1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname
)
49 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname
);
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
71 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
74 struct user_namespace
*ns
= targ_ns
;
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
81 /* Do we have the necessary capabilities? */
82 if (ns
== cred
->user_ns
)
83 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
85 /* Have we tried all of the parent namespaces? */
86 if (ns
== &init_user_ns
)
90 * The owner of the user namespace in the parent of the
91 * user namespace has all caps.
93 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
97 * If you have a capability in a parent user ns, then you have
98 * it over all children user namespaces as well.
103 /* We never get here */
107 * cap_settime - Determine whether the current process may set the system clock
108 * @ts: The time to set
109 * @tz: The timezone to set
111 * Determine whether the current process may set the system clock and timezone
112 * information, returning 0 if permission granted, -ve if denied.
114 int cap_settime(const struct timespec64
*ts
, const struct timezone
*tz
)
116 if (!capable(CAP_SYS_TIME
))
122 * cap_ptrace_access_check - Determine whether the current process may access
124 * @child: The process to be accessed
125 * @mode: The mode of attachment.
127 * If we are in the same or an ancestor user_ns and have all the target
128 * task's capabilities, then ptrace access is allowed.
129 * If we have the ptrace capability to the target user_ns, then ptrace
133 * Determine whether a process may access another, returning 0 if permission
134 * granted, -ve if denied.
136 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
139 const struct cred
*cred
, *child_cred
;
140 const kernel_cap_t
*caller_caps
;
143 cred
= current_cred();
144 child_cred
= __task_cred(child
);
145 if (mode
& PTRACE_MODE_FSCREDS
)
146 caller_caps
= &cred
->cap_effective
;
148 caller_caps
= &cred
->cap_permitted
;
149 if (cred
->user_ns
== child_cred
->user_ns
&&
150 cap_issubset(child_cred
->cap_permitted
, *caller_caps
))
152 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
173 int cap_ptrace_traceme(struct task_struct
*parent
)
176 const struct cred
*cred
, *child_cred
;
179 cred
= __task_cred(parent
);
180 child_cred
= current_cred();
181 if (cred
->user_ns
== child_cred
->user_ns
&&
182 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
184 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
202 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
203 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
205 const struct cred
*cred
;
207 /* Derived from kernel/capability.c:sys_capget. */
209 cred
= __task_cred(target
);
210 *effective
= cred
->cap_effective
;
211 *inheritable
= cred
->cap_inheritable
;
212 *permitted
= cred
->cap_permitted
;
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
221 static inline int cap_inh_is_capped(void)
224 /* they are so limited unless the current task has the CAP_SETPCAP
227 if (cap_capable(current_cred(), current_cred()->user_ns
,
228 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
245 int cap_capset(struct cred
*new,
246 const struct cred
*old
,
247 const kernel_cap_t
*effective
,
248 const kernel_cap_t
*inheritable
,
249 const kernel_cap_t
*permitted
)
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable
,
253 cap_combine(old
->cap_inheritable
,
254 old
->cap_permitted
)))
255 /* incapable of using this inheritable set */
258 if (!cap_issubset(*inheritable
,
259 cap_combine(old
->cap_inheritable
,
261 /* no new pI capabilities outside bounding set */
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted
, old
->cap_permitted
))
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective
, *permitted
))
272 new->cap_effective
= *effective
;
273 new->cap_inheritable
= *inheritable
;
274 new->cap_permitted
= *permitted
;
277 * Mask off ambient bits that are no longer both permitted and
280 new->cap_ambient
= cap_intersect(new->cap_ambient
,
281 cap_intersect(*permitted
,
283 if (WARN_ON(!cap_ambient_invariant_ok(new)))
289 * Clear proposed capability sets for execve().
291 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
293 cap_clear(bprm
->cred
->cap_permitted
);
294 bprm
->cap_effective
= false;
298 * cap_inode_need_killpriv - Determine if inode change affects privileges
299 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
301 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
302 * affects the security markings on that inode, and if it is, should
303 * inode_killpriv() be invoked or the change rejected?
