1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
88 #include <linux/uaccess.h>
92 /* One queue for each sleeping process in the system. */
94 struct list_head list
; /* queue of pending operations */
95 struct task_struct
*sleeper
; /* this process */
96 struct sem_undo
*undo
; /* undo structure */
97 int pid
; /* process id of requesting process */
98 int status
; /* completion status of operation */
99 struct sembuf
*sops
; /* array of pending operations */
100 struct sembuf
*blocking
; /* the operation that blocked */
101 int nsops
; /* number of operations */
102 bool alter
; /* does *sops alter the array? */
103 bool dupsop
; /* sops on more than one sem_num */
106 /* Each task has a list of undo requests. They are executed automatically
107 * when the process exits.
110 struct list_head list_proc
; /* per-process list: *
111 * all undos from one process
113 struct rcu_head rcu
; /* rcu struct for sem_undo */
114 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
115 struct list_head list_id
; /* per semaphore array list:
116 * all undos for one array */
117 int semid
; /* semaphore set identifier */
118 short *semadj
; /* array of adjustments */
119 /* one per semaphore */
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123 * that may be shared among all a CLONE_SYSVSEM task group.
125 struct sem_undo_list
{
128 struct list_head list_proc
;
132 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
134 static int newary(struct ipc_namespace
*, struct ipc_params
*);
135 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
140 #define SEMMSL_FAST 256 /* 512 bytes on stack */
141 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
144 * Switching from the mode suitable for simple ops
145 * to the mode for complex ops is costly. Therefore:
146 * use some hysteresis
148 #define USE_GLOBAL_LOCK_HYSTERESIS 10
152 * a) global sem_lock() for read/write
154 * sem_array.complex_count,
155 * sem_array.pending{_alter,_const},
158 * b) global or semaphore sem_lock() for read/write:
159 * sem_array.sems[i].pending_{const,alter}:
162 * sem_undo_list.list_proc:
163 * * undo_list->lock for write
166 * * global sem_lock() for write
167 * * either local or global sem_lock() for read.
170 * Most ordering is enforced by using spin_lock() and spin_unlock().
171 * The special case is use_global_lock:
172 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173 * using smp_store_release().
174 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175 * smp_load_acquire().
176 * Setting it from 0 to non-zero must be ordered with regards to
177 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178 * is inside a spin_lock() and after a write from 0 to non-zero a
179 * spin_lock()+spin_unlock() is done.
182 #define sc_semmsl sem_ctls[0]
183 #define sc_semmns sem_ctls[1]
184 #define sc_semopm sem_ctls[2]
185 #define sc_semmni sem_ctls[3]
187 int sem_init_ns(struct ipc_namespace
*ns
)
189 ns
->sc_semmsl
= SEMMSL
;
190 ns
->sc_semmns
= SEMMNS
;
191 ns
->sc_semopm
= SEMOPM
;
192 ns
->sc_semmni
= SEMMNI
;
194 return ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
198 void sem_exit_ns(struct ipc_namespace
*ns
)
200 free_ipcs(ns
, &sem_ids(ns
), freeary
);
201 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
202 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
206 int __init
sem_init(void)
208 const int err
= sem_init_ns(&init_ipc_ns
);
210 ipc_init_proc_interface("sysvipc/sem",
211 " key semid perms nsems uid gid cuid cgid otime ctime\n",
212 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
217 * unmerge_queues - unmerge queues, if possible.
218 * @sma: semaphore array
220 * The function unmerges the wait queues if complex_count is 0.
221 * It must be called prior to dropping the global semaphore array lock.
223 static void unmerge_queues(struct sem_array
*sma
)
225 struct sem_queue
*q
, *tq
;
227 /* complex operations still around? */
228 if (sma
->complex_count
)
231 * We will switch back to simple mode.
232 * Move all pending operation back into the per-semaphore
235 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
237 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
239 list_add_tail(&q
->list
, &curr
->pending_alter
);
241 INIT_LIST_HEAD(&sma
->pending_alter
);
245 * merge_queues - merge single semop queues into global queue
246 * @sma: semaphore array
248 * This function merges all per-semaphore queues into the global queue.
249 * It is necessary to achieve FIFO ordering for the pending single-sop
250 * operations when a multi-semop operation must sleep.
251 * Only the alter operations must be moved, the const operations can stay.
253 static void merge_queues(struct sem_array
*sma
)
256 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
257 struct sem
*sem
= &sma
->sems
[i
];
259 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
263 static void sem_rcu_free(struct rcu_head
*head
)
265 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
266 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
268 security_sem_free(sma
);
273 * Enter the mode suitable for non-simple operations:
274 * Caller must own sem_perm.lock.
276 static void complexmode_enter(struct sem_array
*sma
)
281 if (sma
->use_global_lock
> 0) {
283 * We are already in global lock mode.
284 * Nothing to do, just reset the
285 * counter until we return to simple mode.
287 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
290 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
292 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
294 spin_lock(&sem
->lock
);
295 spin_unlock(&sem
->lock
);
300 * Try to leave the mode that disallows simple operations:
301 * Caller must own sem_perm.lock.
303 static void complexmode_tryleave(struct sem_array
*sma
)
305 if (sma
->complex_count
) {
306 /* Complex ops are sleeping.
307 * We must stay in complex mode
311 if (sma
->use_global_lock
== 1) {
313 * Immediately after setting use_global_lock to 0,
314 * a simple op can start. Thus: all memory writes
315 * performed by the current operation must be visible
316 * before we set use_global_lock to 0.
318 smp_store_release(&sma
->use_global_lock
, 0);
320 sma
->use_global_lock
--;
324 #define SEM_GLOBAL_LOCK (-1)
326 * If the request contains only one semaphore operation, and there are
327 * no complex transactions pending, lock only the semaphore involved.
328 * Otherwise, lock the entire semaphore array, since we either have
329 * multiple semaphores in our own semops, or we need to look at
330 * semaphores from other pending complex operations.
