancelled and are not cancellation buffers themselves.
2800 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2801 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2802 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2806 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2809 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2810 buf_flags
|= XBF_UNMAPPED
;
2812 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2816 error
= bp
->b_error
;
2818 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2823 * Recover the buffer only if we get an LSN from it and it's less than
2824 * the lsn of the transaction we are replaying.
2826 * Note that we have to be extremely careful of readahead here.
2827 * Readahead does not attach verfiers to the buffers so if we don't
2828 * actually do any replay after readahead because of the LSN we found
2829 * in the buffer if more recent than that current transaction then we
2830 * need to attach the verifier directly. Failure to do so can lead to
2831 * future recovery actions (e.g. EFI and unlinked list recovery) can
2832 * operate on the buffers and they won't get the verifier attached. This
2833 * can lead to blocks on disk having the correct content but a stale
2836 * It is safe to assume these clean buffers are currently up to date.
2837 * If the buffer is dirtied by a later transaction being replayed, then
2838 * the verifier will be reset to match whatever recover turns that
2841 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2842 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2843 trace_xfs_log_recover_buf_skip(log
, buf_f
);
2844 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
2848 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2849 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2852 } else if (buf_f
->blf_flags
&
2853 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2856 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2860 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
2864 * Perform delayed write on the buffer. Asynchronous writes will be
2865 * slower when taking into account all the buffers to be flushed.
2867 * Also make sure that only inode buffers with good sizes stay in
2868 * the buffer cache. The kernel moves inodes in buffers of 1 block
2869 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2870 * buffers in the log can be a different size if the log was generated
2871 * by an older kernel using unclustered inode buffers or a newer kernel
2872 * running with a different inode cluster size. Regardless, if the
2873 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2874 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2875 * the buffer out of the buffer cache so that the buffer won't
2876 * overlap with future reads of those inodes.
2878 if (XFS_DINODE_MAGIC
==
2879 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2880 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2881 (uint32_t)log
->l_mp
->m_inode_cluster_size
))) {
2883 error
= xfs_bwrite(bp
);
2885 ASSERT(bp
->b_target
->bt_mount
== mp
);
2886 bp
->b_iodone
= xlog_recover_iodone
;
2887 xfs_buf_delwri_queue(bp
, buffer_list
);
2896 * Inode fork owner changes
2898 * If we have been told that we have to reparent the inode fork, it's because an
2899 * extent swap operation on a CRC enabled filesystem has been done and we are
2900 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2903 * The complexity here is that we don't have an inode context to work with, so
2904 * after we've replayed the inode we need to instantiate one. This is where the
2907 * We are in the middle of log recovery, so we can't run transactions. That
2908 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2909 * that will result in the corresponding iput() running the inode through
2910 * xfs_inactive(). If we've just replayed an inode core that changes the link
2911 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2912 * transactions (bad!).
2914 * So, to avoid this, we instantiate an inode directly from the inode core we've
2915 * just recovered. We have the buffer still locked, and all we really need to
2916 * instantiate is the inode core and the forks being modified. We can do this
2917 * manually, then run the inode btree owner change, and then tear down the
2918 * xfs_inode without having to run any transactions at all.
2920 * Also, because we don't have a transaction context available here but need to
2921 * gather all the buffers we modify for writeback so we pass the buffer_list
2922 * instead for the operation to use.
2926 xfs_recover_inode_owner_change(
2927 struct xfs_mount
*mp
,
2928 struct xfs_dinode
*dip
,
2929 struct xfs_inode_log_format
*in_f
,
2930 struct list_head
*buffer_list
)
2932 struct xfs_inode
*ip
;
2935 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2937 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2941 /* instantiate the inode */
2942 xfs_inode_from_disk(ip
, dip
);
2943 ASSERT(ip
->i_d
.di_version
>= 3);
2945 error
= xfs_iformat_fork(ip
, dip
);
2950 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2951 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2952 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2953 ip
->i_ino
, buffer_list
);
2958 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2959 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2960 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2961 ip
->i_ino
, buffer_list
);
2972 xlog_recover_inode_pass2(
2974 struct list_head
*buffer_list
,
2975 struct xlog_recover_item
*item
,
2976 xfs_lsn_t current_lsn
)
2978 xfs_inode_log_format_t
*in_f
;
2979 xfs_mount_t
*mp
= log
->l_mp
;
2988 struct xfs_log_dinode
*ldip
;
2992 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2993 in_f
= item
->ri_buf
[0].i_addr
;
2995 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2997 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
3003 * Inode buffers can be freed, look out for it,
3004 * and do not replay the inode.
3006 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
3007 in_f
->ilf_len
, 0)) {
3009 trace_xfs_log_recover_inode_cancel(log
, in_f
);
3012 trace_xfs_log_recover_inode_recover(log
, in_f
);
3014 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
3015 &xfs_inode_buf_ops
);
3020 error
= bp
->b_error
;
3022 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
3025 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
3026 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
3029 * Make sure the place we're flushing out to really looks
3032 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
3034 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3035 __func__
, dip
, bp
, in_f
->ilf_ino
);
3036 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3037 XFS_ERRLEVEL_LOW
, mp
);
3038 error
= -EFSCORRUPTED
;
3041 ldip
= item
->ri_buf
[1].i_addr
;
3042 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
3044 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3045 __func__
, item
, in_f
->ilf_ino
);
3046 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3047 XFS_ERRLEVEL_LOW
, mp
);
3048 error
= -EFSCORRUPTED
;
3053 * If the inode has an LSN in it, recover the inode only if it's less
3054 * than the lsn of the transaction we are replaying. Note: we still
3055 * need to replay an owner change even though the inode is more recent
3056 * than the transaction as there is no guarantee that all the btree
3057 * blocks are more recent than this transaction, too.
3059 if (dip
->di_version
>= 3) {
3060 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
3062 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3063 trace_xfs_log_recover_inode_skip(log
, in_f
);
3065 goto out_owner_change
;
3070 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3071 * are transactional and if ordering is necessary we can determine that
3072 * more accurately by the LSN field in the V3 inode core. Don't trust
3073 * the inode versions we might be changing them here - use the
3074 * superblock flag to determine whether we need to look at di_flushiter
3075 * to skip replay when the on disk inode is newer than the log one
3077 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3078 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3080 * Deal with the wrap case, DI_MAX_FLUSH is less
3081 * than smaller numbers
3083 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3084 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3087 trace_xfs_log_recover_inode_skip(log
, in_f
);
3093 /* Take the opportunity to reset the flush iteration count */
3094 ldip
->di_flushiter
= 0;
3096 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3097 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3098 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3099 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3100 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3102 "%s: Bad regular inode log record, rec ptr 0x%p, "
3103 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3104 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3105 error
= -EFSCORRUPTED
;
3108 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3109 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3110 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3111 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3112 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3113 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3115 "%s: Bad dir inode log record, rec ptr 0x%p, "
3116 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3117 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3118 error
= -EFSCORRUPTED
;
3122 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3123 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3124 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3126 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3127 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3128 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3129 ldip
->di_nextents
+ ldip
->di_anextents
,
3131 error
= -EFSCORRUPTED
;
3134 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3135 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3136 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3138 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3139 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
3140 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3141 error
= -EFSCORRUPTED
;
3144 isize
= xfs_log_dinode_size(ldip
->di_version
);
3145 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3146 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3147 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3149 "%s: Bad inode log record length %d, rec ptr 0x%p",
3150 __func__
, item
->ri_buf
[1].i_len
, item
);
3151 error
= -EFSCORRUPTED
;
3155 /* recover the log dinode inode into the on disk inode */
3156 xfs_log_dinode_to_disk(ldip
, dip
);
3158 /* the rest is in on-disk format */
3159 if (item
->ri_buf
[1].i_len
> isize
) {
3160 memcpy((char *)dip
+ isize
,
3161 item
->ri_buf
[1].i_addr
+ isize
,
3162 item
->ri_buf
[1].i_len
- isize
);
3165 fields
= in_f
->ilf_fields
;
3166 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
3168 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3171 memcpy(XFS_DFORK_DPTR(dip
),
3172 &in_f
->ilf_u
.ilfu_uuid
,
3177 if (in_f
->ilf_size
== 2)
3178 goto out_owner_change
;
3179 len
= item
->ri_buf
[2].i_len
;
3180 src
= item
->ri_buf
[2].i_addr
;
3181 ASSERT(in_f
->ilf_size
<= 4);
3182 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3183 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3184 (len
== in_f
->ilf_dsize
));
3186 switch (fields
& XFS_ILOG_DFORK
) {
3187 case XFS_ILOG_DDATA
:
3189 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3192 case XFS_ILOG_DBROOT
:
3193 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3194 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3195 XFS_DFORK_DSIZE(dip
, mp
));
3200 * There are no data fork flags set.