305 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
306 * -ve to deny the change.
308 int cap_inode_need_killpriv(struct dentry
*dentry
)
310 struct inode
*inode
= d_backing_inode(dentry
);
313 if (!inode
->i_op
->getxattr
)
316 error
= inode
->i_op
->getxattr(dentry
, inode
, XATTR_NAME_CAPS
, NULL
, 0);
323 * cap_inode_killpriv - Erase the security markings on an inode
324 * @dentry: The inode/dentry to alter
326 * Erase the privilege-enhancing security markings on an inode.
328 * Returns 0 if successful, -ve on error.
330 int cap_inode_killpriv(struct dentry
*dentry
)
332 struct inode
*inode
= d_backing_inode(dentry
);
334 if (!inode
->i_op
->removexattr
)
337 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
341 * Calculate the new process capability sets from the capability sets attached
344 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
345 struct linux_binprm
*bprm
,
349 struct cred
*new = bprm
->cred
;
353 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
356 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
359 CAP_FOR_EACH_U32(i
) {
360 __u32 permitted
= caps
->permitted
.cap
[i
];
361 __u32 inheritable
= caps
->inheritable
.cap
[i
];
364 * pP' = (X & fP) | (pI & fI)
365 * The addition of pA' is handled later.
367 new->cap_permitted
.cap
[i
] =
368 (new->cap_bset
.cap
[i
] & permitted
) |
369 (new->cap_inheritable
.cap
[i
] & inheritable
);
371 if (permitted
& ~new->cap_permitted
.cap
[i
])
372 /* insufficient to execute correctly */
377 * For legacy apps, with no internal support for recognizing they
378 * do not have enough capabilities, we return an error if they are
379 * missing some "forced" (aka file-permitted) capabilities.
381 return *effective
? ret
: 0;
385 * Extract the on-exec-apply capability sets for an executable file.
387 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
389 struct inode
*inode
= d_backing_inode(dentry
);
393 struct vfs_cap_data caps
;
395 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
397 if (!inode
|| !inode
->i_op
->getxattr
)
400 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, inode
,
401 XATTR_NAME_CAPS
, &caps
, XATTR_CAPS_SZ
);
402 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
403 /* no data, that's ok */
408 if (size
< sizeof(magic_etc
))
411 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
413 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
414 case VFS_CAP_REVISION_1
:
415 if (size
!= XATTR_CAPS_SZ_1
)
417 tocopy
= VFS_CAP_U32_1
;
419 case VFS_CAP_REVISION_2
:
420 if (size
!= XATTR_CAPS_SZ_2
)
422 tocopy
= VFS_CAP_U32_2
;
428 CAP_FOR_EACH_U32(i
) {
431 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
432 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
435 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
436 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
442 * Attempt to get the on-exec apply capability sets for an executable file from
443 * its xattrs and, if present, apply them to the proposed credentials being
444 * constructed by execve().
446 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
449 struct cpu_vfs_cap_data vcaps
;
451 bprm_clear_caps(bprm
);
453 if (!file_caps_enabled
)
456 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
459 rc
= get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
462 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
463 __func__
, rc
, bprm
->filename
);
464 else if (rc
== -ENODATA
)
469 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
471 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
472 __func__
, rc
, bprm
->filename
);
476 bprm_clear_caps(bprm
);
482 * cap_bprm_set_creds - Set up the proposed credentials for execve().
483 * @bprm: The execution parameters, including the proposed creds
485 * Set up the proposed credentials for a new execution context being
486 * constructed by execve(). The proposed creds in @bprm->cred is altered,
487 * which won't take effect immediately. Returns 0 if successful, -ve on error.