332 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
338 /* Complex operation - acquire a full lock */
339 ipc_lock_object(&sma
->sem_perm
);
341 /* Prevent parallel simple ops */
342 complexmode_enter(sma
);
343 return SEM_GLOBAL_LOCK
;
347 * Only one semaphore affected - try to optimize locking.
348 * Optimized locking is possible if no complex operation
349 * is either enqueued or processed right now.
351 * Both facts are tracked by use_global_mode.
353 sem
= &sma
->sems
[sops
->sem_num
];
356 * Initial check for use_global_lock. Just an optimization,
357 * no locking, no memory barrier.
359 if (!sma
->use_global_lock
) {
361 * It appears that no complex operation is around.
362 * Acquire the per-semaphore lock.
364 spin_lock(&sem
->lock
);
366 /* pairs with smp_store_release() */
367 if (!smp_load_acquire(&sma
->use_global_lock
)) {
368 /* fast path successful! */
369 return sops
->sem_num
;
371 spin_unlock(&sem
->lock
);
374 /* slow path: acquire the full lock */
375 ipc_lock_object(&sma
->sem_perm
);
377 if (sma
->use_global_lock
== 0) {
379 * The use_global_lock mode ended while we waited for
380 * sma->sem_perm.lock. Thus we must switch to locking
382 * Unlike in the fast path, there is no need to recheck
383 * sma->use_global_lock after we have acquired sem->lock:
384 * We own sma->sem_perm.lock, thus use_global_lock cannot
387 spin_lock(&sem
->lock
);
389 ipc_unlock_object(&sma
->sem_perm
);
390 return sops
->sem_num
;
393 * Not a false alarm, thus continue to use the global lock
394 * mode. No need for complexmode_enter(), this was done by
395 * the caller that has set use_global_mode to non-zero.
397 return SEM_GLOBAL_LOCK
;
401 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
403 if (locknum
== SEM_GLOBAL_LOCK
) {
405 complexmode_tryleave(sma
);
406 ipc_unlock_object(&sma
->sem_perm
);
408 struct sem
*sem
= &sma
->sems
[locknum
];
409 spin_unlock(&sem
->lock
);
414 * sem_lock_(check_) routines are called in the paths where the rwsem
417 * The caller holds the RCU read lock.
419 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
421 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
424 return ERR_CAST(ipcp
);
426 return container_of(ipcp
, struct sem_array
, sem_perm
);
429 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
432 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
435 return ERR_CAST(ipcp
);
437 return container_of(ipcp
, struct sem_array
, sem_perm
);
440 static inline void sem_lock_and_putref(struct sem_array
*sma
)
442 sem_lock(sma
, NULL
, -1);
443 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
446 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
448 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
451 static struct sem_array
*sem_alloc(size_t nsems
)
453 struct sem_array
*sma
;
456 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
459 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
460 sma
= kvmalloc(size
, GFP_KERNEL
);
464 memset(sma
, 0, size
);
470 * newary - Create a new semaphore set
472 * @params: ptr to the structure that contains key, semflg and nsems
474 * Called with sem_ids.rwsem held (as a writer)
476 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
479 struct sem_array
*sma
;
480 key_t key
= params
->key
;
481 int nsems
= params
->u
.nsems
;
482 int semflg
= params
->flg
;
487 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
490 sma
= sem_alloc(nsems
);
494 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
495 sma
->sem_perm
.key
= key
;
497 sma
->sem_perm
.security
= NULL
;
498 retval
= security_sem_alloc(sma
);
504 for (i
= 0; i
< nsems
; i
++) {
505 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
506 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
507 spin_lock_init(&sma
->sems
[i
].lock
);
510 sma
->complex_count
= 0;
511 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
512 INIT_LIST_HEAD(&sma
->pending_alter
);
513 INIT_LIST_HEAD(&sma
->pending_const
);
514 INIT_LIST_HEAD(&sma
->list_id
);
515 sma
->sem_nsems
= nsems
;
516 sma
->sem_ctime
= ktime_get_real_seconds();
518 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
520 call_rcu(&sma
->sem_perm
.rcu
, sem_rcu_free
);
523 ns
->used_sems
+= nsems
;
528 return sma
->sem_perm
.id
;
533 * Called with sem_ids.rwsem and ipcp locked.
535 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
537 struct sem_array
*sma
;
539 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
540 return security_sem_associate(sma
, semflg
);
544 * Called with sem_ids.rwsem and ipcp locked.
546 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
547 struct ipc_params
*params
)
549 struct sem_array
*sma
;
551 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
552 if (params
->u
.nsems
> sma
->sem_nsems
)
558 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
560 struct ipc_namespace
*ns
;
561 static const struct ipc_ops sem_ops
= {
563 .associate
= sem_security
,
564 .more_checks
= sem_more_checks
,
566 struct ipc_params sem_params
;
568 ns
= current
->nsproxy
->ipc_ns
;
570 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
573 sem_params
.key
= key
;
574 sem_params
.flg
= semflg
;
575 sem_params
.u
.nsems
= nsems
;
577 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
581 * perform_atomic_semop[_slow] - Attempt to perform semaphore
582 * operations on a given array.
583 * @sma: semaphore array
584 * @q: struct sem_queue that describes the operation
586 * Caller blocking are as follows, based the value
587 * indicated by the semaphore operation (sem_op):
589 * (1) >0 never blocks.
590 * (2) 0 (wait-for-zero operation): semval is non-zero.
591 * (3) <0 attempting to decrement semval to a value smaller than zero.
593 * Returns 0 if the operation was possible.
594 * Returns 1 if the operation is impossible, the caller must sleep.
595 * Returns <0 for error codes.
