Linux 4.14.13
[linux-stable.git] / fs / xfs / xfs_bmap_util.c
blob6503cfa442620efb7abf22458eed86eed9628e90
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_trans.h"
32 #include "xfs_extfree_item.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_trans_space.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap_btree.h"
45 #include "xfs_iomap.h"
46 #include "xfs_reflink.h"
47 #include "xfs_refcount.h"
49 /* Kernel only BMAP related definitions and functions */
52 * Convert the given file system block to a disk block. We have to treat it
53 * differently based on whether the file is a real time file or not, because the
54 * bmap code does.
56 xfs_daddr_t
57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
59 return (XFS_IS_REALTIME_INODE(ip) ? \
60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
65 * Routine to zero an extent on disk allocated to the specific inode.
67 * The VFS functions take a linearised filesystem block offset, so we have to
68 * convert the sparse xfs fsb to the right format first.
69 * VFS types are real funky, too.
71 int
72 xfs_zero_extent(
73 struct xfs_inode *ip,
74 xfs_fsblock_t start_fsb,
75 xfs_off_t count_fsb)
77 struct xfs_mount *mp = ip->i_mount;
78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
79 sector_t block = XFS_BB_TO_FSBT(mp, sector);
81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
82 block << (mp->m_super->s_blocksize_bits - 9),
83 count_fsb << (mp->m_super->s_blocksize_bits - 9),
84 GFP_NOFS, 0);
87 #ifdef CONFIG_XFS_RT
88 int
89 xfs_bmap_rtalloc(
90 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
92 int error; /* error return value */
93 xfs_mount_t *mp; /* mount point structure */
94 xfs_extlen_t prod = 0; /* product factor for allocators */
95 xfs_extlen_t ralen = 0; /* realtime allocation length */
96 xfs_extlen_t align; /* minimum allocation alignment */
97 xfs_rtblock_t rtb;
99 mp = ap->ip->i_mount;
100 align = xfs_get_extsz_hint(ap->ip);
101 prod = align / mp->m_sb.sb_rextsize;
102 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
103 align, 1, ap->eof, 0,
104 ap->conv, &ap->offset, &ap->length);
105 if (error)
106 return error;
107 ASSERT(ap->length);
108 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
111 * If the offset & length are not perfectly aligned
112 * then kill prod, it will just get us in trouble.
114 if (do_mod(ap->offset, align) || ap->length % align)
115 prod = 1;
117 * Set ralen to be the actual requested length in rtextents.
119 ralen = ap->length / mp->m_sb.sb_rextsize;
121 * If the old value was close enough to MAXEXTLEN that
122 * we rounded up to it, cut it back so it's valid again.
123 * Note that if it's a really large request (bigger than
124 * MAXEXTLEN), we don't hear about that number, and can't
125 * adjust the starting point to match it.
127 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
128 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
131 * Lock out modifications to both the RT bitmap and summary inodes
133 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
134 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
135 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
136 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
139 * If it's an allocation to an empty file at offset 0,
140 * pick an extent that will space things out in the rt area.
142 if (ap->eof && ap->offset == 0) {
143 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
145 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
146 if (error)
147 return error;
148 ap->blkno = rtx * mp->m_sb.sb_rextsize;
149 } else {
150 ap->blkno = 0;
153 xfs_bmap_adjacent(ap);
156 * Realtime allocation, done through xfs_rtallocate_extent.
158 do_div(ap->blkno, mp->m_sb.sb_rextsize);
159 rtb = ap->blkno;
160 ap->length = ralen;
161 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
162 &ralen, ap->wasdel, prod, &rtb);
163 if (error)
164 return error;
166 ap->blkno = rtb;
167 if (ap->blkno != NULLFSBLOCK) {
168 ap->blkno *= mp->m_sb.sb_rextsize;
169 ralen *= mp->m_sb.sb_rextsize;
170 ap->length = ralen;
171 ap->ip->i_d.di_nblocks += ralen;
172 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
173 if (ap->wasdel)
174 ap->ip->i_delayed_blks -= ralen;
176 * Adjust the disk quota also. This was reserved
177 * earlier.
179 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
180 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
181 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
183 /* Zero the extent if we were asked to do so */
184 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
185 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
186 if (error)
187 return error;
189 } else {
190 ap->length = 0;
192 return 0;
194 #endif /* CONFIG_XFS_RT */
197 * Check if the endoff is outside the last extent. If so the caller will grow
198 * the allocation to a stripe unit boundary. All offsets are considered outside
199 * the end of file for an empty fork, so 1 is returned in *eof in that case.
202 xfs_bmap_eof(
203 struct xfs_inode *ip,
204 xfs_fileoff_t endoff,
205 int whichfork,
206 int *eof)
208 struct xfs_bmbt_irec rec;
209 int error;
211 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
212 if (error || *eof)
213 return error;
215 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
216 return 0;
220 * Extent tree block counting routines.
224 * Count leaf blocks given a range of extent records. Delayed allocation
225 * extents are not counted towards the totals.
227 xfs_extnum_t
228 xfs_bmap_count_leaves(
229 struct xfs_ifork *ifp,
230 xfs_filblks_t *count)
232 struct xfs_bmbt_irec got;
233 xfs_extnum_t numrecs = 0, i = 0;
235 while (xfs_iext_get_extent(ifp, i++, &got)) {
236 if (!isnullstartblock(got.br_startblock)) {
237 *count += got.br_blockcount;
238 numrecs++;
241 return numrecs;
245 * Count leaf blocks given a range of extent records originally
246 * in btree format.
248 STATIC void
249 xfs_bmap_disk_count_leaves(
250 struct xfs_mount *mp,
251 struct xfs_btree_block *block,
252 int numrecs,
253 xfs_filblks_t *count)
255 int b;
256 xfs_bmbt_rec_t *frp;
258 for (b = 1; b <= numrecs; b++) {
259 frp = XFS_BMBT_REC_ADDR(mp, block, b);
260 *count += xfs_bmbt_disk_get_blockcount(frp);
265 * Recursively walks each level of a btree
266 * to count total fsblocks in use.
268 STATIC int
269 xfs_bmap_count_tree(
270 struct xfs_mount *mp,
271 struct xfs_trans *tp,
272 struct xfs_ifork *ifp,
273 xfs_fsblock_t blockno,
274 int levelin,
275 xfs_extnum_t *nextents,
276 xfs_filblks_t *count)
278 int error;
279 struct xfs_buf *bp, *nbp;
280 int level = levelin;
281 __be64 *pp;
282 xfs_fsblock_t bno = blockno;
283 xfs_fsblock_t nextbno;
284 struct xfs_btree_block *block, *nextblock;
285 int numrecs;
287 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
288 &xfs_bmbt_buf_ops);
289 if (error)
290 return error;
291 *count += 1;
292 block = XFS_BUF_TO_BLOCK(bp);
294 if (--level) {
295 /* Not at node above leaves, count this level of nodes */
296 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
297 while (nextbno != NULLFSBLOCK) {
298 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
299 XFS_BMAP_BTREE_REF,
300 &xfs_bmbt_buf_ops);
301 if (error)
302 return error;
303 *count += 1;
304 nextblock = XFS_BUF_TO_BLOCK(nbp);
305 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
306 xfs_trans_brelse(tp, nbp);
309 /* Dive to the next level */
310 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
311 bno = be64_to_cpu(*pp);
312 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
313 count);
314 if (error) {
315 xfs_trans_brelse(tp, bp);
316 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
317 XFS_ERRLEVEL_LOW, mp);
318 return -EFSCORRUPTED;
320 xfs_trans_brelse(tp, bp);
321 } else {
322 /* count all level 1 nodes and their leaves */
323 for (;;) {
324 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
325 numrecs = be16_to_cpu(block->bb_numrecs);
326 (*nextents) += numrecs;
327 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
328 xfs_trans_brelse(tp, bp);
329 if (nextbno == NULLFSBLOCK)
330 break;
331 bno = nextbno;
332 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
333 XFS_BMAP_BTREE_REF,
334 &xfs_bmbt_buf_ops);
335 if (error)
336 return error;
337 *count += 1;
338 block = XFS_BUF_TO_BLOCK(bp);
341 return 0;
345 * Count fsblocks of the given fork. Delayed allocation extents are
346 * not counted towards the totals.