3202 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3207 * If we logged any attribute data, recover it. There may or
3208 * may not have been any other non-core data logged in this
3211 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3212 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3217 len
= item
->ri_buf
[attr_index
].i_len
;
3218 src
= item
->ri_buf
[attr_index
].i_addr
;
3219 ASSERT(len
== in_f
->ilf_asize
);
3221 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3222 case XFS_ILOG_ADATA
:
3224 dest
= XFS_DFORK_APTR(dip
);
3225 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3226 memcpy(dest
, src
, len
);
3229 case XFS_ILOG_ABROOT
:
3230 dest
= XFS_DFORK_APTR(dip
);
3231 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3232 len
, (xfs_bmdr_block_t
*)dest
,
3233 XFS_DFORK_ASIZE(dip
, mp
));
3237 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3245 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
3246 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3248 /* re-generate the checksum. */
3249 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3251 ASSERT(bp
->b_target
->bt_mount
== mp
);
3252 bp
->b_iodone
= xlog_recover_iodone
;
3253 xfs_buf_delwri_queue(bp
, buffer_list
);
3264 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3265 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3269 xlog_recover_quotaoff_pass1(
3271 struct xlog_recover_item
*item
)
3273 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3277 * The logitem format's flag tells us if this was user quotaoff,
3278 * group/project quotaoff or both.
3280 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3281 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3282 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3283 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3284 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3285 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3291 * Recover a dquot record
3294 xlog_recover_dquot_pass2(
3296 struct list_head
*buffer_list
,
3297 struct xlog_recover_item
*item
,
3298 xfs_lsn_t current_lsn
)
3300 xfs_mount_t
*mp
= log
->l_mp
;
3302 struct xfs_disk_dquot
*ddq
, *recddq
;
3304 xfs_dq_logformat_t
*dq_f
;
3309 * Filesystems are required to send in quota flags at mount time.
3311 if (mp
->m_qflags
== 0)
3314 recddq
= item
->ri_buf
[1].i_addr
;
3315 if (recddq
== NULL
) {
3316 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3319 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3320 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3321 item
->ri_buf
[1].i_len
, __func__
);
3326 * This type of quotas was turned off, so ignore this record.
3328 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3330 if (log
->l_quotaoffs_flag
& type
)
3334 * At this point we know that quota was _not_ turned off.
3335 * Since the mount flags are not indicating to us otherwise, this
3336 * must mean that quota is on, and the dquot needs to be replayed.
3337 * Remember that we may not have fully recovered the superblock yet,
3338 * so we can't do the usual trick of looking at the SB quota bits.
3340 * The other possibility, of course, is that the quota subsystem was
3341 * removed since the last mount - ENOSYS.
3343 dq_f
= item
->ri_buf
[0].i_addr
;
3345 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
3346 "xlog_recover_dquot_pass2 (log copy)");
3349 ASSERT(dq_f
->qlf_len
== 1);
3352 * At this point we are assuming that the dquots have been allocated
3353 * and hence the buffer has valid dquots stamped in it. It should,
3354 * therefore, pass verifier validation. If the dquot is bad, then the
3355 * we'll return an error here, so we don't need to specifically check
3356 * the dquot in the buffer after the verifier has run.
3358 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3359 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3360 &xfs_dquot_buf_ops
);
3365 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3368 * If the dquot has an LSN in it, recover the dquot only if it's less
3369 * than the lsn of the transaction we are replaying.
3371 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3372 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3373 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3375 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3380 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3381 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3382 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3386 ASSERT(dq_f
->qlf_size
== 2);
3387 ASSERT(bp
->b_target
->bt_mount
== mp
);
3388 bp
->b_iodone
= xlog_recover_iodone
;
3389 xfs_buf_delwri_queue(bp
, buffer_list
);
3397 * This routine is called to create an in-core extent free intent
3398 * item from the efi format structure which was logged on disk.
3399 * It allocates an in-core efi, copies the extents from the format
3400 * structure into it, and adds the efi to the AIL with the given
3404 xlog_recover_efi_pass2(
3406 struct xlog_recover_item
*item
,
3410 struct xfs_mount
*mp
= log
->l_mp
;
3411 struct xfs_efi_log_item
*efip
;
3412 struct xfs_efi_log_format
*efi_formatp
;
3414 efi_formatp
= item
->ri_buf
[0].i_addr
;
3416 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3417 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3419 xfs_efi_item_free(efip
);
3422 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3424 spin_lock(&log
->l_ailp
->xa_lock
);
3426 * The EFI has two references. One for the EFD and one for EFI to ensure
3427 * it makes it into the AIL. Insert the EFI into the AIL directly and
3428 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3431 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3432 xfs_efi_release(efip
);
3438 * This routine is called when an EFD format structure is found in a committed
3439 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3440 * was still in the log. To do this it searches the AIL for the EFI with an id
3441 * equal to that in the EFD format structure. If we find it we drop the EFD
3442 * reference, which removes the EFI from the AIL and frees it.
3445 xlog_recover_efd_pass2(
3447 struct xlog_recover_item
*item
)
3449 xfs_efd_log_format_t
*efd_formatp
;
3450 xfs_efi_log_item_t
*efip
= NULL
;
3451 xfs_log_item_t
*lip
;
3453 struct xfs_ail_cursor cur
;
3454 struct xfs_ail
*ailp
= log
->l_ailp
;
3456 efd_formatp
= item
->ri_buf
[0].i_addr
;
3457 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3458 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3459 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3460 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3461 efi_id
= efd_formatp
->efd_efi_id
;
3464 * Search for the EFI with the id in the EFD format structure in the
3467 spin_lock(&ailp
->xa_lock
);
3468 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3469 while (lip
!= NULL
) {
3470 if (lip
->li_type
== XFS_LI_EFI
) {
3471 efip
= (xfs_efi_log_item_t
*)lip
;
3472 if (efip
->efi_format
.efi_id
== efi_id
) {
3474 * Drop the EFD reference to the EFI. This
3475 * removes the EFI from the AIL and frees it.
3477 spin_unlock(&ailp
->xa_lock
);
3478 xfs_efi_release(efip
);
3479 spin_lock(&ailp
->xa_lock
);
3483 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3486 xfs_trans_ail_cursor_done(&cur
);
3487 spin_unlock(&ailp
->xa_lock
);
3493 * This routine is called to create an in-core extent rmap update
3494 * item from the rui format structure which was logged on disk.
3495 * It allocates an in-core rui, copies the extents from the format
3496 * structure into it, and adds the rui to the AIL with the given
3500 xlog_recover_rui_pass2(
3502 struct xlog_recover_item
*item
,
3506 struct xfs_mount
*mp
= log
->l_mp
;
3507 struct xfs_rui_log_item
*ruip
;
3508 struct xfs_rui_log_format
*rui_formatp
;
3510 rui_formatp
= item
->ri_buf
[0].i_addr
;
3512 ruip
= xfs_rui_init(mp
, rui_formatp
->rui_nextents
);
3513 error
= xfs_rui_copy_format(&item
->ri_buf
[0], &ruip
->rui_format
);
3515 xfs_rui_item_free(ruip
);
3518 atomic_set(&ruip
->rui_next_extent
, rui_formatp
->rui_nextents
);
3520 spin_lock(&log
->l_ailp
->xa_lock
);
3522 * The RUI has two references. One for the RUD and one for RUI to ensure
3523 * it makes it into the AIL. Insert the RUI into the AIL directly and
3524 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3527 xfs_trans_ail_update(log
->l_ailp
, &ruip
->rui_item
, lsn
);
3528 xfs_rui_release(ruip
);
3534 * This routine is called when an RUD format structure is found in a committed
3535 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3536 * was still in the log. To do this it searches the AIL for the RUI with an id
3537 * equal to that in the RUD format structure. If we find it we drop the RUD
3538 * reference, which removes the RUI from the AIL and frees it.
3541 xlog_recover_rud_pass2(
3543 struct xlog_recover_item
*item
)
3545 struct xfs_rud_log_format
*rud_formatp
;
3546 struct xfs_rui_log_item
*ruip
= NULL
;
3547 struct xfs_log_item
*lip
;
3549 struct xfs_ail_cursor cur
;
3550 struct xfs_ail
*ailp
= log
->l_ailp
;
3552 rud_formatp
= item
->ri_buf
[0].i_addr
;
3553 ASSERT(item
->ri_buf
[0].i_len
== sizeof(struct xfs_rud_log_format
));
3554 rui_id
= rud_formatp
->rud_rui_id
;
3557 * Search for the RUI with the id in the RUD format structure in the
3560 spin_lock(&ailp
->xa_lock
);
3561 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3562 while (lip
!= NULL
) {
3563 if (lip
->li_type
== XFS_LI_RUI
) {
3564 ruip
= (struct xfs_rui_log_item
*)lip
;
3565 if (ruip
->rui_format
.rui_id
== rui_id
) {
3567 * Drop the RUD reference to the RUI. This
3568 * removes the RUI from the AIL and frees it.