597 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
599 int result
, sem_op
, nsops
, pid
;
609 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
610 curr
= &sma
->sems
[sop
->sem_num
];
611 sem_op
= sop
->sem_op
;
612 result
= curr
->semval
;
614 if (!sem_op
&& result
)
623 if (sop
->sem_flg
& SEM_UNDO
) {
624 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
625 /* Exceeding the undo range is an error. */
626 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
628 un
->semadj
[sop
->sem_num
] = undo
;
631 curr
->semval
= result
;
636 while (sop
>= sops
) {
637 sma
->sems
[sop
->sem_num
].sempid
= pid
;
650 if (sop
->sem_flg
& IPC_NOWAIT
)
657 while (sop
>= sops
) {
658 sem_op
= sop
->sem_op
;
659 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
660 if (sop
->sem_flg
& SEM_UNDO
)
661 un
->semadj
[sop
->sem_num
] += sem_op
;
668 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
670 int result
, sem_op
, nsops
;
680 if (unlikely(q
->dupsop
))
681 return perform_atomic_semop_slow(sma
, q
);
684 * We scan the semaphore set twice, first to ensure that the entire
685 * operation can succeed, therefore avoiding any pointless writes
686 * to shared memory and having to undo such changes in order to block
687 * until the operations can go through.
689 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
690 curr
= &sma
->sems
[sop
->sem_num
];
691 sem_op
= sop
->sem_op
;
692 result
= curr
->semval
;
694 if (!sem_op
&& result
)
695 goto would_block
; /* wait-for-zero */
704 if (sop
->sem_flg
& SEM_UNDO
) {
705 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
707 /* Exceeding the undo range is an error. */
708 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
713 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
714 curr
= &sma
->sems
[sop
->sem_num
];
715 sem_op
= sop
->sem_op
;
716 result
= curr
->semval
;
718 if (sop
->sem_flg
& SEM_UNDO
) {
719 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
721 un
->semadj
[sop
->sem_num
] = undo
;
723 curr
->semval
+= sem_op
;
724 curr
->sempid
= q
->pid
;
731 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
734 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
735 struct wake_q_head
*wake_q
)
737 wake_q_add(wake_q
, q
->sleeper
);
739 * Rely on the above implicit barrier, such that we can
740 * ensure that we hold reference to the task before setting
741 * q->status. Otherwise we could race with do_exit if the
742 * task is awoken by an external event before calling
745 WRITE_ONCE(q
->status
, error
);
748 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
752 sma
->complex_count
--;
755 /** check_restart(sma, q)
756 * @sma: semaphore array
757 * @q: the operation that just completed
759 * update_queue is O(N^2) when it restarts scanning the whole queue of
760 * waiting operations. Therefore this function checks if the restart is
761 * really necessary. It is called after a previously waiting operation
762 * modified the array.
763 * Note that wait-for-zero operations are handled without restart.
765 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
767 /* pending complex alter operations are too difficult to analyse */
768 if (!list_empty(&sma
->pending_alter
))
771 /* we were a sleeping complex operation. Too difficult */
775 /* It is impossible that someone waits for the new value:
776 * - complex operations always restart.
777 * - wait-for-zero are handled seperately.
778 * - q is a previously sleeping simple operation that
779 * altered the array. It must be a decrement, because
780 * simple increments never sleep.
781 * - If there are older (higher priority) decrements
782 * in the queue, then they have observed the original
783 * semval value and couldn't proceed. The operation
784 * decremented to value - thus they won't proceed either.
790 * wake_const_ops - wake up non-alter tasks
791 * @sma: semaphore array.
792 * @semnum: semaphore that was modified.
793 * @wake_q: lockless wake-queue head.
795 * wake_const_ops must be called after a semaphore in a semaphore array
796 * was set to 0. If complex const operations are pending, wake_const_ops must
797 * be called with semnum = -1, as well as with the number of each modified
799 * The tasks that must be woken up are added to @wake_q. The return code
800 * is stored in q->pid.
801 * The function returns 1 if at least one operation was completed successfully.
803 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
804 struct wake_q_head
*wake_q
)
806 struct sem_queue
*q
, *tmp
;
807 struct list_head
*pending_list
;
808 int semop_completed
= 0;
811 pending_list
= &sma
->pending_const
;
813 pending_list
= &sma
->sems
[semnum
].pending_const
;
815 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
816 int error
= perform_atomic_semop(sma
, q
);
820 /* operation completed, remove from queue & wakeup */
821 unlink_queue(sma
, q
);
823 wake_up_sem_queue_prepare(q
, error
, wake_q
);
828 return semop_completed
;
832 * do_smart_wakeup_zero - wakeup all wait for zero tasks
833 * @sma: semaphore array
834 * @sops: operations that were performed
835 * @nsops: number of operations
836 * @wake_q: lockless wake-queue head
838 * Checks all required queue for wait-for-zero operations, based
839 * on the actual changes that were performed on the semaphore array.
840 * The function returns 1 if at least one operation was completed successfully.
842 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
843 int nsops
, struct wake_q_head
*wake_q
)
846 int semop_completed
= 0;
849 /* first: the per-semaphore queues, if known */
851 for (i
= 0; i
< nsops
; i
++) {
852 int num
= sops
[i
].sem_num
;
854 if (sma
->sems
[num
].semval
== 0) {
856 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
861 * No sops means modified semaphores not known.
862 * Assume all were changed.
864 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
865 if (sma
->sems
[i
].semval
== 0) {
867 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
872 * If one of the modified semaphores got 0,
873 * then check the global queue, too.
876 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
878 return semop_completed
;
883 * update_queue - look for tasks that can be completed.
884 * @sma: semaphore array.
885 * @semnum: semaphore that was modified.
886 * @wake_q: lockless wake-queue head.
888 * update_queue must be called after a semaphore in a semaphore array
889 * was modified. If multiple semaphores were modified, update_queue must
890 * be called with semnum = -1, as well as with the number of each modified
892 * The tasks that must be woken up are added to @wake_q. The return code
893 * is stored in q->pid.
894 * The function internally checks if const operations can now succeed.
896 * The function return 1 if at least one semop was completed successfully.
