Linux 4.14.15
[linux-stable.git] / mm / slab.c
blobb7095884fd93fa957fa25f40e2bc8c4c6cf1efa8
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
69 * Further notes from the original documentation:
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
77 * At present, each engine can be growing a cache. This should be blocked.
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
120 #include <linux/sched/task_stack.h>
122 #include <net/sock.h>
124 #include <asm/cacheflush.h>
125 #include <asm/tlbflush.h>
126 #include <asm/page.h>
128 #include <trace/events/kmem.h>
130 #include "internal.h"
132 #include "slab.h"
135 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
136 * 0 for faster, smaller code (especially in the critical paths).
138 * STATS - 1 to collect stats for /proc/slabinfo.
139 * 0 for faster, smaller code (especially in the critical paths).
141 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
144 #ifdef CONFIG_DEBUG_SLAB
145 #define DEBUG 1
146 #define STATS 1
147 #define FORCED_DEBUG 1
148 #else
149 #define DEBUG 0
150 #define STATS 0
151 #define FORCED_DEBUG 0
152 #endif
154 /* Shouldn't this be in a header file somewhere? */
155 #define BYTES_PER_WORD sizeof(void *)
156 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
158 #ifndef ARCH_KMALLOC_FLAGS
159 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #endif
162 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
163 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
165 #if FREELIST_BYTE_INDEX
166 typedef unsigned char freelist_idx_t;
167 #else
168 typedef unsigned short freelist_idx_t;
169 #endif
171 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
174 * struct array_cache
176 * Purpose:
177 * - LIFO ordering, to hand out cache-warm objects from _alloc
178 * - reduce the number of linked list operations
179 * - reduce spinlock operations
181 * The limit is stored in the per-cpu structure to reduce the data cache
182 * footprint.
185 struct array_cache {
186 unsigned int avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int touched;
190 void *entry[]; /*
191 * Must have this definition in here for the proper
192 * alignment of array_cache. Also simplifies accessing
193 * the entries.
197 struct alien_cache {
198 spinlock_t lock;
199 struct array_cache ac;
203 * Need this for bootstrapping a per node allocator.
205 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
206 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
207 #define CACHE_CACHE 0
208 #define SIZE_NODE (MAX_NUMNODES)
210 static int drain_freelist(struct kmem_cache *cache,
211 struct kmem_cache_node *n, int tofree);
212 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
213 int node, struct list_head *list);
214 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
215 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
216 static void cache_reap(struct work_struct *unused);
218 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
219 void **list);
220 static inline void fixup_slab_list(struct kmem_cache *cachep,
221 struct kmem_cache_node *n, struct page *page,
222 void **list);
223 static int slab_early_init = 1;
225 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
227 static void kmem_cache_node_init(struct kmem_cache_node *parent)
229 INIT_LIST_HEAD(&parent->slabs_full);
230 INIT_LIST_HEAD(&parent->slabs_partial);
231 INIT_LIST_HEAD(&parent->slabs_free);
232 parent->total_slabs = 0;
233 parent->free_slabs = 0;
234 parent->shared = NULL;
235 parent->alien = NULL;
236 parent->colour_next = 0;
237 spin_lock_init(&parent->list_lock);
238 parent->free_objects = 0;
239 parent->free_touched = 0;
242 #define MAKE_LIST(cachep, listp, slab, nodeid) \
243 do { \
244 INIT_LIST_HEAD(listp); \
245 list_splice(&get_node(cachep, nodeid)->slab, listp); \
246 } while (0)
248 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
249 do { \
250 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
252 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
253 } while (0)
255 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
256 #define CFLGS_OFF_SLAB (0x80000000UL)
257 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
258 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
260 #define BATCHREFILL_LIMIT 16
262 * Optimization question: fewer reaps means less probability for unnessary
263 * cpucache drain/refill cycles.
265 * OTOH the cpuarrays can contain lots of objects,
266 * which could lock up otherwise freeable slabs.
268 #define REAPTIMEOUT_AC (2*HZ)
269 #define REAPTIMEOUT_NODE (4*HZ)
271 #if STATS
272 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
273 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
274 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
275 #define STATS_INC_GROWN(x) ((x)->grown++)
276 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
277 #define STATS_SET_HIGH(x) \
278 do { \
279 if ((x)->num_active > (x)->high_mark) \
280 (x)->high_mark = (x)->num_active; \
281 } while (0)
282 #define STATS_INC_ERR(x) ((x)->errors++)
283 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
284 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
285 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
286 #define STATS_SET_FREEABLE(x, i) \
287 do { \
288 if ((x)->max_freeable < i) \
289 (x)->max_freeable = i; \
290 } while (0)
291 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
292 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
293 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
294 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
295 #else
296 #define STATS_INC_ACTIVE(x) do { } while (0)
297 #define STATS_DEC_ACTIVE(x) do { } while (0)
298 #define STATS_INC_ALLOCED(x) do { } while (0)
299 #define STATS_INC_GROWN(x) do { } while (0)
300 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
301 #define STATS_SET_HIGH(x) do { } while (0)
302 #define STATS_INC_ERR(x) do { } while (0)
303 #define STATS_INC_NODEALLOCS(x) do { } while (0)
304 #define STATS_INC_NODEFREES(x) do { } while (0)
305 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
306 #define STATS_SET_FREEABLE(x, i) do { } while (0)
307 #define STATS_INC_ALLOCHIT(x) do { } while (0)
308 #define STATS_INC_ALLOCMISS(x) do { } while (0)
309 #define STATS_INC_FREEHIT(x) do { } while (0)
310 #define STATS_INC_FREEMISS(x) do { } while (0)
311 #endif
313 #if DEBUG
316 * memory layout of objects:
317 * 0 : objp
318 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
319 * the end of an object is aligned with the end of the real
320 * allocation. Catches writes behind the end of the allocation.
321 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
322 * redzone word.
323 * cachep->obj_offset: The real object.
324 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
325 * cachep->size - 1* BYTES_PER_WORD: last caller address
326 * [BYTES_PER_WORD long]
328 static int obj_offset(struct kmem_cache *cachep)
330 return cachep->obj_offset;
333 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
335 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
336 return (unsigned long long*) (objp + obj_offset(cachep) -
337 sizeof(unsigned long long));
340 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
342 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
343 if (cachep->flags & SLAB_STORE_USER)
344 return (unsigned long long *)(objp + cachep->size -
345 sizeof(unsigned long long) -
346 REDZONE_ALIGN);
347 return (unsigned long long *) (objp + cachep->size -
348 sizeof(unsigned long long));
351 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
353 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
354 return (void **)(objp + cachep->size - BYTES_PER_WORD);
357 #else
359 #define obj_offset(x) 0
360 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
362 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
364 #endif
366 #ifdef CONFIG_DEBUG_SLAB_LEAK
368 static inline bool is_store_user_clean(struct kmem_cache *cachep)
370 return atomic_read(&cachep->store_user_clean) == 1;
373 static inline void set_store_user_clean(struct kmem_cache *cachep)
375 atomic_set(&cachep->store_user_clean, 1);
378 static inline void set_store_user_dirty(struct kmem_cache *cachep)
380 if (is_store_user_clean(cachep))
381 atomic_set(&cachep->store_user_clean, 0);
384 #else
385 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
387 #endif
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order = SLAB_MAX_ORDER_LO;
396 static bool slab_max_order_set __initdata;
398 static inline struct kmem_cache *virt_to_cache(const void *obj)
400 struct page *page = virt_to_head_page(obj);
401 return page->slab_cache;
404 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 unsigned int idx)
407 return page->s_mem + cache->size * idx;
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
416 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417 const struct page *page, void *obj)
419 u32 offset = (obj - page->s_mem);
420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
423 #define BOOT_CPUCACHE_ENTRIES 1
424 /* internal cache of cache description objs */
425 static struct kmem_cache kmem_cache_boot = {
426 .batchcount = 1,
427 .limit = BOOT_CPUCACHE_ENTRIES,
428 .shared = 1,
429 .size = sizeof(struct kmem_cache),
430 .name = "kmem_cache",
433 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
435 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
437 return this_cpu_ptr(cachep->cpu_cache);
441 * Calculate the number of objects and left-over bytes for a given buffer size.
443 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
444 unsigned long flags, size_t *left_over)
446 unsigned int num;
447 size_t slab_size = PAGE_SIZE << gfporder;
450 * The slab management structure can be either off the slab or
451 * on it. For the latter case, the memory allocated for a
452 * slab is used for:
454 * - @buffer_size bytes for each object
455 * - One freelist_idx_t for each object
457 * We don't need to consider alignment of freelist because
458 * freelist will be at the end of slab page. The objects will be
459 * at the correct alignment.
461 * If the slab management structure is off the slab, then the
462 * alignment will already be calculated into the size. Because
463 * the slabs are all pages aligned, the objects will be at the
464 * correct alignment when allocated.
466 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
467 num = slab_size / buffer_size;
468 *left_over = slab_size % buffer_size;
469 } else {
470 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
471 *left_over = slab_size %
472 (buffer_size + sizeof(freelist_idx_t));
475 return num;
478 #if DEBUG
479 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
481 static void __slab_error(const char *function, struct kmem_cache *cachep,
482 char *msg)
484 pr_err("slab error in %s(): cache `%s': %s\n",
485 function, cachep->name, msg);
486 dump_stack();
487 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
489 #endif
492 * By default on NUMA we use alien caches to stage the freeing of
493 * objects allocated from other nodes. This causes massive memory
494 * inefficiencies when using fake NUMA setup to split memory into a
495 * large number of small nodes, so it can be disabled on the command
496 * line
499 static int use_alien_caches __read_mostly = 1;
500 static int __init noaliencache_setup(char *s)
502 use_alien_caches = 0;
503 return 1;
505 __setup("noaliencache", noaliencache_setup);
507 static int __init slab_max_order_setup(char *str)
509 get_option(&str, &slab_max_order);
510 slab_max_order = slab_max_order < 0 ? 0 :
511 min(slab_max_order, MAX_ORDER - 1);
512 slab_max_order_set = true;
514 return 1;
516 __setup("slab_max_order=", slab_max_order_setup);
518 #ifdef CONFIG_NUMA
520 * Special reaping functions for NUMA systems called from cache_reap().
521 * These take care of doing round robin flushing of alien caches (containing
522 * objects freed on different nodes from which they were allocated) and the
523 * flushing of remote pcps by calling drain_node_pages.
525 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
527 static void init_reap_node(int cpu)
529 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
530 node_online_map);
533 static void next_reap_node(void)
535 int node = __this_cpu_read(slab_reap_node);
537 node = next_node_in(node, node_online_map);
538 __this_cpu_write(slab_reap_node, node);
541 #else
542 #define init_reap_node(cpu) do { } while (0)
543 #define next_reap_node(void) do { } while (0)
544 #endif
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
553 static void start_cpu_timer(int cpu)
555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
557 if (reap_work->work.func == NULL) {
558 init_reap_node(cpu);
559 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
560 schedule_delayed_work_on(cpu, reap_work,
561 __round_jiffies_relative(HZ, cpu));
565 static void init_arraycache(struct array_cache *ac, int limit, int batch)
568 * The array_cache structures contain pointers to free object.
569 * However, when such objects are allocated or transferred to another
570 * cache the pointers are not cleared and they could be counted as
571 * valid references during a kmemleak scan. Therefore, kmemleak must
572 * not scan such objects.
574 kmemleak_no_scan(ac);
575 if (ac) {
576 ac->avail = 0;
577 ac->limit = limit;
578 ac->batchcount = batch;
579 ac->touched = 0;
583 static struct array_cache *alloc_arraycache(int node, int entries,
584 int batchcount, gfp_t gfp)
586 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
587 struct array_cache *ac = NULL;
589 ac = kmalloc_node(memsize, gfp, node);
590 init_arraycache(ac, entries, batchcount);
591 return ac;
594 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
595 struct page *page, void *objp)
597 struct kmem_cache_node *n;
598 int page_node;
599 LIST_HEAD(list);
601 page_node = page_to_nid(page);
602 n = get_node(cachep, page_node);
604 spin_lock(&n->list_lock);
605 free_block(cachep, &objp, 1, page_node, &list);
606 spin_unlock(&n->list_lock);
608 slabs_destroy(cachep, &list);
612 * Transfer objects in one arraycache to another.
613 * Locking must be handled by the caller.
615 * Return the number of entries transferred.
617 static int transfer_objects(struct array_cache *to,
618 struct array_cache *from, unsigned int max)
620 /* Figure out how many entries to transfer */
621 int nr = min3(from->avail, max, to->limit - to->avail);
623 if (!nr)
624 return 0;
626 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
627 sizeof(void *) *nr);
629 from->avail -= nr;
630 to->avail += nr;
631 return nr;
634 #ifndef CONFIG_NUMA
636 #define drain_alien_cache(cachep, alien) do { } while (0)
637 #define reap_alien(cachep, n) do { } while (0)
639 static inline struct alien_cache **alloc_alien_cache(int node,
640 int limit, gfp_t gfp)
642 return NULL;
645 static inline void free_alien_cache(struct alien_cache **ac_ptr)
649 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651 return 0;
654 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
655 gfp_t flags)
657 return NULL;
660 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
661 gfp_t flags, int nodeid)
663 return NULL;
666 static inline gfp_t gfp_exact_node(gfp_t flags)
668 return flags & ~__GFP_NOFAIL;
671 #else /* CONFIG_NUMA */
673 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
674 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
676 static struct alien_cache *__alloc_alien_cache(int node, int entries,
677 int batch, gfp_t gfp)
679 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
680 struct alien_cache *alc = NULL;
682 alc = kmalloc_node(memsize, gfp, node);
683 init_arraycache(&alc->ac, entries, batch);
684 spin_lock_init(&alc->lock);
685 return alc;
688 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
690 struct alien_cache **alc_ptr;
691 size_t memsize = sizeof(void *) * nr_node_ids;
692 int i;
694 if (limit > 1)
695 limit = 12;
696 alc_ptr = kzalloc_node(memsize, gfp, node);
697 if (!alc_ptr)
698 return NULL;
700 for_each_node(i) {
701 if (i == node || !node_online(i))
702 continue;
703 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
704 if (!alc_ptr[i]) {
705 for (i--; i >= 0; i--)
706 kfree(alc_ptr[i]);
707 kfree(alc_ptr);
708 return NULL;
711 return alc_ptr;
714 static void free_alien_cache(struct alien_cache **alc_ptr)
716 int i;
718 if (!alc_ptr)
719 return;
720 for_each_node(i)
721 kfree(alc_ptr[i]);
722 kfree(alc_ptr);
725 static void __drain_alien_cache(struct kmem_cache *cachep,
726 struct array_cache *ac, int node,
727 struct list_head *list)
729 struct kmem_cache_node *n = get_node(cachep, node);
731 if (ac->avail) {
732 spin_lock(&n->list_lock);
734 * Stuff objects into the remote nodes shared array first.