349 xfs_bmap_count_blocks(
350 struct xfs_trans *tp,
351 struct xfs_inode *ip,
352 int whichfork,
353 xfs_extnum_t *nextents,
354 xfs_filblks_t *count)
356 struct xfs_mount *mp; /* file system mount structure */
357 __be64 *pp; /* pointer to block address */
358 struct xfs_btree_block *block; /* current btree block */
359 struct xfs_ifork *ifp; /* fork structure */
360 xfs_fsblock_t bno; /* block # of "block" */
361 int level; /* btree level, for checking */
362 int error;
364 bno = NULLFSBLOCK;
365 mp = ip->i_mount;
366 *nextents = 0;
367 *count = 0;
368 ifp = XFS_IFORK_PTR(ip, whichfork);
369 if (!ifp)
370 return 0;
372 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
373 case XFS_DINODE_FMT_EXTENTS:
374 *nextents = xfs_bmap_count_leaves(ifp, count);
375 return 0;
376 case XFS_DINODE_FMT_BTREE:
377 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
378 error = xfs_iread_extents(tp, ip, whichfork);
379 if (error)
380 return error;
384 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
386 block = ifp->if_broot;
387 level = be16_to_cpu(block->bb_level);
388 ASSERT(level > 0);
389 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
390 bno = be64_to_cpu(*pp);
391 ASSERT(bno != NULLFSBLOCK);
392 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
393 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
395 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
396 nextents, count);
397 if (error) {
398 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
399 XFS_ERRLEVEL_LOW, mp);
400 return -EFSCORRUPTED;
402 return 0;
405 return 0;
409 * returns 1 for success, 0 if we failed to map the extent.
411 STATIC int
412 xfs_getbmapx_fix_eof_hole(
413 xfs_inode_t *ip, /* xfs incore inode pointer */
414 int whichfork,
415 struct getbmapx *out, /* output structure */
416 int prealloced, /* this is a file with
417 * preallocated data space */
418 int64_t end, /* last block requested */
419 xfs_fsblock_t startblock,
420 bool moretocome)
422 int64_t fixlen;
423 xfs_mount_t *mp; /* file system mount point */
424 xfs_ifork_t *ifp; /* inode fork pointer */
425 xfs_extnum_t lastx; /* last extent pointer */
426 xfs_fileoff_t fileblock;
428 if (startblock == HOLESTARTBLOCK) {
429 mp = ip->i_mount;
430 out->bmv_block = -1;
431 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
432 fixlen -= out->bmv_offset;
433 if (prealloced && out->bmv_offset + out->bmv_length == end) {
434 /* Came to hole at EOF. Trim it. */
435 if (fixlen <= 0)
436 return 0;
437 out->bmv_length = fixlen;
439 } else {
440 if (startblock == DELAYSTARTBLOCK)
441 out->bmv_block = -2;
442 else
443 out->bmv_block = xfs_fsb_to_db(ip, startblock);
444 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
445 ifp = XFS_IFORK_PTR(ip, whichfork);
446 if (!moretocome &&
447 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
448 (lastx == xfs_iext_count(ifp) - 1))
449 out->bmv_oflags |= BMV_OF_LAST;
452 return 1;
455 /* Adjust the reported bmap around shared/unshared extent transitions. */
456 STATIC int
457 xfs_getbmap_adjust_shared(
458 struct xfs_inode *ip,
459 int whichfork,
460 struct xfs_bmbt_irec *map,
461 struct getbmapx *out,
462 struct xfs_bmbt_irec *next_map)
464 struct xfs_mount *mp = ip->i_mount;
465 xfs_agnumber_t agno;
466 xfs_agblock_t agbno;
467 xfs_agblock_t ebno;
468 xfs_extlen_t elen;
469 xfs_extlen_t nlen;
470 int error;
472 next_map->br_startblock = NULLFSBLOCK;
473 next_map->br_startoff = NULLFILEOFF;
474 next_map->br_blockcount = 0;
476 /* Only written data blocks can be shared. */
477 if (!xfs_is_reflink_inode(ip) ||
478 whichfork != XFS_DATA_FORK ||
479 !xfs_bmap_is_real_extent(map))
480 return 0;
482 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock);
483 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock);
484 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
485 map->br_blockcount, &ebno, &elen, true);
486 if (error)
487 return error;
489 if (ebno == NULLAGBLOCK) {
490 /* No shared blocks at all. */
491 return 0;
492 } else if (agbno == ebno) {
494 * Shared extent at (agbno, elen). Shrink the reported
495 * extent length and prepare to move the start of map[i]
496 * to agbno+elen, with the aim of (re)formatting the new
497 * map[i] the next time through the inner loop.
499 out->bmv_length = XFS_FSB_TO_BB(mp, elen);
500 out->bmv_oflags |= BMV_OF_SHARED;
501 if (elen != map->br_blockcount) {
502 *next_map = *map;
503 next_map->br_startblock += elen;
504 next_map->br_startoff += elen;
505 next_map->br_blockcount -= elen;
507 map->br_blockcount -= elen;
508 } else {
510 * There's an unshared extent (agbno, ebno - agbno)
511 * followed by shared extent at (ebno, elen). Shrink
512 * the reported extent length to cover only the unshared
513 * extent and prepare to move up the start of map[i] to
514 * ebno, with the aim of (re)formatting the new map[i]
515 * the next time through the inner loop.
517 *next_map = *map;
518 nlen = ebno - agbno;
519 out->bmv_length = XFS_FSB_TO_BB(mp, nlen);
520 next_map->br_startblock += nlen;
521 next_map->br_startoff += nlen;
522 next_map->br_blockcount -= nlen;
523 map->br_blockcount -= nlen;
526 return 0;
530 * Get inode's extents as described in bmv, and format for output.
531 * Calls formatter to fill the user's buffer until all extents
532 * are mapped, until the passed-in bmv->bmv_count slots have
533 * been filled, or until the formatter short-circuits the loop,
534 * if it is tracking filled-in extents on its own.