898 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
900 struct sem_queue
*q
, *tmp
;
901 struct list_head
*pending_list
;
902 int semop_completed
= 0;
905 pending_list
= &sma
->pending_alter
;
907 pending_list
= &sma
->sems
[semnum
].pending_alter
;
910 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
913 /* If we are scanning the single sop, per-semaphore list of
914 * one semaphore and that semaphore is 0, then it is not
915 * necessary to scan further: simple increments
916 * that affect only one entry succeed immediately and cannot
917 * be in the per semaphore pending queue, and decrements
918 * cannot be successful if the value is already 0.
920 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
923 error
= perform_atomic_semop(sma
, q
);
925 /* Does q->sleeper still need to sleep? */
929 unlink_queue(sma
, q
);
935 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
936 restart
= check_restart(sma
, q
);
939 wake_up_sem_queue_prepare(q
, error
, wake_q
);
943 return semop_completed
;
947 * set_semotime - set sem_otime
948 * @sma: semaphore array
949 * @sops: operations that modified the array, may be NULL
951 * sem_otime is replicated to avoid cache line trashing.
952 * This function sets one instance to the current time.
954 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
957 sma
->sems
[0].sem_otime
= get_seconds();
959 sma
->sems
[sops
[0].sem_num
].sem_otime
=
965 * do_smart_update - optimized update_queue
966 * @sma: semaphore array
967 * @sops: operations that were performed
968 * @nsops: number of operations
969 * @otime: force setting otime
970 * @wake_q: lockless wake-queue head
972 * do_smart_update() does the required calls to update_queue and wakeup_zero,
973 * based on the actual changes that were performed on the semaphore array.
974 * Note that the function does not do the actual wake-up: the caller is
975 * responsible for calling wake_up_q().
976 * It is safe to perform this call after dropping all locks.
978 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
979 int otime
, struct wake_q_head
*wake_q
)
983 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
985 if (!list_empty(&sma
->pending_alter
)) {
986 /* semaphore array uses the global queue - just process it. */
987 otime
|= update_queue(sma
, -1, wake_q
);
991 * No sops, thus the modified semaphores are not
994 for (i
= 0; i
< sma
->sem_nsems
; i
++)
995 otime
|= update_queue(sma
, i
, wake_q
);
998 * Check the semaphores that were increased:
999 * - No complex ops, thus all sleeping ops are
1001 * - if we decreased the value, then any sleeping
1002 * semaphore ops wont be able to run: If the
1003 * previous value was too small, then the new
1004 * value will be too small, too.
1006 for (i
= 0; i
< nsops
; i
++) {
1007 if (sops
[i
].sem_op
> 0) {
1008 otime
|= update_queue(sma
,
1009 sops
[i
].sem_num
, wake_q
);
1015 set_semotime(sma
, sops
);
1019 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1021 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1024 struct sembuf
*sop
= q
->blocking
;
1027 * Linux always (since 0.99.10) reported a task as sleeping on all
1028 * semaphores. This violates SUS, therefore it was changed to the
1029 * standard compliant behavior.
1030 * Give the administrators a chance to notice that an application
1031 * might misbehave because it relies on the Linux behavior.
1033 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1034 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1035 current
->comm
, task_pid_nr(current
));
1037 if (sop
->sem_num
!= semnum
)
1040 if (count_zero
&& sop
->sem_op
== 0)
1042 if (!count_zero
&& sop
->sem_op
< 0)
1048 /* The following counts are associated to each semaphore:
1049 * semncnt number of tasks waiting on semval being nonzero
1050 * semzcnt number of tasks waiting on semval being zero
1052 * Per definition, a task waits only on the semaphore of the first semop
1053 * that cannot proceed, even if additional operation would block, too.
1055 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1058 struct list_head
*l
;
1059 struct sem_queue
*q
;
1063 /* First: check the simple operations. They are easy to evaluate */
1065 l
= &sma
->sems
[semnum
].pending_const
;
1067 l
= &sma
->sems
[semnum
].pending_alter
;
1069 list_for_each_entry(q
, l
, list
) {
1070 /* all task on a per-semaphore list sleep on exactly
1076 /* Then: check the complex operations. */
1077 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1078 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1081 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1082 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1088 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1089 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1090 * remains locked on exit.
1092 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1094 struct sem_undo
*un
, *tu
;
1095 struct sem_queue
*q
, *tq
;
1096 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1098 DEFINE_WAKE_Q(wake_q
);
1100 /* Free the existing undo structures for this semaphore set. */
1101 ipc_assert_locked_object(&sma
->sem_perm
);
1102 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1103 list_del(&un
->list_id
);
1104 spin_lock(&un
->ulp
->lock
);
1106 list_del_rcu(&un
->list_proc
);
1107 spin_unlock(&un
->ulp
->lock
);
1111 /* Wake up all pending processes and let them fail with EIDRM. */
1112 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1113 unlink_queue(sma
, q
);
1114 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1117 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1118 unlink_queue(sma
, q
);
1119 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1121 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1122 struct sem
*sem
= &sma
->sems
[i
];
1123 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1124 unlink_queue(sma
, q
);
1125 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1127 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1128 unlink_queue(sma
, q
);
1129 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1133 /* Remove the semaphore set from the IDR */
1135 sem_unlock(sma
, -1);
1139 ns
->used_sems
-= sma
->sem_nsems
;
