2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
33 /* Default values for RZ/A RTC */
34 #define rtc_reg_size sizeof(u16)
35 #define RTC_BIT_INVERTED 0 /* no chip bugs */
36 #define RTC_CAP_4_DIGIT_YEAR (1 << 0)
37 #define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
40 #define DRV_NAME "sh-rtc"
42 #define RTC_REG(r) ((r) * rtc_reg_size)
44 #define R64CNT RTC_REG(0)
46 #define RSECCNT RTC_REG(1) /* RTC sec */
47 #define RMINCNT RTC_REG(2) /* RTC min */
48 #define RHRCNT RTC_REG(3) /* RTC hour */
49 #define RWKCNT RTC_REG(4) /* RTC week */
50 #define RDAYCNT RTC_REG(5) /* RTC day */
51 #define RMONCNT RTC_REG(6) /* RTC month */
52 #define RYRCNT RTC_REG(7) /* RTC year */
53 #define RSECAR RTC_REG(8) /* ALARM sec */
54 #define RMINAR RTC_REG(9) /* ALARM min */
55 #define RHRAR RTC_REG(10) /* ALARM hour */
56 #define RWKAR RTC_REG(11) /* ALARM week */
57 #define RDAYAR RTC_REG(12) /* ALARM day */
58 #define RMONAR RTC_REG(13) /* ALARM month */
59 #define RCR1 RTC_REG(14) /* Control */
60 #define RCR2 RTC_REG(15) /* Control */
63 * Note on RYRAR and RCR3: Up until this point most of the register
64 * definitions are consistent across all of the available parts. However,
65 * the placement of the optional RYRAR and RCR3 (the RYRAR control
66 * register used to control RYRCNT/RYRAR compare) varies considerably
67 * across various parts, occasionally being mapped in to a completely
68 * unrelated address space. For proper RYRAR support a separate resource
69 * would have to be handed off, but as this is purely optional in
70 * practice, we simply opt not to support it, thereby keeping the code
71 * quite a bit more simplified.
74 /* ALARM Bits - or with BCD encoded value */
75 #define AR_ENB 0x80 /* Enable for alarm cmp */
78 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
79 #define PF_COUNT 0x200 /* Half periodic counter */
80 #define PF_OXS 0x400 /* Periodic One x Second */
81 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
85 #define RCR1_CF 0x80 /* Carry Flag */
86 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
87 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
88 #define RCR1_AF 0x01 /* Alarm Flag */
91 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
92 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
93 #define RCR2_RTCEN 0x08 /* ENable RTC */
94 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
95 #define RCR2_RESET 0x02 /* Reset bit */
96 #define RCR2_START 0x01 /* Start bit */
99 void __iomem
*regbase
;
100 unsigned long regsize
;
101 struct resource
*res
;
106 struct rtc_device
*rtc_dev
;
108 unsigned long capabilities
; /* See asm/rtc.h for cap bits */
109 unsigned short periodic_freq
;
112 static int __sh_rtc_interrupt(struct sh_rtc
*rtc
)
114 unsigned int tmp
, pending
;
116 tmp
= readb(rtc
->regbase
+ RCR1
);
117 pending
= tmp
& RCR1_CF
;
119 writeb(tmp
, rtc