536 int /* error code */
537 xfs_getbmap(
538 xfs_inode_t *ip,
539 struct getbmapx *bmv, /* user bmap structure */
540 xfs_bmap_format_t formatter, /* format to user */
541 void *arg) /* formatter arg */
543 int64_t bmvend; /* last block requested */
544 int error = 0; /* return value */
545 int64_t fixlen; /* length for -1 case */
546 int i; /* extent number */
547 int lock; /* lock state */
548 xfs_bmbt_irec_t *map; /* buffer for user's data */
549 xfs_mount_t *mp; /* file system mount point */
550 int nex; /* # of user extents can do */
551 int subnex; /* # of bmapi's can do */
552 int nmap; /* number of map entries */
553 struct getbmapx *out; /* output structure */
554 int whichfork; /* data or attr fork */
555 int prealloced; /* this is a file with
556 * preallocated data space */
557 int iflags; /* interface flags */
558 int bmapi_flags; /* flags for xfs_bmapi */
559 int cur_ext = 0;
560 struct xfs_bmbt_irec inject_map;
562 mp = ip->i_mount;
563 iflags = bmv->bmv_iflags;
565 #ifndef DEBUG
566 /* Only allow CoW fork queries if we're debugging. */
567 if (iflags & BMV_IF_COWFORK)
568 return -EINVAL;
569 #endif
570 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
571 return -EINVAL;
573 if (iflags & BMV_IF_ATTRFORK)
574 whichfork = XFS_ATTR_FORK;
575 else if (iflags & BMV_IF_COWFORK)
576 whichfork = XFS_COW_FORK;
577 else
578 whichfork = XFS_DATA_FORK;
580 switch (whichfork) {
581 case XFS_ATTR_FORK:
582 if (XFS_IFORK_Q(ip)) {
583 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
584 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
585 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
586 return -EINVAL;
587 } else if (unlikely(
588 ip->i_d.di_aformat != 0 &&
589 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
590 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
591 ip->i_mount);
592 return -EFSCORRUPTED;
595 prealloced = 0;
596 fixlen = 1LL << 32;
597 break;
598 case XFS_COW_FORK:
599 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS)
600 return -EINVAL;
602 if (xfs_get_cowextsz_hint(ip)) {
603 prealloced = 1;
604 fixlen = mp->m_super->s_maxbytes;
605 } else {
606 prealloced = 0;
607 fixlen = XFS_ISIZE(ip);
609 break;
610 default:
611 /* Local format data forks report no extents. */
612 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL) {
613 bmv->bmv_entries = 0;
614 return 0;
616 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
617 ip->i_d.di_format != XFS_DINODE_FMT_BTREE)
618 return -EINVAL;
620 if (xfs_get_extsz_hint(ip) ||
621 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
622 prealloced = 1;
623 fixlen = mp->m_super->s_maxbytes;
624 } else {
625 prealloced = 0;
626 fixlen = XFS_ISIZE(ip);
628 break;
631 if (bmv->bmv_length == -1) {
632 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
633 bmv->bmv_length =
634 max_t(int64_t, fixlen - bmv->bmv_offset, 0);
635 } else if (bmv->bmv_length == 0) {
636 bmv->bmv_entries = 0;
637 return 0;
638 } else if (bmv->bmv_length < 0) {
639 return -EINVAL;
642 nex = bmv->bmv_count - 1;
643 if (nex <= 0)
644 return -EINVAL;
645 bmvend = bmv->bmv_offset + bmv->bmv_length;
648 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
649 return -ENOMEM;
650 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
651 if (!out)
652 return -ENOMEM;
654 xfs_ilock(ip, XFS_IOLOCK_SHARED);
655 switch (whichfork) {
656 case XFS_DATA_FORK:
657 if (!(iflags & BMV_IF_DELALLOC) &&
658 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
659 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
660 if (error)
661 goto out_unlock_iolock;
664 * Even after flushing the inode, there can still be
665 * delalloc blocks on the inode beyond EOF due to
666 * speculative preallocation. These are not removed
667 * until the release function is called or the inode
668 * is inactivated. Hence we cannot assert here that
669 * ip->i_delayed_blks == 0.
673 lock = xfs_ilock_data_map_shared(ip);
674 break;
675 case XFS_COW_FORK:
676 lock = XFS_ILOCK_SHARED;
677 xfs_ilock(ip, lock);
678 break;
679 case XFS_ATTR_FORK:
680 lock = xfs_ilock_attr_map_shared(ip);
681 break;
685 * Don't let nex be bigger than the number of extents
686 * we can have assuming alternating holes and real extents.
688 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
689 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
691 bmapi_flags = xfs_bmapi_aflag(whichfork);
692 if (!(iflags & BMV_IF_PREALLOC))
693 bmapi_flags |= XFS_BMAPI_IGSTATE;
696 * Allocate enough space to handle "subnex" maps at a time.
698 error = -ENOMEM;
699 subnex = 16;
700 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
701 if (!map)
702 goto out_unlock_ilock;
704 bmv->bmv_entries = 0;
706 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
707 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
708 error = 0;
709 goto out_free_map;
712 do {
713 nmap = (nex> subnex) ? subnex : nex;
714 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
715 XFS_BB_TO_FSB(mp, bmv->bmv_length),
716 map, &nmap, bmapi_flags);
717 if (error)
718 goto out_free_map;
719 ASSERT(nmap <= subnex);
721 for (i = 0; i < nmap && bmv->bmv_length &&
722 cur_ext < bmv->bmv_count - 1; i++) {
723 out[cur_ext].bmv_oflags = 0;
724 if (map[i].br_state == XFS_EXT_UNWRITTEN)
725 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
726 else if (map[i].br_startblock == DELAYSTARTBLOCK)
727 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
728 out[cur_ext].bmv_offset =
729 XFS_FSB_TO_BB(mp, map[i].br_startoff);
730 out[cur_ext].bmv_length =
731 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
732 out[cur_ext].bmv_unused1 = 0;
733 out[cur_ext].bmv_unused2 = 0;
736 * delayed allocation extents that start beyond EOF can
737 * occur due to speculative EOF allocation when the
738 * delalloc extent is larger than the largest freespace
739 * extent at conversion time. These extents cannot be
740 * converted by data writeback, so can exist here even
741 * if we are not supposed to be finding delalloc
742 * extents.
744 if (map[i].br_startblock == DELAYSTARTBLOCK &&
745 map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
746 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
748 if (map[i].br_startblock == HOLESTARTBLOCK &&
749 whichfork == XFS_ATTR_FORK) {
750 /* came to the end of attribute fork */
751 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
752 goto out_free_map;
755 /* Is this a shared block? */
756 error = xfs_getbmap_adjust_shared(ip, whichfork,
757 &map[i], &out[cur_ext], &inject_map);
758 if (error)
759 goto out_free_map;
761 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork,
762 &out[cur_ext], prealloced, bmvend,
763 map[i].br_startblock,
764 inject_map.br_startblock != NULLFSBLOCK))
765 goto out_free_map;
767 bmv->bmv_offset =
768 out[cur_ext].bmv_offset +
769 out[cur_ext].bmv_length;
770 bmv->bmv_length =
771 max_t(int64_t, 0, bmvend - bmv->bmv_offset);
774 * In case we don't want to return the hole,
775 * don't increase cur_ext so that we can reuse
776 * it in the next loop.
778 if ((iflags & BMV_IF_NO_HOLES) &&
779 map[i].br_startblock == HOLESTARTBLOCK) {
780 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
781 continue;
785 * In order to report shared extents accurately,
786 * we report each distinct shared/unshared part
787 * of a single bmbt record using multiple bmap
788 * extents. To make that happen, we iterate the
789 * same map array item multiple times, each
790 * time trimming out the subextent that we just
791 * reported.
793 * Because of this, we must check the out array
794 * index (cur_ext) directly against bmv_count-1
795 * to avoid overflows.
797 if (inject_map.br_startblock != NULLFSBLOCK) {
798 map[i] = inject_map;
799 i--;
801 bmv->bmv_entries++;
802 cur_ext++;
804 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1);
806 out_free_map:
807 kmem_free(map);
808 out_unlock_ilock:
809 xfs_iunlock(ip, lock);
810 out_unlock_iolock:
811 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
813 for (i = 0; i < cur_ext; i++) {
814 /* format results & advance arg */
815 error = formatter(&arg, &out[i]);
816 if (error)
817 break;
820 kmem_free(out);
821 return error;
825 * dead simple method of punching delalyed allocation blocks from a range in
826 * the inode. Walks a block at a time so will be slow, but is only executed in
827 * rare error cases so the overhead is not critical. This will always punch out
828 * both the start and end blocks, even if the ranges only partially overlap
829 * them, so it is up to the caller to ensure that partial blocks are not
830 * passed in.