735 * That way we could avoid the overhead of putting the objects
736 * into the free lists and getting them back later.
738 if (n->shared)
739 transfer_objects(n->shared, ac, ac->limit);
741 free_block(cachep, ac->entry, ac->avail, node, list);
742 ac->avail = 0;
743 spin_unlock(&n->list_lock);
748 * Called from cache_reap() to regularly drain alien caches round robin.
750 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
752 int node = __this_cpu_read(slab_reap_node);
754 if (n->alien) {
755 struct alien_cache *alc = n->alien[node];
756 struct array_cache *ac;
758 if (alc) {
759 ac = &alc->ac;
760 if (ac->avail && spin_trylock_irq(&alc->lock)) {
761 LIST_HEAD(list);
763 __drain_alien_cache(cachep, ac, node, &list);
764 spin_unlock_irq(&alc->lock);
765 slabs_destroy(cachep, &list);
771 static void drain_alien_cache(struct kmem_cache *cachep,
772 struct alien_cache **alien)
774 int i = 0;
775 struct alien_cache *alc;
776 struct array_cache *ac;
777 unsigned long flags;
779 for_each_online_node(i) {
780 alc = alien[i];
781 if (alc) {
782 LIST_HEAD(list);
784 ac = &alc->ac;
785 spin_lock_irqsave(&alc->lock, flags);
786 __drain_alien_cache(cachep, ac, i, &list);
787 spin_unlock_irqrestore(&alc->lock, flags);
788 slabs_destroy(cachep, &list);
793 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
794 int node, int page_node)
796 struct kmem_cache_node *n;
797 struct alien_cache *alien = NULL;
798 struct array_cache *ac;
799 LIST_HEAD(list);
801 n = get_node(cachep, node);
802 STATS_INC_NODEFREES(cachep);
803 if (n->alien && n->alien[page_node]) {
804 alien = n->alien[page_node];
805 ac = &alien->ac;
806 spin_lock(&alien->lock);
807 if (unlikely(ac->avail == ac->limit)) {
808 STATS_INC_ACOVERFLOW(cachep);
809 __drain_alien_cache(cachep, ac, page_node, &list);
811 ac->entry[ac->avail++] = objp;
812 spin_unlock(&alien->lock);
813 slabs_destroy(cachep, &list);
814 } else {
815 n = get_node(cachep, page_node);
816 spin_lock(&n->list_lock);
817 free_block(cachep, &objp, 1, page_node, &list);
818 spin_unlock(&n->list_lock);
819 slabs_destroy(cachep, &list);
821 return 1;
824 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826 int page_node = page_to_nid(virt_to_page(objp));
827 int node = numa_mem_id();
829 * Make sure we are not freeing a object from another node to the array
830 * cache on this cpu.
832 if (likely(node == page_node))
833 return 0;
835 return __cache_free_alien(cachep, objp, node, page_node);
839 * Construct gfp mask to allocate from a specific node but do not reclaim or
840 * warn about failures.
842 static inline gfp_t gfp_exact_node(gfp_t flags)
844 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
846 #endif
848 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850 struct kmem_cache_node *n;
853 * Set up the kmem_cache_node for cpu before we can
854 * begin anything. Make sure some other cpu on this
855 * node has not already allocated this
857 n = get_node(cachep, node);
858 if (n) {
859 spin_lock_irq(&n->list_lock);
860 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
861 cachep->num;
862 spin_unlock_irq(&n->list_lock);
864 return 0;
867 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
868 if (!n)
869 return -ENOMEM;
871 kmem_cache_node_init(n);
872 n->next_reap = jiffies + REAPTIMEOUT_NODE +
873 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875 n->free_limit =
876 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879 * The kmem_cache_nodes don't come and go as CPUs
880 * come and go. slab_mutex is sufficient
881 * protection here.
883 cachep->node[node] = n;
885 return 0;
888 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
890 * Allocates and initializes node for a node on each slab cache, used for
891 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
892 * will be allocated off-node since memory is not yet online for the new node.
893 * When hotplugging memory or a cpu, existing node are not replaced if
894 * already in use.
896 * Must hold slab_mutex.
898 static int init_cache_node_node(int node)
900 int ret;
901 struct kmem_cache *cachep;
903 list_for_each_entry(cachep, &slab_caches, list) {
904 ret = init_cache_node(cachep, node, GFP_KERNEL);
905 if (ret)
906 return ret;
909 return 0;
911 #endif
913 static int setup_kmem_cache_node(struct kmem_cache *cachep,
914 int node, gfp_t gfp, bool force_change)
916 int ret = -ENOMEM;
917 struct kmem_cache_node *n;
918 struct array_cache *old_shared = NULL;
919 struct array_cache *new_shared = NULL;
920 struct alien_cache **new_alien = NULL;
921 LIST_HEAD(list);
923 if (use_alien_caches) {
924 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
925 if (!new_alien)
926 goto fail;
929 if (cachep->shared) {
930 new_shared = alloc_arraycache(node,
931 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
932 if (!new_shared)
933 goto fail;
936 ret = init_cache_node(cachep, node, gfp);
937 if (ret)
938 goto fail;
940 n = get_node(cachep, node);
941 spin_lock_irq(&n->list_lock);
942 if (n->shared && force_change) {
943 free_block(cachep, n->shared->entry,
944 n->shared->avail, node, &list);
945 n->shared->avail = 0;
948 if (!n->shared || force_change) {
949 old_shared = n->shared;
950 n->shared = new_shared;
951 new_shared = NULL;
954 if (!n->alien) {
955 n->alien = new_alien;
956 new_alien = NULL;
959 spin_unlock_irq(&n->list_lock);
960 slabs_destroy(cachep, &list);
963 * To protect lockless access to n->shared during irq disabled context.
964 * If n->shared isn't NULL in irq disabled context, accessing to it is
965 * guaranteed to be valid until irq is re-enabled, because it will be
966 * freed after synchronize_sched().
968 if (old_shared && force_change)
969 synchronize_sched();
971 fail:
972 kfree(old_shared);
973 kfree(new_shared);
974 free_alien_cache(new_alien);
976 return ret;
979 #ifdef CONFIG_SMP
981 static void cpuup_canceled(long cpu)
983 struct kmem_cache *cachep;
984 struct kmem_cache_node *n = NULL;
985 int node = cpu_to_mem(cpu);
986 const struct cpumask *mask = cpumask_of_node(node);
988 list_for_each_entry(cachep, &slab_caches, list) {
989 struct array_cache *nc;
990 struct array_cache *shared;
991 struct alien_cache **alien;
992 LIST_HEAD(list);
994 n = get_node(cachep, node);
995 if (!n)
996 continue;
998 spin_lock_irq(&n->list_lock);
1000 /* Free limit for this kmem_cache_node */
1001 n->free_limit -= cachep->batchcount;
1003 /* cpu is dead; no one can alloc from it. */
1004 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1005 if (nc) {
1006 free_block(cachep, nc->entry, nc->avail, node, &list);
1007 nc->avail = 0;
1010 if (!cpumask_empty(mask)) {
1011 spin_unlock_irq(&n->list_lock);
1012 goto free_slab;
1015 shared = n->shared;
1016 if (shared) {
1017 free_block(cachep, shared->entry,
1018 shared->avail, node, &list);
1019 n->shared = NULL;
1022 alien = n->alien;
1023 n->alien = NULL;
1025 spin_unlock_irq(&n->list_lock);
1027 kfree(shared);
1028 if (alien) {
1029 drain_alien_cache(cachep, alien);
1030 free_alien_cache(alien);
1033 free_slab:
1034 slabs_destroy(cachep, &list);
1037 * In the previous loop, all the objects were freed to
1038 * the respective cache's slabs, now we can go ahead and
1039 * shrink each nodelist to its limit.
1041 list_for_each_entry(cachep, &slab_caches, list) {
1042 n = get_node(cachep, node);
1043 if (!n)
1044 continue;
1045 drain_freelist(cachep, n, INT_MAX);
1049 static int cpuup_prepare(long cpu)
1051 struct kmem_cache *cachep;
1052 int node = cpu_to_mem(cpu);
1053 int err;
1056 * We need to do this right in the beginning since
1057 * alloc_arraycache's are going to use this list.
1058 * kmalloc_node allows us to add the slab to the right
1059 * kmem_cache_node and not this cpu's kmem_cache_node
1061 err = init_cache_node_node(node);
1062 if (err < 0)
1063 goto bad;
1066 * Now we can go ahead with allocating the shared arrays and
1067 * array caches
1069 list_for_each_entry(cachep, &slab_caches, list) {
1070 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1071 if (err)
1072 goto bad;
1075 return 0;
1076 bad:
1077 cpuup_canceled(cpu);
1078 return -ENOMEM;
1081 int slab_prepare_cpu(unsigned int cpu)
1083 int err;
1085 mutex_lock(&slab_mutex);
1086 err = cpuup_prepare(cpu);
1087 mutex_unlock(&slab_mutex);
1088 return err;
1092 * This is called for a failed online attempt and for a successful
1093 * offline.
1095 * Even if all the cpus of a node are down, we don't free the
1096 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1097 * a kmalloc allocation from another cpu for memory from the node of
1098 * the cpu going down. The list3 structure is usually allocated from
1099 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1101 int slab_dead_cpu(unsigned int cpu)
1103 mutex_lock(&slab_mutex);
1104 cpuup_canceled(cpu);
1105 mutex_unlock(&slab_mutex);
1106 return 0;
1108 #endif
1110 static int slab_online_cpu(unsigned int cpu)
1112 start_cpu_timer(cpu);
1113 return 0;
1116 static int slab_offline_cpu(unsigned int cpu)
1119 * Shutdown cache reaper. Note that the slab_mutex is held so
1120 * that if cache_reap() is invoked it cannot do anything
1121 * expensive but will only modify reap_work and reschedule the
1122 * timer.
1124 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1125 /* Now the cache_reaper is guaranteed to be not running. */
1126 per_cpu(slab_reap_work, cpu).work.func = NULL;
1127 return 0;
1130 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1133 * Returns -EBUSY if all objects cannot be drained so that the node is not
1134 * removed.
1136 * Must hold slab_mutex.
1138 static int __meminit drain_cache_node_node(int node)
1140 struct kmem_cache *cachep;
1141 int ret = 0;
1143 list_for_each_entry(cachep, &slab_caches, list) {
1144 struct kmem_cache_node *n;
1146 n = get_node(cachep, node);
1147 if (!n)
1148 continue;
1150 drain_freelist(cachep, n, INT_MAX);
1152 if (!list_empty(&n->slabs_full) ||
1153 !list_empty(&n->slabs_partial)) {
1154 ret = -EBUSY;
1155 break;
1158 return ret;
1161 static int __meminit slab_memory_callback(struct notifier_block *self,
1162 unsigned long action, void *arg)
1164 struct memory_notify *mnb = arg;
1165 int ret = 0;
1166 int nid;
1168 nid = mnb->status_change_nid;
1169 if (nid < 0)
1170 goto out;
1172 switch (action) {
1173 case MEM_GOING_ONLINE:
1174 mutex_lock(&slab_mutex);
1175 ret = init_cache_node_node(nid);
1176 mutex_unlock(&slab_mutex);
1177 break;
1178 case MEM_GOING_OFFLINE:
1179 mutex_lock(&slab_mutex);
1180 ret = drain_cache_node_node(nid);
1181 mutex_unlock(&slab_mutex);
1182 break;
1183 case MEM_ONLINE:
1184 case MEM_OFFLINE:
1185 case MEM_CANCEL_ONLINE:
1186 case MEM_CANCEL_OFFLINE:
1187 break;
1189 out:
1190 return notifier_from_errno(ret);
1192 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195 * swap the static kmem_cache_node with kmalloced memory
1197 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1198 int nodeid)
1200 struct kmem_cache_node *ptr;
1202 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1203 BUG_ON(!ptr);
1205 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1207 * Do not assume that spinlocks can be initialized via memcpy:
1209 spin_lock_init(&ptr->list_lock);
1211 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1212 cachep->node[nodeid] = ptr;
1216 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1217 * size of kmem_cache_node.
1219 static void __init set_up_node(struct kmem_cache *cachep, int index)
1221 int node;
1223 for_each_online_node(node) {
1224 cachep->node[node] = &init_kmem_cache_node[index + node];
1225 cachep->node[node]->next_reap = jiffies +
1226 REAPTIMEOUT_NODE +
1227 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1232 * Initialisation. Called after the page allocator have been initialised and
1233 * before smp_init().