->regbase
+ RCR1
);
121 /* Users have requested One x Second IRQ */
122 if (pending
&& rtc
->periodic_freq
& PF_OXS
)
123 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_UF
| RTC_IRQF
);
128 static int __sh_rtc_alarm(struct sh_rtc
*rtc
)
130 unsigned int tmp
, pending
;
132 tmp
= readb(rtc
->regbase
+ RCR1
);
133 pending
= tmp
& RCR1_AF
;
134 tmp
&= ~(RCR1_AF
| RCR1_AIE
);
135 writeb(tmp
, rtc
->regbase
+ RCR1
);
138 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_AF
| RTC_IRQF
);
143 static int __sh_rtc_periodic(struct sh_rtc
*rtc
)
145 struct rtc_device
*rtc_dev
= rtc
->rtc_dev
;
146 struct rtc_task
*irq_task
;
147 unsigned int tmp
, pending
;
149 tmp
= readb(rtc
->regbase
+ RCR2
);
150 pending
= tmp
& RCR2_PEF
;
152 writeb(tmp
, rtc
->regbase
+ RCR2
);
157 /* Half period enabled than one skipped and the next notified */
158 if ((rtc
->periodic_freq
& PF_HP
) && (rtc
->periodic_freq
& PF_COUNT
))
159 rtc
->periodic_freq
&= ~PF_COUNT
;
161 if (rtc
->periodic_freq
& PF_HP
)
162 rtc
->periodic_freq
|= PF_COUNT
;
163 if (rtc
->periodic_freq
& PF_KOU
) {
164 spin_lock(&rtc_dev
->irq_task_lock
);
165 irq_task
= rtc_dev
->irq_task
;
167 irq_task
->func(irq_task
->private_data
);
168 spin_unlock(&rtc_dev
->irq_task_lock
);
170 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_PF
| RTC_IRQF
);
176 static irqreturn_t
sh_rtc_interrupt(int irq
, void *dev_id
)
178 struct sh_rtc
*rtc
= dev_id
;
181 spin_lock(&rtc
->lock
);
182 ret
= __sh_rtc_interrupt(rtc
);
183 spin_unlock(&rtc
->lock
);
185 return IRQ_RETVAL(ret
);
188 static irqreturn_t
sh_rtc_alarm(int irq
, void *dev_id
)
190 struct sh_rtc
*rtc
= dev_id
;
193 spin_lock(&rtc
->lock
);
194 ret
= __sh_rtc_alarm(rtc
);
195 spin_unlock(&rtc
->lock
);
197 return IRQ_RETVAL(ret
);
200 static irqreturn_t
sh_rtc_periodic(int irq
, void *dev_id
)
202 struct sh_rtc
*rtc
= dev_id
;
205 spin_lock(&rtc
->lock
);
206 ret
= __sh_rtc_periodic(rtc
);
207 spin_unlock(&rtc
->lock
);
209 return IRQ_RETVAL(ret
);
212 static irqreturn_t
sh_rtc_shared(int irq
, void *dev_id
)
214 struct sh_rtc
*rtc
= dev_id
;
217 spin_lock(&rtc
->lock
);
218 ret
= __sh_rtc_interrupt(rtc
);
219 ret
|= __sh_rtc_alarm(rtc
);
220 ret
|= __sh_rtc_periodic(rtc
);
221 spin_unlock(&rtc
->lock
);
223 return IRQ_RETVAL(ret
);
226 static int sh_rtc_irq_set_state(struct device
*dev
, int enable
)
228 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
231 spin_lock_irq(&rtc
->lock
);
233 tmp
= readb(rtc
->regbase
+ RCR2
);
236 rtc
->periodic_freq
|= PF_KOU
;
237 tmp
&= ~RCR2_PEF
; /* Clear PES bit */
238 tmp
|= (rtc
->periodic_freq
& ~PF_HP
); /* Set PES2-0 */
240 rtc
->periodic_freq
&= ~PF_KOU
;
241 tmp
&= ~(RCR2_PESMASK
| RCR2_PEF
);
244 writeb(tmp
, rtc
->regbase
+ RCR2
);
246 spin_unlock_irq(&rtc
->lock
);
251 static int sh_rtc_irq_set_freq(struct device
*dev
, int freq
)
253 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