833 xfs_bmap_punch_delalloc_range(
834 struct xfs_inode *ip,
835 xfs_fileoff_t start_fsb,
836 xfs_fileoff_t length)
838 xfs_fileoff_t remaining = length;
839 int error = 0;
841 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
843 do {
844 int done;
845 xfs_bmbt_irec_t imap;
846 int nimaps = 1;
847 xfs_fsblock_t firstblock;
848 struct xfs_defer_ops dfops;
851 * Map the range first and check that it is a delalloc extent
852 * before trying to unmap the range. Otherwise we will be
853 * trying to remove a real extent (which requires a
854 * transaction) or a hole, which is probably a bad idea...
856 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
857 XFS_BMAPI_ENTIRE);
859 if (error) {
860 /* something screwed, just bail */
861 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
862 xfs_alert(ip->i_mount,
863 "Failed delalloc mapping lookup ino %lld fsb %lld.",
864 ip->i_ino, start_fsb);
866 break;
868 if (!nimaps) {
869 /* nothing there */
870 goto next_block;
872 if (imap.br_startblock != DELAYSTARTBLOCK) {
873 /* been converted, ignore */
874 goto next_block;
876 WARN_ON(imap.br_blockcount == 0);
879 * Note: while we initialise the firstblock/dfops pair, they
880 * should never be used because blocks should never be
881 * allocated or freed for a delalloc extent and hence we need
882 * don't cancel or finish them after the xfs_bunmapi() call.
884 xfs_defer_init(&dfops, &firstblock);
885 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
886 &dfops, &done);
887 if (error)
888 break;
890 ASSERT(!xfs_defer_has_unfinished_work(&dfops));
891 next_block:
892 start_fsb++;
893 remaining--;
894 } while(remaining > 0);
896 return error;
900 * Test whether it is appropriate to check an inode for and free post EOF
901 * blocks. The 'force' parameter determines whether we should also consider
902 * regular files that are marked preallocated or append-only.
904 bool
905 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
907 /* prealloc/delalloc exists only on regular files */
908 if (!S_ISREG(VFS_I(ip)->i_mode))
909 return false;
912 * Zero sized files with no cached pages and delalloc blocks will not
913 * have speculative prealloc/delalloc blocks to remove.
915 if (VFS_I(ip)->i_size == 0 &&
916 VFS_I(ip)->i_mapping->nrpages == 0 &&
917 ip->i_delayed_blks == 0)
918 return false;
920 /* If we haven't read in the extent list, then don't do it now. */
921 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
922 return false;
925 * Do not free real preallocated or append-only files unless the file
926 * has delalloc blocks and we are forced to remove them.
928 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
929 if (!force || ip->i_delayed_blks == 0)
930 return false;
932 return true;
936 * This is called to free any blocks beyond eof. The caller must hold
937 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
938 * reference to the inode.
941 xfs_free_eofblocks(
942 struct xfs_inode *ip)
944 struct xfs_trans *tp;
945 int error;
946 xfs_fileoff_t end_fsb;
947 xfs_fileoff_t last_fsb;
948 xfs_filblks_t map_len;
949 int nimaps;
950 struct xfs_bmbt_irec imap;
951 struct xfs_mount *mp = ip->i_mount;
954 * Figure out if there are any blocks beyond the end
955 * of the file. If not, then there is nothing to do.
957 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
958 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
959 if (last_fsb <= end_fsb)
960 return 0;
961 map_len = last_fsb - end_fsb;
963 nimaps = 1;
964 xfs_ilock(ip, XFS_ILOCK_SHARED);
965 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
966 xfs_iunlock(ip, XFS_ILOCK_SHARED);
969 * If there are blocks after the end of file, truncate the file to its
970 * current size to free them up.
972 if (!error && (nimaps != 0) &&
973 (imap.br_startblock != HOLESTARTBLOCK ||
974 ip->i_delayed_blks)) {
976 * Attach the dquots to the inode up front.
978 error = xfs_qm_dqattach(ip, 0);
979 if (error)
980 return error;
982 /* wait on dio to ensure i_size has settled */
983 inode_dio_wait(VFS_I(ip));
985 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
986 &tp);
987 if (error) {
988 ASSERT(XFS_FORCED_SHUTDOWN(mp));
989 return error;
992 xfs_ilock(ip, XFS_ILOCK_EXCL);
993 xfs_trans_ijoin(tp, ip, 0);
996 * Do not update the on-disk file size. If we update the
997 * on-disk file size and then the system crashes before the
998 * contents of the file are flushed to disk then the files
999 * may be full of holes (ie NULL files bug).
1001 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
1002 XFS_ISIZE(ip));
1003 if (error) {
1005 * If we get an error at this point we simply don't
1006 * bother truncating the file.
1008 xfs_trans_cancel(tp);
1009 } else {
1010 error = xfs_trans_commit(tp);
1011 if (!error)
1012 xfs_inode_clear_eofblocks_tag(ip);
1015 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1017 return error;
1021 xfs_alloc_file_space(
1022 struct xfs_inode *ip,
1023 xfs_off_t offset,
1024 xfs_off_t len,
1025 int alloc_type)
1027 xfs_mount_t *mp = ip->i_mount;
1028 xfs_off_t count;
1029 xfs_filblks_t allocated_fsb;
1030 xfs_filblks_t allocatesize_fsb;
1031 xfs_extlen_t extsz, temp;
1032 xfs_fileoff_t startoffset_fsb;
1033 xfs_fsblock_t firstfsb;
1034 int nimaps;
1035 int quota_flag;
1036 int rt;
1037 xfs_trans_t *tp;
1038 xfs_bmbt_irec_t imaps[1], *imapp;
1039 struct xfs_defer_ops dfops;
1040 uint qblocks, resblks, resrtextents;
1041 int error;
1043 trace_xfs_alloc_file_space(ip);
1045 if (XFS_FORCED_SHUTDOWN(mp))
1046 return -EIO;
1048 error = xfs_qm_dqattach(ip, 0);
1049 if (error)
1050 return error;
1052 if (len <= 0)
1053 return -EINVAL;
1055 rt = XFS_IS_REALTIME_INODE(ip);
1056 extsz = xfs_get_extsz_hint(ip);
1058 count = len;
1059 imapp = &imaps[0];
1060 nimaps = 1;
1061 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
1062 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
1065 * Allocate file space until done or until there is an error
1067 while (allocatesize_fsb && !error) {
1068 xfs_fileoff_t s, e;
1071 * Determine space reservations for data/realtime.
1073 if (unlikely(extsz)) {
1074 s = startoffset_fsb;
1075 do_div(s, extsz);
1076 s *= extsz;
1077 e = startoffset_fsb + allocatesize_fsb;
1078 if ((temp = do_mod(startoffset_fsb, extsz)))
1079 e += temp;
1080 if ((temp = do_mod(e, extsz)))
1081 e += extsz - temp;
1082 } else {
1083 s = 0;
1084 e = allocatesize_fsb;
1088 * The transaction reservation is limited to a 32-bit block
1089 * count, hence we need to limit the number of blocks we are
1090 * trying to reserve to avoid an overflow. We can't allocate
1091 * more than @nimaps extents, and an extent is limited on disk
1092 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1094 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1095 if (unlikely(rt)) {
1096 resrtextents = qblocks = resblks;
1097 resrtextents /= mp->m_sb.sb_rextsize;
1098 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1099 quota_flag = XFS_QMOPT_RES_RTBLKS;
1100 } else {
1101 resrtextents = 0;
1102 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1103 quota_flag = XFS_QMOPT_RES_REGBLKS;
1107 * Allocate and setup the transaction.