3570 spin_unlock(&ailp
->xa_lock
);
3571 xfs_rui_release(ruip
);
3572 spin_lock(&ailp
->xa_lock
);
3576 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3579 xfs_trans_ail_cursor_done(&cur
);
3580 spin_unlock(&ailp
->xa_lock
);
3586 * Copy an CUI format buffer from the given buf, and into the destination
3587 * CUI format structure. The CUI/CUD items were designed not to need any
3588 * special alignment handling.
3591 xfs_cui_copy_format(
3592 struct xfs_log_iovec
*buf
,
3593 struct xfs_cui_log_format
*dst_cui_fmt
)
3595 struct xfs_cui_log_format
*src_cui_fmt
;
3598 src_cui_fmt
= buf
->i_addr
;
3599 len
= xfs_cui_log_format_sizeof(src_cui_fmt
->cui_nextents
);
3601 if (buf
->i_len
== len
) {
3602 memcpy(dst_cui_fmt
, src_cui_fmt
, len
);
3605 return -EFSCORRUPTED
;
3609 * This routine is called to create an in-core extent refcount update
3610 * item from the cui format structure which was logged on disk.
3611 * It allocates an in-core cui, copies the extents from the format
3612 * structure into it, and adds the cui to the AIL with the given
3616 xlog_recover_cui_pass2(
3618 struct xlog_recover_item
*item
,
3622 struct xfs_mount
*mp
= log
->l_mp
;
3623 struct xfs_cui_log_item
*cuip
;
3624 struct xfs_cui_log_format
*cui_formatp
;
3626 cui_formatp
= item
->ri_buf
[0].i_addr
;
3628 cuip
= xfs_cui_init(mp
, cui_formatp
->cui_nextents
);
3629 error
= xfs_cui_copy_format(&item
->ri_buf
[0], &cuip
->cui_format
);
3631 xfs_cui_item_free(cuip
);
3634 atomic_set(&cuip
->cui_next_extent
, cui_formatp
->cui_nextents
);
3636 spin_lock(&log
->l_ailp
->xa_lock
);
3638 * The CUI has two references. One for the CUD and one for CUI to ensure
3639 * it makes it into the AIL. Insert the CUI into the AIL directly and
3640 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3643 xfs_trans_ail_update(log
->l_ailp
, &cuip
->cui_item
, lsn
);
3644 xfs_cui_release(cuip
);
3650 * This routine is called when an CUD format structure is found in a committed
3651 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3652 * was still in the log. To do this it searches the AIL for the CUI with an id
3653 * equal to that in the CUD format structure. If we find it we drop the CUD
3654 * reference, which removes the CUI from the AIL and frees it.
3657 xlog_recover_cud_pass2(
3659 struct xlog_recover_item
*item
)
3661 struct xfs_cud_log_format
*cud_formatp
;
3662 struct xfs_cui_log_item
*cuip
= NULL
;
3663 struct xfs_log_item
*lip
;
3665 struct xfs_ail_cursor cur
;
3666 struct xfs_ail
*ailp
= log
->l_ailp
;
3668 cud_formatp
= item
->ri_buf
[0].i_addr
;
3669 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_cud_log_format
))
3670 return -EFSCORRUPTED
;
3671 cui_id
= cud_formatp
->cud_cui_id
;
3674 * Search for the CUI with the id in the CUD format structure in the
3677 spin_lock(&ailp
->xa_lock
);
3678 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3679 while (lip
!= NULL
) {
3680 if (lip
->li_type
== XFS_LI_CUI
) {
3681 cuip
= (struct xfs_cui_log_item
*)lip
;
3682 if (cuip
->cui_format
.cui_id
== cui_id
) {
3684 * Drop the CUD reference to the CUI. This
3685 * removes the CUI from the AIL and frees it.
3687 spin_unlock(&ailp
->xa_lock
);
3688 xfs_cui_release(cuip
);
3689 spin_lock(&ailp
->xa_lock
);
3693 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3696 xfs_trans_ail_cursor_done(&cur
);
3697 spin_unlock(&ailp
->xa_lock
);
3703 * Copy an BUI format buffer from the given buf, and into the destination
3704 * BUI format structure. The BUI/BUD items were designed not to need any
3705 * special alignment handling.
3708 xfs_bui_copy_format(
3709 struct xfs_log_iovec
*buf
,
3710 struct xfs_bui_log_format
*dst_bui_fmt
)
3712 struct xfs_bui_log_format
*src_bui_fmt
;
3715 src_bui_fmt
= buf
->i_addr
;
3716 len
= xfs_bui_log_format_sizeof(src_bui_fmt
->bui_nextents
);
3718 if (buf
->i_len
== len
) {
3719 memcpy(dst_bui_fmt
, src_bui_fmt
, len
);
3722 return -EFSCORRUPTED
;
3726 * This routine is called to create an in-core extent bmap update
3727 * item from the bui format structure which was logged on disk.
3728 * It allocates an in-core bui, copies the extents from the format
3729 * structure into it, and adds the bui to the AIL with the given
3733 xlog_recover_bui_pass2(
3735 struct xlog_recover_item
*item
,
3739 struct xfs_mount
*mp
= log
->l_mp
;
3740 struct xfs_bui_log_item
*buip
;
3741 struct xfs_bui_log_format
*bui_formatp
;
3743 bui_formatp
= item
->ri_buf
[0].i_addr
;
3745 if (bui_formatp
->bui_nextents
!= XFS_BUI_MAX_FAST_EXTENTS
)
3746 return -EFSCORRUPTED
;
3747 buip
= xfs_bui_init(mp
);
3748 error
= xfs_bui_copy_format(&item
->ri_buf
[0], &buip
->bui_format
);
3750 xfs_bui_item_free(buip
);
3753 atomic_set(&buip
->bui_next_extent
, bui_formatp
->bui_nextents
);
3755 spin_lock(&log
->l_ailp
->xa_lock
);
3757 * The RUI has two references. One for the RUD and one for RUI to ensure
3758 * it makes it into the AIL. Insert the RUI into the AIL directly and
3759 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3762 xfs_trans_ail_update(log
->l_ailp
, &buip
->bui_item
, lsn
);
3763 xfs_bui_release(buip
);
3769 * This routine is called when an BUD format structure is found in a committed
3770 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3771 * was still in the log. To do this it searches the AIL for the BUI with an id
3772 * equal to that in the BUD format structure. If we find it we drop the BUD
3773 * reference, which removes the BUI from the AIL and frees it.
3776 xlog_recover_bud_pass2(
3778 struct xlog_recover_item
*item
)
3780 struct xfs_bud_log_format
*bud_formatp
;
3781 struct xfs_bui_log_item
*buip
= NULL
;
3782 struct xfs_log_item
*lip
;
3784 struct xfs_ail_cursor cur
;
3785 struct xfs_ail
*ailp
= log
->l_ailp
;
3787 bud_formatp
= item
->ri_buf
[0].i_addr
;
3788 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_bud_log_format
))
3789 return -EFSCORRUPTED
;
3790 bui_id
= bud_formatp
->bud_bui_id
;
3793 * Search for the BUI with the id in the BUD format structure in the
3796 spin_lock(&ailp
->xa_lock
);
3797 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3798 while (lip
!= NULL
) {
3799 if (lip
->li_type
== XFS_LI_BUI
) {
3800 buip
= (struct xfs_bui_log_item
*)lip
;
3801 if (buip
->bui_format
.bui_id
== bui_id
) {
3803 * Drop the BUD reference to the BUI. This
3804 * removes the BUI from the AIL and frees it.
3806 spin_unlock(&ailp
->xa_lock
);
3807 xfs_bui_release(buip
);
3808 spin_lock(&ailp
->xa_lock
);
3812 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3815 xfs_trans_ail_cursor_done(&cur
);
3816 spin_unlock(&ailp
->xa_lock
);
3822 * This routine is called when an inode create format structure is found in a
3823 * committed transaction in the log. It's purpose is to initialise the inodes
3824 * being allocated on disk. This requires us to get inode cluster buffers that
3825 * match the range to be initialised, stamped with inode templates and written
3826 * by delayed write so that subsequent modifications will hit the cached buffer
3827 * and only need writing out at the end of recovery.