256 spin_lock_irq(&rtc
->lock
);
257 tmp
= rtc
->periodic_freq
& PF_MASK
;
261 rtc
->periodic_freq
= 0x00;
264 rtc
->periodic_freq
= 0x60;
267 rtc
->periodic_freq
= 0x50;
270 rtc
->periodic_freq
= 0x40;
273 rtc
->periodic_freq
= 0x30 | PF_HP
;
276 rtc
->periodic_freq
= 0x30;
279 rtc
->periodic_freq
= 0x20 | PF_HP
;
282 rtc
->periodic_freq
= 0x20;
285 rtc
->periodic_freq
= 0x10 | PF_HP
;
288 rtc
->periodic_freq
= 0x10;
295 rtc
->periodic_freq
|= tmp
;
297 spin_unlock_irq(&rtc
->lock
);
301 static inline void sh_rtc_setaie(struct device
*dev
, unsigned int enable
)
303 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
306 spin_lock_irq(&rtc
->lock
);
308 tmp
= readb(rtc
->regbase
+ RCR1
);
315 writeb(tmp
, rtc
->regbase
+ RCR1
);
317 spin_unlock_irq(&rtc
->lock
);
320 static int sh_rtc_proc(struct device
*dev
, struct seq_file
*seq
)
322 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
325 tmp
= readb(rtc
->regbase
+ RCR1
);
326 seq_printf(seq
, "carry_IRQ\t: %s\n", (tmp
& RCR1_CIE
) ? "yes" : "no");
328 tmp
= readb(rtc
->regbase
+ RCR2
);
329 seq_printf(seq
, "periodic_IRQ\t: %s\n",
330 (tmp
& RCR2_PESMASK
) ? "yes" : "no");
335 static inline void sh_rtc_setcie(struct device
*dev
, unsigned int enable
)
337 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
340 spin_lock_irq(&rtc
->lock
);
342 tmp
= readb(rtc
->regbase
+ RCR1
);
349 writeb(tmp
, rtc
->regbase
+ RCR1
);
351 spin_unlock_irq(&rtc
->lock
);
354 static int sh_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
356 sh_rtc_setaie(dev
, enabled
);
360 static int sh_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
362 struct platform_device
*pdev
= to_platform_device(dev
);
363 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
364 unsigned int sec128
, sec2
, yr
, yr100
, cf_bit
;
369 spin_lock_irq(&rtc
->lock
);
371 tmp
= readb(rtc
->regbase
+ RCR1
);
372 tmp
&= ~RCR1_CF
; /* Clear CF-bit */
374 writeb(tmp
, rtc
->regbase
+ RCR1
);
376 sec128
= readb(rtc
->regbase
+ R64CNT
);
378 tm
->tm_sec
= bcd2bin(readb(rtc
->regbase
+ RSECCNT
));
379 tm
->tm_min
= bcd2bin(readb(rtc
->regbase
+ RMINCNT
));
380 tm
->tm_hour
= bcd2bin(readb(rtc
->regbase
+ RHRCNT
));
381 tm
->tm_wday
= bcd2bin(readb(rtc
->regbase
+ RWKCNT
));
382 tm
->tm_mday
= bcd2bin(readb(rtc
->regbase
+ RDAYCNT
));
383 tm
->tm_mon
= bcd2bin(readb(rtc
->regbase
+ RMONCNT
)) - 1;
385 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
386 yr
= readw(rtc
->regbase
+ RYRCNT
);
387 yr100
= bcd2bin(yr
>> 8);
390 yr
= readb(rtc
->regbase
+ RYRCNT
);
391 yr100
= bcd2bin((yr
== 0x99) ? 0x19 : 0x20);
394 tm
->tm_year
= (yr100
* 100 + bcd2bin(yr
)) - 1900;
396 sec2
= readb(rtc
->regbase
+ R64CNT
);
397 cf_bit
= readb(rtc
->regbase
+ RCR1
) & RCR1_CF
;
399 spin_unlock_irq(&rtc
->lock
);
400 } while (cf_bit
!= 0 || ((sec128
^ sec2
) & RTC_BIT_INVERTED
) != 0);