1140 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1143 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1147 return copy_to_user(buf
, in
, sizeof(*in
));
1150 struct semid_ds out
;
1152 memset(&out
, 0, sizeof(out
));
1154 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1156 out
.sem_otime
= in
->sem_otime
;
1157 out
.sem_ctime
= in
->sem_ctime
;
1158 out
.sem_nsems
= in
->sem_nsems
;
1160 return copy_to_user(buf
, &out
, sizeof(out
));
1167 static time64_t
get_semotime(struct sem_array
*sma
)
1172 res
= sma
->sems
[0].sem_otime
;
1173 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1174 time64_t to
= sma
->sems
[i
].sem_otime
;
1182 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1183 int cmd
, struct semid64_ds
*semid64
)
1185 struct sem_array
*sma
;
1189 memset(semid64
, 0, sizeof(*semid64
));
1192 if (cmd
== SEM_STAT
) {
1193 sma
= sem_obtain_object(ns
, semid
);
1198 id
= sma
->sem_perm
.id
;
1200 sma
= sem_obtain_object_check(ns
, semid
);
1208 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1211 err
= security_sem_semctl(sma
, cmd
);
1215 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1216 semid64
->sem_otime
= get_semotime(sma
);
1217 semid64
->sem_ctime
= sma
->sem_ctime
;
1218 semid64
->sem_nsems
= sma
->sem_nsems
;
1227 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1228 int cmd
, void __user
*p
)
1230 struct seminfo seminfo
;
1234 err
= security_sem_semctl(NULL
, cmd
);
1238 memset(&seminfo
, 0, sizeof(seminfo
));
1239 seminfo
.semmni
= ns
->sc_semmni
;
1240 seminfo
.semmns
= ns
->sc_semmns
;
1241 seminfo
.semmsl
= ns
->sc_semmsl
;
1242 seminfo
.semopm
= ns
->sc_semopm
;
1243 seminfo
.semvmx
= SEMVMX
;
1244 seminfo
.semmnu
= SEMMNU
;
1245 seminfo
.semmap
= SEMMAP
;
1246 seminfo
.semume
= SEMUME
;
1247 down_read(&sem_ids(ns
).rwsem
);
1248 if (cmd
== SEM_INFO
) {
1249 seminfo
.semusz
= sem_ids(ns
).in_use
;
1250 seminfo
.semaem
= ns
->used_sems
;
1252 seminfo
.semusz
= SEMUSZ
;
1253 seminfo
.semaem
= SEMAEM
;
1255 max_id
= ipc_get_maxid(&sem_ids(ns
));
1256 up_read(&sem_ids(ns
).rwsem
);
1257 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1259 return (max_id
< 0) ? 0 : max_id
;
1262 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1265 struct sem_undo
*un
;
1266 struct sem_array
*sma
;
1269 DEFINE_WAKE_Q(wake_q
);
1271 if (val
> SEMVMX
|| val
< 0)
1275 sma
= sem_obtain_object_check(ns
, semid
);
1278 return PTR_ERR(sma
);
1281 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1287 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1292 err
= security_sem_semctl(sma
, SETVAL
);
1298 sem_lock(sma
, NULL
, -1);
1300 if (!ipc_valid_object(&sma
->sem_perm
)) {
1301 sem_unlock(sma
, -1);
1306 curr
= &sma
->sems
[semnum
];
1308 ipc_assert_locked_object(&sma
->sem_perm
);
1309 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1310 un
->semadj
[semnum
] = 0;
1313 curr
->sempid
= task_tgid_vnr(current
);
1314 sma
->sem_ctime
= ktime_get_real_seconds();
1315 /* maybe some queued-up processes were waiting for this */
1316 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1317 sem_unlock(sma
, -1);
1323 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1324 int cmd
, void __user
*p
)
1326 struct sem_array
*sma
;
1329 ushort fast_sem_io
[SEMMSL_FAST
];
1330 ushort
*sem_io
= fast_sem_io
;
1331 DEFINE_WAKE_Q(wake_q
);
1334 sma
= sem_obtain_object_check(ns
, semid
);
1337 return PTR_ERR(sma
);
1340 nsems
= sma
->sem_nsems
;
1343 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1344 goto out_rcu_wakeup
;
1346 err
= security_sem_semctl(sma
, cmd
);
1348 goto out_rcu_wakeup
;
1354 ushort __user
*array
= p
;
1357 sem_lock(sma
, NULL
, -1);
1358 if (!ipc_valid_object(&sma
->sem_perm
)) {
1362 if (nsems
> SEMMSL_FAST
) {
1363 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1367 sem_unlock(sma
, -1);
1369 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1371 if (sem_io
== NULL
) {
1372 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1377 sem_lock_and_putref(sma
);
1378 if (!ipc_valid_object(&sma
->sem_perm
)) {
1383 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1384 sem_io
[i
] = sma
->sems
[i
].semval
;
1385 sem_unlock(sma
, -1);
1388 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1395 struct sem_undo
*un
;
1397 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1399 goto out_rcu_wakeup
;
1403 if (nsems
> SEMMSL_FAST
) {
1404 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1406 if (sem_io
== NULL
) {
1407 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1412 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1413 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1418 for (i
= 0; i
< nsems
; i
++) {
1419 if (sem_io
[i
] > SEMVMX
) {
1420 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1426 sem_lock_and_putref(sma
);
1427 if (!ipc_valid_object(&sma
->sem_perm
)) {
1432 for (i
= 0; i
< nsems
; i
++) {
1433 sma
->sems
[i
].semval
= sem_io
[i
];
1434 sma
->sems
[i
].sempid
= task_tgid_vnr(current
);
1437 ipc_assert_locked_object(&sma
->sem_perm
);
1438 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1439 for (i
= 0; i
< nsems
; i
++)
1442 sma
->sem_ctime
= ktime_get_real_seconds();
1443 /* maybe some queued-up processes were waiting for this */
1444 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1448 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1451 if (semnum
< 0 || semnum
>= nsems
)
1452 goto out_rcu_wakeup
;
1454 sem_lock(sma
, NULL
, -1);
1455 if (!ipc_valid_object(&sma
->sem_perm
)) {
1459 curr
= &sma
->sems
[semnum
];
1469 err
= count_semcnt(sma
, semnum
, 0);
1472 err
= count_semcnt(sma
, semnum
, 1);
1477 sem_unlock(sma
, -1);
1482 if (sem_io
!= fast_sem_io
)
1487 static inline unsigned long
1488 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1492 if (copy_from_user(out
, buf
, sizeof(*out
)))
1497 struct semid_ds tbuf_old
;
1499 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1502 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1503 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1504 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1514 * This function handles some semctl commands which require the rwsem
1515 * to be held in write mode.