1109 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1110 resrtextents, 0, &tp);
1113 * Check for running out of space
1115 if (error) {
1117 * Free the transaction structure.
1119 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1120 break;
1122 xfs_ilock(ip, XFS_ILOCK_EXCL);
1123 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1124 0, quota_flag);
1125 if (error)
1126 goto error1;
1128 xfs_trans_ijoin(tp, ip, 0);
1130 xfs_defer_init(&dfops, &firstfsb);
1131 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1132 allocatesize_fsb, alloc_type, &firstfsb,
1133 resblks, imapp, &nimaps, &dfops);
1134 if (error)
1135 goto error0;
1138 * Complete the transaction
1140 error = xfs_defer_finish(&tp, &dfops);
1141 if (error)
1142 goto error0;
1144 error = xfs_trans_commit(tp);
1145 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1146 if (error)
1147 break;
1149 allocated_fsb = imapp->br_blockcount;
1151 if (nimaps == 0) {
1152 error = -ENOSPC;
1153 break;
1156 startoffset_fsb += allocated_fsb;
1157 allocatesize_fsb -= allocated_fsb;
1160 return error;
1162 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1163 xfs_defer_cancel(&dfops);
1164 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1166 error1: /* Just cancel transaction */
1167 xfs_trans_cancel(tp);
1168 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1169 return error;
1172 static int
1173 xfs_unmap_extent(
1174 struct xfs_inode *ip,
1175 xfs_fileoff_t startoffset_fsb,
1176 xfs_filblks_t len_fsb,
1177 int *done)
1179 struct xfs_mount *mp = ip->i_mount;
1180 struct xfs_trans *tp;
1181 struct xfs_defer_ops dfops;
1182 xfs_fsblock_t firstfsb;
1183 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1184 int error;
1186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1187 if (error) {
1188 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1189 return error;
1192 xfs_ilock(ip, XFS_ILOCK_EXCL);
1193 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1194 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1195 if (error)
1196 goto out_trans_cancel;
1198 xfs_trans_ijoin(tp, ip, 0);
1200 xfs_defer_init(&dfops, &firstfsb);
1201 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1202 &dfops, done);
1203 if (error)
1204 goto out_bmap_cancel;
1206 xfs_defer_ijoin(&dfops, ip);
1207 error = xfs_defer_finish(&tp, &dfops);
1208 if (error)
1209 goto out_bmap_cancel;
1211 error = xfs_trans_commit(tp);
1212 out_unlock:
1213 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1214 return error;
1216 out_bmap_cancel:
1217 xfs_defer_cancel(&dfops);
1218 out_trans_cancel:
1219 xfs_trans_cancel(tp);
1220 goto out_unlock;
1223 static int
1224 xfs_adjust_extent_unmap_boundaries(
1225 struct xfs_inode *ip,
1226 xfs_fileoff_t *startoffset_fsb,
1227 xfs_fileoff_t *endoffset_fsb)
1229 struct xfs_mount *mp = ip->i_mount;
1230 struct xfs_bmbt_irec imap;
1231 int nimap, error;
1232 xfs_extlen_t mod = 0;
1234 nimap = 1;
1235 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1236 if (error)
1237 return error;
1239 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1240 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1241 mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize);
1242 if (mod)
1243 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1246 nimap = 1;
1247 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1248 if (error)
1249 return error;
1251 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1252 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1253 mod++;
1254 if (mod && mod != mp->m_sb.sb_rextsize)
1255 *endoffset_fsb -= mod;
1258 return 0;
1261 static int
1262 xfs_flush_unmap_range(
1263 struct xfs_inode *ip,
1264 xfs_off_t offset,
1265 xfs_off_t len)
1267 struct xfs_mount *mp = ip->i_mount;
1268 struct inode *inode = VFS_I(ip);
1269 xfs_off_t rounding, start, end;
1270 int error;
1272 /* wait for the completion of any pending DIOs */
1273 inode_dio_wait(inode);
1275 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1276 start = round_down(offset, rounding);
1277 end = round_up(offset + len, rounding) - 1;
1279 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1280 if (error)
1281 return error;
1282 truncate_pagecache_range(inode, start, end);
1283 return 0;
1287 xfs_free_file_space(
1288 struct xfs_inode *ip,
1289 xfs_off_t offset,
1290 xfs_off_t len)
1292 struct xfs_mount *mp = ip->i_mount;
1293 xfs_fileoff_t startoffset_fsb;
1294 xfs_fileoff_t endoffset_fsb;
1295 int done = 0, error;
1297 trace_xfs_free_file_space(ip);
1299 error = xfs_qm_dqattach(ip, 0);
1300 if (error)
1301 return error;
1303 if (len <= 0) /* if nothing being freed */
1304 return 0;
1306 error = xfs_flush_unmap_range(ip, offset, len);
1307 if (error)
1308 return error;
1310 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1311 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1314 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1315 * and we can't use unwritten extents then we actually need to ensure
1316 * to zero the whole extent, otherwise we just need to take of block
1317 * boundaries, and xfs_bunmapi will handle the rest.
1319 if (XFS_IS_REALTIME_INODE(ip) &&
1320 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1321 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1322 &endoffset_fsb);
1323 if (error)
1324 return error;
1327 if (endoffset_fsb > startoffset_fsb) {
1328 while (!done) {
1329 error = xfs_unmap_extent(ip, startoffset_fsb,
1330 endoffset_fsb - startoffset_fsb, &done);
1331 if (error)
1332 return error;
1337 * Now that we've unmap all full blocks we'll have to zero out any
1338 * partial block at the beginning and/or end. xfs_zero_range is
1339 * smart enough to skip any holes, including those we just created,
1340 * but we must take care not to zero beyond EOF and enlarge i_size.
1343 if (offset >= XFS_ISIZE(ip))
1344 return 0;
1346 if (offset + len > XFS_ISIZE(ip))
1347 len = XFS_ISIZE(ip) - offset;
1349 return xfs_zero_range(ip, offset, len, NULL);
1353 * Preallocate and zero a range of a file. This mechanism has the allocation
1354 * semantics of fallocate and in addition converts data in the range to zeroes.
1357 xfs_zero_file_space(
1358 struct xfs_inode *ip,
1359 xfs_off_t offset,
1360 xfs_off_t len)
1362 struct xfs_mount *mp = ip->i_mount;
1363 uint blksize;
1364 int error;
1366 trace_xfs_zero_file_space(ip);
1368 blksize = 1 << mp->m_sb.sb_blocklog;
1371 * Punch a hole and prealloc the range. We use hole punch rather than
1372 * unwritten extent conversion for two reasons:
1374 * 1.) Hole punch handles partial block zeroing for us.
1376 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1377 * by virtue of the hole punch.
1379 error = xfs_free_file_space(ip, offset, len);
1380 if (error)
1381 goto out;
1383 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1384 round_up(offset + len, blksize) -
1385 round_down(offset, blksize),
1386 XFS_BMAPI_PREALLOC);
1387 out:
1388 return error;
1393 * @next_fsb will keep track of the extent currently undergoing shift.
1394 * @stop_fsb will keep track of the extent at which we have to stop.
1395 * If we are shifting left, we will start with block (offset + len) and
1396 * shift each extent till last extent.