489 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
491 const struct cred
*old
= current_cred();
492 struct cred
*new = bprm
->cred
;
493 bool effective
, has_cap
= false, is_setid
;
497 if (WARN_ON(!cap_ambient_invariant_ok(old
)))
501 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
505 root_uid
= make_kuid(new->user_ns
, 0);
507 if (!issecure(SECURE_NOROOT
)) {
509 * If the legacy file capability is set, then don't set privs
510 * for a setuid root binary run by a non-root user. Do set it
511 * for a root user just to cause least surprise to an admin.
513 if (has_cap
&& !uid_eq(new->uid
, root_uid
) && uid_eq(new->euid
, root_uid
)) {
514 warn_setuid_and_fcaps_mixed(bprm
->filename
);
518 * To support inheritance of root-permissions and suid-root
519 * executables under compatibility mode, we override the
520 * capability sets for the file.
522 * If only the real uid is 0, we do not set the effective bit.
524 if (uid_eq(new->euid
, root_uid
) || uid_eq(new->uid
, root_uid
)) {
525 /* pP' = (cap_bset & ~0) | (pI & ~0) */
526 new->cap_permitted
= cap_combine(old
->cap_bset
,
527 old
->cap_inheritable
);
529 if (uid_eq(new->euid
, root_uid
))
534 /* if we have fs caps, clear dangerous personality flags */
535 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
536 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
539 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
540 * credentials unless they have the appropriate permit.
542 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
544 is_setid
= !uid_eq(new->euid
, old
->uid
) || !gid_eq(new->egid
, old
->gid
);
547 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
548 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
549 /* downgrade; they get no more than they had, and maybe less */
550 if (!capable(CAP_SETUID
) ||
551 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
552 new->euid
= new->uid
;
553 new->egid
= new->gid
;
555 new->cap_permitted
= cap_intersect(new->cap_permitted
,
559 new->suid
= new->fsuid
= new->euid
;
560 new->sgid
= new->fsgid
= new->egid
;
562 /* File caps or setid cancels ambient. */
563 if (has_cap
|| is_setid
)
564 cap_clear(new->cap_ambient
);
567 * Now that we've computed pA', update pP' to give:
568 * pP' = (X & fP) | (pI & fI) | pA'
570 new->cap_permitted
= cap_combine(new->cap_permitted
, new->cap_ambient
);
573 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
574 * this is the same as pE' = (fE ? pP' : 0) | pA'.
577 new->cap_effective
= new->cap_permitted
;
579 new->cap_effective
= new->cap_ambient
;
581 if (WARN_ON(!cap_ambient_invariant_ok(new)))
584 bprm
->cap_effective
= effective
;
587 * Audit candidate if current->cap_effective is set
589 * We do not bother to audit if 3 things are true:
590 * 1) cap_effective has all caps
592 * 3) root is supposed to have all caps (SECURE_NOROOT)
593 * Since this is just a normal root execing a process.
595 * Number 1 above might fail if you don't have a full bset, but I think
596 * that is interesting information to audit.
598 if (!cap_issubset(new->cap_effective
, new->cap_ambient
)) {
599 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
600 !uid_eq(new->euid
, root_uid
) || !uid_eq(new->uid
, root_uid
) ||
601 issecure(SECURE_NOROOT
)) {
602 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
608 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
610 if (WARN_ON(!cap_ambient_invariant_ok(new)))
617 * cap_bprm_secureexec - Determine whether a secure execution is required
618 * @bprm: The execution parameters
620 * Determine whether a secure execution is required, return 1 if it is, and 0
623 * The credentials have been committed by this point, and so are no longer
624 * available through @bprm->cred.
626 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
628 const struct cred
*cred
= current_cred();
629 kuid_t root_uid
= make_kuid(cred
->user_ns
, 0);
631 if (!uid_eq(cred
->uid
, root_uid
)) {
632 if (bprm
->cap_effective
)
634 if (!cap_issubset(cred
->cap_permitted
, cred
->cap_ambient
))
638 return (!uid_eq(cred
->euid
, cred
->uid
) ||
639 !gid_eq(cred
->egid
, cred
->gid
));
643 * cap_inode_setxattr - Determine whether an xattr may be altered
644 * @dentry: The inode/dentry being altered
645 * @name: The name of the xattr to be changed
646 * @value: The value that the xattr will be changed to
647 * @size: The size of value
648 * @flags: The replacement flag
650 * Determine whether an xattr may be altered or set on an inode, returning 0 if
651 * permission is granted, -ve if denied.