1516 * NOTE: no locks must be held, the rwsem is taken inside this function.
1518 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1519 int cmd
, struct semid64_ds
*semid64
)
1521 struct sem_array
*sma
;
1523 struct kern_ipc_perm
*ipcp
;
1525 down_write(&sem_ids(ns
).rwsem
);
1528 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1529 &semid64
->sem_perm
, 0);
1531 err
= PTR_ERR(ipcp
);
1535 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1537 err
= security_sem_semctl(sma
, cmd
);
1543 sem_lock(sma
, NULL
, -1);
1544 /* freeary unlocks the ipc object and rcu */
1548 sem_lock(sma
, NULL
, -1);
1549 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1552 sma
->sem_ctime
= ktime_get_real_seconds();
1560 sem_unlock(sma
, -1);
1564 up_write(&sem_ids(ns
).rwsem
);
1568 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1571 struct ipc_namespace
*ns
;
1572 void __user
*p
= (void __user
*)arg
;
1573 struct semid64_ds semid64
;
1579 version
= ipc_parse_version(&cmd
);
1580 ns
= current
->nsproxy
->ipc_ns
;
1585 return semctl_info(ns
, semid
, cmd
, p
);
1588 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1591 if (copy_semid_to_user(p
, &semid64
, version
))
1600 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1603 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1604 /* big-endian 64bit */
1607 /* 32bit or little-endian 64bit */
1610 return semctl_setval(ns
, semid
, semnum
, val
);
1613 if (copy_semid_from_user(&semid64
, p
, version
))
1616 return semctl_down(ns
, semid
, cmd
, &semid64
);
1622 #ifdef CONFIG_COMPAT
1624 struct compat_semid_ds
{
1625 struct compat_ipc_perm sem_perm
;
1626 compat_time_t sem_otime
;
1627 compat_time_t sem_ctime
;
1628 compat_uptr_t sem_base
;
1629 compat_uptr_t sem_pending
;
1630 compat_uptr_t sem_pending_last
;
1632 unsigned short sem_nsems
;
1635 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1638 memset(out
, 0, sizeof(*out
));
1639 if (version
== IPC_64
) {
1640 struct compat_semid64_ds
*p
= buf
;
1641 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1643 struct compat_semid_ds
*p
= buf
;
1644 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1648 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1651 if (version
== IPC_64
) {
1652 struct compat_semid64_ds v
;
1653 memset(&v
, 0, sizeof(v
));
1654 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1655 v
.sem_otime
= in
->sem_otime
;
1656 v
.sem_ctime
= in
->sem_ctime
;
1657 v
.sem_nsems
= in
->sem_nsems
;
1658 return copy_to_user(buf
, &v
, sizeof(v
));
1660 struct compat_semid_ds v
;
1661 memset(&v
, 0, sizeof(v
));
1662 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1663 v
.sem_otime
= in
->sem_otime
;
1664 v
.sem_ctime
= in
->sem_ctime
;
1665 v
.sem_nsems
= in
->sem_nsems
;
1666 return copy_to_user(buf
, &v
, sizeof(v
));
1670 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1672 void __user
*p
= compat_ptr(arg
);
1673 struct ipc_namespace
*ns
;
1674 struct semid64_ds semid64
;
1675 int version
= compat_ipc_parse_version(&cmd
);
1678 ns
= current
->nsproxy
->ipc_ns
;
1683 switch (cmd
& (~IPC_64
)) {
1686 return semctl_info(ns
, semid
, cmd
, p
);
1689 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1692 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1701 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1703 return semctl_setval(ns
, semid
, semnum
, arg
);
1705 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1709 return semctl_down(ns
, semid
, cmd
, &semid64
);
1716 /* If the task doesn't already have a undo_list, then allocate one
1717 * here. We guarantee there is only one thread using this undo list,
1718 * and current is THE ONE
1720 * If this allocation and assignment succeeds, but later
1721 * portions of this code fail, there is no need to free the sem_undo_list.
1722 * Just let it stay associated with the task, and it'll be freed later
1725 * This can block, so callers must hold no locks.
1727 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1729 struct sem_undo_list
*undo_list
;
1731 undo_list
= current
->sysvsem
.undo_list
;
1733 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1734 if (undo_list
== NULL
)
1736 spin_lock_init(&undo_list
->lock
);
1737 refcount_set(&undo_list
->refcnt
, 1);
1738 INIT_LIST_HEAD(&undo_list
->list_proc
);
1740 current
->sysvsem
.undo_list
= undo_list
;
1742 *undo_listp
= undo_list
;
1746 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1748 struct sem_undo
*un
;
1750 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1751 if (un
->semid
== semid
)
1757 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1759 struct sem_undo
*un
;
1761 assert_spin_locked(&ulp
->lock
);
1763 un
= __lookup_undo(ulp
, semid
);
1765 list_del_rcu(&un
->list_proc
);
1766 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1772 * find_alloc_undo - lookup (and if not present create) undo array
1774 * @semid: semaphore array id
1776 * The function looks up (and if not present creates) the undo structure.
1777 * The size of the undo structure depends on the size of the semaphore
1778 * array, thus the alloc path is not that straightforward.
1779 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1780 * performs a rcu_read_lock().
1782 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1784 struct sem_array
*sma
;
1785 struct sem_undo_list
*ulp
;
1786 struct sem_undo
*un
, *new;
1789 error
= get_undo_list(&ulp
);
1791 return ERR_PTR(error
);
1794 spin_lock(&ulp
->lock
);
1795 un
= lookup_undo(ulp
, semid
);
1796 spin_unlock(&ulp
->lock
);
1797 if (likely(un
!= NULL
))
1800 /* no undo structure around - allocate one. */
1801 /* step 1: figure out the size of the semaphore array */
1802 sma
= sem_obtain_object_check(ns
, semid
);
1805 return ERR_CAST(sma
);
1808 nsems
= sma
->sem_nsems
;
1809 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1811 un
= ERR_PTR(-EIDRM
);
1816 /* step 2: allocate new undo structure */
1817 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1819 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1820 return ERR_PTR(-ENOMEM
);
1823 /* step 3: Acquire the lock on semaphore array */
1825 sem_lock_and_putref(sma
);
1826 if (!ipc_valid_object(&sma
->sem_perm
)) {
1827 sem_unlock(sma
, -1);
1830 un
= ERR_PTR(-EIDRM
);
1833 spin_lock(&ulp
->lock
);
1836 * step 4: check for races: did someone else allocate the undo struct?
