1 // SPDX-License-Identifier: GPL-2.0-only
3 * kernel/workqueue.c - generic async execution with shared worker pool
5 * Copyright (C) 2002 Ingo Molnar
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
13 * Made to use alloc_percpu by Christoph Lameter.
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
25 * Please read Documentation/core-api/workqueue.rst for details.
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
59 #include "workqueue_internal.h"
61 enum worker_pool_flags
{
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
78 * As there can only be one concurrent BH execution context per CPU, a
79 * BH pool is per-CPU and always DISASSOCIATED.
81 POOL_BH
= 1 << 0, /* is a BH pool */
82 POOL_MANAGER_ACTIVE
= 1 << 1, /* being managed */
83 POOL_DISASSOCIATED
= 1 << 2, /* cpu can't serve workers */
84 POOL_BH_DRAINING
= 1 << 3, /* draining after CPU offline */
89 WORKER_DIE
= 1 << 1, /* die die die */
90 WORKER_IDLE
= 1 << 2, /* is idle */
91 WORKER_PREP
= 1 << 3, /* preparing to run works */
92 WORKER_CPU_INTENSIVE
= 1 << 6, /* cpu intensive */
93 WORKER_UNBOUND
= 1 << 7, /* worker is unbound */
94 WORKER_REBOUND
= 1 << 8, /* worker was rebound */
96 WORKER_NOT_RUNNING
= WORKER_PREP
| WORKER_CPU_INTENSIVE
|
97 WORKER_UNBOUND
| WORKER_REBOUND
,
100 enum work_cancel_flags
{
101 WORK_CANCEL_DELAYED
= 1 << 0, /* canceling a delayed_work */
102 WORK_CANCEL_DISABLE
= 1 << 1, /* canceling to disable */
105 enum wq_internal_consts
{
106 NR_STD_WORKER_POOLS
= 2, /* # standard pools per cpu */
108 UNBOUND_POOL_HASH_ORDER
= 6, /* hashed by pool->attrs */
109 BUSY_WORKER_HASH_ORDER
= 6, /* 64 pointers */
111 MAX_IDLE_WORKERS_RATIO
= 4, /* 1/4 of busy can be idle */
112 IDLE_WORKER_TIMEOUT
= 300 * HZ
, /* keep idle ones for 5 mins */
114 MAYDAY_INITIAL_TIMEOUT
= HZ
/ 100 >= 2 ? HZ
/ 100 : 2,
115 /* call for help after 10ms
117 MAYDAY_INTERVAL
= HZ
/ 10, /* and then every 100ms */
118 CREATE_COOLDOWN
= HZ
, /* time to breath after fail */
121 * Rescue workers are used only on emergencies and shared by
122 * all cpus. Give MIN_NICE.
124 RESCUER_NICE_LEVEL
= MIN_NICE
,
125 HIGHPRI_NICE_LEVEL
= MIN_NICE
,
128 WORKER_ID_LEN
= 10 + WQ_NAME_LEN
, /* "kworker/R-" + WQ_NAME_LEN */
132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134 * msecs_to_jiffies() can't be an initializer.
136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS 10
140 * Structure fields follow one of the following exclusion rules.
142 * I: Modifiable by initialization/destruction paths and read-only for
145 * P: Preemption protected. Disabling preemption is enough and should
146 * only be modified and accessed from the local cpu.
148 * L: pool->lock protected. Access with pool->lock held.
150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
153 * K: Only modified by worker while holding pool->lock. Can be safely read by
154 * self, while holding pool->lock or from IRQ context if %current is the
157 * S: Only modified by worker self.
159 * A: wq_pool_attach_mutex protected.
161 * PL: wq_pool_mutex protected.
163 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
170 * WQ: wq->mutex protected.
172 * WR: wq->mutex protected for writes. RCU protected for reads.
174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175 * with READ_ONCE() without locking.
177 * MD: wq_mayday_lock protected.
179 * WD: Used internally by the watchdog.
182 /* struct worker is defined in workqueue_internal.h */
185 raw_spinlock_t lock
; /* the pool lock */
186 int cpu
; /* I: the associated cpu */
187 int node
; /* I: the associated node ID */
188 int id
; /* I: pool ID */
189 unsigned int flags
; /* L: flags */
191 unsigned long watchdog_ts
; /* L: watchdog timestamp */
192 bool cpu_stall
; /* WD: stalled cpu bound pool */
195 * The counter is incremented in a process context on the associated CPU
196 * w/ preemption disabled, and decremented or reset in the same context
197 * but w/ pool->lock held. The readers grab pool->lock and are
198 * guaranteed to see if the counter reached zero.
202 struct list_head worklist
; /* L: list of pending works */
204 int nr_workers
; /* L: total number of workers */
205 int nr_idle
; /* L: currently idle workers */
207 struct list_head idle_list
; /* L: list of idle workers */
208 struct timer_list idle_timer
; /* L: worker idle timeout */
209 struct work_struct idle_cull_work
; /* L: worker idle cleanup */
211 struct timer_list mayday_timer
; /* L: SOS timer for workers */
213 /* a workers is either on busy_hash or idle_list, or the manager */
214 DECLARE_HASHTABLE(busy_hash
, BUSY_WORKER_HASH_ORDER
);
215 /* L: hash of busy workers */
217 struct worker
*manager
; /* L: purely informational */
218 struct list_head workers
; /* A: attached workers */
220 struct ida worker_ida
; /* worker IDs for task name */
222 struct workqueue_attrs
*attrs
; /* I: worker attributes */
223 struct hlist_node hash_node
; /* PL: unbound_pool_hash node */
224 int refcnt
; /* PL: refcnt for unbound pools */
227 * Destruction of pool is RCU protected to allow dereferences
228 * from get_work_pool().
234 * Per-pool_workqueue statistics. These can be monitored using
235 * tools/workqueue/wq_monitor.py.
237 enum pool_workqueue_stats
{
238 PWQ_STAT_STARTED
, /* work items started execution */
239 PWQ_STAT_COMPLETED
, /* work items completed execution */
240 PWQ_STAT_CPU_TIME
, /* total CPU time consumed */
241 PWQ_STAT_CPU_INTENSIVE
, /* wq_cpu_intensive_thresh_us violations */
242 PWQ_STAT_CM_WAKEUP
, /* concurrency-management worker wakeups */
243 PWQ_STAT_REPATRIATED
, /* unbound workers brought back into scope */
244 PWQ_STAT_MAYDAY
, /* maydays to rescuer */
245 PWQ_STAT_RESCUED
, /* linked work items executed by rescuer */
251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
252 * of work_struct->data are used for flags and the remaining high bits
253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
254 * number of flag bits.
256 struct pool_workqueue
{
257 struct worker_pool
*pool
; /* I: the associated pool */
258 struct workqueue_struct
*wq
; /* I: the owning workqueue */
259 int work_color
; /* L: current color */
260 int flush_color
; /* L: flushing color */
261 int refcnt
; /* L: reference count */
262 int nr_in_flight
[WORK_NR_COLORS
];
263 /* L: nr of in_flight works */
264 bool plugged
; /* L: execution suspended */
267 * nr_active management and WORK_STRUCT_INACTIVE:
269 * When pwq->nr_active >= max_active, new work item is queued to
270 * pwq->inactive_works instead of pool->worklist and marked with
271 * WORK_STRUCT_INACTIVE.
273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 * nr_active and all work items in pwq->inactive_works are marked with
275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 * in pwq->inactive_works. Some of them are ready to run in
277 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 * wq_barrier which is used for flush_work() and should not participate
279 * in nr_active. For non-barrier work item, it is marked with
280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
282 int nr_active
; /* L: nr of active works */
283 struct list_head inactive_works
; /* L: inactive works */
284 struct list_head pending_node
; /* LN: node on wq_node_nr_active->pending_pwqs */
285 struct list_head pwqs_node
; /* WR: node on wq->pwqs */
286 struct list_head mayday_node
; /* MD: node on wq->maydays */
288 u64 stats
[PWQ_NR_STATS
];
291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 * RCU protected so that the first pwq can be determined without
294 * grabbing wq->mutex.
296 struct kthread_work release_work
;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT
);
301 * Structure used to wait for workqueue flush.
304 struct list_head list
; /* WQ: list of flushers */
305 int flush_color
; /* WQ: flush color waiting for */
306 struct completion done
; /* flush completion */
312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314 * As sharing a single nr_active across multiple sockets can be very expensive,
315 * the counting and enforcement is per NUMA node.
317 * The following struct is used to enforce per-node max_active. When a pwq wants
318 * to start executing a work item, it should increment ->nr using
319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
324 struct wq_node_nr_active
{
325 int max
; /* per-node max_active */
326 atomic_t nr
; /* per-node nr_active */
327 raw_spinlock_t lock
; /* nests inside pool locks */
328 struct list_head pending_pwqs
; /* LN: pwqs with inactive works */
332 * The externally visible workqueue. It relays the issued work items to
333 * the appropriate worker_pool through its pool_workqueues.
335 struct workqueue_struct
{
336 struct list_head pwqs
; /* WR: all pwqs of this wq */
337 struct list_head list
; /* PR: list of all workqueues */
339 struct mutex mutex
; /* protects this wq */
340 int work_color
; /* WQ: current work color */
341 int flush_color
; /* WQ: current flush color */
342 atomic_t nr_pwqs_to_flush
; /* flush in progress */
343 struct wq_flusher
*first_flusher
; /* WQ: first flusher */
344 struct list_head flusher_queue
; /* WQ: flush waiters */
345 struct list_head flusher_overflow
; /* WQ: flush overflow list */
347 struct list_head maydays
; /* MD: pwqs requesting rescue */
348 struct worker
*rescuer
; /* MD: rescue worker */
350 int nr_drainers
; /* WQ: drain in progress */
352 /* See alloc_workqueue() function comment for info on min/max_active */
353 int max_active
; /* WO: max active works */
354 int min_active
; /* WO: min active works */
355 int saved_max_active
; /* WQ: saved max_active */
356 int saved_min_active
; /* WQ: saved min_active */
358 struct workqueue_attrs
*unbound_attrs
; /* PW: only for unbound wqs */
359 struct pool_workqueue __rcu
*dfl_pwq
; /* PW: only for unbound wqs */
362 struct wq_device
*wq_dev
; /* I: for sysfs interface */
364 #ifdef CONFIG_LOCKDEP
366 struct lock_class_key key
;
367 struct lockdep_map __lockdep_map
;
368 struct lockdep_map
*lockdep_map
;
370 char name
[WQ_NAME_LEN
]; /* I: workqueue name */
373 * Destruction of workqueue_struct is RCU protected to allow walking
374 * the workqueues list without grabbing wq_pool_mutex.
375 * This is used to dump all workqueues from sysrq.
379 /* hot fields used during command issue, aligned to cacheline */
380 unsigned int flags ____cacheline_aligned
; /* WQ: WQ_* flags */
381 struct pool_workqueue __rcu
* __percpu
*cpu_pwq
; /* I: per-cpu pwqs */
382 struct wq_node_nr_active
*node_nr_active
[]; /* I: per-node nr_active */
386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
387 * See the comment above workqueue_attrs->affn_scope.
390 int nr_pods
; /* number of pods */
391 cpumask_var_t
*pod_cpus
; /* pod -> cpus */
392 int *pod_node
; /* pod -> node */
393 int *cpu_pod
; /* cpu -> pod */
396 struct work_offq_data
{
402 static const char *wq_affn_names
[WQ_AFFN_NR_TYPES
] = {
403 [WQ_AFFN_DFL
] = "default",
404 [WQ_AFFN_CPU
] = "cpu",
405 [WQ_AFFN_SMT
] = "smt",
406 [WQ_AFFN_CACHE
] = "cache",
407 [WQ_AFFN_NUMA
] = "numa",
408 [WQ_AFFN_SYSTEM
] = "system",
412 * Per-cpu work items which run for longer than the following threshold are
413 * automatically considered CPU intensive and excluded from concurrency
414 * management to prevent them from noticeably delaying other per-cpu work items.
415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
418 static unsigned long wq_cpu_intensive_thresh_us
= ULONG_MAX
;
419 module_param_named(cpu_intensive_thresh_us
, wq_cpu_intensive_thresh_us
, ulong
, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh
= 4;
422 module_param_named(cpu_intensive_warning_thresh
, wq_cpu_intensive_warning_thresh
, uint
, 0644);
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient
= IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT
);
427 module_param_named(power_efficient
, wq_power_efficient
, bool, 0444);
429 static bool wq_online
; /* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly
= false;
432 static struct kmem_cache
*pwq_cache
;
434 static struct wq_pod_type wq_pod_types
[WQ_AFFN_NR_TYPES
];
435 static enum wq_affn_scope wq_affn_dfl
= WQ_AFFN_CACHE
;
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs
*unbound_wq_update_pwq_attrs_buf
;
440 static DEFINE_MUTEX(wq_pool_mutex
); /* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex
); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock
); /* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait
= __RCUWAIT_INITIALIZER(manager_wait
);
446 static LIST_HEAD(workqueues
); /* PR: list of all workqueues */
447 static bool workqueue_freezing
; /* PL: have wqs started freezing? */
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask
;
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask
;
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask
;
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask
;
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata
;
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last
);
468 * Local execution of unbound work items is no longer guaranteed. The
469 * following always forces round-robin CPU selection on unbound work items
470 * to uncover usages which depend on it.
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu
= true;
475 static bool wq_debug_force_rr_cpu
= false;
477 module_param_named(debug_force_rr_cpu
, wq_debug_force_rr_cpu
, bool, 0644);
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work
[NR_STD_WORKER_POOLS
], bh_pool_irq_works
);
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
], bh_worker_pools
);
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool
[NR_STD_WORKER_POOLS
], cpu_worker_pools
);
488 static DEFINE_IDR(worker_pool_idr
); /* PR: idr of all pools */
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash
, UNBOUND_POOL_HASH_ORDER
);
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs
*unbound_std_wq_attrs
[NR_STD_WORKER_POOLS
];
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs
*ordered_wq_attrs
[NR_STD_WORKER_POOLS
];
500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501 * process context while holding a pool lock. Bounce to a dedicated kthread
502 * worker to avoid A-A deadlocks.