3830 xlog_recover_do_icreate_pass2(
3832 struct list_head
*buffer_list
,
3833 xlog_recover_item_t
*item
)
3835 struct xfs_mount
*mp
= log
->l_mp
;
3836 struct xfs_icreate_log
*icl
;
3837 xfs_agnumber_t agno
;
3838 xfs_agblock_t agbno
;
3841 xfs_agblock_t length
;
3842 int blks_per_cluster
;
3848 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3849 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3850 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3854 if (icl
->icl_size
!= 1) {
3855 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3859 agno
= be32_to_cpu(icl
->icl_ag
);
3860 if (agno
>= mp
->m_sb
.sb_agcount
) {
3861 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3864 agbno
= be32_to_cpu(icl
->icl_agbno
);
3865 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3866 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3869 isize
= be32_to_cpu(icl
->icl_isize
);
3870 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3871 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3874 count
= be32_to_cpu(icl
->icl_count
);
3876 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3879 length
= be32_to_cpu(icl
->icl_length
);
3880 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3881 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3886 * The inode chunk is either full or sparse and we only support
3887 * m_ialloc_min_blks sized sparse allocations at this time.
3889 if (length
!= mp
->m_ialloc_blks
&&
3890 length
!= mp
->m_ialloc_min_blks
) {
3892 "%s: unsupported chunk length", __FUNCTION__
);
3896 /* verify inode count is consistent with extent length */
3897 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3899 "%s: inconsistent inode count and chunk length",
3905 * The icreate transaction can cover multiple cluster buffers and these
3906 * buffers could have been freed and reused. Check the individual
3907 * buffers for cancellation so we don't overwrite anything written after
3910 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3911 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3912 nbufs
= length
/ blks_per_cluster
;
3913 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3916 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3917 agbno
+ i
* blks_per_cluster
);
3918 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3923 * We currently only use icreate for a single allocation at a time. This
3924 * means we should expect either all or none of the buffers to be
3925 * cancelled. Be conservative and skip replay if at least one buffer is
3926 * cancelled, but warn the user that something is awry if the buffers
3927 * are not consistent.
3929 * XXX: This must be refined to only skip cancelled clusters once we use
3930 * icreate for multiple chunk allocations.
3932 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3934 if (cancel_count
!= nbufs
)
3936 "WARNING: partial inode chunk cancellation, skipped icreate.");
3937 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3941 trace_xfs_log_recover_icreate_recover(log
, icl
);
3942 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3943 length
, be32_to_cpu(icl
->icl_gen
));
3947 xlog_recover_buffer_ra_pass2(
3949 struct xlog_recover_item
*item
)
3951 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3952 struct xfs_mount
*mp
= log
->l_mp
;
3954 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3955 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3959 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3960 buf_f
->blf_len
, NULL
);
3964 xlog_recover_inode_ra_pass2(
3966 struct xlog_recover_item
*item
)
3968 struct xfs_inode_log_format ilf_buf
;
3969 struct xfs_inode_log_format
*ilfp
;
3970 struct xfs_mount
*mp
= log
->l_mp
;
3973 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3974 ilfp
= item
->ri_buf
[0].i_addr
;
3977 memset(ilfp
, 0, sizeof(*ilfp
));
3978 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3983 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3986 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3987 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3991 xlog_recover_dquot_ra_pass2(
3993 struct xlog_recover_item
*item
)
3995 struct xfs_mount
*mp
= log
->l_mp
;
3996 struct xfs_disk_dquot
*recddq
;
3997 struct xfs_dq_logformat
*dq_f
;
4002 if (mp
->m_qflags
== 0)
4005 recddq
= item
->ri_buf
[1].i_addr
;
4008 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
4011 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
4013 if (log
->l_quotaoffs_flag
& type
)
4016 dq_f
= item
->ri_buf
[0].i_addr
;
4018 ASSERT(dq_f
->qlf_len
== 1);
4020 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
4021 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
4024 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
4025 &xfs_dquot_buf_ra_ops
);
4029 xlog_recover_ra_pass2(
4031 struct xlog_recover_item
*item
)
4033 switch (ITEM_TYPE(item
)) {
4035 xlog_recover_buffer_ra_pass2(log
, item
);
4038 xlog_recover_inode_ra_pass2(log
, item
);
4041 xlog_recover_dquot_ra_pass2(log
, item
);
4045 case XFS_LI_QUOTAOFF
:
4058 xlog_recover_commit_pass1(
4060 struct xlog_recover
*trans
,
4061 struct xlog_recover_item
*item
)
4063 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
4065 switch (ITEM_TYPE(item
)) {
4067 return xlog_recover_buffer_pass1(log
, item
);
4068 case XFS_LI_QUOTAOFF
:
4069 return xlog_recover_quotaoff_pass1(log
, item
);
4074 case XFS_LI_ICREATE
:
4081 /* nothing to do in pass 1 */
4084 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4085 __func__
, ITEM_TYPE(item
));
4092 xlog_recover_commit_pass2(
4094 struct xlog_recover
*trans
,
4095 struct list_head
*buffer_list
,
4096 struct xlog_recover_item
*item
)
4098 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
4100 switch (ITEM_TYPE(item
)) {
4102 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
4105 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
4108 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
4110 return xlog_recover_efd_pass2(log
, item
);
4112 return xlog_recover_rui_pass2(log
, item
, trans
->r_lsn
);
4114 return xlog_recover_rud_pass2(log
, item
);
4116 return xlog_recover_cui_pass2(log
, item
, trans
->r_lsn
);
4118 return xlog_recover_cud_pass2(log
, item
);
4120 return xlog_recover_bui_pass2(log
, item
, trans
->r_lsn
);
4122 return xlog_recover_bud_pass2(log
, item
);
4124 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
4126 case XFS_LI_ICREATE
:
4127 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
4128 case XFS_LI_QUOTAOFF
:
4129 /* nothing to do in pass2 */
4132 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4133 __func__
, ITEM_TYPE(item
));
4140 xlog_recover_items_pass2(
4142 struct xlog_recover
*trans
,
4143 struct list_head
*buffer_list
,
4144 struct list_head
*item_list
)
4146 struct xlog_recover_item
*item
;
4149 list_for_each_entry(item
, item_list
, ri_list
) {
4150 error
= xlog_recover_commit_pass2(log
, trans
,
4160 * Perform the transaction.
4162 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4163 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4166 xlog_recover_commit_trans(
4168 struct xlog_recover
*trans
,
4170 struct list_head
*buffer_list
)
4173 int items_queued
= 0;
4174 struct xlog_recover_item
*item
;
4175 struct xlog_recover_item
*next
;
4176 LIST_HEAD (ra_list
);
4177 LIST_HEAD (done_list
);
4179 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4181 hlist_del_init(&trans
->r_list
);
4183 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
4187 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
4189 case XLOG_RECOVER_PASS1
:
4190 error
= xlog_recover_commit_pass1(log
, trans
, item
);
4192 case XLOG_RECOVER_PASS2
:
4193 xlog_recover_ra_pass2(log
, item
);
4194 list_move_tail(&item
->ri_list
, &ra_list
);
4196 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
4197 error
= xlog_recover_items_pass2(log
, trans
,
4198 buffer_list
, &ra_list
);
4199 list_splice_tail_init(&ra_list
, &done_list
);
4213 if (!list_empty(&ra_list
)) {
4215 error
= xlog_recover_items_pass2(log
, trans
,
4216 buffer_list
, &ra_list
);
4217 list_splice_tail_init(&ra_list
, &done_list
);
4220 if (!list_empty(&done_list
))
4221 list_splice_init(&done_list
, &trans
->r_itemq
);
4227 xlog_recover_add_item(
4228 struct list_head
*head
)
4230 xlog_recover_item_t
*item
;
4232 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
4233 INIT_LIST_HEAD(&item
->ri_list
);
4234 list_add_tail(&item
->ri_list
, head
);
4238 xlog_recover_add_to_cont_trans(
4240 struct xlog_recover
*trans
,
4244 xlog_recover_item_t
*item
;
4245 char *ptr
, *old_ptr
;
4249 * If the transaction is empty, the header was split across this and the
4250 * previous record. Copy the rest of the header.
4252 if (list_empty(&trans
->r_itemq
)) {
4253 ASSERT(len
<= sizeof(struct xfs_trans_header
));
4254 if (len
> sizeof(struct xfs_trans_header
)) {
4255 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4259 xlog_recover_add_item(&trans
->r_itemq
);
4260 ptr
= (char *)&trans
->r_theader
+
4261 sizeof(struct xfs_trans_header
) - len
;
4262 memcpy(ptr
, dp
, len
);
4266 /* take the tail entry */
4267 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4269 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
4270 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
4272 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
4273 memcpy(&ptr
[old_len
], dp
, len
);
4274 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
4275 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
4276 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
4281 * The next region to add is the start of a new region. It could be
4282 * a whole region or it could be the first part of a new region. Because
4283 * of this, the assumption here is that the type and size fields of all
4284 * format structures fit into the first 32 bits of the structure.
4286 * This works because all regions must be 32 bit aligned. Therefore, we
4287 * either have both fields or we have neither field. In the case we have
4288 * neither field, the data part of the region is zero length. We only have
4289 * a log_op_header and can throw away the header since a new one will appear
4290 * later. If we have at least 4 bytes, then we can determine how many regions
4291 * will appear in the current log item.