402 #if RTC_BIT_INVERTED != 0
403 if ((sec128
& RTC_BIT_INVERTED
))
407 /* only keep the carry interrupt enabled if UIE is on */
408 if (!(rtc
->periodic_freq
& PF_OXS
))
409 sh_rtc_setcie(dev
, 0);
411 dev_dbg(dev
, "%s: tm is secs=%d, mins=%d, hours=%d, "
412 "mday=%d, mon=%d, year=%d, wday=%d\n",
414 tm
->tm_sec
, tm
->tm_min
, tm
->tm_hour
,
415 tm
->tm_mday
, tm
->tm_mon
+ 1, tm
->tm_year
, tm
->tm_wday
);
417 return rtc_valid_tm(tm
);
420 static int sh_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
422 struct platform_device
*pdev
= to_platform_device(dev
);
423 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
427 spin_lock_irq(&rtc
->lock
);
429 /* Reset pre-scaler & stop RTC */
430 tmp
= readb(rtc
->regbase
+ RCR2
);
433 writeb(tmp
, rtc
->regbase
+ RCR2
);
435 writeb(bin2bcd(tm
->tm_sec
), rtc
->regbase
+ RSECCNT
);
436 writeb(bin2bcd(tm
->tm_min
), rtc
->regbase
+ RMINCNT
);
437 writeb(bin2bcd(tm
->tm_hour
), rtc
->regbase
+ RHRCNT
);
438 writeb(bin2bcd(tm
->tm_wday
), rtc
->regbase
+ RWKCNT
);
439 writeb(bin2bcd(tm
->tm_mday
), rtc
->regbase
+ RDAYCNT
);
440 writeb(bin2bcd(tm
->tm_mon
+ 1), rtc
->regbase
+ RMONCNT
);
442 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
443 year
= (bin2bcd((tm
->tm_year
+ 1900) / 100) << 8) |
444 bin2bcd(tm
->tm_year
% 100);
445 writew(year
, rtc
->regbase
+ RYRCNT
);
447 year
= tm
->tm_year
% 100;
448 writeb(bin2bcd(year
), rtc
->regbase
+ RYRCNT
);
452 tmp
= readb(rtc
->regbase
+ RCR2
);
454 tmp
|= RCR2_RTCEN
| RCR2_START
;
455 writeb(tmp
, rtc
->regbase
+ RCR2
);
457 spin_unlock_irq(&rtc
->lock
);
462 static inline int sh_rtc_read_alarm_value(struct sh_rtc
*rtc
, int reg_off
)
465 int value
= 0xff; /* return 0xff for ignored values */
467 byte
= readb(rtc
->regbase
+ reg_off
);
469 byte
&= ~AR_ENB
; /* strip the enable bit */
470 value
= bcd2bin(byte
);
476 static int sh_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
478 struct platform_device
*pdev
= to_platform_device(dev
);
479 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
480 struct rtc_time
*tm
= &wkalrm
->time
;
482 spin_lock_irq(&rtc
->lock
);
484 tm
->tm_sec
= sh_rtc_read_alarm_value(rtc
, RSECAR
);
485 tm
->tm_min
= sh_rtc_read_alarm_value(rtc
, RMINAR
);
486 tm
->tm_hour
= sh_rtc_read_alarm_value(rtc
, RHRAR
);
487 tm
->tm_wday
= sh_rtc_read_alarm_value(rtc
, RWKAR
);
488 tm
->tm_mday
= sh_rtc_read_alarm_value(rtc
, RDAYAR
);
489 tm
->tm_mon
= sh_rtc_read_alarm_value(rtc
, RMONAR
);
491 tm
->tm_mon
-= 1; /* RTC is 1-12, tm_mon is 0-11 */
493 wkalrm
->enabled
= (readb(rtc
->regbase
+ RCR1
) & RCR1_AIE
) ? 1 : 0;
495 spin_unlock_irq(&rtc
->lock
);
500 static inline void sh_rtc_write_alarm_value(struct sh_rtc
*rtc
,
501 int value
, int reg_off
)
503 /* < 0 for a value that is ignored */
505 writeb(0, rtc
->regbase
+ reg_off
);
507 writeb(bin2bcd(value
) | AR_ENB
, rtc
->regbase
+ reg_off
);