1235 void __init kmem_cache_init(void)
1237 int i;
1239 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1240 sizeof(struct rcu_head));
1241 kmem_cache = &kmem_cache_boot;
1243 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1244 use_alien_caches = 0;
1246 for (i = 0; i < NUM_INIT_LISTS; i++)
1247 kmem_cache_node_init(&init_kmem_cache_node[i]);
1250 * Fragmentation resistance on low memory - only use bigger
1251 * page orders on machines with more than 32MB of memory if
1252 * not overridden on the command line.
1254 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1255 slab_max_order = SLAB_MAX_ORDER_HI;
1257 /* Bootstrap is tricky, because several objects are allocated
1258 * from caches that do not exist yet:
1259 * 1) initialize the kmem_cache cache: it contains the struct
1260 * kmem_cache structures of all caches, except kmem_cache itself:
1261 * kmem_cache is statically allocated.
1262 * Initially an __init data area is used for the head array and the
1263 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1264 * array at the end of the bootstrap.
1265 * 2) Create the first kmalloc cache.
1266 * The struct kmem_cache for the new cache is allocated normally.
1267 * An __init data area is used for the head array.
1268 * 3) Create the remaining kmalloc caches, with minimally sized
1269 * head arrays.
1270 * 4) Replace the __init data head arrays for kmem_cache and the first
1271 * kmalloc cache with kmalloc allocated arrays.
1272 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1273 * the other cache's with kmalloc allocated memory.
1274 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1277 /* 1) create the kmem_cache */
1280 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1282 create_boot_cache(kmem_cache, "kmem_cache",
1283 offsetof(struct kmem_cache, node) +
1284 nr_node_ids * sizeof(struct kmem_cache_node *),
1285 SLAB_HWCACHE_ALIGN);
1286 list_add(&kmem_cache->list, &slab_caches);
1287 slab_state = PARTIAL;
1290 * Initialize the caches that provide memory for the kmem_cache_node
1291 * structures first. Without this, further allocations will bug.
1293 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1294 kmalloc_info[INDEX_NODE].name,
1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1296 slab_state = PARTIAL_NODE;
1297 setup_kmalloc_cache_index_table();
1299 slab_early_init = 0;
1301 /* 5) Replace the bootstrap kmem_cache_node */
1303 int nid;
1305 for_each_online_node(nid) {
1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1308 init_list(kmalloc_caches[INDEX_NODE],
1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1316 void __init kmem_cache_init_late(void)
1318 struct kmem_cache *cachep;
1320 slab_state = UP;
1322 /* 6) resize the head arrays to their final sizes */
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
1327 mutex_unlock(&slab_mutex);
1329 /* Done! */
1330 slab_state = FULL;
1332 #ifdef CONFIG_NUMA
1334 * Register a memory hotplug callback that initializes and frees
1335 * node.
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338 #endif
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1346 static int __init cpucache_init(void)
1348 int ret;
1351 * Register the timers that return unneeded pages to the page allocator
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
1357 /* Done! */
1358 slab_state = FULL;
1359 return 0;
1361 __initcall(cpucache_init);
1363 static noinline void
1364 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1366 #if DEBUG
1367 struct kmem_cache_node *n;
1368 unsigned long flags;
1369 int node;
1370 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1371 DEFAULT_RATELIMIT_BURST);
1373 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1374 return;
1376 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1377 nodeid, gfpflags, &gfpflags);
1378 pr_warn(" cache: %s, object size: %d, order: %d\n",
1379 cachep->name, cachep->size, cachep->gfporder);
1381 for_each_kmem_cache_node(cachep, node, n) {
1382 unsigned long total_slabs, free_slabs, free_objs;
1384 spin_lock_irqsave(&n->list_lock, flags);
1385 total_slabs = n->total_slabs;
1386 free_slabs = n->free_slabs;
1387 free_objs = n->free_objects;
1388 spin_unlock_irqrestore(&n->list_lock, flags);
1390 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1391 node, total_slabs - free_slabs, total_slabs,
1392 (total_slabs * cachep->num) - free_objs,
1393 total_slabs * cachep->num);
1395 #endif
1399 * Interface to system's page allocator. No need to hold the
1400 * kmem_cache_node ->list_lock.
1402 * If we requested dmaable memory, we will get it. Even if we
1403 * did not request dmaable memory, we might get it, but that
1404 * would be relatively rare and ignorable.
1406 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1407 int nodeid)
1409 struct page *page;
1410 int nr_pages;
1412 flags |= cachep->allocflags;
1413 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1414 flags |= __GFP_RECLAIMABLE;
1416 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1417 if (!page) {
1418 slab_out_of_memory(cachep, flags, nodeid);
1419 return NULL;
1422 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1423 __free_pages(page, cachep->gfporder);
1424 return NULL;
1427 nr_pages = (1 << cachep->gfporder);
1428 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1429 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1430 else
1431 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1433 __SetPageSlab(page);
1434 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1435 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1436 SetPageSlabPfmemalloc(page);
1438 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1439 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1441 if (cachep->ctor)
1442 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1443 else
1444 kmemcheck_mark_unallocated_pages(page, nr_pages);
1447 return page;
1451 * Interface to system's page release.
1453 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1455 int order = cachep->gfporder;
1456 unsigned long nr_freed = (1 << order);
1458 kmemcheck_free_shadow(page, order);
1460 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1461 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1462 else
1463 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1465 BUG_ON(!PageSlab(page));
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468 page_mapcount_reset(page);
1469 page->mapping = NULL;
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += nr_freed;
1473 memcg_uncharge_slab(page, order, cachep);
1474 __free_pages(page, order);
1477 static void kmem_rcu_free(struct rcu_head *head)
1479 struct kmem_cache *cachep;
1480 struct page *page;
1482 page = container_of(head, struct page, rcu_head);
1483 cachep = page->slab_cache;
1485 kmem_freepages(cachep, page);
1488 #if DEBUG
1489 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1492 (cachep->size % PAGE_SIZE) == 0)
1493 return true;
1495 return false;
1498 #ifdef CONFIG_DEBUG_PAGEALLOC
1499 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1500 unsigned long caller)
1502 int size = cachep->object_size;
1504 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506 if (size < 5 * sizeof(unsigned long))
1507 return;
1509 *addr++ = 0x12345678;
1510 *addr++ = caller;
1511 *addr++ = smp_processor_id();
1512 size -= 3 * sizeof(unsigned long);
1514 unsigned long *sptr = &caller;
1515 unsigned long svalue;
1517 while (!kstack_end(sptr)) {
1518 svalue = *sptr++;
1519 if (kernel_text_address(svalue)) {
1520 *addr++ = svalue;
1521 size -= sizeof(unsigned long);
1522 if (size <= sizeof(unsigned long))
1523 break;
1528 *addr++ = 0x87654321;
1531 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1532 int map, unsigned long caller)
1534 if (!is_debug_pagealloc_cache(cachep))
1535 return;
1537 if (caller)
1538 store_stackinfo(cachep, objp, caller);
1540 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1543 #else
1544 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1545 int map, unsigned long caller) {}
1547 #endif
1549 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551 int size = cachep->object_size;
1552 addr = &((char *)addr)[obj_offset(cachep)];
1554 memset(addr, val, size);
1555 *(unsigned char *)(addr + size - 1) = POISON_END;
1558 static void dump_line(char *data, int offset, int limit)
1560 int i;
1561 unsigned char error = 0;
1562 int bad_count = 0;
1564 pr_err("%03x: ", offset);
1565 for (i = 0; i < limit; i++) {
1566 if (data[offset + i] != POISON_FREE) {
1567 error = data[offset + i];
1568 bad_count++;
1571 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1572 &data[offset], limit, 1);
1574 if (bad_count == 1) {
1575 error ^= POISON_FREE;
1576 if (!(error & (error - 1))) {
1577 pr_err("Single bit error detected. Probably bad RAM.\n");
1578 #ifdef CONFIG_X86
1579 pr_err("Run memtest86+ or a similar memory test tool.\n");
1580 #else
1581 pr_err("Run a memory test tool.\n");
1582 #endif
1586 #endif
1588 #if DEBUG
1590 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592 int i, size;
1593 char *realobj;
1595 if (cachep->flags & SLAB_RED_ZONE) {
1596 pr_err("Redzone: 0x%llx/0x%llx\n",
1597 *dbg_redzone1(cachep, objp),
1598 *dbg_redzone2(cachep, objp));
1601 if (cachep->flags & SLAB_STORE_USER) {
1602 pr_err("Last user: [<%p>](%pSR)\n",
1603 *dbg_userword(cachep, objp),
1604 *dbg_userword(cachep, objp));
1606 realobj = (char *)objp + obj_offset(cachep);
1607 size = cachep->object_size;
1608 for (i = 0; i < size && lines; i += 16, lines--) {
1609 int limit;
1610 limit = 16;
1611 if (i + limit > size)
1612 limit = size - i;
1613 dump_line(realobj, i, limit);
1617 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619 char *realobj;
1620 int size, i;
1621 int lines = 0;
1623 if (is_debug_pagealloc_cache(cachep))
1624 return;
1626 realobj = (char *)objp + obj_offset(cachep);
1627 size = cachep->object_size;
1629 for (i = 0; i < size; i++) {
1630 char exp = POISON_FREE;
1631 if (i == size - 1)
1632 exp = POISON_END;
1633 if (realobj[i] != exp) {
1634 int limit;
1635 /* Mismatch ! */
1636 /* Print header */
1637 if (lines == 0) {
1638 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1639 print_tainted(), cachep->name,
1640 realobj, size);
1641 print_objinfo(cachep, objp, 0);
1643 /* Hexdump the affected line */
1644 i = (i / 16) * 16;
1645 limit = 16;
1646 if (i + limit > size)
1647 limit = size - i;
1648 dump_line(realobj, i, limit);
1649 i += 16;
1650 lines++;
1651 /* Limit to 5 lines */
1652 if (lines > 5)
1653 break;
1656 if (lines != 0) {
1657 /* Print some data about the neighboring objects, if they
1658 * exist:
1660 struct page *page = virt_to_head_page(objp);
1661 unsigned int objnr;
1663 objnr = obj_to_index(cachep, page, objp);
1664 if (objnr) {
1665 objp = index_to_obj(cachep, page, objnr - 1);
1666 realobj = (char *)objp + obj_offset(cachep);
1667 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1668 print_objinfo(cachep, objp, 2);
1670 if (objnr + 1 < cachep->num) {
1671 objp = index_to_obj(cachep, page, objnr + 1);
1672 realobj = (char *)objp + obj_offset(cachep);
1673 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1674 print_objinfo(cachep, objp, 2);
1678 #endif
1680 #if DEBUG
1681 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1682 struct page *page)
1684 int i;
1686 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1687 poison_obj(cachep, page->freelist - obj_offset(cachep),
1688 POISON_FREE);
1691 for (i = 0; i < cachep->num; i++) {
1692 void *objp = index_to_obj(cachep, page, i);
1694 if (cachep->flags & SLAB_POISON) {
1695 check_poison_obj(cachep, objp);
1696 slab_kernel_map(cachep, objp, 1, 0);
1698 if (cachep->flags & SLAB_RED_ZONE) {
1699 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1700 slab_error(cachep, "start of a freed object was overwritten");
1701 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1702 slab_error(cachep, "end of a freed object was overwritten");
1706 #else
1707 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1708 struct page *page)
1711 #endif
1714 * slab_destroy - destroy and release all objects in a slab
1715 * @cachep: cache pointer being destroyed
1716 * @page: page pointer being destroyed
1718 * Destroy all the objs in a slab page, and release the mem back to the system.
1719 * Before calling the slab page must have been unlinked from the cache. The
1720 * kmem_cache_node ->list_lock is not held/needed.
1722 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724 void *freelist;
1726 freelist = page->freelist;
1727 slab_destroy_debugcheck(cachep, page);
1728 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1729 call_rcu(&page->rcu_head, kmem_rcu_free);
1730 else
1731 kmem_freepages(cachep, page);
1734 * From now on, we don't use freelist
1735 * although actual page can be freed in rcu context
1737 if (OFF_SLAB(cachep))
1738 kmem_cache_free(cachep->freelist_cache, freelist);
1741 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743 struct page *page, *n;
1745 list_for_each_entry_safe(page, n, list, lru) {
1746 list_del(&page->lru);
1747 slab_destroy(cachep, page);
1752 * calculate_slab_order - calculate size (page order) of slabs
1753 * @cachep: pointer to the cache that is being created
1754 * @size: size of objects to be created in this cache.
1755 * @flags: slab allocation flags
1757 * Also calculates the number of objects per slab.
1759 * This could be made much more intelligent. For now, try to avoid using
1760 * high order pages for slabs. When the gfp() functions are more friendly
1761 * towards high-order requests, this should be changed.
1763 static size_t calculate_slab_order(struct kmem_cache *cachep,
1764 size_t size, unsigned long flags)
1766 size_t left_over = 0;
1767 int gfporder;
1769 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1770 unsigned int num;
1771 size_t remainder;
1773 num = cache_estimate(gfporder, size, flags, &remainder);
1774 if (!num)
1775 continue;
1777 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1778 if (num > SLAB_OBJ_MAX_NUM)
1779 break;
1781 if (flags & CFLGS_OFF_SLAB) {
1782 struct kmem_cache *freelist_cache;
1783 size_t freelist_size;
1785 freelist_size = num * sizeof(freelist_idx_t);
1786 freelist_cache = kmalloc_slab(freelist_size, 0u);
1787 if (!freelist_cache)
1788 continue;
1791 * Needed to avoid possible looping condition
1792 * in cache_grow_begin()
1794 if (OFF_SLAB(freelist_cache))
1795 continue;
1797 /* check if off slab has enough benefit */
1798 if (freelist_cache->size > cachep->size / 2)
1799 continue;
1802 /* Found something acceptable - save it away */
1803 cachep->num = num;
1804 cachep->gfporder = gfporder;
1805 left_over = remainder;
1808 * A VFS-reclaimable slab tends to have most allocations
1809 * as GFP_NOFS and we really don't want to have to be allocating
1810 * higher-order pages when we are unable to shrink dcache.