1838 un
= lookup_undo(ulp
, semid
);
1843 /* step 5: initialize & link new undo structure */
1844 new->semadj
= (short *) &new[1];
1847 assert_spin_locked(&ulp
->lock
);
1848 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1849 ipc_assert_locked_object(&sma
->sem_perm
);
1850 list_add(&new->list_id
, &sma
->list_id
);
1854 spin_unlock(&ulp
->lock
);
1855 sem_unlock(sma
, -1);
1860 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1861 unsigned nsops
, const struct timespec64
*timeout
)
1863 int error
= -EINVAL
;
1864 struct sem_array
*sma
;
1865 struct sembuf fast_sops
[SEMOPM_FAST
];
1866 struct sembuf
*sops
= fast_sops
, *sop
;
1867 struct sem_undo
*un
;
1869 bool undos
= false, alter
= false, dupsop
= false;
1870 struct sem_queue queue
;
1871 unsigned long dup
= 0, jiffies_left
= 0;
1872 struct ipc_namespace
*ns
;
1874 ns
= current
->nsproxy
->ipc_ns
;
1876 if (nsops
< 1 || semid
< 0)
1878 if (nsops
> ns
->sc_semopm
)
1880 if (nsops
> SEMOPM_FAST
) {
1881 sops
= kvmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1886 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1892 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1893 timeout
->tv_nsec
>= 1000000000L) {
1897 jiffies_left
= timespec64_to_jiffies(timeout
);
1901 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1902 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1904 if (sop
->sem_num
>= max
)
1906 if (sop
->sem_flg
& SEM_UNDO
)
1910 * There was a previous alter access that appears
1911 * to have accessed the same semaphore, thus use
1912 * the dupsop logic. "appears", because the detection
1913 * can only check % BITS_PER_LONG.
1917 if (sop
->sem_op
!= 0) {
1924 /* On success, find_alloc_undo takes the rcu_read_lock */
1925 un
= find_alloc_undo(ns
, semid
);
1927 error
= PTR_ERR(un
);
1935 sma
= sem_obtain_object_check(ns
, semid
);
1938 error
= PTR_ERR(sma
);
1943 if (max
>= sma
->sem_nsems
) {
1949 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
1954 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1961 locknum
= sem_lock(sma
, sops
, nsops
);
1963 * We eventually might perform the following check in a lockless
1964 * fashion, considering ipc_valid_object() locking constraints.
1965 * If nsops == 1 and there is no contention for sem_perm.lock, then
1966 * only a per-semaphore lock is held and it's OK to proceed with the
1967 * check below. More details on the fine grained locking scheme
1968 * entangled here and why it's RMID race safe on comments at sem_lock()
1970 if (!ipc_valid_object(&sma
->sem_perm
))
1971 goto out_unlock_free
;
1973 * semid identifiers are not unique - find_alloc_undo may have
1974 * allocated an undo structure, it was invalidated by an RMID
1975 * and now a new array with received the same id. Check and fail.
1976 * This case can be detected checking un->semid. The existence of
1977 * "un" itself is guaranteed by rcu.
1979 if (un
&& un
->semid
== -1)
1980 goto out_unlock_free
;
1983 queue
.nsops
= nsops
;
1985 queue
.pid
= task_tgid_vnr(current
);
1986 queue
.alter
= alter
;
1987 queue
.dupsop
= dupsop
;
1989 error
= perform_atomic_semop(sma
, &queue
);
1990 if (error
== 0) { /* non-blocking succesfull path */
1991 DEFINE_WAKE_Q(wake_q
);
1994 * If the operation was successful, then do
1995 * the required updates.
1998 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2000 set_semotime(sma
, sops
);
2002 sem_unlock(sma
, locknum
);
2008 if (error
< 0) /* non-blocking error path */
2009 goto out_unlock_free
;
2012 * We need to sleep on this operation, so we put the current
2013 * task into the pending queue and go to sleep.
2017 curr
= &sma
->sems
[sops
->sem_num
];
2020 if (sma
->complex_count
) {
2021 list_add_tail(&queue
.list
,
2022 &sma
->pending_alter
);
2025 list_add_tail(&queue
.list
,
2026 &curr
->pending_alter
);
2029 list_add_tail(&queue
.list
, &curr
->pending_const
);
2032 if (!sma
->complex_count
)
2036 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2038 list_add_tail(&queue
.list
, &sma
->pending_const
);
2040 sma
->complex_count
++;
2044 WRITE_ONCE(queue
.status
, -EINTR
);
2045 queue
.sleeper
= current
;
2047 __set_current_state(TASK_INTERRUPTIBLE
);
2048 sem_unlock(sma
, locknum
);
2052 jiffies_left
= schedule_timeout(jiffies_left
);
2057 * fastpath: the semop has completed, either successfully or
2058 * not, from the syscall pov, is quite irrelevant to us at this
2059 * point; we're done.
2061 * We _do_ care, nonetheless, about being awoken by a signal or
2062 * spuriously. The queue.status is checked again in the
2063 * slowpath (aka after taking sem_lock), such that we can detect
2064 * scenarios where we were awakened externally, during the
2065 * window between wake_q_add() and wake_up_q().
2067 error
= READ_ONCE(queue
.status
);
2068 if (error
!= -EINTR
) {
2070 * User space could assume that semop() is a memory
2071 * barrier: Without the mb(), the cpu could
2072 * speculatively read in userspace stale data that was
2073 * overwritten by the previous owner of the semaphore.