504 static struct kthread_worker
*pwq_release_worker __ro_after_init
;
506 struct workqueue_struct
*system_wq __ro_after_init
;
507 EXPORT_SYMBOL(system_wq
);
508 struct workqueue_struct
*system_highpri_wq __ro_after_init
;
509 EXPORT_SYMBOL_GPL(system_highpri_wq
);
510 struct workqueue_struct
*system_long_wq __ro_after_init
;
511 EXPORT_SYMBOL_GPL(system_long_wq
);
512 struct workqueue_struct
*system_unbound_wq __ro_after_init
;
513 EXPORT_SYMBOL_GPL(system_unbound_wq
);
514 struct workqueue_struct
*system_freezable_wq __ro_after_init
;
515 EXPORT_SYMBOL_GPL(system_freezable_wq
);
516 struct workqueue_struct
*system_power_efficient_wq __ro_after_init
;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq
);
518 struct workqueue_struct
*system_freezable_power_efficient_wq __ro_after_init
;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq
);
520 struct workqueue_struct
*system_bh_wq
;
521 EXPORT_SYMBOL_GPL(system_bh_wq
);
522 struct workqueue_struct
*system_bh_highpri_wq
;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq
);
525 static int worker_thread(void *__worker
);
526 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
);
527 static void show_pwq(struct pool_workqueue
*pwq
);
528 static void show_one_worker_pool(struct worker_pool
*pool
);
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
533 #define assert_rcu_or_pool_mutex() \
534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
535 !lockdep_is_held(&wq_pool_mutex), \
536 "RCU or wq_pool_mutex should be held")
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
540 !lockdep_is_held(&wq->mutex) && \
541 !lockdep_is_held(&wq_pool_mutex), \
542 "RCU, wq->mutex or wq_pool_mutex should be held")
544 #define for_each_bh_worker_pool(pool, cpu) \
545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
549 #define for_each_cpu_worker_pool(pool, cpu) \
550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
555 * for_each_pool - iterate through all worker_pools in the system
556 * @pool: iteration cursor
557 * @pi: integer used for iteration
559 * This must be called either with wq_pool_mutex held or RCU read
560 * locked. If the pool needs to be used beyond the locking in effect, the
561 * caller is responsible for guaranteeing that the pool stays online.
563 * The if/else clause exists only for the lockdep assertion and can be
566 #define for_each_pool(pool, pi) \
567 idr_for_each_entry(&worker_pool_idr, pool, pi) \
568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
572 * for_each_pool_worker - iterate through all workers of a worker_pool
573 * @worker: iteration cursor
574 * @pool: worker_pool to iterate workers of
576 * This must be called with wq_pool_attach_mutex.
578 * The if/else clause exists only for the lockdep assertion and can be
581 #define for_each_pool_worker(worker, pool) \
582 list_for_each_entry((worker), &(pool)->workers, node) \
583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588 * @pwq: iteration cursor
589 * @wq: the target workqueue
591 * This must be called either with wq->mutex held or RCU read locked.
592 * If the pwq needs to be used beyond the locking in effect, the caller is
593 * responsible for guaranteeing that the pwq stays online.
595 * The if/else clause exists only for the lockdep assertion and can be
598 #define for_each_pwq(pwq, wq) \
599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
600 lockdep_is_held(&(wq->mutex)))
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
604 static const struct debug_obj_descr work_debug_descr
;
606 static void *work_debug_hint(void *addr
)
608 return ((struct work_struct
*) addr
)->func
;
611 static bool work_is_static_object(void *addr
)
613 struct work_struct
*work
= addr
;
615 return test_bit(WORK_STRUCT_STATIC_BIT
, work_data_bits(work
));
619 * fixup_init is called when:
620 * - an active object is initialized
622 static bool work_fixup_init(void *addr
, enum debug_obj_state state
)
624 struct work_struct
*work
= addr
;
627 case ODEBUG_STATE_ACTIVE
:
628 cancel_work_sync(work
);
629 debug_object_init(work
, &work_debug_descr
);
637 * fixup_free is called when:
638 * - an active object is freed
640 static bool work_fixup_free(void *addr
, enum debug_obj_state state
)
642 struct work_struct
*work
= addr
;
645 case ODEBUG_STATE_ACTIVE
:
646 cancel_work_sync(work
);
647 debug_object_free(work
, &work_debug_descr
);
654 static const struct debug_obj_descr work_debug_descr
= {
655 .name
= "work_struct",
656 .debug_hint
= work_debug_hint
,
657 .is_static_object
= work_is_static_object
,
658 .fixup_init
= work_fixup_init
,
659 .fixup_free
= work_fixup_free
,
662 static inline void debug_work_activate(struct work_struct
*work
)
664 debug_object_activate(work
, &work_debug_descr
);
667 static inline void debug_work_deactivate(struct work_struct
*work
)
669 debug_object_deactivate(work
, &work_debug_descr
);
672 void __init_work(struct work_struct
*work
, int onstack
)
675 debug_object_init_on_stack(work
, &work_debug_descr
);
677 debug_object_init(work
, &work_debug_descr
);
679 EXPORT_SYMBOL_GPL(__init_work
);
681 void destroy_work_on_stack(struct work_struct
*work
)
683 debug_object_free(work
, &work_debug_descr
);
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
687 void destroy_delayed_work_on_stack(struct delayed_work
*work
)
689 destroy_timer_on_stack(&work
->timer
);
690 debug_object_free(&work
->work
, &work_debug_descr
);
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack
);
695 static inline void debug_work_activate(struct work_struct
*work
) { }
696 static inline void debug_work_deactivate(struct work_struct
*work
) { }
700 * worker_pool_assign_id - allocate ID and assign it to @pool
701 * @pool: the pool pointer of interest
703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704 * successfully, -errno on failure.
706 static int worker_pool_assign_id(struct worker_pool
*pool
)
710 lockdep_assert_held(&wq_pool_mutex
);
712 ret
= idr_alloc(&worker_pool_idr
, pool
, 0, WORK_OFFQ_POOL_NONE
,
721 static struct pool_workqueue __rcu
**
722 unbound_pwq_slot(struct workqueue_struct
*wq
, int cpu
)
725 return per_cpu_ptr(wq
->cpu_pwq
, cpu
);
730 /* @cpu < 0 for dfl_pwq */
731 static struct pool_workqueue
*unbound_pwq(struct workqueue_struct
*wq
, int cpu
)
733 return rcu_dereference_check(*unbound_pwq_slot(wq
, cpu
),
734 lockdep_is_held(&wq_pool_mutex
) ||
735 lockdep_is_held(&wq
->mutex
));
739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740 * @wq: workqueue of interest
742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744 * default pwq is always mapped to the pool with the current effective cpumask.
746 static struct cpumask
*unbound_effective_cpumask(struct workqueue_struct
*wq
)
748 return unbound_pwq(wq
, -1)->pool
->attrs
->__pod_cpumask
;
751 static unsigned int work_color_to_flags(int color
)
753 return color
<< WORK_STRUCT_COLOR_SHIFT
;
756 static int get_work_color(unsigned long work_data
)
758 return (work_data
>> WORK_STRUCT_COLOR_SHIFT
) &
759 ((1 << WORK_STRUCT_COLOR_BITS
) - 1);
762 static int work_next_color(int color
)
764 return (color
+ 1) % WORK_NR_COLORS
;
767 static unsigned long pool_offq_flags(struct worker_pool
*pool
)
769 return (pool
->flags
& POOL_BH
) ? WORK_OFFQ_BH
: 0;
773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774 * contain the pointer to the queued pwq. Once execution starts, the flag
775 * is cleared and the high bits contain OFFQ flags and pool ID.
777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778 * can be used to set the pwq, pool or clear work->data. These functions should
779 * only be called while the work is owned - ie. while the PENDING bit is set.
781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782 * corresponding to a work. Pool is available once the work has been
783 * queued anywhere after initialization until it is sync canceled. pwq is
784 * available only while the work item is queued.
786 static inline void set_work_data(struct work_struct
*work
, unsigned long data
)
788 WARN_ON_ONCE(!work_pending(work
));
789 atomic_long_set(&work
->data
, data
| work_static(work
));
792 static void set_work_pwq(struct work_struct
*work
, struct pool_workqueue
*pwq
,
795 set_work_data(work
, (unsigned long)pwq
| WORK_STRUCT_PENDING
|
796 WORK_STRUCT_PWQ
| flags
);
799 static void set_work_pool_and_keep_pending(struct work_struct
*work
,
800 int pool_id
, unsigned long flags
)
802 set_work_data(work
, ((unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
) |
803 WORK_STRUCT_PENDING
| flags
);
806 static void set_work_pool_and_clear_pending(struct work_struct
*work
,
807 int pool_id
, unsigned long flags
)
810 * The following wmb is paired with the implied mb in
811 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 * here are visible to and precede any updates by the next PENDING
816 set_work_data(work
, ((unsigned long)pool_id
<< WORK_OFFQ_POOL_SHIFT
) |
819 * The following mb guarantees that previous clear of a PENDING bit
820 * will not be reordered with any speculative LOADS or STORES from
821 * work->current_func, which is executed afterwards. This possible
822 * reordering can lead to a missed execution on attempt to queue
823 * the same @work. E.g. consider this case:
826 * ---------------------------- --------------------------------
828 * 1 STORE event_indicated
829 * 2 queue_work_on() {
830 * 3 test_and_set_bit(PENDING)
831 * 4 } set_..._and_clear_pending() {
832 * 5 set_work_data() # clear bit
834 * 7 work->current_func() {
835 * 8 LOAD event_indicated
838 * Without an explicit full barrier speculative LOAD on line 8 can
839 * be executed before CPU#0 does STORE on line 1. If that happens,
840 * CPU#0 observes the PENDING bit is still set and new execution of
841 * a @work is not queued in a hope, that CPU#1 will eventually
842 * finish the queued @work. Meanwhile CPU#1 does not see
843 * event_indicated is set, because speculative LOAD was executed
844 * before actual STORE.
849 static inline struct pool_workqueue
*work_struct_pwq(unsigned long data
)
851 return (struct pool_workqueue
*)(data
& WORK_STRUCT_PWQ_MASK
);
854 static struct pool_workqueue
*get_work_pwq(struct work_struct
*work
)
856 unsigned long data
= atomic_long_read(&work
->data
);
858 if (data
& WORK_STRUCT_PWQ
)
859 return work_struct_pwq(data
);
865 * get_work_pool - return the worker_pool a given work was associated with
866 * @work: the work item of interest
868 * Pools are created and destroyed under wq_pool_mutex, and allows read
869 * access under RCU read lock. As such, this function should be
870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
872 * All fields of the returned pool are accessible as long as the above
873 * mentioned locking is in effect. If the returned pool needs to be used
874 * beyond the critical section, the caller is responsible for ensuring the
875 * returned pool is and stays online.
877 * Return: The worker_pool @work was last associated with. %NULL if none.
879 static struct worker_pool
*get_work_pool(struct work_struct
*work
)
881 unsigned long data
= atomic_long_read(&work
->data
);
884 assert_rcu_or_pool_mutex();
886 if (data
& WORK_STRUCT_PWQ
)
887 return work_struct_pwq(data
)->pool
;
889 pool_id
= data
>> WORK_OFFQ_POOL_SHIFT
;
890 if (pool_id
== WORK_OFFQ_POOL_NONE
)
893 return idr_find(&worker_pool_idr
, pool_id
);
896 static unsigned long shift_and_mask(unsigned long v
, u32 shift
, u32 bits
)
898 return (v
>> shift
) & ((1U << bits
) - 1);
901 static void work_offqd_unpack(struct work_offq_data
*offqd
, unsigned long data
)
903 WARN_ON_ONCE(data
& WORK_STRUCT_PWQ
);
905 offqd
->pool_id
= shift_and_mask(data
, WORK_OFFQ_POOL_SHIFT
,
906 WORK_OFFQ_POOL_BITS
);
907 offqd
->disable
= shift_and_mask(data
, WORK_OFFQ_DISABLE_SHIFT
,
908 WORK_OFFQ_DISABLE_BITS
);
909 offqd
->flags
= data
& WORK_OFFQ_FLAG_MASK
;
912 static unsigned long work_offqd_pack_flags(struct work_offq_data
*offqd
)
914 return ((unsigned long)offqd
->disable
<< WORK_OFFQ_DISABLE_SHIFT
) |
915 ((unsigned long)offqd
->flags
);
919 * Policy functions. These define the policies on how the global worker
920 * pools are managed. Unless noted otherwise, these functions assume that
921 * they're being called with pool->lock held.
925 * Need to wake up a worker? Called from anything but currently
928 * Note that, because unbound workers never contribute to nr_running, this
929 * function will always return %true for unbound pools as long as the
930 * worklist isn't empty.
932 static bool need_more_worker(struct worker_pool
*pool
)
934 return !list_empty(&pool
->worklist
) && !pool
->nr_running
;
937 /* Can I start working? Called from busy but !running workers. */
938 static bool may_start_working(struct worker_pool
*pool
)
940 return pool
->nr_idle
;
943 /* Do I need to keep working? Called from currently running workers. */
944 static bool keep_working(struct worker_pool
*pool
)
946 return !list_empty(&pool
->worklist
) && (pool
->nr_running
<= 1);
949 /* Do we need a new worker? Called from manager. */
950 static bool need_to_create_worker(struct worker_pool
*pool
)
952 return need_more_worker(pool
) && !may_start_working(pool
);
955 /* Do we have too many workers and should some go away? */
956 static bool too_many_workers(struct worker_pool
*pool
)
958 bool managing
= pool
->flags
& POOL_MANAGER_ACTIVE
;
959 int nr_idle
= pool
->nr_idle
+ managing
; /* manager is considered idle */
960 int nr_busy
= pool
->nr_workers
- nr_idle
;
962 return nr_idle
> 2 && (nr_idle
- 2) * MAX_IDLE_WORKERS_RATIO
>= nr_busy
;
966 * worker_set_flags - set worker flags and adjust nr_running accordingly
968 * @flags: flags to set
970 * Set @flags in @worker->flags and adjust nr_running accordingly.