1812 if (flags & SLAB_RECLAIM_ACCOUNT)
1813 break;
1816 * Large number of objects is good, but very large slabs are
1817 * currently bad for the gfp()s.
1819 if (gfporder >= slab_max_order)
1820 break;
1823 * Acceptable internal fragmentation?
1825 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1826 break;
1828 return left_over;
1831 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1832 struct kmem_cache *cachep, int entries, int batchcount)
1834 int cpu;
1835 size_t size;
1836 struct array_cache __percpu *cpu_cache;
1838 size = sizeof(void *) * entries + sizeof(struct array_cache);
1839 cpu_cache = __alloc_percpu(size, sizeof(void *));
1841 if (!cpu_cache)
1842 return NULL;
1844 for_each_possible_cpu(cpu) {
1845 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1846 entries, batchcount);
1849 return cpu_cache;
1852 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854 if (slab_state >= FULL)
1855 return enable_cpucache(cachep, gfp);
1857 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1858 if (!cachep->cpu_cache)
1859 return 1;
1861 if (slab_state == DOWN) {
1862 /* Creation of first cache (kmem_cache). */
1863 set_up_node(kmem_cache, CACHE_CACHE);
1864 } else if (slab_state == PARTIAL) {
1865 /* For kmem_cache_node */
1866 set_up_node(cachep, SIZE_NODE);
1867 } else {
1868 int node;
1870 for_each_online_node(node) {
1871 cachep->node[node] = kmalloc_node(
1872 sizeof(struct kmem_cache_node), gfp, node);
1873 BUG_ON(!cachep->node[node]);
1874 kmem_cache_node_init(cachep->node[node]);
1878 cachep->node[numa_mem_id()]->next_reap =
1879 jiffies + REAPTIMEOUT_NODE +
1880 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882 cpu_cache_get(cachep)->avail = 0;
1883 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1884 cpu_cache_get(cachep)->batchcount = 1;
1885 cpu_cache_get(cachep)->touched = 0;
1886 cachep->batchcount = 1;
1887 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1888 return 0;
1891 unsigned long kmem_cache_flags(unsigned long object_size,
1892 unsigned long flags, const char *name,
1893 void (*ctor)(void *))
1895 return flags;
1898 struct kmem_cache *
1899 __kmem_cache_alias(const char *name, size_t size, size_t align,
1900 unsigned long flags, void (*ctor)(void *))
1902 struct kmem_cache *cachep;
1904 cachep = find_mergeable(size, align, flags, name, ctor);
1905 if (cachep) {
1906 cachep->refcount++;
1909 * Adjust the object sizes so that we clear
1910 * the complete object on kzalloc.
1912 cachep->object_size = max_t(int, cachep->object_size, size);
1914 return cachep;
1917 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1918 size_t size, unsigned long flags)
1920 size_t left;
1922 cachep->num = 0;
1924 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1925 return false;
1927 left = calculate_slab_order(cachep, size,
1928 flags | CFLGS_OBJFREELIST_SLAB);
1929 if (!cachep->num)
1930 return false;
1932 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1933 return false;
1935 cachep->colour = left / cachep->colour_off;
1937 return true;
1940 static bool set_off_slab_cache(struct kmem_cache *cachep,
1941 size_t size, unsigned long flags)
1943 size_t left;
1945 cachep->num = 0;
1948 * Always use on-slab management when SLAB_NOLEAKTRACE
1949 * to avoid recursive calls into kmemleak.
1951 if (flags & SLAB_NOLEAKTRACE)
1952 return false;
1955 * Size is large, assume best to place the slab management obj
1956 * off-slab (should allow better packing of objs).
1958 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1959 if (!cachep->num)
1960 return false;
1963 * If the slab has been placed off-slab, and we have enough space then
1964 * move it on-slab. This is at the expense of any extra colouring.
1966 if (left >= cachep->num * sizeof(freelist_idx_t))
1967 return false;
1969 cachep->colour = left / cachep->colour_off;
1971 return true;
1974 static bool set_on_slab_cache(struct kmem_cache *cachep,
1975 size_t size, unsigned long flags)
1977 size_t left;
1979 cachep->num = 0;
1981 left = calculate_slab_order(cachep, size, flags);
1982 if (!cachep->num)
1983 return false;
1985 cachep->colour = left / cachep->colour_off;
1987 return true;
1991 * __kmem_cache_create - Create a cache.
1992 * @cachep: cache management descriptor
1993 * @flags: SLAB flags
1995 * Returns a ptr to the cache on success, NULL on failure.
1996 * Cannot be called within a int, but can be interrupted.
1997 * The @ctor is run when new pages are allocated by the cache.
1999 * The flags are
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2009 * as davem.
2012 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014 size_t ralign = BYTES_PER_WORD;
2015 gfp_t gfp;
2016 int err;
2017 size_t size = cachep->size;
2019 #if DEBUG
2020 #if FORCED_DEBUG
2022 * Enable redzoning and last user accounting, except for caches with
2023 * large objects, if the increased size would increase the object size
2024 * above the next power of two: caches with object sizes just above a
2025 * power of two have a significant amount of internal fragmentation.
2027 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2028 2 * sizeof(unsigned long long)))
2029 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2030 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2031 flags |= SLAB_POISON;
2032 #endif
2033 #endif
2036 * Check that size is in terms of words. This is needed to avoid
2037 * unaligned accesses for some archs when redzoning is used, and makes
2038 * sure any on-slab bufctl's are also correctly aligned.
2040 size = ALIGN(size, BYTES_PER_WORD);
2042 if (flags & SLAB_RED_ZONE) {
2043 ralign = REDZONE_ALIGN;
2044 /* If redzoning, ensure that the second redzone is suitably
2045 * aligned, by adjusting the object size accordingly. */
2046 size = ALIGN(size, REDZONE_ALIGN);
2049 /* 3) caller mandated alignment */
2050 if (ralign < cachep->align) {
2051 ralign = cachep->align;
2053 /* disable debug if necessary */
2054 if (ralign > __alignof__(unsigned long long))
2055 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2057 * 4) Store it.
2059 cachep->align = ralign;
2060 cachep->colour_off = cache_line_size();
2061 /* Offset must be a multiple of the alignment. */
2062 if (cachep->colour_off < cachep->align)
2063 cachep->colour_off = cachep->align;
2065 if (slab_is_available())
2066 gfp = GFP_KERNEL;
2067 else
2068 gfp = GFP_NOWAIT;
2070 #if DEBUG
2073 * Both debugging options require word-alignment which is calculated
2074 * into align above.
2076 if (flags & SLAB_RED_ZONE) {
2077 /* add space for red zone words */
2078 cachep->obj_offset += sizeof(unsigned long long);
2079 size += 2 * sizeof(unsigned long long);
2081 if (flags & SLAB_STORE_USER) {
2082 /* user store requires one word storage behind the end of
2083 * the real object. But if the second red zone needs to be
2084 * aligned to 64 bits, we must allow that much space.
2086 if (flags & SLAB_RED_ZONE)
2087 size += REDZONE_ALIGN;
2088 else
2089 size += BYTES_PER_WORD;
2091 #endif
2093 kasan_cache_create(cachep, &size, &flags);
2095 size = ALIGN(size, cachep->align);
2097 * We should restrict the number of objects in a slab to implement
2098 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2100 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2101 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2103 #if DEBUG
2105 * To activate debug pagealloc, off-slab management is necessary
2106 * requirement. In early phase of initialization, small sized slab
2107 * doesn't get initialized so it would not be possible. So, we need
2108 * to check size >= 256. It guarantees that all necessary small
2109 * sized slab is initialized in current slab initialization sequence.
2111 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2112 size >= 256 && cachep->object_size > cache_line_size()) {
2113 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2114 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2116 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2117 flags |= CFLGS_OFF_SLAB;
2118 cachep->obj_offset += tmp_size - size;
2119 size = tmp_size;
2120 goto done;
2124 #endif
2126 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2127 flags |= CFLGS_OBJFREELIST_SLAB;
2128 goto done;
2131 if (set_off_slab_cache(cachep, size, flags)) {
2132 flags |= CFLGS_OFF_SLAB;
2133 goto done;
2136 if (set_on_slab_cache(cachep, size, flags))
2137 goto done;
2139 return -E2BIG;
2141 done:
2142 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2143 cachep->flags = flags;
2144 cachep->allocflags = __GFP_COMP;
2145 if (flags & SLAB_CACHE_DMA)
2146 cachep->allocflags |= GFP_DMA;
2147 cachep->size = size;
2148 cachep->reciprocal_buffer_size = reciprocal_value(size);
2150 #if DEBUG
2152 * If we're going to use the generic kernel_map_pages()
2153 * poisoning, then it's going to smash the contents of
2154 * the redzone and userword anyhow, so switch them off.
2156 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2157 (cachep->flags & SLAB_POISON) &&
2158 is_debug_pagealloc_cache(cachep))
2159 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160 #endif
2162 if (OFF_SLAB(cachep)) {
2163 cachep->freelist_cache =
2164 kmalloc_slab(cachep->freelist_size, 0u);
2167 err = setup_cpu_cache(cachep, gfp);
2168 if (err) {
2169 __kmem_cache_release(cachep);
2170 return err;
2173 return 0;
2176 #if DEBUG
2177 static void check_irq_off(void)
2179 BUG_ON(!irqs_disabled());
2182 static void check_irq_on(void)
2184 BUG_ON(irqs_disabled());
2187 static void check_mutex_acquired(void)
2189 BUG_ON(!mutex_is_locked(&slab_mutex));
2192 static void check_spinlock_acquired(struct kmem_cache *cachep)
2194 #ifdef CONFIG_SMP
2195 check_irq_off();
2196 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2197 #endif
2200 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2202 #ifdef CONFIG_SMP
2203 check_irq_off();
2204 assert_spin_locked(&get_node(cachep, node)->list_lock);
2205 #endif
2208 #else
2209 #define check_irq_off() do { } while(0)
2210 #define check_irq_on() do { } while(0)
2211 #define check_mutex_acquired() do { } while(0)
2212 #define check_spinlock_acquired(x) do { } while(0)
2213 #define check_spinlock_acquired_node(x, y) do { } while(0)
2214 #endif
2216 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2217 int node, bool free_all, struct list_head *list)
2219 int tofree;
2221 if (!ac || !ac->avail)
2222 return;
2224 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2225 if (tofree > ac->avail)
2226 tofree = (ac->avail + 1) / 2;
2228 free_block(cachep, ac->entry, tofree, node, list);
2229 ac->avail -= tofree;
2230 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2233 static void do_drain(void *arg)
2235 struct kmem_cache *cachep = arg;
2236 struct array_cache *ac;
2237 int node = numa_mem_id();
2238 struct kmem_cache_node *n;
2239 LIST_HEAD(list);
2241 check_irq_off();
2242 ac = cpu_cache_get(cachep);
2243 n = get_node(cachep, node);
2244 spin_lock(&n->list_lock);
2245 free_block(cachep, ac->entry, ac->avail, node, &list);
2246 spin_unlock(&n->list_lock);
2247 slabs_destroy(cachep, &list);
2248 ac->avail = 0;
2251 static void drain_cpu_caches(struct kmem_cache *cachep)
2253 struct kmem_cache_node *n;
2254 int node;
2255 LIST_HEAD(list);
2257 on_each_cpu(do_drain, cachep, 1);
2258 check_irq_on();
2259 for_each_kmem_cache_node(cachep, node, n)
2260 if (n->alien)
2261 drain_alien_cache(cachep, n->alien);
2263 for_each_kmem_cache_node(cachep, node, n) {
2264 spin_lock_irq(&n->list_lock);
2265 drain_array_locked(cachep, n->shared, node, true, &list);
2266 spin_unlock_irq(&n->list_lock);
2268 slabs_destroy(cachep, &list);
2273 * Remove slabs from the list of free slabs.
2274 * Specify the number of slabs to drain in tofree.
2276 * Returns the actual number of slabs released.
2278 static int drain_freelist(struct kmem_cache *cache,
2279 struct kmem_cache_node *n, int tofree)
2281 struct list_head *p;
2282 int nr_freed;
2283 struct page *page;
2285 nr_freed = 0;
2286 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2288 spin_lock_irq(&n->list_lock);
2289 p = n->slabs_free.prev;
2290 if (p == &n->slabs_free) {
2291 spin_unlock_irq(&n->list_lock);
2292 goto out;
2295 page = list_entry(p, struct page, lru);
2296 list_del(&page->lru);
2297 n->free_slabs--;
2298 n->total_slabs--;
2300 * Safe to drop the lock. The slab is no longer linked
2301 * to the cache.
2303 n->free_objects -= cache->num;
2304 spin_unlock_irq(&n->list_lock);
2305 slab_destroy(cache, page);
2306 nr_freed++;
2308 out:
2309 return nr_freed;
2312 int __kmem_cache_shrink(struct kmem_cache *cachep)
2314 int ret = 0;
2315 int node;
2316 struct kmem_cache_node *n;
2318 drain_cpu_caches(cachep);
2320 check_irq_on();
2321 for_each_kmem_cache_node(cachep, node, n) {
2322 drain_freelist(cachep, n, INT_MAX);
2324 ret += !list_empty(&n->slabs_full) ||
2325 !list_empty(&n->slabs_partial);
2327 return (ret ? 1 : 0);
2330 #ifdef CONFIG_MEMCG
2331 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2333 __kmem_cache_shrink(cachep);
2335 #endif
2337 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2339 return __kmem_cache_shrink(cachep);
2342 void __kmem_cache_release(struct kmem_cache *cachep)
2344 int i;
2345 struct kmem_cache_node *n;
2347 cache_random_seq_destroy(cachep);
2349 free_percpu(cachep->cpu_cache);
2351 /* NUMA: free the node structures */
2352 for_each_kmem_cache_node(cachep, i, n) {
2353 kfree(n->shared);
2354 free_alien_cache(n->alien);
2355 kfree(n);
2356 cachep->node[i] = NULL;
2361 * Get the memory for a slab management obj.