1397 * If we are shifting right, we will start with last extent inside file space
1398 * and continue until we reach the block corresponding to offset.
1400 static int
1401 xfs_shift_file_space(
1402 struct xfs_inode *ip,
1403 xfs_off_t offset,
1404 xfs_off_t len,
1405 enum shift_direction direction)
1407 int done = 0;
1408 struct xfs_mount *mp = ip->i_mount;
1409 struct xfs_trans *tp;
1410 int error;
1411 struct xfs_defer_ops dfops;
1412 xfs_fsblock_t first_block;
1413 xfs_fileoff_t stop_fsb;
1414 xfs_fileoff_t next_fsb;
1415 xfs_fileoff_t shift_fsb;
1416 uint resblks;
1418 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1420 if (direction == SHIFT_LEFT) {
1422 * Reserve blocks to cover potential extent merges after left
1423 * shift operations.
1425 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1426 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1427 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1428 } else {
1430 * If right shift, delegate the work of initialization of
1431 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1433 resblks = 0;
1434 next_fsb = NULLFSBLOCK;
1435 stop_fsb = XFS_B_TO_FSB(mp, offset);
1438 shift_fsb = XFS_B_TO_FSB(mp, len);
1441 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1442 * into the accessible region of the file.
1444 if (xfs_can_free_eofblocks(ip, true)) {
1445 error = xfs_free_eofblocks(ip);
1446 if (error)
1447 return error;
1451 * Writeback and invalidate cache for the remainder of the file as we're
1452 * about to shift down every extent from offset to EOF.
1454 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1455 offset, -1);
1456 if (error)
1457 return error;
1458 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1459 offset >> PAGE_SHIFT, -1);
1460 if (error)
1461 return error;
1464 * Clean out anything hanging around in the cow fork now that
1465 * we've flushed all the dirty data out to disk to avoid having
1466 * CoW extents at the wrong offsets.
1468 if (xfs_is_reflink_inode(ip)) {
1469 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1470 true);
1471 if (error)
1472 return error;
1476 * The extent shifting code works on extent granularity. So, if
1477 * stop_fsb is not the starting block of extent, we need to split
1478 * the extent at stop_fsb.
1480 if (direction == SHIFT_RIGHT) {
1481 error = xfs_bmap_split_extent(ip, stop_fsb);
1482 if (error)
1483 return error;
1486 while (!error && !done) {
1487 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1488 &tp);
1489 if (error)
1490 break;
1492 xfs_ilock(ip, XFS_ILOCK_EXCL);
1493 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1494 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1495 XFS_QMOPT_RES_REGBLKS);
1496 if (error)
1497 goto out_trans_cancel;
1499 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1501 xfs_defer_init(&dfops, &first_block);
1504 * We are using the write transaction in which max 2 bmbt
1505 * updates are allowed
1507 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1508 &done, stop_fsb, &first_block, &dfops,
1509 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1510 if (error)
1511 goto out_bmap_cancel;
1513 error = xfs_defer_finish(&tp, &dfops);
1514 if (error)
1515 goto out_bmap_cancel;
1517 error = xfs_trans_commit(tp);
1520 return error;
1522 out_bmap_cancel:
1523 xfs_defer_cancel(&dfops);
1524 out_trans_cancel:
1525 xfs_trans_cancel(tp);
1526 return error;
1530 * xfs_collapse_file_space()
1531 * This routine frees disk space and shift extent for the given file.
1532 * The first thing we do is to free data blocks in the specified range
1533 * by calling xfs_free_file_space(). It would also sync dirty data
1534 * and invalidate page cache over the region on which collapse range
1535 * is working. And Shift extent records to the left to cover a hole.
1536 * RETURNS:
1537 * 0 on success
1538 * errno on error
1542 xfs_collapse_file_space(
1543 struct xfs_inode *ip,
1544 xfs_off_t offset,
1545 xfs_off_t len)
1547 int error;
1549 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1550 trace_xfs_collapse_file_space(ip);
1552 error = xfs_free_file_space(ip, offset, len);
1553 if (error)
1554 return error;
1556 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1560 * xfs_insert_file_space()
1561 * This routine create hole space by shifting extents for the given file.
1562 * The first thing we do is to sync dirty data and invalidate page cache
1563 * over the region on which insert range is working. And split an extent
1564 * to two extents at given offset by calling xfs_bmap_split_extent.
1565 * And shift all extent records which are laying between [offset,
1566 * last allocated extent] to the right to reserve hole range.
1567 * RETURNS:
1568 * 0 on success
1569 * errno on error
1572 xfs_insert_file_space(
1573 struct xfs_inode *ip,
1574 loff_t offset,
1575 loff_t len)
1577 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1578 trace_xfs_insert_file_space(ip);
1580 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1584 * We need to check that the format of the data fork in the temporary inode is
1585 * valid for the target inode before doing the swap. This is not a problem with
1586 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1587 * data fork depending on the space the attribute fork is taking so we can get
1588 * invalid formats on the target inode.
1590 * E.g. target has space for 7 extents in extent format, temp inode only has
1591 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1592 * btree, but when swapped it needs to be in extent format. Hence we can't just
1593 * blindly swap data forks on attr2 filesystems.
1595 * Note that we check the swap in both directions so that we don't end up with
1596 * a corrupt temporary inode, either.
1598 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1599 * inode will prevent this situation from occurring, so all we do here is
1600 * reject and log the attempt. basically we are putting the responsibility on
1601 * userspace to get this right.
1603 static int
1604 xfs_swap_extents_check_format(
1605 struct xfs_inode *ip, /* target inode */
1606 struct xfs_inode *tip) /* tmp inode */
1609 /* Should never get a local format */
1610 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1611 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1612 return -EINVAL;
1615 * if the target inode has less extents that then temporary inode then
1616 * why did userspace call us?
1618 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1619 return -EINVAL;
1622 * If we have to use the (expensive) rmap swap method, we can
1623 * handle any number of extents and any format.
1625 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1626 return 0;
1629 * if the target inode is in extent form and the temp inode is in btree
1630 * form then we will end up with the target inode in the wrong format
1631 * as we already know there are less extents in the temp inode.
1633 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1634 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1635 return -EINVAL;
1637 /* Check temp in extent form to max in target */
1638 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1639 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1640 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1641 return -EINVAL;
1643 /* Check target in extent form to max in temp */
1644 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1645 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1646 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1647 return -EINVAL;
1650 * If we are in a btree format, check that the temp root block will fit
1651 * in the target and that it has enough extents to be in btree format
1652 * in the target.
1654 * Note that we have to be careful to allow btree->extent conversions
1655 * (a common defrag case) which will occur when the temp inode is in
1656 * extent format...
1658 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1659 if (XFS_IFORK_Q(ip) &&
1660 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1661 return -EINVAL;
1662 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1663 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1664 return -EINVAL;
1667 /* Reciprocal target->temp btree format checks */
1668 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1669 if (XFS_IFORK_Q(tip) &&
1670 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1671 return -EINVAL;
1672 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1673 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1674 return -EINVAL;
1677 return 0;
1680 static int
1681 xfs_swap_extent_flush(
1682 struct xfs_inode *ip)
1684 int error;
1686 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1687 if (error)
1688 return error;
1689 truncate_pagecache_range(VFS_I(ip), 0, -1);
1691 /* Verify O_DIRECT for ftmp */
1692 if (VFS_I(ip)->i_mapping->nrpages)
1693 return -EINVAL;
1694 return 0;
1698 * Move extents from one file to another, when rmap is enabled.