510 static int sh_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
512 struct platform_device
*pdev
= to_platform_device(dev
);
513 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
515 struct rtc_time
*tm
= &wkalrm
->time
;
518 spin_lock_irq(&rtc
->lock
);
520 /* disable alarm interrupt and clear the alarm flag */
521 rcr1
= readb(rtc
->regbase
+ RCR1
);
522 rcr1
&= ~(RCR1_AF
| RCR1_AIE
);
523 writeb(rcr1
, rtc
->regbase
+ RCR1
);
526 sh_rtc_write_alarm_value(rtc
, tm
->tm_sec
, RSECAR
);
527 sh_rtc_write_alarm_value(rtc
, tm
->tm_min
, RMINAR
);
528 sh_rtc_write_alarm_value(rtc
, tm
->tm_hour
, RHRAR
);
529 sh_rtc_write_alarm_value(rtc
, tm
->tm_wday
, RWKAR
);
530 sh_rtc_write_alarm_value(rtc
, tm
->tm_mday
, RDAYAR
);
534 sh_rtc_write_alarm_value(rtc
, mon
, RMONAR
);
536 if (wkalrm
->enabled
) {
538 writeb(rcr1
, rtc
->regbase
+ RCR1
);
541 spin_unlock_irq(&rtc
->lock
);
546 static const struct rtc_class_ops sh_rtc_ops
= {
547 .read_time
= sh_rtc_read_time
,
548 .set_time
= sh_rtc_set_time
,
549 .read_alarm
= sh_rtc_read_alarm
,
550 .set_alarm
= sh_rtc_set_alarm
,
552 .alarm_irq_enable
= sh_rtc_alarm_irq_enable
,
555 static int __init
sh_rtc_probe(struct platform_device
*pdev
)
558 struct resource
*res
;
563 rtc
= devm_kzalloc(&pdev
->dev
, sizeof(*rtc
), GFP_KERNEL
);
567 spin_lock_init(&rtc
->lock
);
569 /* get periodic/carry/alarm irqs */
570 ret
= platform_get_irq(pdev
, 0);
571 if (unlikely(ret
<= 0)) {
572 dev_err(&pdev
->dev
, "No IRQ resource\n");
576 rtc
->periodic_irq
= ret
;
577 rtc
->carry_irq
= platform_get_irq(pdev
, 1);
578 rtc
->alarm_irq
= platform_get_irq(pdev
, 2);
580 res
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
582 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
583 if (unlikely(res
== NULL
)) {
584 dev_err(&pdev
->dev
, "No IO resource\n");
588 rtc
->regsize
= resource_size(res
);
590 rtc
->res
= devm_request_mem_region(&pdev
->dev
, res
->start
,
591 rtc
->regsize
, pdev
->name
);
592 if (unlikely(!rtc
->res
))
595 rtc
->regbase
= devm_ioremap_nocache(&pdev
->dev
, rtc
->res
->start
,
597 if (unlikely(!rtc
->regbase
))
600 if (!pdev
->dev
.of_node
) {
602 /* With a single device, the clock id is still "rtc0" */
606 snprintf(clk_name
, sizeof(clk_name
), "rtc%d", clk_id
);
608 snprintf(clk_name
, sizeof(clk_name
), "fck");
610 rtc
->clk
= devm_clk_get(&pdev
->dev
, clk_name
);
611 if (IS_ERR(rtc
->clk
)) {
613 * No error handling for rtc->clk intentionally, not all
614 * platforms will have a unique clock for the RTC, and
615 * the clk API can handle the struct clk pointer being
621 clk_enable(rtc
->clk
);
623 rtc
->capabilities
= RTC_DEF_CAPABILITIES
;
626 if (dev_get_platdata(&pdev
->dev
)) {
627 struct sh_rtc_platform_info
*pinfo
=
628 dev_get_platdata(&pdev
->dev
);
631 * Some CPUs have special capabilities in addition to the
632 * default set. Add those in here.