4294 xlog_recover_add_to_trans(
4296 struct xlog_recover
*trans
,
4300 xfs_inode_log_format_t
*in_f
; /* any will do */
4301 xlog_recover_item_t
*item
;
4306 if (list_empty(&trans
->r_itemq
)) {
4307 /* we need to catch log corruptions here */
4308 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
4309 xfs_warn(log
->l_mp
, "%s: bad header magic number",
4315 if (len
> sizeof(struct xfs_trans_header
)) {
4316 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4322 * The transaction header can be arbitrarily split across op
4323 * records. If we don't have the whole thing here, copy what we
4324 * do have and handle the rest in the next record.
4326 if (len
== sizeof(struct xfs_trans_header
))
4327 xlog_recover_add_item(&trans
->r_itemq
);
4328 memcpy(&trans
->r_theader
, dp
, len
);
4332 ptr
= kmem_alloc(len
, KM_SLEEP
);
4333 memcpy(ptr
, dp
, len
);
4334 in_f
= (xfs_inode_log_format_t
*)ptr
;
4336 /* take the tail entry */
4337 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4338 if (item
->ri_total
!= 0 &&
4339 item
->ri_total
== item
->ri_cnt
) {
4340 /* tail item is in use, get a new one */
4341 xlog_recover_add_item(&trans
->r_itemq
);
4342 item
= list_entry(trans
->r_itemq
.prev
,
4343 xlog_recover_item_t
, ri_list
);
4346 if (item
->ri_total
== 0) { /* first region to be added */
4347 if (in_f
->ilf_size
== 0 ||
4348 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
4350 "bad number of regions (%d) in inode log format",
4357 item
->ri_total
= in_f
->ilf_size
;
4359 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
4362 ASSERT(item
->ri_total
> item
->ri_cnt
);
4363 /* Description region is ri_buf[0] */
4364 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
4365 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
4367 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
4372 * Free up any resources allocated by the transaction
4374 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4377 xlog_recover_free_trans(
4378 struct xlog_recover
*trans
)
4380 xlog_recover_item_t
*item
, *n
;
4383 hlist_del_init(&trans
->r_list
);
4385 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
4386 /* Free the regions in the item. */
4387 list_del(&item
->ri_list
);
4388 for (i
= 0; i
< item
->ri_cnt
; i
++)
4389 kmem_free(item
->ri_buf
[i
].i_addr
);
4390 /* Free the item itself */
4391 kmem_free(item
->ri_buf
);
4394 /* Free the transaction recover structure */
4399 * On error or completion, trans is freed.
4402 xlog_recovery_process_trans(
4404 struct xlog_recover
*trans
,
4409 struct list_head
*buffer_list
)
4412 bool freeit
= false;
4414 /* mask off ophdr transaction container flags */
4415 flags
&= ~XLOG_END_TRANS
;
4416 if (flags
& XLOG_WAS_CONT_TRANS
)
4417 flags
&= ~XLOG_CONTINUE_TRANS
;
4420 * Callees must not free the trans structure. We'll decide if we need to
4421 * free it or not based on the operation being done and it's result.
4424 /* expected flag values */
4426 case XLOG_CONTINUE_TRANS
:
4427 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4429 case XLOG_WAS_CONT_TRANS
:
4430 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4432 case XLOG_COMMIT_TRANS
:
4433 error
= xlog_recover_commit_trans(log
, trans
, pass
,
4435 /* success or fail, we are now done with this transaction. */
4439 /* unexpected flag values */
4440 case XLOG_UNMOUNT_TRANS
:
4441 /* just skip trans */
4442 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4445 case XLOG_START_TRANS
:
4447 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4452 if (error
|| freeit
)
4453 xlog_recover_free_trans(trans
);
4458 * Lookup the transaction recovery structure associated with the ID in the
4459 * current ophdr. If the transaction doesn't exist and the start flag is set in
4460 * the ophdr, then allocate a new transaction for future ID matches to find.
4461 * Either way, return what we found during the lookup - an existing transaction
4464 STATIC
struct xlog_recover
*
4465 xlog_recover_ophdr_to_trans(
4466 struct hlist_head rhash
[],
4467 struct xlog_rec_header
*rhead
,
4468 struct xlog_op_header
*ohead
)
4470 struct xlog_recover
*trans
;
4472 struct hlist_head
*rhp
;
4474 tid
= be32_to_cpu(ohead
->oh_tid
);
4475 rhp
= &rhash
[XLOG_RHASH(tid
)];
4476 hlist_for_each_entry(trans
, rhp
, r_list
) {
4477 if (trans
->r_log_tid
== tid
)
4482 * skip over non-start transaction headers - we could be
4483 * processing slack space before the next transaction starts
4485 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4488 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4491 * This is a new transaction so allocate a new recovery container to
4492 * hold the recovery ops that will follow.
4494 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4495 trans
->r_log_tid
= tid
;
4496 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4497 INIT_LIST_HEAD(&trans
->r_itemq
);
4498 INIT_HLIST_NODE(&trans
->r_list
);
4499 hlist_add_head(&trans
->r_list
, rhp
);
4502 * Nothing more to do for this ophdr. Items to be added to this new
4503 * transaction will be in subsequent ophdr containers.
4509 xlog_recover_process_ophdr(
4511 struct hlist_head rhash
[],
4512 struct xlog_rec_header
*rhead
,
4513 struct xlog_op_header
*ohead
,
4517 struct list_head
*buffer_list
)
4519 struct xlog_recover
*trans
;
4523 /* Do we understand who wrote this op? */
4524 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4525 ohead
->oh_clientid
!= XFS_LOG
) {
4526 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4527 __func__
, ohead
->oh_clientid
);
4533 * Check the ophdr contains all the data it is supposed to contain.
4535 len
= be32_to_cpu(ohead
->oh_len
);
4536 if (dp
+ len
> end
) {
4537 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4542 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4544 /* nothing to do, so skip over this ophdr */
4549 * The recovered buffer queue is drained only once we know that all
4550 * recovery items for the current LSN have been processed. This is
4553 * - Buffer write submission updates the metadata LSN of the buffer.
4554 * - Log recovery skips items with a metadata LSN >= the current LSN of
4555 * the recovery item.
4556 * - Separate recovery items against the same metadata buffer can share
4557 * a current LSN. I.e., consider that the LSN of a recovery item is
4558 * defined as the starting LSN of the first record in which its
4559 * transaction appears, that a record can hold multiple transactions,
4560 * and/or that a transaction can span multiple records.
4562 * In other words, we are allowed to submit a buffer from log recovery
4563 * once per current LSN. Otherwise, we may incorrectly skip recovery
4564 * items and cause corruption.
4566 * We don't know up front whether buffers are updated multiple times per
4567 * LSN. Therefore, track the current LSN of each commit log record as it
4568 * is processed and drain the queue when it changes. Use commit records
4569 * because they are ordered correctly by the logging code.
4571 if (log
->l_recovery_lsn
!= trans
->r_lsn
&&
4572 ohead
->oh_flags
& XLOG_COMMIT_TRANS
) {
4573 error
= xfs_buf_delwri_submit(buffer_list
);
4576 log
->l_recovery_lsn
= trans
->r_lsn
;
4579 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4580 ohead
->oh_flags
, pass
, buffer_list
);
4584 * There are two valid states of the r_state field. 0 indicates that the
4585 * transaction structure is in a normal state. We have either seen the
4586 * start of the transaction or the last operation we added was not a partial
4587 * operation. If the last operation we added to the transaction was a
4588 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4590 * NOTE: skip LRs with 0 data length.
4593 xlog_recover_process_data(
4595 struct hlist_head rhash
[],
4596 struct xlog_rec_header
*rhead
,
4599 struct list_head
*buffer_list
)
4601 struct xlog_op_header
*ohead
;
4606 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4607 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4609 /* check the log format matches our own - else we can't recover */
4610 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4613 trace_xfs_log_recover_record(log
, rhead
, pass
);
4614 while ((dp
< end
) && num_logops
) {
4616 ohead
= (struct xlog_op_header
*)dp
;
4617 dp
+= sizeof(*ohead
);
4620 /* errors will abort recovery */
4621 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4622 dp
, end
, pass
, buffer_list
);
4626 dp
+= be32_to_cpu(ohead
->oh_len
);
4632 /* Recover the EFI if necessary. */
4634 xlog_recover_process_efi(
4635 struct xfs_mount
*mp
,
4636 struct xfs_ail
*ailp
,
4637 struct xfs_log_item
*lip
)
4639 struct xfs_efi_log_item
*efip
;
4643 * Skip EFIs that we've already processed.