1700 STATIC int
1701 xfs_swap_extent_rmap(
1702 struct xfs_trans **tpp,
1703 struct xfs_inode *ip,
1704 struct xfs_inode *tip)
1706 struct xfs_bmbt_irec irec;
1707 struct xfs_bmbt_irec uirec;
1708 struct xfs_bmbt_irec tirec;
1709 xfs_fileoff_t offset_fsb;
1710 xfs_fileoff_t end_fsb;
1711 xfs_filblks_t count_fsb;
1712 xfs_fsblock_t firstfsb;
1713 struct xfs_defer_ops dfops;
1714 int error;
1715 xfs_filblks_t ilen;
1716 xfs_filblks_t rlen;
1717 int nimaps;
1718 uint64_t tip_flags2;
1721 * If the source file has shared blocks, we must flag the donor
1722 * file as having shared blocks so that we get the shared-block
1723 * rmap functions when we go to fix up the rmaps. The flags
1724 * will be switch for reals later.
1726 tip_flags2 = tip->i_d.di_flags2;
1727 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1728 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1730 offset_fsb = 0;
1731 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1732 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1734 while (count_fsb) {
1735 /* Read extent from the donor file */
1736 nimaps = 1;
1737 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1738 &nimaps, 0);
1739 if (error)
1740 goto out;
1741 ASSERT(nimaps == 1);
1742 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1744 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1745 ilen = tirec.br_blockcount;
1747 /* Unmap the old blocks in the source file. */
1748 while (tirec.br_blockcount) {
1749 xfs_defer_init(&dfops, &firstfsb);
1750 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1752 /* Read extent from the source file */
1753 nimaps = 1;
1754 error = xfs_bmapi_read(ip, tirec.br_startoff,
1755 tirec.br_blockcount, &irec,
1756 &nimaps, 0);
1757 if (error)
1758 goto out_defer;
1759 ASSERT(nimaps == 1);
1760 ASSERT(tirec.br_startoff == irec.br_startoff);
1761 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1763 /* Trim the extent. */
1764 uirec = tirec;
1765 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1766 tirec.br_blockcount,
1767 irec.br_blockcount);
1768 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1770 /* Remove the mapping from the donor file. */
1771 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1772 tip, &uirec);
1773 if (error)
1774 goto out_defer;
1776 /* Remove the mapping from the source file. */
1777 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1778 ip, &irec);
1779 if (error)
1780 goto out_defer;
1782 /* Map the donor file's blocks into the source file. */
1783 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1784 ip, &uirec);
1785 if (error)
1786 goto out_defer;
1788 /* Map the source file's blocks into the donor file. */
1789 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1790 tip, &irec);
1791 if (error)
1792 goto out_defer;
1794 xfs_defer_ijoin(&dfops, ip);
1795 error = xfs_defer_finish(tpp, &dfops);
1796 if (error)
1797 goto out_defer;
1799 tirec.br_startoff += rlen;
1800 if (tirec.br_startblock != HOLESTARTBLOCK &&
1801 tirec.br_startblock != DELAYSTARTBLOCK)
1802 tirec.br_startblock += rlen;
1803 tirec.br_blockcount -= rlen;
1806 /* Roll on... */
1807 count_fsb -= ilen;
1808 offset_fsb += ilen;
1811 tip->i_d.di_flags2 = tip_flags2;
1812 return 0;
1814 out_defer:
1815 xfs_defer_cancel(&dfops);
1816 out:
1817 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1818 tip->i_d.di_flags2 = tip_flags2;
1819 return error;
1822 /* Swap the extents of two files by swapping data forks. */
1823 STATIC int
1824 xfs_swap_extent_forks(
1825 struct xfs_trans *tp,
1826 struct xfs_inode *ip,
1827 struct xfs_inode *tip,
1828 int *src_log_flags,
1829 int *target_log_flags)
1831 struct xfs_ifork tempifp, *ifp, *tifp;
1832 xfs_filblks_t aforkblks = 0;
1833 xfs_filblks_t taforkblks = 0;
1834 xfs_extnum_t junk;
1835 xfs_extnum_t nextents;
1836 uint64_t tmp;
1837 int error;
1840 * Count the number of extended attribute blocks
1842 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1843 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1844 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1845 &aforkblks);
1846 if (error)
1847 return error;
1849 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1850 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1851 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1852 &taforkblks);
1853 if (error)
1854 return error;
1858 * Btree format (v3) inodes have the inode number stamped in the bmbt
1859 * block headers. We can't start changing the bmbt blocks until the
1860 * inode owner change is logged so recovery does the right thing in the
1861 * event of a crash. Set the owner change log flags now and leave the
1862 * bmbt scan as the last step.
1864 if (ip->i_d.di_version == 3 &&
1865 ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1866 (*target_log_flags) |= XFS_ILOG_DOWNER;
1867 if (tip->i_d.di_version == 3 &&
1868 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1869 (*src_log_flags) |= XFS_ILOG_DOWNER;
1872 * Swap the data forks of the inodes
1874 ifp = &ip->i_df;
1875 tifp = &tip->i_df;
1876 tempifp = *ifp; /* struct copy */
1877 *ifp = *tifp; /* struct copy */
1878 *tifp = tempifp; /* struct copy */
1881 * Fix the on-disk inode values
1883 tmp = (uint64_t)ip->i_d.di_nblocks;
1884 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1885 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1887 tmp = (uint64_t) ip->i_d.di_nextents;
1888 ip->i_d.di_nextents = tip->i_d.di_nextents;
1889 tip->i_d.di_nextents = tmp;
1891 tmp = (uint64_t) ip->i_d.di_format;
1892 ip->i_d.di_format = tip->i_d.di_format;
1893 tip->i_d.di_format = tmp;
1896 * The extents in the source inode could still contain speculative
1897 * preallocation beyond EOF (e.g. the file is open but not modified
1898 * while defrag is in progress). In that case, we need to copy over the
1899 * number of delalloc blocks the data fork in the source inode is
1900 * tracking beyond EOF so that when the fork is truncated away when the
1901 * temporary inode is unlinked we don't underrun the i_delayed_blks
1902 * counter on that inode.
1904 ASSERT(tip->i_delayed_blks == 0);
1905 tip->i_delayed_blks = ip->i_delayed_blks;
1906 ip->i_delayed_blks = 0;
1908 switch (ip->i_d.di_format) {
1909 case XFS_DINODE_FMT_EXTENTS:
1911 * If the extents fit in the inode, fix the pointer. Otherwise
1912 * it's already NULL or pointing to the extent.
1914 nextents = xfs_iext_count(&ip->i_df);
1915 if (nextents <= XFS_INLINE_EXTS)
1916 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
1917 (*src_log_flags) |= XFS_ILOG_DEXT;
1918 break;
1919 case XFS_DINODE_FMT_BTREE:
1920 ASSERT(ip->i_d.di_version < 3 ||
1921 (*src_log_flags & XFS_ILOG_DOWNER));
1922 (*src_log_flags) |= XFS_ILOG_DBROOT;
1923 break;
1926 switch (tip->i_d.di_format) {
1927 case XFS_DINODE_FMT_EXTENTS:
1929 * If the extents fit in the inode, fix the pointer. Otherwise
1930 * it's already NULL or pointing to the extent.
1932 nextents = xfs_iext_count(&tip->i_df);
1933 if (nextents <= XFS_INLINE_EXTS)
1934 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext;
1935 (*target_log_flags) |= XFS_ILOG_DEXT;
1936 break;
1937 case XFS_DINODE_FMT_BTREE:
1938 (*target_log_flags) |= XFS_ILOG_DBROOT;
1939 ASSERT(tip->i_d.di_version < 3 ||
1940 (*target_log_flags & XFS_ILOG_DOWNER));
1941 break;
1944 return 0;
1948 * Fix up the owners of the bmbt blocks to refer to the current inode. The
1949 * change owner scan attempts to order all modified buffers in the current
1950 * transaction. In the event of ordered buffer failure, the offending buffer is
1951 * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1952 * the transaction in this case to replenish the fallback log reservation and
1953 * restart the scan. This process repeats until the scan completes.