972 static inline void worker_set_flags(struct worker
*worker
, unsigned int flags
)
974 struct worker_pool
*pool
= worker
->pool
;
976 lockdep_assert_held(&pool
->lock
);
978 /* If transitioning into NOT_RUNNING, adjust nr_running. */
979 if ((flags
& WORKER_NOT_RUNNING
) &&
980 !(worker
->flags
& WORKER_NOT_RUNNING
)) {
984 worker
->flags
|= flags
;
988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
990 * @flags: flags to clear
992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
994 static inline void worker_clr_flags(struct worker
*worker
, unsigned int flags
)
996 struct worker_pool
*pool
= worker
->pool
;
997 unsigned int oflags
= worker
->flags
;
999 lockdep_assert_held(&pool
->lock
);
1001 worker
->flags
&= ~flags
;
1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1006 * of multiple flags, not a single flag.
1008 if ((flags
& WORKER_NOT_RUNNING
) && (oflags
& WORKER_NOT_RUNNING
))
1009 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
1013 /* Return the first idle worker. Called with pool->lock held. */
1014 static struct worker
*first_idle_worker(struct worker_pool
*pool
)
1016 if (unlikely(list_empty(&pool
->idle_list
)))
1019 return list_first_entry(&pool
->idle_list
, struct worker
, entry
);
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1026 * @worker is entering idle state. Update stats and idle timer if
1030 * raw_spin_lock_irq(pool->lock).
1032 static void worker_enter_idle(struct worker
*worker
)
1034 struct worker_pool
*pool
= worker
->pool
;
1036 if (WARN_ON_ONCE(worker
->flags
& WORKER_IDLE
) ||
1037 WARN_ON_ONCE(!list_empty(&worker
->entry
) &&
1038 (worker
->hentry
.next
|| worker
->hentry
.pprev
)))
1041 /* can't use worker_set_flags(), also called from create_worker() */
1042 worker
->flags
|= WORKER_IDLE
;
1044 worker
->last_active
= jiffies
;
1046 /* idle_list is LIFO */
1047 list_add(&worker
->entry
, &pool
->idle_list
);
1049 if (too_many_workers(pool
) && !timer_pending(&pool
->idle_timer
))
1050 mod_timer(&pool
->idle_timer
, jiffies
+ IDLE_WORKER_TIMEOUT
);
1052 /* Sanity check nr_running. */
1053 WARN_ON_ONCE(pool
->nr_workers
== pool
->nr_idle
&& pool
->nr_running
);
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1060 * @worker is leaving idle state. Update stats.
1063 * raw_spin_lock_irq(pool->lock).
1065 static void worker_leave_idle(struct worker
*worker
)
1067 struct worker_pool
*pool
= worker
->pool
;
1069 if (WARN_ON_ONCE(!(worker
->flags
& WORKER_IDLE
)))
1071 worker_clr_flags(worker
, WORKER_IDLE
);
1073 list_del_init(&worker
->entry
);
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work. For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function. This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1088 * This is a bit tricky. A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item. If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1095 * This function checks the work item address and work function to avoid
1096 * false positives. Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item. Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1103 * raw_spin_lock_irq(pool->lock).
1106 * Pointer to worker which is executing @work if found, %NULL
1109 static struct worker
*find_worker_executing_work(struct worker_pool
*pool
,
1110 struct work_struct
*work
)
1112 struct worker
*worker
;
1114 hash_for_each_possible(pool
->busy_hash
, worker
, hentry
,
1115 (unsigned long)work
)
1116 if (worker
->current_work
== work
&&
1117 worker
->current_func
== work
->func
)
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1135 * raw_spin_lock_irq(pool->lock).
1137 static void move_linked_works(struct work_struct
*work
, struct list_head
*head
,
1138 struct work_struct
**nextp
)
1140 struct work_struct
*n
;
1143 * Linked worklist will always end before the end of the list,
1144 * use NULL for list head.
1146 list_for_each_entry_safe_from(work
, n
, NULL
, entry
) {
1147 list_move_tail(&work
->entry
, head
);
1148 if (!(*work_data_bits(work
) & WORK_STRUCT_LINKED
))
1153 * If we're already inside safe list traversal and have moved
1154 * multiple works to the scheduled queue, the next position
1155 * needs to be updated.
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1177 static bool assign_work(struct work_struct
*work
, struct worker
*worker
,
1178 struct work_struct
**nextp
)
1180 struct worker_pool
*pool
= worker
->pool
;
1181 struct worker
*collision
;
1183 lockdep_assert_held(&pool
->lock
);
1186 * A single work shouldn't be executed concurrently by multiple workers.
1187 * __queue_work() ensures that @work doesn't jump to a different pool
1188 * while still running in the previous pool. Here, we should ensure that
1189 * @work is not executed concurrently by multiple workers from the same
1190 * pool. Check whether anyone is already processing the work. If so,
1191 * defer the work to the currently executing one.
1193 collision
= find_worker_executing_work(pool
, work
);
1194 if (unlikely(collision
)) {
1195 move_linked_works(work
, &collision
->scheduled
, nextp
);
1199 move_linked_works(work
, &worker
->scheduled
, nextp
);
1203 static struct irq_work
*bh_pool_irq_work(struct worker_pool
*pool
)
1205 int high
= pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
? 1 : 0;
1207 return &per_cpu(bh_pool_irq_works
, pool
->cpu
)[high
];
1210 static void kick_bh_pool(struct worker_pool
*pool
)
1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 if (unlikely(pool
->cpu
!= smp_processor_id() &&
1215 !(pool
->flags
& POOL_BH_DRAINING
))) {
1216 irq_work_queue_on(bh_pool_irq_work(pool
), pool
->cpu
);
1220 if (pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
)
1221 raise_softirq_irqoff(HI_SOFTIRQ
);
1223 raise_softirq_irqoff(TASKLET_SOFTIRQ
);
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1233 static bool kick_pool(struct worker_pool
*pool
)
1235 struct worker
*worker
= first_idle_worker(pool
);
1236 struct task_struct
*p
;
1238 lockdep_assert_held(&pool
->lock
);
1240 if (!need_more_worker(pool
) || !worker
)
1243 if (pool
->flags
& POOL_BH
) {
1252 * Idle @worker is about to execute @work and waking up provides an
1253 * opportunity to migrate @worker at a lower cost by setting the task's
1254 * wake_cpu field. Let's see if we want to move @worker to improve
1255 * execution locality.
1257 * We're waking the worker that went idle the latest and there's some
1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 * optimization and the race window is narrow, let's leave as-is for
1261 * now. If this becomes pronounced, we can skip over workers which are
1262 * still on cpu when picking an idle worker.
1264 * If @pool has non-strict affinity, @worker might have ended up outside
1265 * its affinity scope. Repatriate.
1267 if (!pool
->attrs
->affn_strict
&&
1268 !cpumask_test_cpu(p
->wake_cpu
, pool
->attrs
->__pod_cpumask
)) {
1269 struct work_struct
*work
= list_first_entry(&pool
->worklist
,
1270 struct work_struct
, entry
);
1271 int wake_cpu
= cpumask_any_and_distribute(pool
->attrs
->__pod_cpumask
,
1273 if (wake_cpu
< nr_cpu_ids
) {
1274 p
->wake_cpu
= wake_cpu
;
1275 get_work_pwq(work
)->stats
[PWQ_STAT_REPATRIATED
]++;
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1297 #define WCI_MAX_ENTS 128
1302 struct hlist_node hash_node
;
1305 static struct wci_ent wci_ents
[WCI_MAX_ENTS
];
1306 static int wci_nr_ents
;
1307 static DEFINE_RAW_SPINLOCK(wci_lock
);
1308 static DEFINE_HASHTABLE(wci_hash
, ilog2(WCI_MAX_ENTS
));
1310 static struct wci_ent
*wci_find_ent(work_func_t func
)
1312 struct wci_ent
*ent
;
1314 hash_for_each_possible_rcu(wci_hash
, ent
, hash_node
,
1315 (unsigned long)func
) {
1316 if (ent
->func
== func
)
1322 static void wq_cpu_intensive_report(work_func_t func
)
1324 struct wci_ent
*ent
;
1327 ent
= wci_find_ent(func
);
1332 * Start reporting from the warning_thresh and back off
1335 cnt
= atomic64_inc_return_relaxed(&ent
->cnt
);
1336 if (wq_cpu_intensive_warning_thresh
&&
1337 cnt
>= wq_cpu_intensive_warning_thresh
&&
1338 is_power_of_2(cnt
+ 1 - wq_cpu_intensive_warning_thresh
))
1339 printk_deferred(KERN_WARNING
"workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 ent
->func
, wq_cpu_intensive_thresh_us
,
1341 atomic64_read(&ent
->cnt
));
1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 * is exhausted, something went really wrong and we probably made enough
1350 if (wci_nr_ents
>= WCI_MAX_ENTS
)
1353 raw_spin_lock(&wci_lock
);
1355 if (wci_nr_ents
>= WCI_MAX_ENTS
) {
1356 raw_spin_unlock(&wci_lock
);
1360 if (wci_find_ent(func
)) {
1361 raw_spin_unlock(&wci_lock
);
1365 ent
= &wci_ents
[wci_nr_ents
++];
1367 atomic64_set(&ent
->cnt
, 0);
1368 hash_add_rcu(wci_hash
, &ent
->hash_node
, (unsigned long)func
);
1370 raw_spin_unlock(&wci_lock
);
1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1376 static void wq_cpu_intensive_report(work_func_t func
) {}
1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1383 * This function is called when a worker returns from schedule()
1385 void wq_worker_running(struct task_struct
*task
)
1387 struct worker
*worker
= kthread_data(task
);
1389 if (!READ_ONCE(worker
->sleeping
))
1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 * and the nr_running increment below, we may ruin the nr_running reset
1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 * pool. Protect against such race.
1399 if (!(worker
->flags
& WORKER_NOT_RUNNING
))
1400 worker
->pool
->nr_running
++;
1404 * CPU intensive auto-detection cares about how long a work item hogged
1405 * CPU without sleeping. Reset the starting timestamp on wakeup.
1407 worker
->current_at
= worker
->task
->se
.sum_exec_runtime
;
1409 WRITE_ONCE(worker
->sleeping
, 0);
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1416 * This function is called from schedule() when a busy worker is
1419 void wq_worker_sleeping(struct task_struct
*task
)
1421 struct worker
*worker
= kthread_data(task
);
1422 struct worker_pool
*pool
;
1425 * Rescuers, which may not have all the fields set up like normal
1426 * workers, also reach here, let's not access anything before
1427 * checking NOT_RUNNING.
1429 if (worker
->flags
& WORKER_NOT_RUNNING
)
1432 pool
= worker
->pool
;
1434 /* Return if preempted before wq_worker_running() was reached */
1435 if (READ_ONCE(worker
->sleeping
))
1438 WRITE_ONCE(worker
->sleeping
, 1);
1439 raw_spin_lock_irq(&pool
->lock
);
1442 * Recheck in case unbind_workers() preempted us. We don't
1443 * want to decrement nr_running after the worker is unbound
1444 * and nr_running has been reset.
1446 if (worker
->flags
& WORKER_NOT_RUNNING
) {
1447 raw_spin_unlock_irq(&pool
->lock
);
1452 if (kick_pool(pool
))
1453 worker
->current_pwq
->stats
[PWQ_STAT_CM_WAKEUP
]++;
1455 raw_spin_unlock_irq(&pool
->lock
);
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1465 void wq_worker_tick(struct task_struct
*task
)
1467 struct worker
*worker
= kthread_data(task
);
1468 struct pool_workqueue
*pwq
= worker
->current_pwq
;
1469 struct worker_pool
*pool
= worker
->pool
;
1474 pwq
->stats
[PWQ_STAT_CPU_TIME
] += TICK_USEC
;
1476 if (!wq_cpu_intensive_thresh_us
)
1480 * If the current worker is concurrency managed and hogged the CPU for
1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1484 * Set @worker->sleeping means that @worker is in the process of
1485 * switching out voluntarily and won't be contributing to
1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 * We probably want to make this prettier in the future.
1491 if ((worker
->flags
& WORKER_NOT_RUNNING
) || READ_ONCE(worker
->sleeping
) ||
1492 worker
->task
->se
.sum_exec_runtime
- worker
->current_at
<
1493 wq_cpu_intensive_thresh_us
* NSEC_PER_USEC
)
1496 raw_spin_lock(&pool
->lock
);
1498 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
);
1499 wq_cpu_intensive_report(worker
->current_func
);
1500 pwq
->stats
[PWQ_STAT_CPU_INTENSIVE
]++;
1502 if (kick_pool(pool
))
1503 pwq
->stats
[PWQ_STAT_CM_WAKEUP
]++;
1505 raw_spin_unlock(&pool
->lock
);
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1516 * raw_spin_lock_irq(rq->lock)
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1532 work_func_t
wq_worker_last_func(struct task_struct
*task
)
1534 struct worker
*worker
= kthread_data(task
);
1536 return worker
->last_func
;
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1550 * - Otherwise, node_nr_active[@node].
1552 static struct wq_node_nr_active
*wq_node_nr_active(struct workqueue_struct
*wq
,
1555 if (!(wq
->flags
& WQ_UNBOUND
))
1558 if (node
== NUMA_NO_NODE
)
1561 return wq
->node_nr_active
[node
];
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1573 static void wq_update_node_max_active(struct workqueue_struct
*wq
, int off_cpu
)
1575 struct cpumask
*effective
= unbound_effective_cpumask(wq
);
1576 int min_active
= READ_ONCE(wq
->min_active
);
1577 int max_active
= READ_ONCE(wq
->max_active
);
1578 int total_cpus
, node
;
1580 lockdep_assert_held(&wq
->mutex
);
1582 if (!wq_topo_initialized
)
1585 if (off_cpu
>= 0 && !cpumask_test_cpu(off_cpu
, effective
))
1588 total_cpus
= cpumask_weight_and(effective
, cpu_online_mask
);
1592 /* If all CPUs of the wq get offline, use the default values */
1593 if (unlikely(!total_cpus
)) {
1595 wq_node_nr_active(wq
, node
)->max
= min_active
;
1597 wq_node_nr_active(wq
, NUMA_NO_NODE
)->max
= max_active
;
1601 for_each_node(node
) {
1604 node_cpus
= cpumask_weight_and(effective
, cpumask_of_node(node
));
1605 if (off_cpu
>= 0 && cpu_to_node(off_cpu
) == node
)
1608 wq_node_nr_active(wq
, node
)->max
=
1609 clamp(DIV_ROUND_UP(max_active
* node_cpus
, total_cpus
),
1610 min_active
, max_active
);
1613 wq_node_nr_active(wq
, NUMA_NO_NODE
)->max
= max_active
;
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1620 * Obtain an extra reference on @pwq. The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1623 static void get_pwq(struct pool_workqueue
*pwq
)
1625 lockdep_assert_held(&pwq
->pool
->lock
);
1626 WARN_ON_ONCE(pwq
->refcnt
<= 0);
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1635 * destruction. The caller should be holding the matching pool->lock.