4645 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4646 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
))
4649 spin_unlock(&ailp
->xa_lock
);
4650 error
= xfs_efi_recover(mp
, efip
);
4651 spin_lock(&ailp
->xa_lock
);
4656 /* Release the EFI since we're cancelling everything. */
4658 xlog_recover_cancel_efi(
4659 struct xfs_mount
*mp
,
4660 struct xfs_ail
*ailp
,
4661 struct xfs_log_item
*lip
)
4663 struct xfs_efi_log_item
*efip
;
4665 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4667 spin_unlock(&ailp
->xa_lock
);
4668 xfs_efi_release(efip
);
4669 spin_lock(&ailp
->xa_lock
);
4672 /* Recover the RUI if necessary. */
4674 xlog_recover_process_rui(
4675 struct xfs_mount
*mp
,
4676 struct xfs_ail
*ailp
,
4677 struct xfs_log_item
*lip
)
4679 struct xfs_rui_log_item
*ruip
;
4683 * Skip RUIs that we've already processed.
4685 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4686 if (test_bit(XFS_RUI_RECOVERED
, &ruip
->rui_flags
))
4689 spin_unlock(&ailp
->xa_lock
);
4690 error
= xfs_rui_recover(mp
, ruip
);
4691 spin_lock(&ailp
->xa_lock
);
4696 /* Release the RUI since we're cancelling everything. */
4698 xlog_recover_cancel_rui(
4699 struct xfs_mount
*mp
,
4700 struct xfs_ail
*ailp
,
4701 struct xfs_log_item
*lip
)
4703 struct xfs_rui_log_item
*ruip
;
4705 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4707 spin_unlock(&ailp
->xa_lock
);
4708 xfs_rui_release(ruip
);
4709 spin_lock(&ailp
->xa_lock
);
4712 /* Recover the CUI if necessary. */
4714 xlog_recover_process_cui(
4715 struct xfs_mount
*mp
,
4716 struct xfs_ail
*ailp
,
4717 struct xfs_log_item
*lip
)
4719 struct xfs_cui_log_item
*cuip
;
4723 * Skip CUIs that we've already processed.
4725 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4726 if (test_bit(XFS_CUI_RECOVERED
, &cuip
->cui_flags
))
4729 spin_unlock(&ailp
->xa_lock
);
4730 error
= xfs_cui_recover(mp
, cuip
);
4731 spin_lock(&ailp
->xa_lock
);
4736 /* Release the CUI since we're cancelling everything. */
4738 xlog_recover_cancel_cui(
4739 struct xfs_mount
*mp
,
4740 struct xfs_ail
*ailp
,
4741 struct xfs_log_item
*lip
)
4743 struct xfs_cui_log_item
*cuip
;
4745 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4747 spin_unlock(&ailp
->xa_lock
);
4748 xfs_cui_release(cuip
);
4749 spin_lock(&ailp
->xa_lock
);
4752 /* Recover the BUI if necessary. */
4754 xlog_recover_process_bui(
4755 struct xfs_mount
*mp
,
4756 struct xfs_ail
*ailp
,
4757 struct xfs_log_item
*lip
)
4759 struct xfs_bui_log_item
*buip
;
4763 * Skip BUIs that we've already processed.
4765 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4766 if (test_bit(XFS_BUI_RECOVERED
, &buip
->bui_flags
))
4769 spin_unlock(&ailp
->xa_lock
);
4770 error
= xfs_bui_recover(mp
, buip
);
4771 spin_lock(&ailp
->xa_lock
);
4776 /* Release the BUI since we're cancelling everything. */
4778 xlog_recover_cancel_bui(
4779 struct xfs_mount
*mp
,
4780 struct xfs_ail
*ailp
,
4781 struct xfs_log_item
*lip
)
4783 struct xfs_bui_log_item
*buip
;
4785 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4787 spin_unlock(&ailp
->xa_lock
);
4788 xfs_bui_release(buip
);
4789 spin_lock(&ailp
->xa_lock
);
4792 /* Is this log item a deferred action intent? */
4793 static inline bool xlog_item_is_intent(struct xfs_log_item
*lip
)
4795 switch (lip
->li_type
) {
4807 * When this is called, all of the log intent items which did not have
4808 * corresponding log done items should be in the AIL. What we do now
4809 * is update the data structures associated with each one.
4811 * Since we process the log intent items in normal transactions, they
4812 * will be removed at some point after the commit. This prevents us
4813 * from just walking down the list processing each one. We'll use a
4814 * flag in the intent item to skip those that we've already processed
4815 * and use the AIL iteration mechanism's generation count to try to
4816 * speed this up at least a bit.
4818 * When we start, we know that the intents are the only things in the
4819 * AIL. As we process them, however, other items are added to the
4823 xlog_recover_process_intents(
4826 struct xfs_log_item
*lip
;
4828 struct xfs_ail_cursor cur
;
4829 struct xfs_ail
*ailp
;
4830 #if defined(DEBUG) || defined(XFS_WARN)
4835 spin_lock(&ailp
->xa_lock
);
4836 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4837 #if defined(DEBUG) || defined(XFS_WARN)
4838 last_lsn
= xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
);
4840 while (lip
!= NULL
) {
4842 * We're done when we see something other than an intent.
4843 * There should be no intents left in the AIL now.
4845 if (!xlog_item_is_intent(lip
)) {
4847 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4848 ASSERT(!xlog_item_is_intent(lip
));
4854 * We should never see a redo item with a LSN higher than
4855 * the last transaction we found in the log at the start
4858 ASSERT(XFS_LSN_CMP(last_lsn
, lip
->li_lsn
) >= 0);
4860 switch (lip
->li_type
) {
4862 error
= xlog_recover_process_efi(log
->l_mp
, ailp
, lip
);
4865 error
= xlog_recover_process_rui(log
->l_mp
, ailp
, lip
);
4868 error
= xlog_recover_process_cui(log
->l_mp
, ailp
, lip
);
4871 error
= xlog_recover_process_bui(log
->l_mp
, ailp
, lip
);
4876 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4879 xfs_trans_ail_cursor_done(&cur
);
4880 spin_unlock(&ailp
->xa_lock
);
4885 * A cancel occurs when the mount has failed and we're bailing out.
4886 * Release all pending log intent items so they don't pin the AIL.
4889 xlog_recover_cancel_intents(
4892 struct xfs_log_item
*lip
;
4894 struct xfs_ail_cursor cur
;
4895 struct xfs_ail
*ailp
;
4898 spin_lock(&ailp
->xa_lock
);
4899 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4900 while (lip
!= NULL
) {
4902 * We're done when we see something other than an intent.
4903 * There should be no intents left in the AIL now.
4905 if (!xlog_item_is_intent(lip
)) {
4907 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4908 ASSERT(!xlog_item_is_intent(lip
));
4913 switch (lip
->li_type
) {
4915 xlog_recover_cancel_efi(log
->l_mp
, ailp
, lip
);
4918 xlog_recover_cancel_rui(log
->l_mp
, ailp
, lip
);
4921 xlog_recover_cancel_cui(log
->l_mp
, ailp
, lip
);
4924 xlog_recover_cancel_bui(log
->l_mp
, ailp
, lip
);
4928 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4931 xfs_trans_ail_cursor_done(&cur
);
4932 spin_unlock(&ailp
->xa_lock
);
4937 * This routine performs a transaction to null out a bad inode pointer
4938 * in an agi unlinked inode hash bucket.
4941 xlog_recover_clear_agi_bucket(
4943 xfs_agnumber_t agno
,
4952 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
4956 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
4960 agi
= XFS_BUF_TO_AGI(agibp
);
4961 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
4962 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
4963 (sizeof(xfs_agino_t
) * bucket
);
4964 xfs_trans_log_buf(tp
, agibp
, offset
,
4965 (offset
+ sizeof(xfs_agino_t
) - 1));
4967 error
= xfs_trans_commit(tp
);
4973 xfs_trans_cancel(tp
);
4975 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
4980 xlog_recover_process_one_iunlink(
4981 struct xfs_mount
*mp
,
4982 xfs_agnumber_t agno
,
4986 struct xfs_buf
*ibp
;
4987 struct xfs_dinode
*dip
;
4988 struct xfs_inode
*ip
;
4992 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
4993 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
4998 * Get the on disk inode to find the next inode in the bucket.
5000 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
5004 xfs_iflags_clear(ip
, XFS_IRECOVERY
);
5005 ASSERT(VFS_I(ip
)->i_nlink
== 0);
5006 ASSERT(VFS_I(ip
)->i_mode
!= 0);
5008 /* setup for the next pass */
5009 agino
= be32_to_cpu(dip
->di_next_unlinked
);
5013 * Prevent any DMAPI event from being sent when the reference on
5014 * the inode is dropped.
5016 ip
->i_d
.di_dmevmask
= 0;
5025 * We can't read in the inode this bucket points to, or this inode
5026 * is messed up. Just ditch this bucket of inodes. We will lose
5027 * some inodes and space, but at least we won't hang.
5029 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5030 * clear the inode pointer in the bucket.