653 * This is used to make sure security xattrs don't get updated or set by those
654 * who aren't privileged to do so.
656 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
657 const void *value
, size_t size
, int flags
)
659 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
660 if (!capable(CAP_SETFCAP
))
665 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
666 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
667 !capable(CAP_SYS_ADMIN
))
673 * cap_inode_removexattr - Determine whether an xattr may be removed
674 * @dentry: The inode/dentry being altered
675 * @name: The name of the xattr to be changed
677 * Determine whether an xattr may be removed from an inode, returning 0 if
678 * permission is granted, -ve if denied.
680 * This is used to make sure security xattrs don't get removed by those who
681 * aren't privileged to remove them.
683 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
685 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
686 if (!capable(CAP_SETFCAP
))
691 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
692 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
693 !capable(CAP_SYS_ADMIN
))
699 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
700 * a process after a call to setuid, setreuid, or setresuid.
702 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
703 * {r,e,s}uid != 0, the permitted and effective capabilities are
706 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
707 * capabilities of the process are cleared.
709 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
710 * capabilities are set to the permitted capabilities.
712 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
717 * cevans - New behaviour, Oct '99
718 * A process may, via prctl(), elect to keep its capabilities when it
719 * calls setuid() and switches away from uid==0. Both permitted and
720 * effective sets will be retained.
721 * Without this change, it was impossible for a daemon to drop only some
722 * of its privilege. The call to setuid(!=0) would drop all privileges!
723 * Keeping uid 0 is not an option because uid 0 owns too many vital
725 * Thanks to Olaf Kirch and Peter Benie for spotting this.
727 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
729 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
731 if ((uid_eq(old
->uid
, root_uid
) ||
732 uid_eq(old
->euid
, root_uid
) ||
733 uid_eq(old
->suid
, root_uid
)) &&
734 (!uid_eq(new->uid
, root_uid
) &&
735 !uid_eq(new->euid
, root_uid
) &&
736 !uid_eq(new->suid
, root_uid
))) {
737 if (!issecure(SECURE_KEEP_CAPS
)) {
738 cap_clear(new->cap_permitted
);
739 cap_clear(new->cap_effective
);
743 * Pre-ambient programs expect setresuid to nonroot followed
744 * by exec to drop capabilities. We should make sure that
745 * this remains the case.
747 cap_clear(new->cap_ambient
);
749 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
750 cap_clear(new->cap_effective
);
751 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
752 new->cap_effective
= new->cap_permitted
;
756 * cap_task_fix_setuid - Fix up the results of setuid() call
757 * @new: The proposed credentials
758 * @old: The current task's current credentials
759 * @flags: Indications of what has changed
761 * Fix up the results of setuid() call before the credential changes are
762 * actually applied, returning 0 to grant the changes, -ve to deny them.
764 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
770 /* juggle the capabilities to follow [RES]UID changes unless
771 * otherwise suppressed */
772 if (!issecure(SECURE_NO_SETUID_FIXUP
))
773 cap_emulate_setxuid(new, old
);
777 /* juggle the capabilties to follow FSUID changes, unless
778 * otherwise suppressed
780 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
781 * if not, we might be a bit too harsh here.
783 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
784 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
785 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
787 cap_drop_fs_set(new->cap_effective
);
789 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
791 cap_raise_fs_set(new->cap_effective
,
804 * Rationale: code calling task_setscheduler, task_setioprio, and
805 * task_setnice, assumes that
806 * . if capable(cap_sys_nice), then those actions should be allowed
807 * . if not capable(cap_sys_nice), but acting on your own processes,
808 * then those actions should be allowed
809 * This is insufficient now since you can call code without suid, but
810 * yet with increased caps.