2363 * For a slab cache when the slab descriptor is off-slab, the
2364 * slab descriptor can't come from the same cache which is being created,
2365 * Because if it is the case, that means we defer the creation of
2366 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2367 * And we eventually call down to __kmem_cache_create(), which
2368 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2369 * This is a "chicken-and-egg" problem.
2371 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2372 * which are all initialized during kmem_cache_init().
2374 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2375 struct page *page, int colour_off,
2376 gfp_t local_flags, int nodeid)
2378 void *freelist;
2379 void *addr = page_address(page);
2381 page->s_mem = addr + colour_off;
2382 page->active = 0;
2384 if (OBJFREELIST_SLAB(cachep))
2385 freelist = NULL;
2386 else if (OFF_SLAB(cachep)) {
2387 /* Slab management obj is off-slab. */
2388 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2389 local_flags, nodeid);
2390 if (!freelist)
2391 return NULL;
2392 } else {
2393 /* We will use last bytes at the slab for freelist */
2394 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2395 cachep->freelist_size;
2398 return freelist;
2401 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2403 return ((freelist_idx_t *)page->freelist)[idx];
2406 static inline void set_free_obj(struct page *page,
2407 unsigned int idx, freelist_idx_t val)
2409 ((freelist_idx_t *)(page->freelist))[idx] = val;
2412 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2414 #if DEBUG
2415 int i;
2417 for (i = 0; i < cachep->num; i++) {
2418 void *objp = index_to_obj(cachep, page, i);
2420 if (cachep->flags & SLAB_STORE_USER)
2421 *dbg_userword(cachep, objp) = NULL;
2423 if (cachep->flags & SLAB_RED_ZONE) {
2424 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2425 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2428 * Constructors are not allowed to allocate memory from the same
2429 * cache which they are a constructor for. Otherwise, deadlock.
2430 * They must also be threaded.
2432 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2433 kasan_unpoison_object_data(cachep,
2434 objp + obj_offset(cachep));
2435 cachep->ctor(objp + obj_offset(cachep));
2436 kasan_poison_object_data(
2437 cachep, objp + obj_offset(cachep));
2440 if (cachep->flags & SLAB_RED_ZONE) {
2441 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2442 slab_error(cachep, "constructor overwrote the end of an object");
2443 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2444 slab_error(cachep, "constructor overwrote the start of an object");
2446 /* need to poison the objs? */
2447 if (cachep->flags & SLAB_POISON) {
2448 poison_obj(cachep, objp, POISON_FREE);
2449 slab_kernel_map(cachep, objp, 0, 0);
2452 #endif
2455 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2456 /* Hold information during a freelist initialization */
2457 union freelist_init_state {
2458 struct {
2459 unsigned int pos;
2460 unsigned int *list;
2461 unsigned int count;
2463 struct rnd_state rnd_state;
2467 * Initialize the state based on the randomization methode available.
2468 * return true if the pre-computed list is available, false otherwize.
2470 static bool freelist_state_initialize(union freelist_init_state *state,
2471 struct kmem_cache *cachep,
2472 unsigned int count)
2474 bool ret;
2475 unsigned int rand;
2477 /* Use best entropy available to define a random shift */
2478 rand = get_random_int();
2480 /* Use a random state if the pre-computed list is not available */
2481 if (!cachep->random_seq) {
2482 prandom_seed_state(&state->rnd_state, rand);
2483 ret = false;
2484 } else {
2485 state->list = cachep->random_seq;
2486 state->count = count;
2487 state->pos = rand % count;
2488 ret = true;
2490 return ret;
2493 /* Get the next entry on the list and randomize it using a random shift */
2494 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2496 if (state->pos >= state->count)
2497 state->pos = 0;
2498 return state->list[state->pos++];
2501 /* Swap two freelist entries */
2502 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2504 swap(((freelist_idx_t *)page->freelist)[a],
2505 ((freelist_idx_t *)page->freelist)[b]);
2509 * Shuffle the freelist initialization state based on pre-computed lists.
2510 * return true if the list was successfully shuffled, false otherwise.
2512 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2514 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2515 union freelist_init_state state;
2516 bool precomputed;
2518 if (count < 2)
2519 return false;
2521 precomputed = freelist_state_initialize(&state, cachep, count);
2523 /* Take a random entry as the objfreelist */
2524 if (OBJFREELIST_SLAB(cachep)) {
2525 if (!precomputed)
2526 objfreelist = count - 1;
2527 else
2528 objfreelist = next_random_slot(&state);
2529 page->freelist = index_to_obj(cachep, page, objfreelist) +
2530 obj_offset(cachep);
2531 count--;
2535 * On early boot, generate the list dynamically.
2536 * Later use a pre-computed list for speed.
2538 if (!precomputed) {
2539 for (i = 0; i < count; i++)
2540 set_free_obj(page, i, i);
2542 /* Fisher-Yates shuffle */
2543 for (i = count - 1; i > 0; i--) {
2544 rand = prandom_u32_state(&state.rnd_state);
2545 rand %= (i + 1);
2546 swap_free_obj(page, i, rand);
2548 } else {
2549 for (i = 0; i < count; i++)
2550 set_free_obj(page, i, next_random_slot(&state));
2553 if (OBJFREELIST_SLAB(cachep))
2554 set_free_obj(page, cachep->num - 1, objfreelist);
2556 return true;
2558 #else
2559 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2560 struct page *page)
2562 return false;
2564 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2566 static void cache_init_objs(struct kmem_cache *cachep,
2567 struct page *page)
2569 int i;
2570 void *objp;
2571 bool shuffled;
2573 cache_init_objs_debug(cachep, page);
2575 /* Try to randomize the freelist if enabled */
2576 shuffled = shuffle_freelist(cachep, page);
2578 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2579 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2580 obj_offset(cachep);
2583 for (i = 0; i < cachep->num; i++) {
2584 objp = index_to_obj(cachep, page, i);
2585 kasan_init_slab_obj(cachep, objp);
2587 /* constructor could break poison info */
2588 if (DEBUG == 0 && cachep->ctor) {
2589 kasan_unpoison_object_data(cachep, objp);
2590 cachep->ctor(objp);
2591 kasan_poison_object_data(cachep, objp);
2594 if (!shuffled)
2595 set_free_obj(page, i, i);
2599 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2601 void *objp;
2603 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2604 page->active++;
2606 #if DEBUG
2607 if (cachep->flags & SLAB_STORE_USER)
2608 set_store_user_dirty(cachep);
2609 #endif
2611 return objp;
2614 static void slab_put_obj(struct kmem_cache *cachep,
2615 struct page *page, void *objp)
2617 unsigned int objnr = obj_to_index(cachep, page, objp);
2618 #if DEBUG
2619 unsigned int i;
2621 /* Verify double free bug */
2622 for (i = page->active; i < cachep->num; i++) {
2623 if (get_free_obj(page, i) == objnr) {
2624 pr_err("slab: double free detected in cache '%s', objp %p\n",
2625 cachep->name, objp);
2626 BUG();
2629 #endif
2630 page->active--;
2631 if (!page->freelist)
2632 page->freelist = objp + obj_offset(cachep);
2634 set_free_obj(page, page->active, objnr);
2638 * Map pages beginning at addr to the given cache and slab. This is required
2639 * for the slab allocator to be able to lookup the cache and slab of a
2640 * virtual address for kfree, ksize, and slab debugging.
2642 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2643 void *freelist)
2645 page->slab_cache = cache;
2646 page->freelist = freelist;
2650 * Grow (by 1) the number of slabs within a cache. This is called by
2651 * kmem_cache_alloc() when there are no active objs left in a cache.
2653 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2654 gfp_t flags, int nodeid)
2656 void *freelist;
2657 size_t offset;
2658 gfp_t local_flags;
2659 int page_node;
2660 struct kmem_cache_node *n;
2661 struct page *page;
2664 * Be lazy and only check for valid flags here, keeping it out of the
2665 * critical path in kmem_cache_alloc().
2667 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2668 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2669 flags &= ~GFP_SLAB_BUG_MASK;
2670 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2671 invalid_mask, &invalid_mask, flags, &flags);
2672 dump_stack();
2674 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2676 check_irq_off();
2677 if (gfpflags_allow_blocking(local_flags))
2678 local_irq_enable();
2681 * Get mem for the objs. Attempt to allocate a physical page from
2682 * 'nodeid'.
2684 page = kmem_getpages(cachep, local_flags, nodeid);
2685 if (!page)
2686 goto failed;
2688 page_node = page_to_nid(page);
2689 n = get_node(cachep, page_node);
2691 /* Get colour for the slab, and cal the next value. */
2692 n->colour_next++;
2693 if (n->colour_next >= cachep->colour)
2694 n->colour_next = 0;
2696 offset = n->colour_next;
2697 if (offset >= cachep->colour)
2698 offset = 0;
2700 offset *= cachep->colour_off;
2702 /* Get slab management. */
2703 freelist = alloc_slabmgmt(cachep, page, offset,
2704 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2705 if (OFF_SLAB(cachep) && !freelist)
2706 goto opps1;
2708 slab_map_pages(cachep, page, freelist);
2710 kasan_poison_slab(page);
2711 cache_init_objs(cachep, page);
2713 if (gfpflags_allow_blocking(local_flags))
2714 local_irq_disable();
2716 return page;
2718 opps1:
2719 kmem_freepages(cachep, page);
2720 failed:
2721 if (gfpflags_allow_blocking(local_flags))
2722 local_irq_disable();
2723 return NULL;
2726 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2728 struct kmem_cache_node *n;
2729 void *list = NULL;
2731 check_irq_off();
2733 if (!page)
2734 return;
2736 INIT_LIST_HEAD(&page->lru);
2737 n = get_node(cachep, page_to_nid(page));
2739 spin_lock(&n->list_lock);
2740 n->total_slabs++;
2741 if (!page->active) {
2742 list_add_tail(&page->lru, &(n->slabs_free));
2743 n->free_slabs++;
2744 } else
2745 fixup_slab_list(cachep, n, page, &list);
2747 STATS_INC_GROWN(cachep);
2748 n->free_objects += cachep->num - page->active;
2749 spin_unlock(&n->list_lock);
2751 fixup_objfreelist_debug(cachep, &list);
2754 #if DEBUG
2757 * Perform extra freeing checks:
2758 * - detect bad pointers.
2759 * - POISON/RED_ZONE checking
2761 static void kfree_debugcheck(const void *objp)
2763 if (!virt_addr_valid(objp)) {
2764 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2765 (unsigned long)objp);
2766 BUG();
2770 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2772 unsigned long long redzone1, redzone2;
2774 redzone1 = *dbg_redzone1(cache, obj);
2775 redzone2 = *dbg_redzone2(cache, obj);
2778 * Redzone is ok.
2780 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2781 return;
2783 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2784 slab_error(cache, "double free detected");
2785 else
2786 slab_error(cache, "memory outside object was overwritten");
2788 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2789 obj, redzone1, redzone2);
2792 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2793 unsigned long caller)
2795 unsigned int objnr;
2796 struct page *page;
2798 BUG_ON(virt_to_cache(objp) != cachep);
2800 objp -= obj_offset(cachep);
2801 kfree_debugcheck(objp);
2802 page = virt_to_head_page(objp);
2804 if (cachep->flags & SLAB_RED_ZONE) {
2805 verify_redzone_free(cachep, objp);
2806 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2807 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2809 if (cachep->flags & SLAB_STORE_USER) {
2810 set_store_user_dirty(cachep);
2811 *dbg_userword(cachep, objp) = (void *)caller;
2814 objnr = obj_to_index(cachep, page, objp);
2816 BUG_ON(objnr >= cachep->num);
2817 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2819 if (cachep->flags & SLAB_POISON) {
2820 poison_obj(cachep, objp, POISON_FREE);
2821 slab_kernel_map(cachep, objp, 0, caller);
2823 return objp;
2826 #else
2827 #define kfree_debugcheck(x) do { } while(0)
2828 #define cache_free_debugcheck(x,objp,z) (objp)
2829 #endif
2831 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2832 void **list)
2834 #if DEBUG
2835 void *next = *list;
2836 void *objp;
2838 while (next) {
2839 objp = next - obj_offset(cachep);
2840 next = *(void **)next;
2841 poison_obj(cachep, objp, POISON_FREE);
2843 #endif
2846 static inline void fixup_slab_list(struct kmem_cache *cachep,
2847 struct kmem_cache_node *n, struct page *page,
2848 void **list)
2850 /* move slabp to correct slabp list: */
2851 list_del(&page->lru);
2852 if (page->active == cachep->num) {
2853 list_add(&page->lru, &n->slabs_full);
2854 if (OBJFREELIST_SLAB(cachep)) {
2855 #if DEBUG
2856 /* Poisoning will be done without holding the lock */
2857 if (cachep->flags & SLAB_POISON) {
2858 void **objp = page->freelist;
2860 *objp = *list;
2861 *list = objp;
2863 #endif
2864 page->freelist = NULL;
2866 } else
2867 list_add(&page->lru, &n->slabs_partial);
2870 /* Try to find non-pfmemalloc slab if needed */
2871 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2872 struct page *page, bool pfmemalloc)
2874 if (!page)
2875 return NULL;
2877 if (pfmemalloc)
2878 return page;
2880 if (!PageSlabPfmemalloc(page))
2881 return page;
2883 /* No need to keep pfmemalloc slab if we have enough free objects */
2884 if (n->free_objects > n->free_limit) {
2885 ClearPageSlabPfmemalloc(page);
2886 return page;
2889 /* Move pfmemalloc slab to the end of list to speed up next search */
2890 list_del(&page->lru);
2891 if (!page->active) {
2892 list_add_tail(&page->lru, &n->slabs_free);
2893 n->free_slabs++;
2894 } else
2895 list_add_tail(&page->lru, &n->slabs_partial);
2897 list_for_each_entry(page, &n->slabs_partial, lru) {
2898 if (!PageSlabPfmemalloc(page))
2899 return page;
2902 n->free_touched = 1;
2903 list_for_each_entry(page, &n->slabs_free, lru) {
2904 if (!PageSlabPfmemalloc(page)) {
2905 n->free_slabs--;
2906 return page;
2910 return NULL;
2913 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2915 struct page *page;
2917 assert_spin_locked(&n->list_lock);
2918 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2919 if (!page) {
2920 n->free_touched = 1;
2921 page = list_first_entry_or_null(&n->slabs_free, struct page,
2922 lru);
2923 if (page)
2924 n->free_slabs--;
2927 if (sk_memalloc_socks())
2928 page = get_valid_first_slab(n, page, pfmemalloc);
2930 return page;
2933 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2934 struct kmem_cache_node *n, gfp_t flags)
2936 struct page *page;
2937 void *obj;
2938 void *list = NULL;
2940 if (!gfp_pfmemalloc_allowed(flags))
2941 return NULL;
2943 spin_lock(&n->list_lock);
2944 page = get_first_slab(n, true);
2945 if (!page) {
2946 spin_unlock(&n->list_lock);
2947 return NULL;
2950 obj = slab_get_obj(cachep, page);
2951 n->free_objects--;
2953 fixup_slab_list(cachep, n, page, &list);
2955 spin_unlock(&n->list_lock);
2956 fixup_objfreelist_debug(cachep, &list);
2958 return obj;
2962 * Slab list should be fixed up by fixup_slab_list() for existing slab
2963 * or cache_grow_end() for new slab
2965 static __always_inline int alloc_block(struct kmem_cache *cachep,
2966 struct array_cache *ac, struct page *page, int batchcount)
2969 * There must be at least one object available for
2970 * allocation.