5032 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
5037 * xlog_iunlink_recover
5039 * This is called during recovery to process any inodes which
5040 * we unlinked but not freed when the system crashed. These
5041 * inodes will be on the lists in the AGI blocks. What we do
5042 * here is scan all the AGIs and fully truncate and free any
5043 * inodes found on the lists. Each inode is removed from the
5044 * lists when it has been fully truncated and is freed. The
5045 * freeing of the inode and its removal from the list must be
5049 xlog_recover_process_iunlinks(
5053 xfs_agnumber_t agno
;
5064 * Prevent any DMAPI event from being sent while in this function.
5066 mp_dmevmask
= mp
->m_dmevmask
;
5069 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5071 * Find the agi for this ag.
5073 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5076 * AGI is b0rked. Don't process it.
5078 * We should probably mark the filesystem as corrupt
5079 * after we've recovered all the ag's we can....
5084 * Unlock the buffer so that it can be acquired in the normal
5085 * course of the transaction to truncate and free each inode.
5086 * Because we are not racing with anyone else here for the AGI
5087 * buffer, we don't even need to hold it locked to read the
5088 * initial unlinked bucket entries out of the buffer. We keep
5089 * buffer reference though, so that it stays pinned in memory
5090 * while we need the buffer.
5092 agi
= XFS_BUF_TO_AGI(agibp
);
5093 xfs_buf_unlock(agibp
);
5095 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
5096 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
5097 while (agino
!= NULLAGINO
) {
5098 agino
= xlog_recover_process_one_iunlink(mp
,
5099 agno
, agino
, bucket
);
5102 xfs_buf_rele(agibp
);
5105 mp
->m_dmevmask
= mp_dmevmask
;
5110 struct xlog_rec_header
*rhead
,
5116 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
5117 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
5118 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
5122 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5123 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
5124 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
5125 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5126 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5127 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
5136 * CRC check, unpack and process a log record.
5139 xlog_recover_process(
5141 struct hlist_head rhash
[],
5142 struct xlog_rec_header
*rhead
,
5145 struct list_head
*buffer_list
)
5148 __le32 old_crc
= rhead
->h_crc
;
5152 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
5155 * Nothing else to do if this is a CRC verification pass. Just return
5156 * if this a record with a non-zero crc. Unfortunately, mkfs always
5157 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5158 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5159 * know precisely what failed.
5161 if (pass
== XLOG_RECOVER_CRCPASS
) {
5162 if (old_crc
&& crc
!= old_crc
)
5168 * We're in the normal recovery path. Issue a warning if and only if the
5169 * CRC in the header is non-zero. This is an advisory warning and the
5170 * zero CRC check prevents warnings from being emitted when upgrading
5171 * the kernel from one that does not add CRCs by default.
5173 if (crc
!= old_crc
) {
5174 if (old_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
5175 xfs_alert(log
->l_mp
,
5176 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5177 le32_to_cpu(old_crc
),
5179 xfs_hex_dump(dp
, 32);
5183 * If the filesystem is CRC enabled, this mismatch becomes a
5184 * fatal log corruption failure.
5186 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
5187 return -EFSCORRUPTED
;
5190 error
= xlog_unpack_data(rhead
, dp
, log
);
5194 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
,
5199 xlog_valid_rec_header(
5201 struct xlog_rec_header
*rhead
,
5206 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
5207 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5208 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5209 return -EFSCORRUPTED
;
5212 (!rhead
->h_version
||
5213 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
5214 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
5215 __func__
, be32_to_cpu(rhead
->h_version
));
5219 /* LR body must have data or it wouldn't have been written */
5220 hlen
= be32_to_cpu(rhead
->h_len
);
5221 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
5222 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5223 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5224 return -EFSCORRUPTED
;
5226 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
5227 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5228 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5229 return -EFSCORRUPTED
;
5235 * Read the log from tail to head and process the log records found.
5236 * Handle the two cases where the tail and head are in the same cycle
5237 * and where the active portion of the log wraps around the end of
5238 * the physical log separately. The pass parameter is passed through
5239 * to the routines called to process the data and is not looked at
5243 xlog_do_recovery_pass(
5245 xfs_daddr_t head_blk
,
5246 xfs_daddr_t tail_blk
,
5248 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
5250 xlog_rec_header_t
*rhead
;
5251 xfs_daddr_t blk_no
, rblk_no
;
5252 xfs_daddr_t rhead_blk
;
5254 xfs_buf_t
*hbp
, *dbp
;
5255 int error
= 0, h_size
, h_len
;
5257 int bblks
, split_bblks
;
5258 int hblks
, split_hblks
, wrapped_hblks
;
5260 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
5261 LIST_HEAD (buffer_list
);
5263 ASSERT(head_blk
!= tail_blk
);
5264 blk_no
= rhead_blk
= tail_blk
;
5266 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++)
5267 INIT_HLIST_HEAD(&rhash
[i
]);
5270 * Read the header of the tail block and get the iclog buffer size from
5271 * h_size. Use this to tell how many sectors make up the log header.
5273 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5275 * When using variable length iclogs, read first sector of
5276 * iclog header and extract the header size from it. Get a
5277 * new hbp that is the correct size.
5279 hbp
= xlog_get_bp(log
, 1);
5283 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
5287 rhead
= (xlog_rec_header_t
*)offset
;
5288 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
5293 * xfsprogs has a bug where record length is based on lsunit but
5294 * h_size (iclog size) is hardcoded to 32k. Now that we
5295 * unconditionally CRC verify the unmount record, this means the
5296 * log buffer can be too small for the record and cause an
5299 * Detect this condition here. Use lsunit for the buffer size as
5300 * long as this looks like the mkfs case. Otherwise, return an
5301 * error to avoid a buffer overrun.
5303 h_size
= be32_to_cpu(rhead
->h_size
);
5304 h_len
= be32_to_cpu(rhead
->h_len
);
5305 if (h_len
> h_size
) {
5306 if (h_len
<= log
->l_mp
->m_logbsize
&&
5307 be32_to_cpu(rhead
->h_num_logops
) == 1) {
5309 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5310 h_size
, log
->l_mp
->m_logbsize
);
5311 h_size
= log
->l_mp
->m_logbsize
;
5313 return -EFSCORRUPTED
;
5316 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
5317 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
5318 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
5319 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
5322 hbp
= xlog_get_bp(log
, hblks
);
5327 ASSERT(log
->l_sectBBsize
== 1);
5329 hbp
= xlog_get_bp(log
, 1);
5330 h_size
= XLOG_BIG_RECORD_BSIZE
;
5335 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
5341 memset(rhash
, 0, sizeof(rhash
));
5342 if (tail_blk
> head_blk
) {
5344 * Perform recovery around the end of the physical log.
5345 * When the head is not on the same cycle number as the tail,
5346 * we can't do a sequential recovery.
5348 while (blk_no
< log
->l_logBBsize
) {
5350 * Check for header wrapping around physical end-of-log
5352 offset
= hbp
->b_addr
;
5355 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
5356 /* Read header in one read */
5357 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
5362 /* This LR is split across physical log end */
5363 if (blk_no
!= log
->l_logBBsize
) {
5364 /* some data before physical log end */
5365 ASSERT(blk_no
<= INT_MAX
);
5366 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
5367 ASSERT(split_hblks
> 0);
5368 error
= xlog_bread(log
, blk_no
,
5376 * Note: this black magic still works with
5377 * large sector sizes (non-512) only because:
5378 * - we increased the buffer size originally
5379 * by 1 sector giving us enough extra space
5380 * for the second read;
5381 * - the log start is guaranteed to be sector
5383 * - we read the log end (LR header start)
5384 * _first_, then the log start (LR header end)
5385 * - order is important.
5387 wrapped_hblks
= hblks
- split_hblks
;
5388 error
= xlog_bread_offset(log
, 0,
5390 offset
+ BBTOB(split_hblks
));
5394 rhead
= (xlog_rec_header_t
*)offset
;
5395 error
= xlog_valid_rec_header(log
, rhead
,
5396 split_hblks
? blk_no
: 0);
5400 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5404 * Read the log record data in multiple reads if it
5405 * wraps around the end of the log. Note that if the
5406 * header already wrapped, blk_no could point past the
5407 * end of the log. The record data is contiguous in
5410 if (blk_no
+ bblks
<= log
->l_logBBsize
||
5411 blk_no
>= log
->l_logBBsize
) {
5412 /* mod blk_no in case the header wrapped and
5413 * pushed it beyond the end of the log */
5414 rblk_no
= do_mod(blk_no
, log
->l_logBBsize
);
5415 error
= xlog_bread(log
, rblk_no
, bblks
, dbp
,
5420 /* This log record is split across the
5421 * physical end of log */
5422 offset
= dbp
->b_addr
;
5424 if (blk_no
!= log
->l_logBBsize
) {
5425 /* some data is before the physical
5427 ASSERT(!wrapped_hblks
);
5428 ASSERT(blk_no
<= INT_MAX
);
5430 log
->l_logBBsize
- (int)blk_no
;
5431 ASSERT(split_bblks
> 0);
5432 error
= xlog_bread(log
, blk_no
,
5440 * Note: this black magic still works with
5441 * large sector sizes (non-512) only because:
5442 * - we increased the buffer size originally
5443 * by 1 sector giving us enough extra space
5444 * for the second read;
5445 * - the log start is guaranteed to be sector
5447 * - we read the log end (LR header start)
5448 * _first_, then the log start (LR header end)
5449 * - order is important.