811 * So we check for increased caps on the target process.
813 static int cap_safe_nice(struct task_struct
*p
)
815 int is_subset
, ret
= 0;
818 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
819 current_cred()->cap_permitted
);
820 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
828 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
829 * @p: The task to affect
831 * Detemine if the requested scheduler policy change is permitted for the
832 * specified task, returning 0 if permission is granted, -ve if denied.
834 int cap_task_setscheduler(struct task_struct
*p
)
836 return cap_safe_nice(p
);
840 * cap_task_ioprio - Detemine if I/O priority change is permitted
841 * @p: The task to affect
842 * @ioprio: The I/O priority to set
844 * Detemine if the requested I/O priority change is permitted for the specified
845 * task, returning 0 if permission is granted, -ve if denied.
847 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
849 return cap_safe_nice(p
);
853 * cap_task_ioprio - Detemine if task priority change is permitted
854 * @p: The task to affect
855 * @nice: The nice value to set
857 * Detemine if the requested task priority change is permitted for the
858 * specified task, returning 0 if permission is granted, -ve if denied.
860 int cap_task_setnice(struct task_struct
*p
, int nice
)
862 return cap_safe_nice(p
);
866 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
867 * the current task's bounding set. Returns 0 on success, -ve on error.
869 static int cap_prctl_drop(unsigned long cap
)
873 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
878 new = prepare_creds();
881 cap_lower(new->cap_bset
, cap
);
882 return commit_creds(new);
886 * cap_task_prctl - Implement process control functions for this security module
887 * @option: The process control function requested
888 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
890 * Allow process control functions (sys_prctl()) to alter capabilities; may
891 * also deny access to other functions not otherwise implemented here.
893 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
894 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
895 * modules will consider performing the function.
897 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
898 unsigned long arg4
, unsigned long arg5
)
900 const struct cred
*old
= current_cred();
904 case PR_CAPBSET_READ
:
905 if (!cap_valid(arg2
))
907 return !!cap_raised(old
->cap_bset
, arg2
);
909 case PR_CAPBSET_DROP
:
910 return cap_prctl_drop(arg2
);
913 * The next four prctl's remain to assist with transitioning a
914 * system from legacy UID=0 based privilege (when filesystem
915 * capabilities are not in use) to a system using filesystem
916 * capabilities only - as the POSIX.1e draft intended.
920 * PR_SET_SECUREBITS =
921 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
922 * | issecure_mask(SECURE_NOROOT)
923 * | issecure_mask(SECURE_NOROOT_LOCKED)
924 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
925 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
927 * will ensure that the current process and all of its
928 * children will be locked into a pure
929 * capability-based-privilege environment.
931 case PR_SET_SECUREBITS
:
932 if ((((old
->securebits
& SECURE_ALL_LOCKS
) >> 1)
933 & (old
->securebits
^ arg2
)) /*[1]*/
934 || ((old
->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
935 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
936 || (cap_capable(current_cred(),
937 current_cred()->user_ns
, CAP_SETPCAP
,
938 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
940 * [1] no changing of bits that are locked
941 * [2] no unlocking of locks
942 * [3] no setting of unsupported bits
943 * [4] doing anything requires privilege (go read about
944 * the "sendmail capabilities bug")