2972 BUG_ON(page->active >= cachep->num);
2974 while (page->active < cachep->num && batchcount--) {
2975 STATS_INC_ALLOCED(cachep);
2976 STATS_INC_ACTIVE(cachep);
2977 STATS_SET_HIGH(cachep);
2979 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2982 return batchcount;
2985 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2987 int batchcount;
2988 struct kmem_cache_node *n;
2989 struct array_cache *ac, *shared;
2990 int node;
2991 void *list = NULL;
2992 struct page *page;
2994 check_irq_off();
2995 node = numa_mem_id();
2997 ac = cpu_cache_get(cachep);
2998 batchcount = ac->batchcount;
2999 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3001 * If there was little recent activity on this cache, then
3002 * perform only a partial refill. Otherwise we could generate
3003 * refill bouncing.
3005 batchcount = BATCHREFILL_LIMIT;
3007 n = get_node(cachep, node);
3009 BUG_ON(ac->avail > 0 || !n);
3010 shared = READ_ONCE(n->shared);
3011 if (!n->free_objects && (!shared || !shared->avail))
3012 goto direct_grow;
3014 spin_lock(&n->list_lock);
3015 shared = READ_ONCE(n->shared);
3017 /* See if we can refill from the shared array */
3018 if (shared && transfer_objects(ac, shared, batchcount)) {
3019 shared->touched = 1;
3020 goto alloc_done;
3023 while (batchcount > 0) {
3024 /* Get slab alloc is to come from. */
3025 page = get_first_slab(n, false);
3026 if (!page)
3027 goto must_grow;
3029 check_spinlock_acquired(cachep);
3031 batchcount = alloc_block(cachep, ac, page, batchcount);
3032 fixup_slab_list(cachep, n, page, &list);
3035 must_grow:
3036 n->free_objects -= ac->avail;
3037 alloc_done:
3038 spin_unlock(&n->list_lock);
3039 fixup_objfreelist_debug(cachep, &list);
3041 direct_grow:
3042 if (unlikely(!ac->avail)) {
3043 /* Check if we can use obj in pfmemalloc slab */
3044 if (sk_memalloc_socks()) {
3045 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3047 if (obj)
3048 return obj;
3051 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3054 * cache_grow_begin() can reenable interrupts,
3055 * then ac could change.
3057 ac = cpu_cache_get(cachep);
3058 if (!ac->avail && page)
3059 alloc_block(cachep, ac, page, batchcount);
3060 cache_grow_end(cachep, page);
3062 if (!ac->avail)
3063 return NULL;
3065 ac->touched = 1;
3067 return ac->entry[--ac->avail];
3070 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3071 gfp_t flags)
3073 might_sleep_if(gfpflags_allow_blocking(flags));
3076 #if DEBUG
3077 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3078 gfp_t flags, void *objp, unsigned long caller)
3080 if (!objp)
3081 return objp;
3082 if (cachep->flags & SLAB_POISON) {
3083 check_poison_obj(cachep, objp);
3084 slab_kernel_map(cachep, objp, 1, 0);
3085 poison_obj(cachep, objp, POISON_INUSE);
3087 if (cachep->flags & SLAB_STORE_USER)
3088 *dbg_userword(cachep, objp) = (void *)caller;
3090 if (cachep->flags & SLAB_RED_ZONE) {
3091 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3092 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3093 slab_error(cachep, "double free, or memory outside object was overwritten");
3094 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3095 objp, *dbg_redzone1(cachep, objp),
3096 *dbg_redzone2(cachep, objp));
3098 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3099 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3102 objp += obj_offset(cachep);
3103 if (cachep->ctor && cachep->flags & SLAB_POISON)
3104 cachep->ctor(objp);
3105 if (ARCH_SLAB_MINALIGN &&
3106 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3107 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3108 objp, (int)ARCH_SLAB_MINALIGN);
3110 return objp;
3112 #else
3113 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3114 #endif
3116 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3118 void *objp;
3119 struct array_cache *ac;
3121 check_irq_off();
3123 ac = cpu_cache_get(cachep);
3124 if (likely(ac->avail)) {
3125 ac->touched = 1;
3126 objp = ac->entry[--ac->avail];
3128 STATS_INC_ALLOCHIT(cachep);
3129 goto out;
3132 STATS_INC_ALLOCMISS(cachep);
3133 objp = cache_alloc_refill(cachep, flags);
3135 * the 'ac' may be updated by cache_alloc_refill(),
3136 * and kmemleak_erase() requires its correct value.
3138 ac = cpu_cache_get(cachep);
3140 out:
3142 * To avoid a false negative, if an object that is in one of the
3143 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3144 * treat the array pointers as a reference to the object.
3146 if (objp)
3147 kmemleak_erase(&ac->entry[ac->avail]);
3148 return objp;
3151 #ifdef CONFIG_NUMA
3153 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3155 * If we are in_interrupt, then process context, including cpusets and
3156 * mempolicy, may not apply and should not be used for allocation policy.
3158 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3160 int nid_alloc, nid_here;
3162 if (in_interrupt() || (flags & __GFP_THISNODE))
3163 return NULL;
3164 nid_alloc = nid_here = numa_mem_id();
3165 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3166 nid_alloc = cpuset_slab_spread_node();
3167 else if (current->mempolicy)
3168 nid_alloc = mempolicy_slab_node();
3169 if (nid_alloc != nid_here)
3170 return ____cache_alloc_node(cachep, flags, nid_alloc);
3171 return NULL;
3175 * Fallback function if there was no memory available and no objects on a
3176 * certain node and fall back is permitted. First we scan all the
3177 * available node for available objects. If that fails then we
3178 * perform an allocation without specifying a node. This allows the page
3179 * allocator to do its reclaim / fallback magic. We then insert the
3180 * slab into the proper nodelist and then allocate from it.
3182 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3184 struct zonelist *zonelist;
3185 struct zoneref *z;
3186 struct zone *zone;
3187 enum zone_type high_zoneidx = gfp_zone(flags);
3188 void *obj = NULL;
3189 struct page *page;
3190 int nid;
3191 unsigned int cpuset_mems_cookie;
3193 if (flags & __GFP_THISNODE)
3194 return NULL;
3196 retry_cpuset:
3197 cpuset_mems_cookie = read_mems_allowed_begin();
3198 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3200 retry:
3202 * Look through allowed nodes for objects available
3203 * from existing per node queues.
3205 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3206 nid = zone_to_nid(zone);
3208 if (cpuset_zone_allowed(zone, flags) &&
3209 get_node(cache, nid) &&
3210 get_node(cache, nid)->free_objects) {
3211 obj = ____cache_alloc_node(cache,
3212 gfp_exact_node(flags), nid);
3213 if (obj)
3214 break;
3218 if (!obj) {
3220 * This allocation will be performed within the constraints
3221 * of the current cpuset / memory policy requirements.
3222 * We may trigger various forms of reclaim on the allowed
3223 * set and go into memory reserves if necessary.
3225 page = cache_grow_begin(cache, flags, numa_mem_id());
3226 cache_grow_end(cache, page);
3227 if (page) {
3228 nid = page_to_nid(page);
3229 obj = ____cache_alloc_node(cache,
3230 gfp_exact_node(flags), nid);
3233 * Another processor may allocate the objects in
3234 * the slab since we are not holding any locks.
3236 if (!obj)
3237 goto retry;
3241 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3242 goto retry_cpuset;
3243 return obj;
3247 * A interface to enable slab creation on nodeid
3249 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3250 int nodeid)
3252 struct page *page;
3253 struct kmem_cache_node *n;
3254 void *obj = NULL;
3255 void *list = NULL;
3257 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3258 n = get_node(cachep, nodeid);
3259 BUG_ON(!n);
3261 check_irq_off();
3262 spin_lock(&n->list_lock);
3263 page = get_first_slab(n, false);
3264 if (!page)
3265 goto must_grow;
3267 check_spinlock_acquired_node(cachep, nodeid);
3269 STATS_INC_NODEALLOCS(cachep);
3270 STATS_INC_ACTIVE(cachep);
3271 STATS_SET_HIGH(cachep);
3273 BUG_ON(page->active == cachep->num);
3275 obj = slab_get_obj(cachep, page);
3276 n->free_objects--;
3278 fixup_slab_list(cachep, n, page, &list);
3280 spin_unlock(&n->list_lock);
3281 fixup_objfreelist_debug(cachep, &list);
3282 return obj;
3284 must_grow:
3285 spin_unlock(&n->list_lock);
3286 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3287 if (page) {
3288 /* This slab isn't counted yet so don't update free_objects */
3289 obj = slab_get_obj(cachep, page);
3291 cache_grow_end(cachep, page);
3293 return obj ? obj : fallback_alloc(cachep, flags);
3296 static __always_inline void *
3297 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3298 unsigned long caller)
3300 unsigned long save_flags;
3301 void *ptr;
3302 int slab_node = numa_mem_id();
3304 flags &= gfp_allowed_mask;
3305 cachep = slab_pre_alloc_hook(cachep, flags);
3306 if (unlikely(!cachep))
3307 return NULL;
3309 cache_alloc_debugcheck_before(cachep, flags);
3310 local_irq_save(save_flags);
3312 if (nodeid == NUMA_NO_NODE)
3313 nodeid = slab_node;
3315 if (unlikely(!get_node(cachep, nodeid))) {
3316 /* Node not bootstrapped yet */
3317 ptr = fallback_alloc(cachep, flags);
3318 goto out;
3321 if (nodeid == slab_node) {
3323 * Use the locally cached objects if possible.
3324 * However ____cache_alloc does not allow fallback
3325 * to other nodes. It may fail while we still have
3326 * objects on other nodes available.
3328 ptr = ____cache_alloc(cachep, flags);
3329 if (ptr)
3330 goto out;
3332 /* ___cache_alloc_node can fall back to other nodes */
3333 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3334 out:
3335 local_irq_restore(save_flags);
3336 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3338 if (unlikely(flags & __GFP_ZERO) && ptr)
3339 memset(ptr, 0, cachep->object_size);
3341 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3342 return ptr;
3345 static __always_inline void *
3346 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3348 void *objp;
3350 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3351 objp = alternate_node_alloc(cache, flags);
3352 if (objp)
3353 goto out;
3355 objp = ____cache_alloc(cache, flags);
3358 * We may just have run out of memory on the local node.
3359 * ____cache_alloc_node() knows how to locate memory on other nodes
3361 if (!objp)
3362 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3364 out:
3365 return objp;
3367 #else
3369 static __always_inline void *
3370 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3372 return ____cache_alloc(cachep, flags);
3375 #endif /* CONFIG_NUMA */
3377 static __always_inline void *
3378 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3380 unsigned long save_flags;
3381 void *objp;
3383 flags &= gfp_allowed_mask;
3384 cachep = slab_pre_alloc_hook(cachep, flags);
3385 if (unlikely(!cachep))
3386 return NULL;
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390 objp = __do_cache_alloc(cachep, flags);
3391 local_irq_restore(save_flags);
3392 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 prefetchw(objp);
3395 if (unlikely(flags & __GFP_ZERO) && objp)
3396 memset(objp, 0, cachep->object_size);
3398 slab_post_alloc_hook(cachep, flags, 1, &objp);
3399 return objp;
3403 * Caller needs to acquire correct kmem_cache_node's list_lock
3404 * @list: List of detached free slabs should be freed by caller
3406 static void free_block(struct kmem_cache *cachep, void **objpp,
3407 int nr_objects, int node, struct list_head *list)
3409 int i;
3410 struct kmem_cache_node *n = get_node(cachep, node);
3411 struct page *page;
3413 n->free_objects += nr_objects;
3415 for (i = 0; i < nr_objects; i++) {
3416 void *objp;
3417 struct page *page;
3419 objp = objpp[i];
3421 page = virt_to_head_page(objp);
3422 list_del(&page->lru);
3423 check_spinlock_acquired_node(cachep, node);
3424 slab_put_obj(cachep, page, objp);
3425 STATS_DEC_ACTIVE(cachep);
3427 /* fixup slab chains */
3428 if (page->active == 0) {
3429 list_add(&page->lru, &n->slabs_free);
3430 n->free_slabs++;
3431 } else {
3432 /* Unconditionally move a slab to the end of the
3433 * partial list on free - maximum time for the
3434 * other objects to be freed, too.