5451 error
= xlog_bread_offset(log
, 0,
5452 bblks
- split_bblks
, dbp
,
5453 offset
+ BBTOB(split_bblks
));
5458 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
5459 pass
, &buffer_list
);
5467 ASSERT(blk_no
>= log
->l_logBBsize
);
5468 blk_no
-= log
->l_logBBsize
;
5472 /* read first part of physical log */
5473 while (blk_no
< head_blk
) {
5474 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
5478 rhead
= (xlog_rec_header_t
*)offset
;
5479 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
5483 /* blocks in data section */
5484 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5485 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
5490 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
,
5495 blk_no
+= bblks
+ hblks
;
5505 * Submit buffers that have been added from the last record processed,
5506 * regardless of error status.
5508 if (!list_empty(&buffer_list
))
5509 error2
= xfs_buf_delwri_submit(&buffer_list
);
5511 if (error
&& first_bad
)
5512 *first_bad
= rhead_blk
;
5515 * Transactions are freed at commit time but transactions without commit
5516 * records on disk are never committed. Free any that may be left in the
5519 for (i
= 0; i
< XLOG_RHASH_SIZE
; i
++) {
5520 struct hlist_node
*tmp
;
5521 struct xlog_recover
*trans
;
5523 hlist_for_each_entry_safe(trans
, tmp
, &rhash
[i
], r_list
)
5524 xlog_recover_free_trans(trans
);
5527 return error
? error
: error2
;
5531 * Do the recovery of the log. We actually do this in two phases.
5532 * The two passes are necessary in order to implement the function
5533 * of cancelling a record written into the log. The first pass
5534 * determines those things which have been cancelled, and the
5535 * second pass replays log items normally except for those which
5536 * have been cancelled. The handling of the replay and cancellations
5537 * takes place in the log item type specific routines.
5539 * The table of items which have cancel records in the log is allocated
5540 * and freed at this level, since only here do we know when all of
5541 * the log recovery has been completed.
5544 xlog_do_log_recovery(
5546 xfs_daddr_t head_blk
,
5547 xfs_daddr_t tail_blk
)
5551 ASSERT(head_blk
!= tail_blk
);
5554 * First do a pass to find all of the cancelled buf log items.
5555 * Store them in the buf_cancel_table for use in the second pass.
5557 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
5558 sizeof(struct list_head
),
5560 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5561 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
5563 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5564 XLOG_RECOVER_PASS1
, NULL
);
5566 kmem_free(log
->l_buf_cancel_table
);
5567 log
->l_buf_cancel_table
= NULL
;
5571 * Then do a second pass to actually recover the items in the log.
5572 * When it is complete free the table of buf cancel items.
5574 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5575 XLOG_RECOVER_PASS2
, NULL
);
5580 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5581 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
5585 kmem_free(log
->l_buf_cancel_table
);
5586 log
->l_buf_cancel_table
= NULL
;
5592 * Do the actual recovery
5597 xfs_daddr_t head_blk
,
5598 xfs_daddr_t tail_blk
)
5600 struct xfs_mount
*mp
= log
->l_mp
;
5605 trace_xfs_log_recover(log
, head_blk
, tail_blk
);
5608 * First replay the images in the log.
5610 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
5615 * If IO errors happened during recovery, bail out.
5617 if (XFS_FORCED_SHUTDOWN(mp
)) {
5622 * We now update the tail_lsn since much of the recovery has completed
5623 * and there may be space available to use. If there were no extent
5624 * or iunlinks, we can free up the entire log and set the tail_lsn to
5625 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5626 * lsn of the last known good LR on disk. If there are extent frees
5627 * or iunlinks they will have some entries in the AIL; so we look at
5628 * the AIL to determine how to set the tail_lsn.
5630 xlog_assign_tail_lsn(mp
);
5633 * Now that we've finished replaying all buffer and inode
5634 * updates, re-read in the superblock and reverify it.
5636 bp
= xfs_getsb(mp
, 0);
5637 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5638 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5639 bp
->b_flags
|= XBF_READ
;
5640 bp
->b_ops
= &xfs_sb_buf_ops
;
5642 error
= xfs_buf_submit_wait(bp
);
5644 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5645 xfs_buf_ioerror_alert(bp
, __func__
);
5652 /* Convert superblock from on-disk format */
5654 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5657 /* re-initialise in-core superblock and geometry structures */
5658 xfs_reinit_percpu_counters(mp
);
5659 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5661 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5664 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
5666 xlog_recover_check_summary(log
);
5668 /* Normal transactions can now occur */
5669 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5674 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5676 * Return error or zero.
5682 xfs_daddr_t head_blk
, tail_blk
;
5685 /* find the tail of the log */
5686 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5691 * The superblock was read before the log was available and thus the LSN
5692 * could not be verified. Check the superblock LSN against the current
5693 * LSN now that it's known.
5695 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5696 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5699 if (tail_blk
!= head_blk
) {
5700 /* There used to be a comment here:
5702 * disallow recovery on read-only mounts. note -- mount
5703 * checks for ENOSPC and turns it into an intelligent
5705 * ...but this is no longer true. Now, unless you specify
5706 * NORECOVERY (in which case this function would never be
5707 * called), we just go ahead and recover. We do this all
5708 * under the vfs layer, so we can get away with it unless
5709 * the device itself is read-only, in which case we fail.
5711 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5716 * Version 5 superblock log feature mask validation. We know the
5717 * log is dirty so check if there are any unknown log features
5718 * in what we need to recover. If there are unknown features
5719 * (e.g. unsupported transactions, then simply reject the
5720 * attempt at recovery before touching anything.
5722 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5723 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5724 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5726 "Superblock has unknown incompatible log features (0x%x) enabled.",
5727 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5728 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5730 "The log can not be fully and/or safely recovered by this kernel.");
5732 "Please recover the log on a kernel that supports the unknown features.");
5737 * Delay log recovery if the debug hook is set. This is debug
5738 * instrumention to coordinate simulation of I/O failures with
5741 if (xfs_globals
.log_recovery_delay
) {
5742 xfs_notice(log
->l_mp
,
5743 "Delaying log recovery for %d seconds.",
5744 xfs_globals
.log_recovery_delay
);
5745 msleep(xfs_globals
.log_recovery_delay
* 1000);
5748 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5749 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5752 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5753 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5759 * In the first part of recovery we replay inodes and buffers and build
5760 * up the list of extent free items which need to be processed. Here
5761 * we process the extent free items and clean up the on disk unlinked
5762 * inode lists. This is separated from the first part of recovery so
5763 * that the root and real-time bitmap inodes can be read in from disk in
5764 * between the two stages. This is necessary so that we can free space
5765 * in the real-time portion of the file system.
5768 xlog_recover_finish(
5772 * Now we're ready to do the transactions needed for the
5773 * rest of recovery. Start with completing all the extent
5774 * free intent records and then process the unlinked inode
5775 * lists. At this point, we essentially run in normal mode
5776 * except that we're still performing recovery actions
5777 * rather than accepting new requests.
5779 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5781 error
= xlog_recover_process_intents(log
);
5783 xfs_alert(log
->l_mp
, "Failed to recover intents");
5788 * Sync the log to get all the intents out of the AIL.
5789 * This isn't absolutely necessary, but it helps in
5790 * case the unlink transactions would have problems
5791 * pushing the intents out of the way.
5793 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5795 xlog_recover_process_iunlinks(log
);
5797 xlog_recover_check_summary(log
);
5799 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5800 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5802 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5804 xfs_info(log
->l_mp
, "Ending clean mount");
5810 xlog_recover_cancel(
5815 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5816 error
= xlog_recover_cancel_intents(log
);
5823 * Read all of the agf and agi counters and check that they
5824 * are consistent with the superblock counters.
5827 xlog_recover_check_summary(
5834 xfs_agnumber_t agno
;
5845 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5846 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5848 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5849 __func__
, agno
, error
);
5851 agfp
= XFS_BUF_TO_AGF(agfbp
);
5852 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5853 be32_to_cpu(agfp
->agf_flcount
);
5854 xfs_buf_relse(agfbp
);
5857 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5859 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5860 __func__
, agno
, error
);
5862 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5864 itotal
+= be32_to_cpu(agi
->agi_count
);
5865 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5866 xfs_buf_relse(agibp
);