1637 static void put_pwq(struct pool_workqueue
*pwq
)
1639 lockdep_assert_held(&pwq
->pool
->lock
);
1640 if (likely(--pwq
->refcnt
))
1643 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 * kthread_worker to avoid A-A deadlocks.
1646 kthread_queue_work(pwq_release_worker
, &pwq
->release_work
);
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1653 * put_pwq() with locking. This function also allows %NULL @pwq.
1655 static void put_pwq_unlocked(struct pool_workqueue
*pwq
)
1659 * As both pwqs and pools are RCU protected, the
1660 * following lock operations are safe.
1662 raw_spin_lock_irq(&pwq
->pool
->lock
);
1664 raw_spin_unlock_irq(&pwq
->pool
->lock
);
1668 static bool pwq_is_empty(struct pool_workqueue
*pwq
)
1670 return !pwq
->nr_active
&& list_empty(&pwq
->inactive_works
);
1673 static void __pwq_activate_work(struct pool_workqueue
*pwq
,
1674 struct work_struct
*work
)
1676 unsigned long *wdb
= work_data_bits(work
);
1678 WARN_ON_ONCE(!(*wdb
& WORK_STRUCT_INACTIVE
));
1679 trace_workqueue_activate_work(work
);
1680 if (list_empty(&pwq
->pool
->worklist
))
1681 pwq
->pool
->watchdog_ts
= jiffies
;
1682 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT
, wdb
);
1686 static bool tryinc_node_nr_active(struct wq_node_nr_active
*nna
)
1688 int max
= READ_ONCE(nna
->max
);
1693 old
= atomic_read(&nna
->nr
);
1696 tmp
= atomic_cmpxchg_relaxed(&nna
->nr
, old
, old
+ 1);
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
1705 * @fill: max_active may have increased, try to increase concurrency level
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1710 static bool pwq_tryinc_nr_active(struct pool_workqueue
*pwq
, bool fill
)
1712 struct workqueue_struct
*wq
= pwq
->wq
;
1713 struct worker_pool
*pool
= pwq
->pool
;
1714 struct wq_node_nr_active
*nna
= wq_node_nr_active(wq
, pool
->node
);
1715 bool obtained
= false;
1717 lockdep_assert_held(&pool
->lock
);
1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 obtained
= pwq
->nr_active
< READ_ONCE(wq
->max_active
);
1725 if (unlikely(pwq
->plugged
))
1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 * concurrency level. Don't jump the line.
1733 * We need to ignore the pending test after max_active has increased as
1734 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 * increase it. This is indicated by @fill.
1737 if (!list_empty(&pwq
->pending_node
) && likely(!fill
))
1740 obtained
= tryinc_node_nr_active(nna
);
1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 * and try again. The smp_mb() is paired with the implied memory barrier
1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 * we see the decremented $nna->nr or they see non-empty
1749 * $nna->pending_pwqs.
1751 raw_spin_lock(&nna
->lock
);
1753 if (list_empty(&pwq
->pending_node
))
1754 list_add_tail(&pwq
->pending_node
, &nna
->pending_pwqs
);
1755 else if (likely(!fill
))
1760 obtained
= tryinc_node_nr_active(nna
);
1763 * If @fill, @pwq might have already been pending. Being spuriously
1764 * pending in cold paths doesn't affect anything. Let's leave it be.
1766 if (obtained
&& likely(!fill
))
1767 list_del_init(&pwq
->pending_node
);
1770 raw_spin_unlock(&nna
->lock
);
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
1780 * @fill: max_active may have increased, try to increase concurrency level
1782 * Activate the first inactive work item of @pwq if available and allowed by
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1788 static bool pwq_activate_first_inactive(struct pool_workqueue
*pwq
, bool fill
)
1790 struct work_struct
*work
=
1791 list_first_entry_or_null(&pwq
->inactive_works
,
1792 struct work_struct
, entry
);
1794 if (work
&& pwq_tryinc_nr_active(pwq
, fill
)) {
1795 __pwq_activate_work(pwq
, work
);
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
1810 * dfl_pwq --------------+ [P] - plugged
1813 * pwqs -> A -> B [P] -> C [P] (newest)
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
1824 static void unplug_oldest_pwq(struct workqueue_struct
*wq
)
1826 struct pool_workqueue
*pwq
;
1828 lockdep_assert_held(&wq
->mutex
);
1830 /* Caller should make sure that pwqs isn't empty before calling */
1831 pwq
= list_first_entry_or_null(&wq
->pwqs
, struct pool_workqueue
,
1833 raw_spin_lock_irq(&pwq
->pool
->lock
);
1835 pwq
->plugged
= false;
1836 if (pwq_activate_first_inactive(pwq
, true))
1837 kick_pool(pwq
->pool
);
1839 raw_spin_unlock_irq(&pwq
->pool
->lock
);
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1850 static void node_activate_pending_pwq(struct wq_node_nr_active
*nna
,
1851 struct worker_pool
*caller_pool
)
1853 struct worker_pool
*locked_pool
= caller_pool
;
1854 struct pool_workqueue
*pwq
;
1855 struct work_struct
*work
;
1857 lockdep_assert_held(&caller_pool
->lock
);
1859 raw_spin_lock(&nna
->lock
);
1861 pwq
= list_first_entry_or_null(&nna
->pending_pwqs
,
1862 struct pool_workqueue
, pending_node
);
1867 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 * / lock dance. For that, we also need to release @nna->lock as it's
1870 * nested inside pool locks.
1872 if (pwq
->pool
!= locked_pool
) {
1873 raw_spin_unlock(&locked_pool
->lock
);
1874 locked_pool
= pwq
->pool
;
1875 if (!raw_spin_trylock(&locked_pool
->lock
)) {
1876 raw_spin_unlock(&nna
->lock
);
1877 raw_spin_lock(&locked_pool
->lock
);
1878 raw_spin_lock(&nna
->lock
);
1884 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 * Drop it from pending_pwqs and see if there's another one.
1887 work
= list_first_entry_or_null(&pwq
->inactive_works
,
1888 struct work_struct
, entry
);
1890 list_del_init(&pwq
->pending_node
);
1895 * Acquire an nr_active count and activate the inactive work item. If
1896 * $pwq still has inactive work items, rotate it to the end of the
1897 * pending_pwqs so that we round-robin through them. This means that
1898 * inactive work items are not activated in queueing order which is fine
1899 * given that there has never been any ordering across different pwqs.
1901 if (likely(tryinc_node_nr_active(nna
))) {
1903 __pwq_activate_work(pwq
, work
);
1905 if (list_empty(&pwq
->inactive_works
))
1906 list_del_init(&pwq
->pending_node
);
1908 list_move_tail(&pwq
->pending_node
, &nna
->pending_pwqs
);
1910 /* if activating a foreign pool, make sure it's running */
1911 if (pwq
->pool
!= caller_pool
)
1912 kick_pool(pwq
->pool
);
1916 raw_spin_unlock(&nna
->lock
);
1917 if (locked_pool
!= caller_pool
) {
1918 raw_spin_unlock(&locked_pool
->lock
);
1919 raw_spin_lock(&caller_pool
->lock
);
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1930 static void pwq_dec_nr_active(struct pool_workqueue
*pwq
)
1932 struct worker_pool
*pool
= pwq
->pool
;
1933 struct wq_node_nr_active
*nna
= wq_node_nr_active(pwq
->wq
, pool
->node
);
1935 lockdep_assert_held(&pool
->lock
);
1938 * @pwq->nr_active should be decremented for both percpu and unbound
1944 * For a percpu workqueue, it's simple. Just need to kick the first
1945 * inactive work item on @pwq itself.
1948 pwq_activate_first_inactive(pwq
, false);
1953 * If @pwq is for an unbound workqueue, it's more complicated because
1954 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 * pwq needs to wait for an nr_active count, it puts itself on
1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 * guarantee that either we see non-empty pending_pwqs or they see
1959 * decremented $nna->nr.
1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 * max_active gets updated. However, it is guaranteed to be equal to or
1963 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 * This maintains the forward progress guarantee.
1966 if (atomic_dec_return(&nna
->nr
) >= READ_ONCE(nna
->max
))
1969 if (!list_empty(&nna
->pending_pwqs
))
1970 node_activate_pending_pwq(nna
, pool
);
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
1976 * @work_data: work_data of work which left the queue
1978 * A work either has completed or is removed from pending queue,
1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1987 * raw_spin_lock_irq(pool->lock).
1989 static void pwq_dec_nr_in_flight(struct pool_workqueue
*pwq
, unsigned long work_data
)
1991 int color
= get_work_color(work_data
);
1993 if (!(work_data
& WORK_STRUCT_INACTIVE
))
1994 pwq_dec_nr_active(pwq
);
1996 pwq
->nr_in_flight
[color
]--;
1998 /* is flush in progress and are we at the flushing tip? */
1999 if (likely(pwq
->flush_color
!= color
))
2002 /* are there still in-flight works? */
2003 if (pwq
->nr_in_flight
[color
])
2006 /* this pwq is done, clear flush_color */
2007 pwq
->flush_color
= -1;
2010 * If this was the last pwq, wake up the first flusher. It
2011 * will handle the rest.
2013 if (atomic_dec_and_test(&pwq
->wq
->nr_pwqs_to_flush
))
2014 complete(&pwq
->wq
->first_flusher
->done
);
2020 * try_to_grab_pending - steal work item from worklist and disable irq
2021 * @work: work item to steal
2022 * @cflags: %WORK_CANCEL_ flags
2023 * @irq_flags: place to store irq state
2025 * Try to grab PENDING bit of @work. This function can handle @work in any
2026 * stable state - idle, on timer or on worklist.
2030 * ======== ================================================================
2031 * 1 if @work was pending and we successfully stole PENDING
2032 * 0 if @work was idle and we claimed PENDING
2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034 * ======== ================================================================
2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry. This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2042 * On successful return, >= 0, irq is disabled and the caller is
2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
2045 * This function is safe to call from any context including IRQ handler.
2047 static int try_to_grab_pending(struct work_struct
*work
, u32 cflags
,
2048 unsigned long *irq_flags
)
2050 struct worker_pool
*pool
;
2051 struct pool_workqueue
*pwq
;
2053 local_irq_save(*irq_flags
);
2055 /* try to steal the timer if it exists */
2056 if (cflags
& WORK_CANCEL_DELAYED
) {
2057 struct delayed_work
*dwork
= to_delayed_work(work
);
2060 * dwork->timer is irqsafe. If del_timer() fails, it's
2061 * guaranteed that the timer is not queued anywhere and not
2062 * running on the local CPU.
2064 if (likely(del_timer(&dwork
->timer
)))
2068 /* try to claim PENDING the normal way */
2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)))
2074 * The queueing is in progress, or it is already queued. Try to
2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2077 pool
= get_work_pool(work
);
2081 raw_spin_lock(&pool
->lock
);
2083 * work->data is guaranteed to point to pwq only while the work
2084 * item is queued on pwq->wq, and both updating work->data to point
2085 * to pwq on queueing and to pool on dequeueing are done under
2086 * pwq->pool->lock. This in turn guarantees that, if work->data
2087 * points to pwq which is associated with a locked pool, the work
2088 * item is currently queued on that pool.
2090 pwq
= get_work_pwq(work
);
2091 if (pwq
&& pwq
->pool
== pool
) {
2092 unsigned long work_data
= *work_data_bits(work
);
2094 debug_work_deactivate(work
);
2097 * A cancelable inactive work item must be in the
2098 * pwq->inactive_works since a queued barrier can't be
2099 * canceled (see the comments in insert_wq_barrier()).
2101 * An inactive work item cannot be deleted directly because
2102 * it might have linked barrier work items which, if left
2103 * on the inactive_works list, will confuse pwq->nr_active
2104 * management later on and cause stall. Move the linked
2105 * barrier work items to the worklist when deleting the grabbed
2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 * it doesn't participate in nr_active management in later
2108 * pwq_dec_nr_in_flight().
2110 if (work_data
& WORK_STRUCT_INACTIVE
)
2111 move_linked_works(work
, &pwq
->pool
->worklist
, NULL
);
2113 list_del_init(&work
->entry
);
2116 * work->data points to pwq iff queued. Let's point to pool. As
2117 * this destroys work->data needed by the next step, stash it.
2119 set_work_pool_and_keep_pending(work
, pool
->id
,
2120 pool_offq_flags(pool
));
2122 /* must be the last step, see the function comment */
2123 pwq_dec_nr_in_flight(pwq
, work_data
);
2125 raw_spin_unlock(&pool
->lock
);
2129 raw_spin_unlock(&pool
->lock
);
2132 local_irq_restore(*irq_flags
);
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2145 * Can be called from any context. IRQ is disabled on return with IRQ state
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2149 * Returns %true if @work was pending. %false if idle.
2151 static bool work_grab_pending(struct work_struct
*work
, u32 cflags
,
2152 unsigned long *irq_flags
)
2157 ret
= try_to_grab_pending(work
, cflags
, irq_flags
);
2165 * insert_work - insert a work into a pool
2166 * @pwq: pwq @work belongs to
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2172 * work_struct flags.
2175 * raw_spin_lock_irq(pool->lock).