3436 list_add_tail(&page->lru, &n->slabs_partial);
3440 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3441 n->free_objects -= cachep->num;
3443 page = list_last_entry(&n->slabs_free, struct page, lru);
3444 list_move(&page->lru, list);
3445 n->free_slabs--;
3446 n->total_slabs--;
3450 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3452 int batchcount;
3453 struct kmem_cache_node *n;
3454 int node = numa_mem_id();
3455 LIST_HEAD(list);
3457 batchcount = ac->batchcount;
3459 check_irq_off();
3460 n = get_node(cachep, node);
3461 spin_lock(&n->list_lock);
3462 if (n->shared) {
3463 struct array_cache *shared_array = n->shared;
3464 int max = shared_array->limit - shared_array->avail;
3465 if (max) {
3466 if (batchcount > max)
3467 batchcount = max;
3468 memcpy(&(shared_array->entry[shared_array->avail]),
3469 ac->entry, sizeof(void *) * batchcount);
3470 shared_array->avail += batchcount;
3471 goto free_done;
3475 free_block(cachep, ac->entry, batchcount, node, &list);
3476 free_done:
3477 #if STATS
3479 int i = 0;
3480 struct page *page;
3482 list_for_each_entry(page, &n->slabs_free, lru) {
3483 BUG_ON(page->active);
3485 i++;
3487 STATS_SET_FREEABLE(cachep, i);
3489 #endif
3490 spin_unlock(&n->list_lock);
3491 slabs_destroy(cachep, &list);
3492 ac->avail -= batchcount;
3493 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3497 * Release an obj back to its cache. If the obj has a constructed state, it must
3498 * be in this state _before_ it is released. Called with disabled ints.
3500 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3501 unsigned long caller)
3503 /* Put the object into the quarantine, don't touch it for now. */
3504 if (kasan_slab_free(cachep, objp))
3505 return;
3507 ___cache_free(cachep, objp, caller);
3510 void ___cache_free(struct kmem_cache *cachep, void *objp,
3511 unsigned long caller)
3513 struct array_cache *ac = cpu_cache_get(cachep);
3515 check_irq_off();
3516 kmemleak_free_recursive(objp, cachep->flags);
3517 objp = cache_free_debugcheck(cachep, objp, caller);
3519 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3522 * Skip calling cache_free_alien() when the platform is not numa.
3523 * This will avoid cache misses that happen while accessing slabp (which
3524 * is per page memory reference) to get nodeid. Instead use a global
3525 * variable to skip the call, which is mostly likely to be present in
3526 * the cache.
3528 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3529 return;
3531 if (ac->avail < ac->limit) {
3532 STATS_INC_FREEHIT(cachep);
3533 } else {
3534 STATS_INC_FREEMISS(cachep);
3535 cache_flusharray(cachep, ac);
3538 if (sk_memalloc_socks()) {
3539 struct page *page = virt_to_head_page(objp);
3541 if (unlikely(PageSlabPfmemalloc(page))) {
3542 cache_free_pfmemalloc(cachep, page, objp);
3543 return;
3547 ac->entry[ac->avail++] = objp;
3551 * kmem_cache_alloc - Allocate an object
3552 * @cachep: The cache to allocate from.
3553 * @flags: See kmalloc().
3555 * Allocate an object from this cache. The flags are only relevant
3556 * if the cache has no available objects.
3558 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3562 kasan_slab_alloc(cachep, ret, flags);
3563 trace_kmem_cache_alloc(_RET_IP_, ret,
3564 cachep->object_size, cachep->size, flags);
3566 return ret;
3568 EXPORT_SYMBOL(kmem_cache_alloc);
3570 static __always_inline void
3571 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3572 size_t size, void **p, unsigned long caller)
3574 size_t i;
3576 for (i = 0; i < size; i++)
3577 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3580 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3581 void **p)
3583 size_t i;
3585 s = slab_pre_alloc_hook(s, flags);
3586 if (!s)
3587 return 0;
3589 cache_alloc_debugcheck_before(s, flags);
3591 local_irq_disable();
3592 for (i = 0; i < size; i++) {
3593 void *objp = __do_cache_alloc(s, flags);
3595 if (unlikely(!objp))
3596 goto error;
3597 p[i] = objp;
3599 local_irq_enable();
3601 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3603 /* Clear memory outside IRQ disabled section */
3604 if (unlikely(flags & __GFP_ZERO))
3605 for (i = 0; i < size; i++)
3606 memset(p[i], 0, s->object_size);
3608 slab_post_alloc_hook(s, flags, size, p);
3609 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3610 return size;
3611 error:
3612 local_irq_enable();
3613 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3614 slab_post_alloc_hook(s, flags, i, p);
3615 __kmem_cache_free_bulk(s, i, p);
3616 return 0;
3618 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3620 #ifdef CONFIG_TRACING
3621 void *
3622 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3624 void *ret;
3626 ret = slab_alloc(cachep, flags, _RET_IP_);
3628 kasan_kmalloc(cachep, ret, size, flags);
3629 trace_kmalloc(_RET_IP_, ret,
3630 size, cachep->size, flags);
3631 return ret;
3633 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3634 #endif
3636 #ifdef CONFIG_NUMA
3638 * kmem_cache_alloc_node - Allocate an object on the specified node
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3641 * @nodeid: node number of the target node.
3643 * Identical to kmem_cache_alloc but it will allocate memory on the given
3644 * node, which can improve the performance for cpu bound structures.
3646 * Fallback to other node is possible if __GFP_THISNODE is not set.
3648 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3650 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3652 kasan_slab_alloc(cachep, ret, flags);
3653 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3654 cachep->object_size, cachep->size,
3655 flags, nodeid);
3657 return ret;
3659 EXPORT_SYMBOL(kmem_cache_alloc_node);
3661 #ifdef CONFIG_TRACING
3662 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3663 gfp_t flags,
3664 int nodeid,
3665 size_t size)
3667 void *ret;
3669 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3671 kasan_kmalloc(cachep, ret, size, flags);
3672 trace_kmalloc_node(_RET_IP_, ret,
3673 size, cachep->size,
3674 flags, nodeid);
3675 return ret;
3677 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3678 #endif
3680 static __always_inline void *
3681 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3683 struct kmem_cache *cachep;
3684 void *ret;
3686 cachep = kmalloc_slab(size, flags);
3687 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688 return cachep;
3689 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690 kasan_kmalloc(cachep, ret, size, flags);
3692 return ret;
3695 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3697 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3699 EXPORT_SYMBOL(__kmalloc_node);
3701 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702 int node, unsigned long caller)
3704 return __do_kmalloc_node(size, flags, node, caller);
3706 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707 #endif /* CONFIG_NUMA */
3710 * __do_kmalloc - allocate memory
3711 * @size: how many bytes of memory are required.
3712 * @flags: the type of memory to allocate (see kmalloc).
3713 * @caller: function caller for debug tracking of the caller
3715 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3716 unsigned long caller)
3718 struct kmem_cache *cachep;
3719 void *ret;
3721 cachep = kmalloc_slab(size, flags);
3722 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3723 return cachep;
3724 ret = slab_alloc(cachep, flags, caller);
3726 kasan_kmalloc(cachep, ret, size, flags);
3727 trace_kmalloc(caller, ret,
3728 size, cachep->size, flags);
3730 return ret;
3733 void *__kmalloc(size_t size, gfp_t flags)
3735 return __do_kmalloc(size, flags, _RET_IP_);
3737 EXPORT_SYMBOL(__kmalloc);
3739 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3741 return __do_kmalloc(size, flags, caller);
3743 EXPORT_SYMBOL(__kmalloc_track_caller);
3746 * kmem_cache_free - Deallocate an object
3747 * @cachep: The cache the allocation was from.
3748 * @objp: The previously allocated object.
3750 * Free an object which was previously allocated from this
3751 * cache.
3753 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3755 unsigned long flags;
3756 cachep = cache_from_obj(cachep, objp);
3757 if (!cachep)
3758 return;
3760 local_irq_save(flags);
3761 debug_check_no_locks_freed(objp, cachep->object_size);
3762 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3763 debug_check_no_obj_freed(objp, cachep->object_size);
3764 __cache_free(cachep, objp, _RET_IP_);
3765 local_irq_restore(flags);
3767 trace_kmem_cache_free(_RET_IP_, objp);
3769 EXPORT_SYMBOL(kmem_cache_free);
3771 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3773 struct kmem_cache *s;
3774 size_t i;
3776 local_irq_disable();
3777 for (i = 0; i < size; i++) {
3778 void *objp = p[i];
3780 if (!orig_s) /* called via kfree_bulk */
3781 s = virt_to_cache(objp);
3782 else
3783 s = cache_from_obj(orig_s, objp);
3785 debug_check_no_locks_freed(objp, s->object_size);
3786 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3787 debug_check_no_obj_freed(objp, s->object_size);
3789 __cache_free(s, objp, _RET_IP_);
3791 local_irq_enable();
3793 /* FIXME: add tracing */
3795 EXPORT_SYMBOL(kmem_cache_free_bulk);
3798 * kfree - free previously allocated memory
3799 * @objp: pointer returned by kmalloc.
3801 * If @objp is NULL, no operation is performed.
3803 * Don't free memory not originally allocated by kmalloc()
3804 * or you will run into trouble.
3806 void kfree(const void *objp)
3808 struct kmem_cache *c;
3809 unsigned long flags;
3811 trace_kfree(_RET_IP_, objp);
3813 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3814 return;
3815 local_irq_save(flags);
3816 kfree_debugcheck(objp);
3817 c = virt_to_cache(objp);
3818 debug_check_no_locks_freed(objp, c->object_size);
3820 debug_check_no_obj_freed(objp, c->object_size);
3821 __cache_free(c, (void *)objp, _RET_IP_);
3822 local_irq_restore(flags);
3824 EXPORT_SYMBOL(kfree);
3827 * This initializes kmem_cache_node or resizes various caches for all nodes.
3829 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3831 int ret;
3832 int node;
3833 struct kmem_cache_node *n;
3835 for_each_online_node(node) {
3836 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3837 if (ret)
3838 goto fail;
3842 return 0;
3844 fail:
3845 if (!cachep->list.next) {
3846 /* Cache is not active yet. Roll back what we did */
3847 node--;
3848 while (node >= 0) {
3849 n = get_node(cachep, node);
3850 if (n) {
3851 kfree(n->shared);
3852 free_alien_cache(n->alien);
3853 kfree(n);
3854 cachep->node[node] = NULL;
3856 node--;
3859 return -ENOMEM;
3862 /* Always called with the slab_mutex held */
3863 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3864 int batchcount, int shared, gfp_t gfp)
3866 struct array_cache __percpu *cpu_cache, *prev;
3867 int cpu;
3869 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3870 if (!cpu_cache)
3871 return -ENOMEM;
3873 prev = cachep->cpu_cache;
3874 cachep->cpu_cache = cpu_cache;
3876 * Without a previous cpu_cache there's no need to synchronize remote
3877 * cpus, so skip the IPIs.
3879 if (prev)
3880 kick_all_cpus_sync();
3882 check_irq_on();
3883 cachep->batchcount = batchcount;
3884 cachep->limit = limit;
3885 cachep->shared = shared;
3887 if (!prev)
3888 goto setup_node;
3890 for_each_online_cpu(cpu) {
3891 LIST_HEAD(list);
3892 int node;
3893 struct kmem_cache_node *n;
3894 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3896 node = cpu_to_mem(cpu);
3897 n = get_node(cachep, node);
3898 spin_lock_irq(&n->list_lock);
3899 free_block(cachep, ac->entry, ac->avail, node, &list);
3900 spin_unlock_irq(&n->list_lock);
3901 slabs_destroy(cachep, &list);
3903 free_percpu(prev);
3905 setup_node:
3906 return setup_kmem_cache_nodes(cachep, gfp);
3909 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3910 int batchcount, int shared, gfp_t gfp)
3912 int ret;
3913 struct kmem_cache *c;
3915 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3917 if (slab_state < FULL)
3918 return ret;
3920 if ((ret < 0) || !is_root_cache(cachep))
3921 return ret;
3923 lockdep_assert_held(&slab_mutex);
3924 for_each_memcg_cache(c, cachep) {
3925 /* return value determined by the root cache only */
3926 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3929 return ret;
3932 /* Called with slab_mutex held always */
3933 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3935 int err;
3936 int limit = 0;
3937 int shared = 0;
3938 int batchcount = 0;
3940 err = cache_random_seq_create(cachep, cachep->num, gfp);
3941 if (err)
3942 goto end;
3944 if (!is_root_cache(cachep)) {
3945 struct kmem_cache *root = memcg_root_cache(cachep);
3946 limit = root->limit;
3947 shared = root->shared;
3948 batchcount = root->batchcount;
3951 if (limit && shared && batchcount)
3952 goto skip_setup;
3954 * The head array serves three purposes:
3955 * - create a LIFO ordering, i.e. return objects that are cache-warm
3956 * - reduce the number of spinlock operations.