2080 locknum
= sem_lock(sma
, sops
, nsops
);
2082 if (!ipc_valid_object(&sma
->sem_perm
))
2083 goto out_unlock_free
;
2085 error
= READ_ONCE(queue
.status
);
2088 * If queue.status != -EINTR we are woken up by another process.
2089 * Leave without unlink_queue(), but with sem_unlock().
2091 if (error
!= -EINTR
)
2092 goto out_unlock_free
;
2095 * If an interrupt occurred we have to clean up the queue.
2097 if (timeout
&& jiffies_left
== 0)
2099 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2101 unlink_queue(sma
, &queue
);
2104 sem_unlock(sma
, locknum
);
2107 if (sops
!= fast_sops
)
2112 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2113 unsigned, nsops
, const struct timespec __user
*, timeout
)
2116 struct timespec64 ts
;
2117 if (get_timespec64(&ts
, timeout
))
2119 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2121 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2124 #ifdef CONFIG_COMPAT
2125 COMPAT_SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsems
,
2127 const struct compat_timespec __user
*, timeout
)
2130 struct timespec64 ts
;
2131 if (compat_get_timespec64(&ts
, timeout
))
2133 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2135 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2139 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2142 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2145 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2146 * parent and child tasks.
2149 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2151 struct sem_undo_list
*undo_list
;
2154 if (clone_flags
& CLONE_SYSVSEM
) {
2155 error
= get_undo_list(&undo_list
);
2158 refcount_inc(&undo_list
->refcnt
);
2159 tsk
->sysvsem
.undo_list
= undo_list
;
2161 tsk
->sysvsem
.undo_list
= NULL
;
2167 * add semadj values to semaphores, free undo structures.
2168 * undo structures are not freed when semaphore arrays are destroyed
2169 * so some of them may be out of date.
2170 * IMPLEMENTATION NOTE: There is some confusion over whether the
2171 * set of adjustments that needs to be done should be done in an atomic
2172 * manner or not. That is, if we are attempting to decrement the semval
2173 * should we queue up and wait until we can do so legally?
2174 * The original implementation attempted to do this (queue and wait).
2175 * The current implementation does not do so. The POSIX standard
2176 * and SVID should be consulted to determine what behavior is mandated.
2178 void exit_sem(struct task_struct
*tsk
)
2180 struct sem_undo_list
*ulp
;
2182 ulp
= tsk
->sysvsem
.undo_list
;
2185 tsk
->sysvsem
.undo_list
= NULL
;
2187 if (!refcount_dec_and_test(&ulp
->refcnt
))
2191 struct sem_array
*sma
;
2192 struct sem_undo
*un
;
2194 DEFINE_WAKE_Q(wake_q
);
2199 un
= list_entry_rcu(ulp
->list_proc
.next
,
2200 struct sem_undo
, list_proc
);
2201 if (&un
->list_proc
== &ulp
->list_proc
) {
2203 * We must wait for freeary() before freeing this ulp,
2204 * in case we raced with last sem_undo. There is a small
2205 * possibility where we exit while freeary() didn't
2206 * finish unlocking sem_undo_list.
2208 spin_lock(&ulp
->lock
);
2209 spin_unlock(&ulp
->lock
);
2213 spin_lock(&ulp
->lock
);
2215 spin_unlock(&ulp
->lock
);
2217 /* exit_sem raced with IPC_RMID, nothing to do */
2223 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2224 /* exit_sem raced with IPC_RMID, nothing to do */
2230 sem_lock(sma
, NULL
, -1);
2231 /* exit_sem raced with IPC_RMID, nothing to do */
2232 if (!ipc_valid_object(&sma
->sem_perm
)) {
2233 sem_unlock(sma
, -1);
2237 un
= __lookup_undo(ulp
, semid
);
2239 /* exit_sem raced with IPC_RMID+semget() that created
2240 * exactly the same semid. Nothing to do.
2242 sem_unlock(sma
, -1);
2247 /* remove un from the linked lists */
2248 ipc_assert_locked_object(&sma
->sem_perm
);
2249 list_del(&un
->list_id
);
2251 /* we are the last process using this ulp, acquiring ulp->lock
2252 * isn't required. Besides that, we are also protected against
2253 * IPC_RMID as we hold sma->sem_perm lock now
2255 list_del_rcu(&un
->list_proc
);
2257 /* perform adjustments registered in un */
2258 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2259 struct sem
*semaphore
= &sma
->sems
[i
];
2260 if (un
->semadj
[i
]) {
2261 semaphore
->semval
+= un
->semadj
[i
];
2263 * Range checks of the new semaphore value,
2264 * not defined by sus:
2265 * - Some unices ignore the undo entirely
2266 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2267 * - some cap the value (e.g. FreeBSD caps
2268 * at 0, but doesn't enforce SEMVMX)
2270 * Linux caps the semaphore value, both at 0
2273 * Manfred <manfred@colorfullife.com>
2275 if (semaphore
->semval
< 0)
2276 semaphore
->semval
= 0;
2277 if (semaphore
->semval
> SEMVMX
)
2278 semaphore
->semval
= SEMVMX
;
2279 semaphore
->sempid
= task_tgid_vnr(current
);
2282 /* maybe some queued-up processes were waiting for this */
2283 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2284 sem_unlock(sma
, -1);
2293 #ifdef CONFIG_PROC_FS
2294 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2296 struct user_namespace
*user_ns
= seq_user_ns(s
);
2297 struct kern_ipc_perm
*ipcp
= it
;
2298 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2302 * The proc interface isn't aware of sem_lock(), it calls
2303 * ipc_lock_object() directly (in sysvipc_find_ipc).
2304 * In order to stay compatible with sem_lock(), we must
2305 * enter / leave complex_mode.
2307 complexmode_enter(sma
);
2309 sem_otime
= get_semotime(sma
);
2312 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2317 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2318 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2319 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2320 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2324 complexmode_tryleave(sma
);