2177 static void insert_work(struct pool_workqueue
*pwq
, struct work_struct
*work
,
2178 struct list_head
*head
, unsigned int extra_flags
)
2180 debug_work_activate(work
);
2182 /* record the work call stack in order to print it in KASAN reports */
2183 kasan_record_aux_stack_noalloc(work
);
2185 /* we own @work, set data and link */
2186 set_work_pwq(work
, pwq
, extra_flags
);
2187 list_add_tail(&work
->entry
, head
);
2192 * Test whether @work is being queued from another work executing on the
2195 static bool is_chained_work(struct workqueue_struct
*wq
)
2197 struct worker
*worker
;
2199 worker
= current_wq_worker();
2201 * Return %true iff I'm a worker executing a work item on @wq. If
2202 * I'm @worker, it's safe to dereference it without locking.
2204 return worker
&& worker
->current_pwq
->wq
== wq
;
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2212 static int wq_select_unbound_cpu(int cpu
)
2216 if (likely(!wq_debug_force_rr_cpu
)) {
2217 if (cpumask_test_cpu(cpu
, wq_unbound_cpumask
))
2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2223 new_cpu
= __this_cpu_read(wq_rr_cpu_last
);
2224 new_cpu
= cpumask_next_and(new_cpu
, wq_unbound_cpumask
, cpu_online_mask
);
2225 if (unlikely(new_cpu
>= nr_cpu_ids
)) {
2226 new_cpu
= cpumask_first_and(wq_unbound_cpumask
, cpu_online_mask
);
2227 if (unlikely(new_cpu
>= nr_cpu_ids
))
2230 __this_cpu_write(wq_rr_cpu_last
, new_cpu
);
2235 static void __queue_work(int cpu
, struct workqueue_struct
*wq
,
2236 struct work_struct
*work
)
2238 struct pool_workqueue
*pwq
;
2239 struct worker_pool
*last_pool
, *pool
;
2240 unsigned int work_flags
;
2241 unsigned int req_cpu
= cpu
;
2244 * While a work item is PENDING && off queue, a task trying to
2245 * steal the PENDING will busy-loop waiting for it to either get
2246 * queued or lose PENDING. Grabbing PENDING and queueing should
2247 * happen with IRQ disabled.
2249 lockdep_assert_irqs_disabled();
2252 * For a draining wq, only works from the same workqueue are
2253 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 * queues a new work item to a wq after destroy_workqueue(wq).
2256 if (unlikely(wq
->flags
& (__WQ_DESTROYING
| __WQ_DRAINING
) &&
2257 WARN_ON_ONCE(!is_chained_work(wq
))))
2261 /* pwq which will be used unless @work is executing elsewhere */
2262 if (req_cpu
== WORK_CPU_UNBOUND
) {
2263 if (wq
->flags
& WQ_UNBOUND
)
2264 cpu
= wq_select_unbound_cpu(raw_smp_processor_id());
2266 cpu
= raw_smp_processor_id();
2269 pwq
= rcu_dereference(*per_cpu_ptr(wq
->cpu_pwq
, cpu
));
2273 * If @work was previously on a different pool, it might still be
2274 * running there, in which case the work needs to be queued on that
2275 * pool to guarantee non-reentrancy.
2277 * For ordered workqueue, work items must be queued on the newest pwq
2278 * for accurate order management. Guaranteed order also guarantees
2279 * non-reentrancy. See the comments above unplug_oldest_pwq().
2281 last_pool
= get_work_pool(work
);
2282 if (last_pool
&& last_pool
!= pool
&& !(wq
->flags
& __WQ_ORDERED
)) {
2283 struct worker
*worker
;
2285 raw_spin_lock(&last_pool
->lock
);
2287 worker
= find_worker_executing_work(last_pool
, work
);
2289 if (worker
&& worker
->current_pwq
->wq
== wq
) {
2290 pwq
= worker
->current_pwq
;
2292 WARN_ON_ONCE(pool
!= last_pool
);
2294 /* meh... not running there, queue here */
2295 raw_spin_unlock(&last_pool
->lock
);
2296 raw_spin_lock(&pool
->lock
);
2299 raw_spin_lock(&pool
->lock
);
2303 * pwq is determined and locked. For unbound pools, we could have raced
2304 * with pwq release and it could already be dead. If its refcnt is zero,
2305 * repeat pwq selection. Note that unbound pwqs never die without
2306 * another pwq replacing it in cpu_pwq or while work items are executing
2307 * on it, so the retrying is guaranteed to make forward-progress.
2309 if (unlikely(!pwq
->refcnt
)) {
2310 if (wq
->flags
& WQ_UNBOUND
) {
2311 raw_spin_unlock(&pool
->lock
);
2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2320 /* pwq determined, queue */
2321 trace_workqueue_queue_work(req_cpu
, pwq
, work
);
2323 if (WARN_ON(!list_empty(&work
->entry
)))
2326 pwq
->nr_in_flight
[pwq
->work_color
]++;
2327 work_flags
= work_color_to_flags(pwq
->work_color
);
2330 * Limit the number of concurrently active work items to max_active.
2331 * @work must also queue behind existing inactive work items to maintain
2332 * ordering when max_active changes. See wq_adjust_max_active().
2334 if (list_empty(&pwq
->inactive_works
) && pwq_tryinc_nr_active(pwq
, false)) {
2335 if (list_empty(&pool
->worklist
))
2336 pool
->watchdog_ts
= jiffies
;
2338 trace_workqueue_activate_work(work
);
2339 insert_work(pwq
, work
, &pool
->worklist
, work_flags
);
2342 work_flags
|= WORK_STRUCT_INACTIVE
;
2343 insert_work(pwq
, work
, &pwq
->inactive_works
, work_flags
);
2347 raw_spin_unlock(&pool
->lock
);
2351 static bool clear_pending_if_disabled(struct work_struct
*work
)
2353 unsigned long data
= *work_data_bits(work
);
2354 struct work_offq_data offqd
;
2356 if (likely((data
& WORK_STRUCT_PWQ
) ||
2357 !(data
& WORK_OFFQ_DISABLE_MASK
)))
2360 work_offqd_unpack(&offqd
, data
);
2361 set_work_pool_and_clear_pending(work
, offqd
.pool_id
,
2362 work_offqd_pack_flags(&offqd
));
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
2369 * @wq: workqueue to use
2370 * @work: work to queue
2372 * We queue the work to a specific CPU, the caller must ensure it
2373 * can't go away. Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
2378 * Return: %false if @work was already on a queue, %true otherwise.
2380 bool queue_work_on(int cpu
, struct workqueue_struct
*wq
,
2381 struct work_struct
*work
)
2384 unsigned long irq_flags
;
2386 local_irq_save(irq_flags
);
2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)) &&
2389 !clear_pending_if_disabled(work
)) {
2390 __queue_work(cpu
, wq
, work
);
2394 local_irq_restore(irq_flags
);
2397 EXPORT_SYMBOL(queue_work_on
);
2400 * select_numa_node_cpu - Select a CPU based on NUMA node
2401 * @node: NUMA node ID that we want to select a CPU from
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2408 static int select_numa_node_cpu(int node
)
2412 /* Delay binding to CPU if node is not valid or online */
2413 if (node
< 0 || node
>= MAX_NUMNODES
|| !node_online(node
))
2414 return WORK_CPU_UNBOUND
;
2416 /* Use local node/cpu if we are already there */
2417 cpu
= raw_smp_processor_id();
2418 if (node
== cpu_to_node(cpu
))
2421 /* Use "random" otherwise know as "first" online CPU of node */
2422 cpu
= cpumask_any_and(cpumask_of_node(node
), cpu_online_mask
);
2424 /* If CPU is valid return that, otherwise just defer */
2425 return cpu
< nr_cpu_ids
? cpu
: WORK_CPU_UNBOUND
;
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2446 * Return: %false if @work was already on a queue, %true otherwise.
2448 bool queue_work_node(int node
, struct workqueue_struct
*wq
,
2449 struct work_struct
*work
)
2451 unsigned long irq_flags
;
2455 * This current implementation is specific to unbound workqueues.
2456 * Specifically we only return the first available CPU for a given
2457 * node instead of cycling through individual CPUs within the node.
2459 * If this is used with a per-cpu workqueue then the logic in
2460 * workqueue_select_cpu_near would need to be updated to allow for
2461 * some round robin type logic.
2463 WARN_ON_ONCE(!(wq
->flags
& WQ_UNBOUND
));
2465 local_irq_save(irq_flags
);
2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)) &&
2468 !clear_pending_if_disabled(work
)) {
2469 int cpu
= select_numa_node_cpu(node
);
2471 __queue_work(cpu
, wq
, work
);
2475 local_irq_restore(irq_flags
);
2478 EXPORT_SYMBOL_GPL(queue_work_node
);
2480 void delayed_work_timer_fn(struct timer_list
*t
)
2482 struct delayed_work
*dwork
= from_timer(dwork
, t
, timer
);
2484 /* should have been called from irqsafe timer with irq already off */
2485 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
2487 EXPORT_SYMBOL(delayed_work_timer_fn
);
2489 static void __queue_delayed_work(int cpu
, struct workqueue_struct
*wq
,
2490 struct delayed_work
*dwork
, unsigned long delay
)
2492 struct timer_list
*timer
= &dwork
->timer
;
2493 struct work_struct
*work
= &dwork
->work
;
2496 WARN_ON_ONCE(timer
->function
!= delayed_work_timer_fn
);
2497 WARN_ON_ONCE(timer_pending(timer
));
2498 WARN_ON_ONCE(!list_empty(&work
->entry
));
2501 * If @delay is 0, queue @dwork->work immediately. This is for
2502 * both optimization and correctness. The earliest @timer can
2503 * expire is on the closest next tick and delayed_work users depend
2504 * on that there's no such delay when @delay is 0.
2507 __queue_work(cpu
, wq
, &dwork
->work
);
2513 timer
->expires
= jiffies
+ delay
;
2515 if (housekeeping_enabled(HK_TYPE_TIMER
)) {
2516 /* If the current cpu is a housekeeping cpu, use it. */
2517 cpu
= smp_processor_id();
2518 if (!housekeeping_test_cpu(cpu
, HK_TYPE_TIMER
))
2519 cpu
= housekeeping_any_cpu(HK_TYPE_TIMER
);
2520 add_timer_on(timer
, cpu
);
2522 if (likely(cpu
== WORK_CPU_UNBOUND
))
2523 add_timer_global(timer
);
2525 add_timer_on(timer
, cpu
);
2530 * queue_delayed_work_on - queue work on specific CPU after delay
2531 * @cpu: CPU number to execute work on
2532 * @wq: workqueue to use
2533 * @dwork: work to queue
2534 * @delay: number of jiffies to wait before queueing
2536 * Return: %false if @work was already on a queue, %true otherwise. If
2537 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2540 bool queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
2541 struct delayed_work
*dwork
, unsigned long delay
)
2543 struct work_struct
*work
= &dwork
->work
;
2545 unsigned long irq_flags
;
2547 /* read the comment in __queue_work() */
2548 local_irq_save(irq_flags
);
2550 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)) &&
2551 !clear_pending_if_disabled(work
)) {
2552 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
2556 local_irq_restore(irq_flags
);
2559 EXPORT_SYMBOL(queue_delayed_work_on
);
2562 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2563 * @cpu: CPU number to execute work on
2564 * @wq: workqueue to use
2565 * @dwork: work to queue
2566 * @delay: number of jiffies to wait before queueing
2568 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2569 * modify @dwork's timer so that it expires after @delay. If @delay is
2570 * zero, @work is guaranteed to be scheduled immediately regardless of its
2573 * Return: %false if @dwork was idle and queued, %true if @dwork was
2574 * pending and its timer was modified.
2576 * This function is safe to call from any context including IRQ handler.
2577 * See try_to_grab_pending() for details.
2579 bool mod_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
2580 struct delayed_work
*dwork
, unsigned long delay
)
2582 unsigned long irq_flags
;
2585 ret
= work_grab_pending(&dwork
->work
, WORK_CANCEL_DELAYED
, &irq_flags
);
2587 if (!clear_pending_if_disabled(&dwork
->work
))
2588 __queue_delayed_work(cpu
, wq
, dwork
, delay
);
2590 local_irq_restore(irq_flags
);
2593 EXPORT_SYMBOL_GPL(mod_delayed_work_on
);
2595 static void rcu_work_rcufn(struct rcu_head
*rcu
)
2597 struct rcu_work
*rwork
= container_of(rcu
, struct rcu_work
, rcu
);
2599 /* read the comment in __queue_work() */
2600 local_irq_disable();
2601 __queue_work(WORK_CPU_UNBOUND
, rwork
->wq
, &rwork
->work
);
2606 * queue_rcu_work - queue work after a RCU grace period
2607 * @wq: workqueue to use
2608 * @rwork: work to queue
2610 * Return: %false if @rwork was already pending, %true otherwise. Note
2611 * that a full RCU grace period is guaranteed only after a %true return.
2612 * While @rwork is guaranteed to be executed after a %false return, the
2613 * execution may happen before a full RCU grace period has passed.
2615 bool queue_rcu_work(struct workqueue_struct
*wq
, struct rcu_work
*rwork
)
2617 struct work_struct
*work
= &rwork
->work
;
2620 * rcu_work can't be canceled or disabled. Warn if the user reached
2621 * inside @rwork and disabled the inner work.