3957 * - reduce the number of linked list operations on the slab and
3958 * bufctl chains: array operations are cheaper.
3959 * The numbers are guessed, we should auto-tune as described by
3960 * Bonwick.
3962 if (cachep->size > 131072)
3963 limit = 1;
3964 else if (cachep->size > PAGE_SIZE)
3965 limit = 8;
3966 else if (cachep->size > 1024)
3967 limit = 24;
3968 else if (cachep->size > 256)
3969 limit = 54;
3970 else
3971 limit = 120;
3974 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3975 * allocation behaviour: Most allocs on one cpu, most free operations
3976 * on another cpu. For these cases, an efficient object passing between
3977 * cpus is necessary. This is provided by a shared array. The array
3978 * replaces Bonwick's magazine layer.
3979 * On uniprocessor, it's functionally equivalent (but less efficient)
3980 * to a larger limit. Thus disabled by default.
3982 shared = 0;
3983 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3984 shared = 8;
3986 #if DEBUG
3988 * With debugging enabled, large batchcount lead to excessively long
3989 * periods with disabled local interrupts. Limit the batchcount
3991 if (limit > 32)
3992 limit = 32;
3993 #endif
3994 batchcount = (limit + 1) / 2;
3995 skip_setup:
3996 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3997 end:
3998 if (err)
3999 pr_err("enable_cpucache failed for %s, error %d\n",
4000 cachep->name, -err);
4001 return err;
4005 * Drain an array if it contains any elements taking the node lock only if
4006 * necessary. Note that the node listlock also protects the array_cache
4007 * if drain_array() is used on the shared array.
4009 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4010 struct array_cache *ac, int node)
4012 LIST_HEAD(list);
4014 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4015 check_mutex_acquired();
4017 if (!ac || !ac->avail)
4018 return;
4020 if (ac->touched) {
4021 ac->touched = 0;
4022 return;
4025 spin_lock_irq(&n->list_lock);
4026 drain_array_locked(cachep, ac, node, false, &list);
4027 spin_unlock_irq(&n->list_lock);
4029 slabs_destroy(cachep, &list);
4033 * cache_reap - Reclaim memory from caches.
4034 * @w: work descriptor
4036 * Called from workqueue/eventd every few seconds.
4037 * Purpose:
4038 * - clear the per-cpu caches for this CPU.
4039 * - return freeable pages to the main free memory pool.
4041 * If we cannot acquire the cache chain mutex then just give up - we'll try
4042 * again on the next iteration.
4044 static void cache_reap(struct work_struct *w)
4046 struct kmem_cache *searchp;
4047 struct kmem_cache_node *n;
4048 int node = numa_mem_id();
4049 struct delayed_work *work = to_delayed_work(w);
4051 if (!mutex_trylock(&slab_mutex))
4052 /* Give up. Setup the next iteration. */
4053 goto out;
4055 list_for_each_entry(searchp, &slab_caches, list) {
4056 check_irq_on();
4059 * We only take the node lock if absolutely necessary and we
4060 * have established with reasonable certainty that
4061 * we can do some work if the lock was obtained.
4063 n = get_node(searchp, node);
4065 reap_alien(searchp, n);
4067 drain_array(searchp, n, cpu_cache_get(searchp), node);
4070 * These are racy checks but it does not matter
4071 * if we skip one check or scan twice.
4073 if (time_after(n->next_reap, jiffies))
4074 goto next;
4076 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4078 drain_array(searchp, n, n->shared, node);
4080 if (n->free_touched)
4081 n->free_touched = 0;
4082 else {
4083 int freed;
4085 freed = drain_freelist(searchp, n, (n->free_limit +
4086 5 * searchp->num - 1) / (5 * searchp->num));
4087 STATS_ADD_REAPED(searchp, freed);
4089 next:
4090 cond_resched();
4092 check_irq_on();
4093 mutex_unlock(&slab_mutex);
4094 next_reap_node();
4095 out:
4096 /* Set up the next iteration */
4097 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4100 #ifdef CONFIG_SLABINFO
4101 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4103 unsigned long active_objs, num_objs, active_slabs;
4104 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4105 unsigned long free_slabs = 0;
4106 int node;
4107 struct kmem_cache_node *n;
4109 for_each_kmem_cache_node(cachep, node, n) {
4110 check_irq_on();
4111 spin_lock_irq(&n->list_lock);
4113 total_slabs += n->total_slabs;
4114 free_slabs += n->free_slabs;
4115 free_objs += n->free_objects;
4117 if (n->shared)
4118 shared_avail += n->shared->avail;
4120 spin_unlock_irq(&n->list_lock);
4122 num_objs = total_slabs * cachep->num;
4123 active_slabs = total_slabs - free_slabs;
4124 active_objs = num_objs - free_objs;
4126 sinfo->active_objs = active_objs;
4127 sinfo->num_objs = num_objs;
4128 sinfo->active_slabs = active_slabs;
4129 sinfo->num_slabs = total_slabs;
4130 sinfo->shared_avail = shared_avail;
4131 sinfo->limit = cachep->limit;
4132 sinfo->batchcount = cachep->batchcount;
4133 sinfo->shared = cachep->shared;
4134 sinfo->objects_per_slab = cachep->num;
4135 sinfo->cache_order = cachep->gfporder;
4138 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4140 #if STATS
4141 { /* node stats */
4142 unsigned long high = cachep->high_mark;
4143 unsigned long allocs = cachep->num_allocations;
4144 unsigned long grown = cachep->grown;
4145 unsigned long reaped = cachep->reaped;
4146 unsigned long errors = cachep->errors;
4147 unsigned long max_freeable = cachep->max_freeable;
4148 unsigned long node_allocs = cachep->node_allocs;
4149 unsigned long node_frees = cachep->node_frees;
4150 unsigned long overflows = cachep->node_overflow;
4152 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4153 allocs, high, grown,
4154 reaped, errors, max_freeable, node_allocs,
4155 node_frees, overflows);
4157 /* cpu stats */
4159 unsigned long allochit = atomic_read(&cachep->allochit);
4160 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4161 unsigned long freehit = atomic_read(&cachep->freehit);
4162 unsigned long freemiss = atomic_read(&cachep->freemiss);
4164 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4165 allochit, allocmiss, freehit, freemiss);
4167 #endif
4170 #define MAX_SLABINFO_WRITE 128
4172 * slabinfo_write - Tuning for the slab allocator
4173 * @file: unused
4174 * @buffer: user buffer
4175 * @count: data length
4176 * @ppos: unused
4178 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4179 size_t count, loff_t *ppos)
4181 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4182 int limit, batchcount, shared, res;
4183 struct kmem_cache *cachep;
4185 if (count > MAX_SLABINFO_WRITE)
4186 return -EINVAL;
4187 if (copy_from_user(&kbuf, buffer, count))
4188 return -EFAULT;
4189 kbuf[MAX_SLABINFO_WRITE] = '\0';
4191 tmp = strchr(kbuf, ' ');
4192 if (!tmp)
4193 return -EINVAL;
4194 *tmp = '\0';
4195 tmp++;
4196 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4197 return -EINVAL;
4199 /* Find the cache in the chain of caches. */
4200 mutex_lock(&slab_mutex);
4201 res = -EINVAL;
4202 list_for_each_entry(cachep, &slab_caches, list) {
4203 if (!strcmp(cachep->name, kbuf)) {
4204 if (limit < 1 || batchcount < 1 ||
4205 batchcount > limit || shared < 0) {
4206 res = 0;
4207 } else {
4208 res = do_tune_cpucache(cachep, limit,
4209 batchcount, shared,
4210 GFP_KERNEL);
4212 break;
4215 mutex_unlock(&slab_mutex);
4216 if (res >= 0)
4217 res = count;
4218 return res;
4221 #ifdef CONFIG_DEBUG_SLAB_LEAK
4223 static inline int add_caller(unsigned long *n, unsigned long v)
4225 unsigned long *p;
4226 int l;
4227 if (!v)
4228 return 1;
4229 l = n[1];
4230 p = n + 2;
4231 while (l) {
4232 int i = l/2;
4233 unsigned long *q = p + 2 * i;
4234 if (*q == v) {
4235 q[1]++;
4236 return 1;
4238 if (*q > v) {
4239 l = i;
4240 } else {
4241 p = q + 2;
4242 l -= i + 1;
4245 if (++n[1] == n[0])
4246 return 0;
4247 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4248 p[0] = v;
4249 p[1] = 1;
4250 return 1;
4253 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4254 struct page *page)
4256 void *p;
4257 int i, j;
4258 unsigned long v;
4260 if (n[0] == n[1])
4261 return;
4262 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4263 bool active = true;
4265 for (j = page->active; j < c->num; j++) {
4266 if (get_free_obj(page, j) == i) {
4267 active = false;
4268 break;
4272 if (!active)
4273 continue;
4276 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4277 * mapping is established when actual object allocation and
4278 * we could mistakenly access the unmapped object in the cpu
4279 * cache.
4281 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4282 continue;
4284 if (!add_caller(n, v))
4285 return;
4289 static void show_symbol(struct seq_file *m, unsigned long address)
4291 #ifdef CONFIG_KALLSYMS
4292 unsigned long offset, size;
4293 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4295 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4296 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4297 if (modname[0])
4298 seq_printf(m, " [%s]", modname);
4299 return;
4301 #endif
4302 seq_printf(m, "%p", (void *)address);
4305 static int leaks_show(struct seq_file *m, void *p)
4307 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4308 struct page *page;
4309 struct kmem_cache_node *n;
4310 const char *name;
4311 unsigned long *x = m->private;
4312 int node;
4313 int i;
4315 if (!(cachep->flags & SLAB_STORE_USER))
4316 return 0;
4317 if (!(cachep->flags & SLAB_RED_ZONE))
4318 return 0;
4321 * Set store_user_clean and start to grab stored user information
4322 * for all objects on this cache. If some alloc/free requests comes
4323 * during the processing, information would be wrong so restart
4324 * whole processing.
4326 do {
4327 set_store_user_clean(cachep);
4328 drain_cpu_caches(cachep);
4330 x[1] = 0;
4332 for_each_kmem_cache_node(cachep, node, n) {
4334 check_irq_on();
4335 spin_lock_irq(&n->list_lock);
4337 list_for_each_entry(page, &n->slabs_full, lru)
4338 handle_slab(x, cachep, page);
4339 list_for_each_entry(page, &n->slabs_partial, lru)
4340 handle_slab(x, cachep, page);
4341 spin_unlock_irq(&n->list_lock);
4343 } while (!is_store_user_clean(cachep));
4345 name = cachep->name;
4346 if (x[0] == x[1]) {
4347 /* Increase the buffer size */
4348 mutex_unlock(&slab_mutex);
4349 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4350 if (!m->private) {
4351 /* Too bad, we are really out */
4352 m->private = x;
4353 mutex_lock(&slab_mutex);
4354 return -ENOMEM;
4356 *(unsigned long *)m->private = x[0] * 2;
4357 kfree(x);
4358 mutex_lock(&slab_mutex);
4359 /* Now make sure this entry will be retried */
4360 m->count = m->size;
4361 return 0;
4363 for (i = 0; i < x[1]; i++) {
4364 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4365 show_symbol(m, x[2*i+2]);
4366 seq_putc(m, '\n');
4369 return 0;
4372 static const struct seq_operations slabstats_op = {
4373 .start = slab_start,
4374 .next = slab_next,
4375 .stop = slab_stop,
4376 .show = leaks_show,
4379 static int slabstats_open(struct inode *inode, struct file *file)
4381 unsigned long *n;
4383 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4384 if (!n)
4385 return -ENOMEM;
4387 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4389 return 0;
4392 static const struct file_operations proc_slabstats_operations = {
4393 .open = slabstats_open,
4394 .read = seq_read,
4395 .llseek = seq_lseek,
4396 .release = seq_release_private,
4398 #endif
4400 static int __init slab_proc_init(void)
4402 #ifdef CONFIG_DEBUG_SLAB_LEAK
4403 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4404 #endif
4405 return 0;
4407 module_init(slab_proc_init);
4408 #endif
4410 #ifdef CONFIG_HARDENED_USERCOPY
4412 * Rejects objects that are incorrectly sized.
4414 * Returns NULL if check passes, otherwise const char * to name of cache
4415 * to indicate an error.
4417 const char *__check_heap_object(const void *ptr, unsigned long n,
4418 struct page *page)
4420 struct kmem_cache *cachep;
4421 unsigned int objnr;
4422 unsigned long offset;
4424 /* Find and validate object. */
4425 cachep = page->slab_cache;
4426 objnr = obj_to_index(cachep, page, (void *)ptr);
4427 BUG_ON(objnr >= cachep->num);
4429 /* Find offset within object. */
4430 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4432 /* Allow address range falling entirely within object size. */
4433 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4434 return NULL;
4436 return cachep->name;
4438 #endif /* CONFIG_HARDENED_USERCOPY */
4441 * ksize - get the actual amount of memory allocated for a given object
4442 * @objp: Pointer to the object
4444 * kmalloc may internally round up allocations and return more memory
4445 * than requested. ksize() can be used to determine the actual amount of
4446 * memory allocated. The caller may use this additional memory, even though
4447 * a smaller amount of memory was initially specified with the kmalloc call.
4448 * The caller must guarantee that objp points to a valid object previously
4449 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4450 * must not be freed during the duration of the call.
4452 size_t ksize(const void *objp)
4454 size_t size;
4456 BUG_ON(!objp);
4457 if (unlikely(objp == ZERO_SIZE_PTR))
4458 return 0;
4460 size = virt_to_cache(objp)->object_size;
4461 /* We assume that ksize callers could use the whole allocated area,
4462 * so we need to unpoison this area.
4464 kasan_unpoison_shadow(objp, size);
4466 return size;
4468 EXPORT_SYMBOL(ksize);