634 rtc
->capabilities
|= pinfo
->capabilities
;
638 if (rtc
->carry_irq
<= 0) {
639 /* register shared periodic/carry/alarm irq */
640 ret
= devm_request_irq(&pdev
->dev
, rtc
->periodic_irq
,
641 sh_rtc_shared
, 0, "sh-rtc", rtc
);
644 "request IRQ failed with %d, IRQ %d\n", ret
,
649 /* register periodic/carry/alarm irqs */
650 ret
= devm_request_irq(&pdev
->dev
, rtc
->periodic_irq
,
651 sh_rtc_periodic
, 0, "sh-rtc period", rtc
);
654 "request period IRQ failed with %d, IRQ %d\n",
655 ret
, rtc
->periodic_irq
);
659 ret
= devm_request_irq(&pdev
->dev
, rtc
->carry_irq
,
660 sh_rtc_interrupt
, 0, "sh-rtc carry", rtc
);
663 "request carry IRQ failed with %d, IRQ %d\n",
664 ret
, rtc
->carry_irq
);
668 ret
= devm_request_irq(&pdev
->dev
, rtc
->alarm_irq
,
669 sh_rtc_alarm
, 0, "sh-rtc alarm", rtc
);
672 "request alarm IRQ failed with %d, IRQ %d\n",
673 ret
, rtc
->alarm_irq
);
678 platform_set_drvdata(pdev
, rtc
);
680 /* everything disabled by default */
681 sh_rtc_irq_set_freq(&pdev
->dev
, 0);
682 sh_rtc_irq_set_state(&pdev
->dev
, 0);
683 sh_rtc_setaie(&pdev
->dev
, 0);
684 sh_rtc_setcie(&pdev
->dev
, 0);
686 rtc
->rtc_dev
= devm_rtc_device_register(&pdev
->dev
, "sh",
687 &sh_rtc_ops
, THIS_MODULE
);
688 if (IS_ERR(rtc
->rtc_dev
)) {
689 ret
= PTR_ERR(rtc
->rtc_dev
);
693 rtc
->rtc_dev
->max_user_freq
= 256;
695 /* reset rtc to epoch 0 if time is invalid */
696 if (rtc_read_time(rtc
->rtc_dev
, &r
) < 0) {
697 rtc_time_to_tm(0, &r
);
698 rtc_set_time(rtc
->rtc_dev
, &r
);
701 device_init_wakeup(&pdev
->dev
, 1);
705 clk_disable(rtc
->clk
);
710 static int __exit
sh_rtc_remove(struct platform_device
*pdev
)
712 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
714 sh_rtc_irq_set_state(&pdev
->dev
, 0);
716 sh_rtc_setaie(&pdev
->dev
, 0);
717 sh_rtc_setcie(&pdev
->dev
, 0);
719 clk_disable(rtc
->clk
);
724 static void sh_rtc_set_irq_wake(struct device
*dev
, int enabled
)
726 struct platform_device
*pdev
= to_platform_device(dev
);
727 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
729 irq_set_irq_wake(rtc
->periodic_irq
, enabled
);
731 if (rtc
->carry_irq
> 0) {
732 irq_set_irq_wake(rtc
->carry_irq
, enabled
);
733 irq_set_irq_wake(rtc
->alarm_irq
, enabled
);
737 static int __maybe_unused
sh_rtc_suspend(struct device
*dev
)
739 if (device_may_wakeup(dev
))
740 sh_rtc_set_irq_wake(dev
, 1);
745 static int __maybe_unused
sh_rtc_resume(struct device
*dev
)
747 if (device_may_wakeup(dev
))
748 sh_rtc_set_irq_wake(dev
, 0);
753 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops
, sh_rtc_suspend
, sh_rtc_resume
);
755 static const struct of_device_id sh_rtc_of_match
[] = {
756 { .compatible
= "renesas,sh-rtc", },
759 MODULE_DEVICE_TABLE(of
, sh_rtc_of_match
);
761 static struct platform_driver sh_rtc_platform_driver
= {
764 .pm
= &sh_rtc_pm_ops
,
765 .of_match_table
= sh_rtc_of_match
,
767 .remove
= __exit_p(sh_rtc_remove
),
770 module_platform_driver_probe(sh_rtc_platform_driver
, sh_rtc_probe
);
772 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
773 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
774 "Jamie Lenehan <lenehan@twibble.org>, "
775 "Angelo Castello <angelo.castello@st.com>");
776 MODULE_LICENSE("GPL");
777 MODULE_ALIAS("platform:" DRV_NAME
);