2623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(work
)) &&
2624 !WARN_ON_ONCE(clear_pending_if_disabled(work
))) {
2626 call_rcu_hurry(&rwork
->rcu
, rcu_work_rcufn
);
2632 EXPORT_SYMBOL(queue_rcu_work
);
2634 static struct worker
*alloc_worker(int node
)
2636 struct worker
*worker
;
2638 worker
= kzalloc_node(sizeof(*worker
), GFP_KERNEL
, node
);
2640 INIT_LIST_HEAD(&worker
->entry
);
2641 INIT_LIST_HEAD(&worker
->scheduled
);
2642 INIT_LIST_HEAD(&worker
->node
);
2643 /* on creation a worker is in !idle && prep state */
2644 worker
->flags
= WORKER_PREP
;
2649 static cpumask_t
*pool_allowed_cpus(struct worker_pool
*pool
)
2651 if (pool
->cpu
< 0 && pool
->attrs
->affn_strict
)
2652 return pool
->attrs
->__pod_cpumask
;
2654 return pool
->attrs
->cpumask
;
2658 * worker_attach_to_pool() - attach a worker to a pool
2659 * @worker: worker to be attached
2660 * @pool: the target pool
2662 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2663 * cpu-binding of @worker are kept coordinated with the pool across
2666 static void worker_attach_to_pool(struct worker
*worker
,
2667 struct worker_pool
*pool
)
2669 mutex_lock(&wq_pool_attach_mutex
);
2672 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2673 * across this function. See the comments above the flag definition for
2674 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2676 if (pool
->flags
& POOL_DISASSOCIATED
) {
2677 worker
->flags
|= WORKER_UNBOUND
;
2679 WARN_ON_ONCE(pool
->flags
& POOL_BH
);
2680 kthread_set_per_cpu(worker
->task
, pool
->cpu
);
2683 if (worker
->rescue_wq
)
2684 set_cpus_allowed_ptr(worker
->task
, pool_allowed_cpus(pool
));
2686 list_add_tail(&worker
->node
, &pool
->workers
);
2687 worker
->pool
= pool
;
2689 mutex_unlock(&wq_pool_attach_mutex
);
2692 static void unbind_worker(struct worker
*worker
)
2694 lockdep_assert_held(&wq_pool_attach_mutex
);
2696 kthread_set_per_cpu(worker
->task
, -1);
2697 if (cpumask_intersects(wq_unbound_cpumask
, cpu_active_mask
))
2698 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
, wq_unbound_cpumask
) < 0);
2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
, cpu_possible_mask
) < 0);
2704 static void detach_worker(struct worker
*worker
)
2706 lockdep_assert_held(&wq_pool_attach_mutex
);
2708 unbind_worker(worker
);
2709 list_del(&worker
->node
);
2713 * worker_detach_from_pool() - detach a worker from its pool
2714 * @worker: worker which is attached to its pool
2716 * Undo the attaching which had been done in worker_attach_to_pool(). The
2717 * caller worker shouldn't access to the pool after detached except it has
2718 * other reference to the pool.
2720 static void worker_detach_from_pool(struct worker
*worker
)
2722 struct worker_pool
*pool
= worker
->pool
;
2724 /* there is one permanent BH worker per CPU which should never detach */
2725 WARN_ON_ONCE(pool
->flags
& POOL_BH
);
2727 mutex_lock(&wq_pool_attach_mutex
);
2728 detach_worker(worker
);
2729 worker
->pool
= NULL
;
2730 mutex_unlock(&wq_pool_attach_mutex
);
2732 /* clear leftover flags without pool->lock after it is detached */
2733 worker
->flags
&= ~(WORKER_UNBOUND
| WORKER_REBOUND
);
2736 static int format_worker_id(char *buf
, size_t size
, struct worker
*worker
,
2737 struct worker_pool
*pool
)
2739 if (worker
->rescue_wq
)
2740 return scnprintf(buf
, size
, "kworker/R-%s",
2741 worker
->rescue_wq
->name
);
2745 return scnprintf(buf
, size
, "kworker/%d:%d%s",
2746 pool
->cpu
, worker
->id
,
2747 pool
->attrs
->nice
< 0 ? "H" : "");
2749 return scnprintf(buf
, size
, "kworker/u%d:%d",
2750 pool
->id
, worker
->id
);
2752 return scnprintf(buf
, size
, "kworker/dying");
2757 * create_worker - create a new workqueue worker
2758 * @pool: pool the new worker will belong to
2760 * Create and start a new worker which is attached to @pool.
2763 * Might sleep. Does GFP_KERNEL allocations.
2766 * Pointer to the newly created worker.
2768 static struct worker
*create_worker(struct worker_pool
*pool
)
2770 struct worker
*worker
;
2773 /* ID is needed to determine kthread name */
2774 id
= ida_alloc(&pool
->worker_ida
, GFP_KERNEL
);
2776 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2781 worker
= alloc_worker(pool
->node
);
2783 pr_err_once("workqueue: Failed to allocate a worker\n");
2789 if (!(pool
->flags
& POOL_BH
)) {
2790 char id_buf
[WORKER_ID_LEN
];
2792 format_worker_id(id_buf
, sizeof(id_buf
), worker
, pool
);
2793 worker
->task
= kthread_create_on_node(worker_thread
, worker
,
2794 pool
->node
, "%s", id_buf
);
2795 if (IS_ERR(worker
->task
)) {
2796 if (PTR_ERR(worker
->task
) == -EINTR
) {
2797 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2800 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2806 set_user_nice(worker
->task
, pool
->attrs
->nice
);
2807 kthread_bind_mask(worker
->task
, pool_allowed_cpus(pool
));
2810 /* successful, attach the worker to the pool */
2811 worker_attach_to_pool(worker
, pool
);
2813 /* start the newly created worker */
2814 raw_spin_lock_irq(&pool
->lock
);
2816 worker
->pool
->nr_workers
++;
2817 worker_enter_idle(worker
);
2820 * @worker is waiting on a completion in kthread() and will trigger hung
2821 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2822 * wake it up explicitly.
2825 wake_up_process(worker
->task
);
2827 raw_spin_unlock_irq(&pool
->lock
);
2832 ida_free(&pool
->worker_ida
, id
);
2837 static void detach_dying_workers(struct list_head
*cull_list
)
2839 struct worker
*worker
;
2841 list_for_each_entry(worker
, cull_list
, entry
)
2842 detach_worker(worker
);
2845 static void reap_dying_workers(struct list_head
*cull_list
)
2847 struct worker
*worker
, *tmp
;
2849 list_for_each_entry_safe(worker
, tmp
, cull_list
, entry
) {
2850 list_del_init(&worker
->entry
);
2851 kthread_stop_put(worker
->task
);
2857 * set_worker_dying - Tag a worker for destruction
2858 * @worker: worker to be destroyed
2859 * @list: transfer worker away from its pool->idle_list and into list
2861 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2865 * raw_spin_lock_irq(pool->lock).
2867 static void set_worker_dying(struct worker
*worker
, struct list_head
*list
)
2869 struct worker_pool
*pool
= worker
->pool
;
2871 lockdep_assert_held(&pool
->lock
);
2872 lockdep_assert_held(&wq_pool_attach_mutex
);
2874 /* sanity check frenzy */
2875 if (WARN_ON(worker
->current_work
) ||
2876 WARN_ON(!list_empty(&worker
->scheduled
)) ||
2877 WARN_ON(!(worker
->flags
& WORKER_IDLE
)))
2883 worker
->flags
|= WORKER_DIE
;
2885 list_move(&worker
->entry
, list
);
2887 /* get an extra task struct reference for later kthread_stop_put() */
2888 get_task_struct(worker
->task
);
2892 * idle_worker_timeout - check if some idle workers can now be deleted.
2893 * @t: The pool's idle_timer that just expired
2895 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2896 * worker_leave_idle(), as a worker flicking between idle and active while its
2897 * pool is at the too_many_workers() tipping point would cause too much timer
2898 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2899 * it expire and re-evaluate things from there.
2901 static void idle_worker_timeout(struct timer_list
*t
)
2903 struct worker_pool
*pool
= from_timer(pool
, t
, idle_timer
);
2904 bool do_cull
= false;
2906 if (work_pending(&pool
->idle_cull_work
))
2909 raw_spin_lock_irq(&pool
->lock
);
2911 if (too_many_workers(pool
)) {
2912 struct worker
*worker
;
2913 unsigned long expires
;
2915 /* idle_list is kept in LIFO order, check the last one */
2916 worker
= list_last_entry(&pool
->idle_list
, struct worker
, entry
);
2917 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
2918 do_cull
= !time_before(jiffies
, expires
);
2921 mod_timer(&pool
->idle_timer
, expires
);
2923 raw_spin_unlock_irq(&pool
->lock
);
2926 queue_work(system_unbound_wq
, &pool
->idle_cull_work
);
2930 * idle_cull_fn - cull workers that have been idle for too long.
2931 * @work: the pool's work for handling these idle workers
2933 * This goes through a pool's idle workers and gets rid of those that have been
2934 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2936 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2937 * culled, so this also resets worker affinity. This requires a sleepable
2938 * context, hence the split between timer callback and work item.
2940 static void idle_cull_fn(struct work_struct
*work
)
2942 struct worker_pool
*pool
= container_of(work
, struct worker_pool
, idle_cull_work
);
2943 LIST_HEAD(cull_list
);
2946 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2947 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2948 * This is required as a previously-preempted worker could run after
2949 * set_worker_dying() has happened but before detach_dying_workers() did.
2951 mutex_lock(&wq_pool_attach_mutex
);
2952 raw_spin_lock_irq(&pool
->lock
);
2954 while (too_many_workers(pool
)) {
2955 struct worker
*worker
;
2956 unsigned long expires
;
2958 worker
= list_last_entry(&pool
->idle_list
, struct worker
, entry
);
2959 expires
= worker
->last_active
+ IDLE_WORKER_TIMEOUT
;
2961 if (time_before(jiffies
, expires
)) {
2962 mod_timer(&pool
->idle_timer
, expires
);
2966 set_worker_dying(worker
, &cull_list
);
2969 raw_spin_unlock_irq(&pool
->lock
);
2970 detach_dying_workers(&cull_list
);
2971 mutex_unlock(&wq_pool_attach_mutex
);
2973 reap_dying_workers(&cull_list
);
2976 static void send_mayday(struct work_struct
*work
)
2978 struct pool_workqueue
*pwq
= get_work_pwq(work
);
2979 struct workqueue_struct
*wq
= pwq
->wq
;
2981 lockdep_assert_held(&wq_mayday_lock
);
2986 /* mayday mayday mayday */
2987 if (list_empty(&pwq
->mayday_node
)) {
2989 * If @pwq is for an unbound wq, its base ref may be put at
2990 * any time due to an attribute change. Pin @pwq until the
2991 * rescuer is done with it.
2994 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
2995 wake_up_process(wq
->rescuer
->task
);
2996 pwq
->stats
[PWQ_STAT_MAYDAY
]++;
3000 static void pool_mayday_timeout(struct timer_list
*t
)
3002 struct worker_pool
*pool
= from_timer(pool
, t
, mayday_timer
);
3003 struct work_struct
*work
;
3005 raw_spin_lock_irq(&pool
->lock
);
3006 raw_spin_lock(&wq_mayday_lock
); /* for wq->maydays */
3008 if (need_to_create_worker(pool
)) {
3010 * We've been trying to create a new worker but
3011 * haven't been successful. We might be hitting an
3012 * allocation deadlock. Send distress signals to
3015 list_for_each_entry(work
, &pool
->worklist
, entry
)
3019 raw_spin_unlock(&wq_mayday_lock
);
3020 raw_spin_unlock_irq(&pool
->lock
);
3022 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INTERVAL
);
3026 * maybe_create_worker - create a new worker if necessary
3027 * @pool: pool to create a new worker for
3029 * Create a new worker for @pool if necessary. @pool is guaranteed to
3030 * have at least one idle worker on return from this function. If
3031 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3032 * sent to all rescuers with works scheduled on @pool to resolve
3033 * possible allocation deadlock.
3035 * On return, need_to_create_worker() is guaranteed to be %false and
3036 * may_start_working() %true.
3039 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3040 * multiple times. Does GFP_KERNEL allocations. Called only from
3043 static void maybe_create_worker(struct worker_pool
*pool
)
3044 __releases(&pool
->lock
)
3045 __acquires(&pool
->lock
)
3048 raw_spin_unlock_irq(&pool
->lock
);
3050 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3051 mod_timer(&pool
->mayday_timer
, jiffies
+ MAYDAY_INITIAL_TIMEOUT
);
3054 if (create_worker(pool
) || !need_to_create_worker(pool
))
3057 schedule_timeout_interruptible(CREATE_COOLDOWN
);
3059 if (!need_to_create_worker(pool
))
3063 del_timer_sync(&pool
->mayday_timer
);
3064 raw_spin_lock_irq(&pool
->lock
);
3066 * This is necessary even after a new worker was just successfully
3067 * created as @pool->lock was dropped and the new worker might have
3068 * already become busy.
3070 if (need_to_create_worker(pool
))
3075 * manage_workers - manage worker pool
3078 * Assume the manager role and manage the worker pool @worker belongs
3079 * to. At any given time, there can be only zero or one manager per
3080 * pool. The exclusion is handled automatically by this function.
3082 * The caller can safely start processing works on false return. On
3083 * true return, it's guaranteed that need_to_create_worker() is false
3084 * and may_start_working() is true.
3087 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3088 * multiple times. Does GFP_KERNEL allocations.
3091 * %false if the pool doesn't need management and the caller can safely
3092 * start processing works, %true if management function was performed and
3093 * the conditions that the caller verified before calling the function may
3094 * no longer be true.
3096 static bool manage_workers(struct worker
*worker
)
3098 struct worker_pool
*pool
= worker
->pool
;
3100 if (pool
->flags
& POOL_MANAGER_ACTIVE
)
3103 pool
->flags
|= POOL_MANAGER_ACTIVE
;
3104 pool
->manager
= worker
;
3106 maybe_create_worker(pool
);
3108 pool
->manager
= NULL
;
3109 pool
->flags
&= ~POOL_MANAGER_ACTIVE
;
3110 rcuwait_wake_up(&manager_wait
);
3115 * process_one_work - process single work
3117 * @work: work to process
3119 * Process @work. This function contains all the logics necessary to
3120 * process a single work including synchronization against and
3121 * interaction with other workers on the same cpu, queueing and
3122 * flushing. As long as context requirement is met, any worker can
3123 * call this function to process a work.
3126 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3128 static void process_one_work(struct worker
*worker
, struct work_struct
*work
)
3129 __releases(&pool
->lock
)
3130 __acquires(&pool
->lock
)
3132 struct pool_workqueue
*pwq
= get_work_pwq(work
);
3133 struct worker_pool
*pool
= worker
->pool
;
3134 unsigned long work_data
;
3135 int lockdep_start_depth
, rcu_start_depth
;
3136 bool bh_draining
= pool
->flags
& POOL_BH_DRAINING
;
3137 #ifdef CONFIG_LOCKDEP
3139 * It is permissible to free the struct work_struct from
3140 * inside the function that is called from it, this we need to
3141 * take into account for lockdep too. To avoid bogus "held
3142 * lock freed" warnings as well as problems when looking into
3143 * work->lockdep_map, make a copy and use that here.