947 /* cannot change a locked bit */
950 new = prepare_creds();
953 new->securebits
= arg2
;
954 return commit_creds(new);
956 case PR_GET_SECUREBITS
:
957 return old
->securebits
;
959 case PR_GET_KEEPCAPS
:
960 return !!issecure(SECURE_KEEP_CAPS
);
962 case PR_SET_KEEPCAPS
:
963 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
965 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
968 new = prepare_creds();
972 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
974 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
975 return commit_creds(new);
978 if (arg2
== PR_CAP_AMBIENT_CLEAR_ALL
) {
979 if (arg3
| arg4
| arg5
)
982 new = prepare_creds();
985 cap_clear(new->cap_ambient
);
986 return commit_creds(new);
989 if (((!cap_valid(arg3
)) | arg4
| arg5
))
992 if (arg2
== PR_CAP_AMBIENT_IS_SET
) {
993 return !!cap_raised(current_cred()->cap_ambient
, arg3
);
994 } else if (arg2
!= PR_CAP_AMBIENT_RAISE
&&
995 arg2
!= PR_CAP_AMBIENT_LOWER
) {
998 if (arg2
== PR_CAP_AMBIENT_RAISE
&&
999 (!cap_raised(current_cred()->cap_permitted
, arg3
) ||
1000 !cap_raised(current_cred()->cap_inheritable
,
1002 issecure(SECURE_NO_CAP_AMBIENT_RAISE
)))
1005 new = prepare_creds();
1008 if (arg2
== PR_CAP_AMBIENT_RAISE
)
1009 cap_raise(new->cap_ambient
, arg3
);
1011 cap_lower(new->cap_ambient
, arg3
);
1012 return commit_creds(new);
1016 /* No functionality available - continue with default */
1022 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1023 * @mm: The VM space in which the new mapping is to be made
1024 * @pages: The size of the mapping
1026 * Determine whether the allocation of a new virtual mapping by the current
1027 * task is permitted, returning 1 if permission is granted, 0 if not.
1029 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
1031 int cap_sys_admin
= 0;
1033 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
1034 SECURITY_CAP_NOAUDIT
) == 0)
1036 return cap_sys_admin
;
1040 * cap_mmap_addr - check if able to map given addr
1041 * @addr: address attempting to be mapped
1043 * If the process is attempting to map memory below dac_mmap_min_addr they need
1044 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1045 * capability security module. Returns 0 if this mapping should be allowed
1048 int cap_mmap_addr(unsigned long addr
)
1052 if (addr
< dac_mmap_min_addr
) {
1053 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
1054 SECURITY_CAP_AUDIT
);
1055 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1057 current
->flags
|= PF_SUPERPRIV
;
1062 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
1063 unsigned long prot
, unsigned long flags
)
1068 #ifdef CONFIG_SECURITY
1070 struct security_hook_list capability_hooks
[] = {
1071 LSM_HOOK_INIT(capable
, cap_capable
),
1072 LSM_HOOK_INIT(settime
, cap_settime
),
1073 LSM_HOOK_INIT(ptrace_access_check
, cap_ptrace_access_check
),
1074 LSM_HOOK_INIT(ptrace_traceme
, cap_ptrace_traceme
),
1075 LSM_HOOK_INIT(capget
, cap_capget
),
1076 LSM_HOOK_INIT(capset
, cap_capset
),
1077 LSM_HOOK_INIT(bprm_set_creds
, cap_bprm_set_creds
),
1078 LSM_HOOK_INIT(bprm_secureexec
, cap_bprm_secureexec
),
1079 LSM_HOOK_INIT(inode_need_killpriv
, cap_inode_need_killpriv
),
1080 LSM_HOOK_INIT(inode_killpriv
, cap_inode_killpriv
),
1081 LSM_HOOK_INIT(mmap_addr
, cap_mmap_addr
),
1082 LSM_HOOK_INIT(mmap_file
, cap_mmap_file
),
1083 LSM_HOOK_INIT(task_fix_setuid
, cap_task_fix_setuid
),
1084 LSM_HOOK_INIT(task_prctl
, cap_task_prctl
),
1085 LSM_HOOK_INIT(task_setscheduler
, cap_task_setscheduler
),
1086 LSM_HOOK_INIT(task_setioprio
, cap_task_setioprio
),
1087 LSM_HOOK_INIT(task_setnice
, cap_task_setnice
),
1088 LSM_HOOK_INIT(vm_enough_memory
, cap_vm_enough_memory
),
1091 void __init
capability_add_hooks(void)
1093 security_add_hooks(capability_hooks
, ARRAY_SIZE(capability_hooks
));
1096 #endif /* CONFIG_SECURITY */