1955 static int
1956 xfs_swap_change_owner(
1957 struct xfs_trans **tpp,
1958 struct xfs_inode *ip,
1959 struct xfs_inode *tmpip)
1961 int error;
1962 struct xfs_trans *tp = *tpp;
1964 do {
1965 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1966 NULL);
1967 /* success or fatal error */
1968 if (error != -EAGAIN)
1969 break;
1971 error = xfs_trans_roll(tpp);
1972 if (error)
1973 break;
1974 tp = *tpp;
1977 * Redirty both inodes so they can relog and keep the log tail
1978 * moving forward.
1980 xfs_trans_ijoin(tp, ip, 0);
1981 xfs_trans_ijoin(tp, tmpip, 0);
1982 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1983 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1984 } while (true);
1986 return error;
1990 xfs_swap_extents(
1991 struct xfs_inode *ip, /* target inode */
1992 struct xfs_inode *tip, /* tmp inode */
1993 struct xfs_swapext *sxp)
1995 struct xfs_mount *mp = ip->i_mount;
1996 struct xfs_trans *tp;
1997 struct xfs_bstat *sbp = &sxp->sx_stat;
1998 int src_log_flags, target_log_flags;
1999 int error = 0;
2000 int lock_flags;
2001 struct xfs_ifork *cowfp;
2002 uint64_t f;
2003 int resblks = 0;
2006 * Lock the inodes against other IO, page faults and truncate to
2007 * begin with. Then we can ensure the inodes are flushed and have no
2008 * page cache safely. Once we have done this we can take the ilocks and
2009 * do the rest of the checks.
2011 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2012 lock_flags = XFS_MMAPLOCK_EXCL;
2013 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
2015 /* Verify that both files have the same format */
2016 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
2017 error = -EINVAL;
2018 goto out_unlock;
2021 /* Verify both files are either real-time or non-realtime */
2022 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
2023 error = -EINVAL;
2024 goto out_unlock;
2027 error = xfs_swap_extent_flush(ip);
2028 if (error)
2029 goto out_unlock;
2030 error = xfs_swap_extent_flush(tip);
2031 if (error)
2032 goto out_unlock;
2035 * Extent "swapping" with rmap requires a permanent reservation and
2036 * a block reservation because it's really just a remap operation
2037 * performed with log redo items!
2039 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
2041 * Conceptually this shouldn't affect the shape of either
2042 * bmbt, but since we atomically move extents one by one,
2043 * we reserve enough space to rebuild both trees.
2045 resblks = XFS_SWAP_RMAP_SPACE_RES(mp,
2046 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK),
2047 XFS_DATA_FORK) +
2048 XFS_SWAP_RMAP_SPACE_RES(mp,
2049 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK),
2050 XFS_DATA_FORK);
2052 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
2053 if (error)
2054 goto out_unlock;
2057 * Lock and join the inodes to the tansaction so that transaction commit
2058 * or cancel will unlock the inodes from this point onwards.
2060 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
2061 lock_flags |= XFS_ILOCK_EXCL;
2062 xfs_trans_ijoin(tp, ip, 0);
2063 xfs_trans_ijoin(tp, tip, 0);
2066 /* Verify all data are being swapped */
2067 if (sxp->sx_offset != 0 ||
2068 sxp->sx_length != ip->i_d.di_size ||
2069 sxp->sx_length != tip->i_d.di_size) {
2070 error = -EFAULT;
2071 goto out_trans_cancel;
2074 trace_xfs_swap_extent_before(ip, 0);
2075 trace_xfs_swap_extent_before(tip, 1);
2077 /* check inode formats now that data is flushed */
2078 error = xfs_swap_extents_check_format(ip, tip);
2079 if (error) {
2080 xfs_notice(mp,
2081 "%s: inode 0x%llx format is incompatible for exchanging.",
2082 __func__, ip->i_ino);
2083 goto out_trans_cancel;
2087 * Compare the current change & modify times with that
2088 * passed in. If they differ, we abort this swap.
2089 * This is the mechanism used to ensure the calling
2090 * process that the file was not changed out from
2091 * under it.
2093 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
2094 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
2095 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
2096 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
2097 error = -EBUSY;
2098 goto out_trans_cancel;
2102 * Note the trickiness in setting the log flags - we set the owner log
2103 * flag on the opposite inode (i.e. the inode we are setting the new
2104 * owner to be) because once we swap the forks and log that, log
2105 * recovery is going to see the fork as owned by the swapped inode,
2106 * not the pre-swapped inodes.
2108 src_log_flags = XFS_ILOG_CORE;
2109 target_log_flags = XFS_ILOG_CORE;
2111 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2112 error = xfs_swap_extent_rmap(&tp, ip, tip);
2113 else
2114 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
2115 &target_log_flags);
2116 if (error)
2117 goto out_trans_cancel;
2119 /* Do we have to swap reflink flags? */
2120 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
2121 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
2122 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2123 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2124 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2125 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2126 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
2129 /* Swap the cow forks. */
2130 if (xfs_sb_version_hasreflink(&mp->m_sb)) {
2131 xfs_extnum_t extnum;
2133 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
2134 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
2136 extnum = ip->i_cnextents;
2137 ip->i_cnextents = tip->i_cnextents;
2138 tip->i_cnextents = extnum;
2140 cowfp = ip->i_cowfp;
2141 ip->i_cowfp = tip->i_cowfp;
2142 tip->i_cowfp = cowfp;
2144 if (ip->i_cowfp && ip->i_cnextents)
2145 xfs_inode_set_cowblocks_tag(ip);
2146 else
2147 xfs_inode_clear_cowblocks_tag(ip);
2148 if (tip->i_cowfp && tip->i_cnextents)
2149 xfs_inode_set_cowblocks_tag(tip);
2150 else
2151 xfs_inode_clear_cowblocks_tag(tip);
2154 xfs_trans_log_inode(tp, ip, src_log_flags);
2155 xfs_trans_log_inode(tp, tip, target_log_flags);
2158 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
2159 * have inode number owner values in the bmbt blocks that still refer to
2160 * the old inode. Scan each bmbt to fix up the owner values with the
2161 * inode number of the current inode.
2163 if (src_log_flags & XFS_ILOG_DOWNER) {
2164 error = xfs_swap_change_owner(&tp, ip, tip);
2165 if (error)
2166 goto out_trans_cancel;
2168 if (target_log_flags & XFS_ILOG_DOWNER) {
2169 error = xfs_swap_change_owner(&tp, tip, ip);
2170 if (error)
2171 goto out_trans_cancel;
2175 * If this is a synchronous mount, make sure that the
2176 * transaction goes to disk before returning to the user.
2178 if (mp->m_flags & XFS_MOUNT_WSYNC)
2179 xfs_trans_set_sync(tp);
2181 error = xfs_trans_commit(tp);
2183 trace_xfs_swap_extent_after(ip, 0);
2184 trace_xfs_swap_extent_after(tip, 1);
2186 out_unlock:
2187 xfs_iunlock(ip, lock_flags);
2188 xfs_iunlock(tip, lock_flags);
2189 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2190 return error;
2192 out_trans_cancel:
2193 xfs_trans_cancel(tp);
2194 goto out_unlock;