3145 struct lockdep_map lockdep_map
;
3147 lockdep_copy_map(&lockdep_map
, &work
->lockdep_map
);
3149 /* ensure we're on the correct CPU */
3150 WARN_ON_ONCE(!(pool
->flags
& POOL_DISASSOCIATED
) &&
3151 raw_smp_processor_id() != pool
->cpu
);
3153 /* claim and dequeue */
3154 debug_work_deactivate(work
);
3155 hash_add(pool
->busy_hash
, &worker
->hentry
, (unsigned long)work
);
3156 worker
->current_work
= work
;
3157 worker
->current_func
= work
->func
;
3158 worker
->current_pwq
= pwq
;
3160 worker
->current_at
= worker
->task
->se
.sum_exec_runtime
;
3161 work_data
= *work_data_bits(work
);
3162 worker
->current_color
= get_work_color(work_data
);
3165 * Record wq name for cmdline and debug reporting, may get
3166 * overridden through set_worker_desc().
3168 strscpy(worker
->desc
, pwq
->wq
->name
, WORKER_DESC_LEN
);
3170 list_del_init(&work
->entry
);
3173 * CPU intensive works don't participate in concurrency management.
3174 * They're the scheduler's responsibility. This takes @worker out
3175 * of concurrency management and the next code block will chain
3176 * execution of the pending work items.
3178 if (unlikely(pwq
->wq
->flags
& WQ_CPU_INTENSIVE
))
3179 worker_set_flags(worker
, WORKER_CPU_INTENSIVE
);
3182 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3183 * since nr_running would always be >= 1 at this point. This is used to
3184 * chain execution of the pending work items for WORKER_NOT_RUNNING
3185 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3190 * Record the last pool and clear PENDING which should be the last
3191 * update to @work. Also, do this inside @pool->lock so that
3192 * PENDING and queued state changes happen together while IRQ is
3195 set_work_pool_and_clear_pending(work
, pool
->id
, pool_offq_flags(pool
));
3197 pwq
->stats
[PWQ_STAT_STARTED
]++;
3198 raw_spin_unlock_irq(&pool
->lock
);
3200 rcu_start_depth
= rcu_preempt_depth();
3201 lockdep_start_depth
= lockdep_depth(current
);
3202 /* see drain_dead_softirq_workfn() */
3204 lock_map_acquire(pwq
->wq
->lockdep_map
);
3205 lock_map_acquire(&lockdep_map
);
3207 * Strictly speaking we should mark the invariant state without holding
3208 * any locks, that is, before these two lock_map_acquire()'s.
3210 * However, that would result in:
3217 * Which would create W1->C->W1 dependencies, even though there is no
3218 * actual deadlock possible. There are two solutions, using a
3219 * read-recursive acquire on the work(queue) 'locks', but this will then
3220 * hit the lockdep limitation on recursive locks, or simply discard
3223 * AFAICT there is no possible deadlock scenario between the
3224 * flush_work() and complete() primitives (except for single-threaded
3225 * workqueues), so hiding them isn't a problem.
3227 lockdep_invariant_state(true);
3228 trace_workqueue_execute_start(work
);
3229 worker
->current_func(work
);
3231 * While we must be careful to not use "work" after this, the trace
3232 * point will only record its address.
3234 trace_workqueue_execute_end(work
, worker
->current_func
);
3235 pwq
->stats
[PWQ_STAT_COMPLETED
]++;
3236 lock_map_release(&lockdep_map
);
3238 lock_map_release(pwq
->wq
->lockdep_map
);
3240 if (unlikely((worker
->task
&& in_atomic()) ||
3241 lockdep_depth(current
) != lockdep_start_depth
||
3242 rcu_preempt_depth() != rcu_start_depth
)) {
3243 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3244 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3245 current
->comm
, task_pid_nr(current
), preempt_count(),
3246 lockdep_start_depth
, lockdep_depth(current
),
3247 rcu_start_depth
, rcu_preempt_depth(),
3248 worker
->current_func
);
3249 debug_show_held_locks(current
);
3254 * The following prevents a kworker from hogging CPU on !PREEMPTION
3255 * kernels, where a requeueing work item waiting for something to
3256 * happen could deadlock with stop_machine as such work item could
3257 * indefinitely requeue itself while all other CPUs are trapped in
3258 * stop_machine. At the same time, report a quiescent RCU state so
3259 * the same condition doesn't freeze RCU.
3264 raw_spin_lock_irq(&pool
->lock
);
3267 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3268 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3269 * wq_cpu_intensive_thresh_us. Clear it.
3271 worker_clr_flags(worker
, WORKER_CPU_INTENSIVE
);
3273 /* tag the worker for identification in schedule() */
3274 worker
->last_func
= worker
->current_func
;
3276 /* we're done with it, release */
3277 hash_del(&worker
->hentry
);
3278 worker
->current_work
= NULL
;
3279 worker
->current_func
= NULL
;
3280 worker
->current_pwq
= NULL
;
3281 worker
->current_color
= INT_MAX
;
3283 /* must be the last step, see the function comment */
3284 pwq_dec_nr_in_flight(pwq
, work_data
);
3288 * process_scheduled_works - process scheduled works
3291 * Process all scheduled works. Please note that the scheduled list
3292 * may change while processing a work, so this function repeatedly
3293 * fetches a work from the top and executes it.
3296 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3299 static void process_scheduled_works(struct worker
*worker
)
3301 struct work_struct
*work
;
3304 while ((work
= list_first_entry_or_null(&worker
->scheduled
,
3305 struct work_struct
, entry
))) {
3307 worker
->pool
->watchdog_ts
= jiffies
;
3310 process_one_work(worker
, work
);
3314 static void set_pf_worker(bool val
)
3316 mutex_lock(&wq_pool_attach_mutex
);
3318 current
->flags
|= PF_WQ_WORKER
;
3320 current
->flags
&= ~PF_WQ_WORKER
;
3321 mutex_unlock(&wq_pool_attach_mutex
);
3325 * worker_thread - the worker thread function
3328 * The worker thread function. All workers belong to a worker_pool -
3329 * either a per-cpu one or dynamic unbound one. These workers process all
3330 * work items regardless of their specific target workqueue. The only
3331 * exception is work items which belong to workqueues with a rescuer which
3332 * will be explained in rescuer_thread().
3336 static int worker_thread(void *__worker
)
3338 struct worker
*worker
= __worker
;
3339 struct worker_pool
*pool
= worker
->pool
;
3341 /* tell the scheduler that this is a workqueue worker */
3342 set_pf_worker(true);
3344 raw_spin_lock_irq(&pool
->lock
);
3346 /* am I supposed to die? */
3347 if (unlikely(worker
->flags
& WORKER_DIE
)) {
3348 raw_spin_unlock_irq(&pool
->lock
);
3349 set_pf_worker(false);
3351 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3352 * shouldn't be accessed, reset it to NULL in case otherwise.
3354 worker
->pool
= NULL
;
3355 ida_free(&pool
->worker_ida
, worker
->id
);
3359 worker_leave_idle(worker
);
3361 /* no more worker necessary? */
3362 if (!need_more_worker(pool
))
3365 /* do we need to manage? */
3366 if (unlikely(!may_start_working(pool
)) && manage_workers(worker
))
3370 * ->scheduled list can only be filled while a worker is
3371 * preparing to process a work or actually processing it.
3372 * Make sure nobody diddled with it while I was sleeping.
3374 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
3377 * Finish PREP stage. We're guaranteed to have at least one idle
3378 * worker or that someone else has already assumed the manager
3379 * role. This is where @worker starts participating in concurrency
3380 * management if applicable and concurrency management is restored
3381 * after being rebound. See rebind_workers() for details.
3383 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
3386 struct work_struct
*work
=
3387 list_first_entry(&pool
->worklist
,
3388 struct work_struct
, entry
);
3390 if (assign_work(work
, worker
, NULL
))
3391 process_scheduled_works(worker
);
3392 } while (keep_working(pool
));
3394 worker_set_flags(worker
, WORKER_PREP
);
3397 * pool->lock is held and there's no work to process and no need to
3398 * manage, sleep. Workers are woken up only while holding
3399 * pool->lock or from local cpu, so setting the current state
3400 * before releasing pool->lock is enough to prevent losing any
3403 worker_enter_idle(worker
);
3404 __set_current_state(TASK_IDLE
);
3405 raw_spin_unlock_irq(&pool
->lock
);
3411 * rescuer_thread - the rescuer thread function
3414 * Workqueue rescuer thread function. There's one rescuer for each
3415 * workqueue which has WQ_MEM_RECLAIM set.
3417 * Regular work processing on a pool may block trying to create a new
3418 * worker which uses GFP_KERNEL allocation which has slight chance of
3419 * developing into deadlock if some works currently on the same queue
3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3421 * the problem rescuer solves.
3423 * When such condition is possible, the pool summons rescuers of all
3424 * workqueues which have works queued on the pool and let them process
3425 * those works so that forward progress can be guaranteed.
3427 * This should happen rarely.
3431 static int rescuer_thread(void *__rescuer
)
3433 struct worker
*rescuer
= __rescuer
;
3434 struct workqueue_struct
*wq
= rescuer
->rescue_wq
;
3437 set_user_nice(current
, RESCUER_NICE_LEVEL
);
3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3441 * doesn't participate in concurrency management.
3443 set_pf_worker(true);
3445 set_current_state(TASK_IDLE
);
3448 * By the time the rescuer is requested to stop, the workqueue
3449 * shouldn't have any work pending, but @wq->maydays may still have
3450 * pwq(s) queued. This can happen by non-rescuer workers consuming
3451 * all the work items before the rescuer got to them. Go through
3452 * @wq->maydays processing before acting on should_stop so that the
3453 * list is always empty on exit.
3455 should_stop
= kthread_should_stop();
3457 /* see whether any pwq is asking for help */
3458 raw_spin_lock_irq(&wq_mayday_lock
);
3460 while (!list_empty(&wq
->maydays
)) {
3461 struct pool_workqueue
*pwq
= list_first_entry(&wq
->maydays
,
3462 struct pool_workqueue
, mayday_node
);
3463 struct worker_pool
*pool
= pwq
->pool
;
3464 struct work_struct
*work
, *n
;
3466 __set_current_state(TASK_RUNNING
);
3467 list_del_init(&pwq
->mayday_node
);
3469 raw_spin_unlock_irq(&wq_mayday_lock
);
3471 worker_attach_to_pool(rescuer
, pool
);
3473 raw_spin_lock_irq(&pool
->lock
);
3476 * Slurp in all works issued via this workqueue and
3479 WARN_ON_ONCE(!list_empty(&rescuer
->scheduled
));
3480 list_for_each_entry_safe(work
, n
, &pool
->worklist
, entry
) {
3481 if (get_work_pwq(work
) == pwq
&&
3482 assign_work(work
, rescuer
, &n
))
3483 pwq
->stats
[PWQ_STAT_RESCUED
]++;
3486 if (!list_empty(&rescuer
->scheduled
)) {
3487 process_scheduled_works(rescuer
);
3490 * The above execution of rescued work items could
3491 * have created more to rescue through
3492 * pwq_activate_first_inactive() or chained
3493 * queueing. Let's put @pwq back on mayday list so
3494 * that such back-to-back work items, which may be
3495 * being used to relieve memory pressure, don't
3496 * incur MAYDAY_INTERVAL delay inbetween.
3498 if (pwq
->nr_active
&& need_to_create_worker(pool
)) {
3499 raw_spin_lock(&wq_mayday_lock
);
3501 * Queue iff we aren't racing destruction
3502 * and somebody else hasn't queued it already.
3504 if (wq
->rescuer
&& list_empty(&pwq
->mayday_node
)) {
3506 list_add_tail(&pwq
->mayday_node
, &wq
->maydays
);
3508 raw_spin_unlock(&wq_mayday_lock
);
3513 * Put the reference grabbed by send_mayday(). @pool won't
3514 * go away while we're still attached to it.
3519 * Leave this pool. Notify regular workers; otherwise, we end up
3520 * with 0 concurrency and stalling the execution.
3524 raw_spin_unlock_irq(&pool
->lock
);
3526 worker_detach_from_pool(rescuer
);
3528 raw_spin_lock_irq(&wq_mayday_lock
);
3531 raw_spin_unlock_irq(&wq_mayday_lock
);
3534 __set_current_state(TASK_RUNNING
);
3535 set_pf_worker(false);
3539 /* rescuers should never participate in concurrency management */
3540 WARN_ON_ONCE(!(rescuer
->flags
& WORKER_NOT_RUNNING
));
3545 static void bh_worker(struct worker
*worker
)
3547 struct worker_pool
*pool
= worker
->pool
;
3548 int nr_restarts
= BH_WORKER_RESTARTS
;
3549 unsigned long end
= jiffies
+ BH_WORKER_JIFFIES
;
3551 raw_spin_lock_irq(&pool
->lock
);
3552 worker_leave_idle(worker
);
3555 * This function follows the structure of worker_thread(). See there for
3556 * explanations on each step.
3558 if (!need_more_worker(pool
))
3561 WARN_ON_ONCE(!list_empty(&worker
->scheduled
));
3562 worker_clr_flags(worker
, WORKER_PREP
| WORKER_REBOUND
);
3565 struct work_struct
*work
=
3566 list_first_entry(&pool
->worklist
,
3567 struct work_struct
, entry
);
3569 if (assign_work(work
, worker
, NULL
))
3570 process_scheduled_works(worker
);
3571 } while (keep_working(pool
) &&
3572 --nr_restarts
&& time_before(jiffies
, end
));
3574 worker_set_flags(worker
, WORKER_PREP
);
3576 worker_enter_idle(worker
);
3578 raw_spin_unlock_irq(&pool
->lock
);
3582 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3584 * This is currently called from tasklet[_hi]action() and thus is also called
3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3589 * After full conversion, we'll add worker->softirq_action, directly use the
3590 * softirq action and obtain the worker pointer from the softirq_action pointer.
3592 void workqueue_softirq_action(bool highpri
)
3594 struct worker_pool
*pool
=
3595 &per_cpu(bh_worker_pools
, smp_processor_id())[highpri
];
3596 if (need_more_worker(pool
))
3597 bh_worker(list_first_entry(&pool
->workers
, struct worker
, node
));
3600 struct wq_drain_dead_softirq_work
{
3601 struct work_struct work
;
3602 struct worker_pool
*pool
;
3603 struct completion done
;
3606 static void drain_dead_softirq_workfn(struct work_struct
*work
)
3608 struct wq_drain_dead_softirq_work
*dead_work
=
3609 container_of(work
, struct wq_drain_dead_softirq_work
, work
);
3610 struct worker_pool
*pool
= dead_work
->pool
;
3614 * @pool's CPU is dead and we want to execute its still pending work
3615 * items from this BH work item which is running on a different CPU. As
3616 * its CPU is dead, @pool can't be kicked and, as work execution path
3617 * will be nested, a lockdep annotation needs to be suppressed. Mark
3618 * @pool with %POOL_BH_DRAINING for the special treatments.
3620 raw_spin_lock_irq(&pool
->lock
);
3621 pool
->flags
|= POOL_BH_DRAINING
;
3622 raw_spin_unlock_irq(&pool
->lock
);
3624 bh_worker(list_first_entry(&pool
->workers
, struct worker
, node
));
3626 raw_spin_lock_irq(&pool
->lock
);
3627 pool
->flags
&= ~POOL_BH_DRAINING
;
3628 repeat
= need_more_worker(pool
);
3629 raw_spin_unlock_irq(&pool
->lock
);
3632 * bh_worker() might hit consecutive execution limit and bail. If there
3633 * still are pending work items, reschedule self and return so that we
3634 * don't hog this CPU's BH.
3637 if (pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
)
3638 queue_work(system_bh_highpri_wq
, work
);
3640 queue_work(system_bh_wq
, work
);
3642 complete(&dead_work
->done
);
3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3649 * have to worry about draining overlapping with CPU coming back online or
3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3651 * on). Let's keep it simple and drain them synchronously. These are BH work
3652 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3654 void workqueue_softirq_dead(unsigned int cpu
)
3658 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
3659 struct worker_pool
*pool
= &per_cpu(bh_worker_pools
, cpu
)[i
];
3660 struct wq_drain_dead_softirq_work dead_work
;
3662 if (!need_more_worker(pool
))
3665 INIT_WORK_ONSTACK(&dead_work
.work
, drain_dead_softirq_workfn
);
3666 dead_work
.pool
= pool
;
3667 init_completion(&dead_work
.done
);
3669 if (pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
)
3670 queue_work(system_bh_highpri_wq
, &dead_work
.work
);
3672 queue_work(system_bh_wq
, &dead_work
.work
);
3674 wait_for_completion(&dead_work
.done
);
3675 destroy_work_on_stack(&dead_work
.work
);
3680 * check_flush_dependency - check for flush dependency sanity
3681 * @target_wq: workqueue being flushed
3682 * @target_work: work item being flushed (NULL for workqueue flushes)
3684 * %current is trying to flush the whole @target_wq or @target_work on it.
3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3686 * reclaiming memory or running on a workqueue which doesn't have
3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3690 static void check_flush_dependency(struct workqueue_struct
*target_wq
,
3691 struct work_struct
*target_work
)
3693 work_func_t target_func
= target_work
? target_work
->func
: NULL
;
3694 struct worker
*worker
;
3696 if (target_wq
->flags
& WQ_MEM_RECLAIM
)
3699 worker
= current_wq_worker();
3701 WARN_ONCE(current
->flags
& PF_MEMALLOC
,
3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3703 current
->pid
, current
->comm
, target_wq
->name
, target_func
);
3704 WARN_ONCE(worker
&& ((worker
->current_pwq
->wq
->flags
&
3705 (WQ_MEM_RECLAIM
| __WQ_LEGACY
)) == WQ_MEM_RECLAIM
),
3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3707 worker
->current_pwq
->wq
->name
, worker
->current_func
,
3708 target_wq
->name
, target_func
);
3712 struct work_struct work
;
3713 struct completion done
;
3714 struct task_struct
*task
; /* purely informational */
3717 static void wq_barrier_func(struct work_struct
*work
)
3719 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
3720 complete(&barr
->done
);
3724 * insert_wq_barrier - insert a barrier work
3725 * @pwq: pwq to insert barrier into
3726 * @barr: wq_barrier to insert
3727 * @target: target work to attach @barr to
3728 * @worker: worker currently executing @target, NULL if @target is not executing
3730 * @barr is linked to @target such that @barr is completed only after
3731 * @target finishes execution. Please note that the ordering
3732 * guarantee is observed only with respect to @target and on the local
3735 * Currently, a queued barrier can't be canceled. This is because
3736 * try_to_grab_pending() can't determine whether the work to be
3737 * grabbed is at the head of the queue and thus can't clear LINKED
3738 * flag of the previous work while there must be a valid next work
3739 * after a work with LINKED flag set.
3741 * Note that when @worker is non-NULL, @target may be modified
3742 * underneath us, so we can't reliably determine pwq from @target.
3745 * raw_spin_lock_irq(pool->lock).
3747 static void insert_wq_barrier(struct pool_workqueue
*pwq
,
3748 struct wq_barrier
*barr
,
3749 struct work_struct
*target
, struct worker
*worker
)
3751 static __maybe_unused
struct lock_class_key bh_key
, thr_key
;
3752 unsigned int work_flags
= 0;
3753 unsigned int work_color
;
3754 struct list_head
*head
;
3757 * debugobject calls are safe here even with pool->lock locked
3758 * as we know for sure that this will not trigger any of the
3759 * checks and call back into the fixup functions where we
3762 * BH and threaded workqueues need separate lockdep keys to avoid
3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3766 INIT_WORK_ONSTACK_KEY(&barr
->work
, wq_barrier_func
,
3767 (pwq
->wq
->flags
& WQ_BH
) ? &bh_key
: &thr_key
);
3768 __set_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&barr
->work
));
3770 init_completion_map(&barr
->done
, &target
->lockdep_map
);
3772 barr
->task
= current
;
3774 /* The barrier work item does not participate in nr_active. */
3775 work_flags
|= WORK_STRUCT_INACTIVE
;
3778 * If @target is currently being executed, schedule the
3779 * barrier to the worker; otherwise, put it after @target.
3782 head
= worker
->scheduled
.next
;
3783 work_color
= worker
->current_color
;
3785 unsigned long *bits
= work_data_bits(target
);
3787 head
= target
->entry
.next
;
3788 /* there can already be other linked works, inherit and set */
3789 work_flags
|= *bits
& WORK_STRUCT_LINKED
;
3790 work_color
= get_work_color(*bits
);
3791 __set_bit(WORK_STRUCT_LINKED_BIT
, bits
);
3794 pwq
->nr_in_flight
[work_color
]++;
3795 work_flags
|= work_color_to_flags(work_color
);
3797 insert_work(pwq
, &barr
->work
, head
, work_flags
);
3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3802 * @wq: workqueue being flushed
3803 * @flush_color: new flush color, < 0 for no-op
3804 * @work_color: new work color, < 0 for no-op
3806 * Prepare pwqs for workqueue flushing.
3808 * If @flush_color is non-negative, flush_color on all pwqs should be
3809 * -1. If no pwq has in-flight commands at the specified color, all
3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3811 * has in flight commands, its pwq->flush_color is set to
3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3813 * wakeup logic is armed and %true is returned.
3815 * The caller should have initialized @wq->first_flusher prior to
3816 * calling this function with non-negative @flush_color. If
3817 * @flush_color is negative, no flush color update is done and %false
3820 * If @work_color is non-negative, all pwqs should have the same
3821 * work_color which is previous to @work_color and all will be
3822 * advanced to @work_color.
3825 * mutex_lock(wq->mutex).
3828 * %true if @flush_color >= 0 and there's something to flush. %false
3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct
*wq
,
3832 int flush_color
, int work_color
)
3835 struct pool_workqueue
*pwq
;
3837 if (flush_color
>= 0) {
3838 WARN_ON_ONCE(atomic_read(&wq
->nr_pwqs_to_flush
));
3839 atomic_set(&wq
->nr_pwqs_to_flush
, 1);
3842 for_each_pwq(pwq
, wq
) {
3843 struct worker_pool
*pool
= pwq
->pool
;
3845 raw_spin_lock_irq(&pool
->lock
);
3847 if (flush_color
>= 0) {
3848 WARN_ON_ONCE(pwq
->flush_color
!= -1);
3850 if (pwq
->nr_in_flight
[flush_color
]) {
3851 pwq
->flush_color
= flush_color
;
3852 atomic_inc(&wq
->nr_pwqs_to_flush
);
3857 if (work_color
>= 0) {
3858 WARN_ON_ONCE(work_color
!= work_next_color(pwq
->work_color
));
3859 pwq
->work_color
= work_color
;
3862 raw_spin_unlock_irq(&pool
->lock
);
3865 if (flush_color
>= 0 && atomic_dec_and_test(&wq
->nr_pwqs_to_flush
))
3866 complete(&wq
->first_flusher
->done
);
3871 static void touch_wq_lockdep_map(struct workqueue_struct
*wq
)
3873 #ifdef CONFIG_LOCKDEP
3874 if (unlikely(!wq
->lockdep_map
))
3877 if (wq
->flags
& WQ_BH
)
3880 lock_map_acquire(wq
->lockdep_map
);
3881 lock_map_release(wq
->lockdep_map
);
3883 if (wq
->flags
& WQ_BH
)
3888 static void touch_work_lockdep_map(struct work_struct
*work
,
3889 struct workqueue_struct
*wq
)
3891 #ifdef CONFIG_LOCKDEP
3892 if (wq
->flags
& WQ_BH
)
3895 lock_map_acquire(&work
->lockdep_map
);
3896 lock_map_release(&work
->lockdep_map
);
3898 if (wq
->flags
& WQ_BH
)
3904 * __flush_workqueue - ensure that any scheduled work has run to completion.
3905 * @wq: workqueue to flush
3907 * This function sleeps until all work items which were queued on entry
3908 * have finished execution, but it is not livelocked by new incoming ones.
3910 void __flush_workqueue(struct workqueue_struct
*wq
)
3912 struct wq_flusher this_flusher
= {
3913 .list
= LIST_HEAD_INIT(this_flusher
.list
),
3915 .done
= COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher
.done
, (*wq
->lockdep_map
)),
3919 if (WARN_ON(!wq_online
))
3922 touch_wq_lockdep_map(wq
);
3924 mutex_lock(&wq
->mutex
);
3927 * Start-to-wait phase
3929 next_color
= work_next_color(wq
->work_color
);
3931 if (next_color
!= wq
->flush_color
) {
3933 * Color space is not full. The current work_color
3934 * becomes our flush_color and work_color is advanced
3937 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
));
3938 this_flusher
.flush_color
= wq
->work_color
;
3939 wq
->work_color
= next_color
;
3941 if (!wq
->first_flusher
) {
3942 /* no flush in progress, become the first flusher */
3943 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
3945 wq
->first_flusher
= &this_flusher
;
3947 if (!flush_workqueue_prep_pwqs(wq
, wq
->flush_color
,
3949 /* nothing to flush, done */
3950 wq
->flush_color
= next_color
;
3951 wq
->first_flusher
= NULL
;
3956 WARN_ON_ONCE(wq
->flush_color
== this_flusher
.flush_color
);
3957 list_add_tail(&this_flusher
.list
, &wq
->flusher_queue
);
3958 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
3962 * Oops, color space is full, wait on overflow queue.
3963 * The next flush completion will assign us
3964 * flush_color and transfer to flusher_queue.
3966 list_add_tail(&this_flusher
.list
, &wq
->flusher_overflow
);
3969 check_flush_dependency(wq
, NULL
);
3971 mutex_unlock(&wq
->mutex
);
3973 wait_for_completion(&this_flusher
.done
);
3976 * Wake-up-and-cascade phase
3978 * First flushers are responsible for cascading flushes and
3979 * handling overflow. Non-first flushers can simply return.
3981 if (READ_ONCE(wq
->first_flusher
) != &this_flusher
)
3984 mutex_lock(&wq
->mutex
);
3986 /* we might have raced, check again with mutex held */
3987 if (wq
->first_flusher
!= &this_flusher
)
3990 WRITE_ONCE(wq
->first_flusher
, NULL
);
3992 WARN_ON_ONCE(!list_empty(&this_flusher
.list
));
3993 WARN_ON_ONCE(wq
->flush_color
!= this_flusher
.flush_color
);
3996 struct wq_flusher
*next
, *tmp
;
3998 /* complete all the flushers sharing the current flush color */
3999 list_for_each_entry_safe(next
, tmp
, &wq
->flusher_queue
, list
) {
4000 if (next
->flush_color
!= wq
->flush_color
)
4002 list_del_init(&next
->list
);
4003 complete(&next
->done
);
4006 WARN_ON_ONCE(!list_empty(&wq
->flusher_overflow
) &&
4007 wq
->flush_color
!= work_next_color(wq
->work_color
));
4009 /* this flush_color is finished, advance by one */
4010 wq
->flush_color
= work_next_color(wq
->flush_color
);
4012 /* one color has been freed, handle overflow queue */
4013 if (!list_empty(&wq
->flusher_overflow
)) {
4015 * Assign the same color to all overflowed
4016 * flushers, advance work_color and append to
4017 * flusher_queue. This is the start-to-wait
4018 * phase for these overflowed flushers.
4020 list_for_each_entry(tmp
, &wq
->flusher_overflow
, list
)
4021 tmp
->flush_color
= wq
->work_color
;
4023 wq
->work_color
= work_next_color(wq
->work_color
);
4025 list_splice_tail_init(&wq
->flusher_overflow
,
4026 &wq
->flusher_queue
);
4027 flush_workqueue_prep_pwqs(wq
, -1, wq
->work_color
);
4030 if (list_empty(&wq
->flusher_queue
)) {
4031 WARN_ON_ONCE(wq
->flush_color
!= wq
->work_color
);
4036 * Need to flush more colors. Make the next flusher
4037 * the new first flusher and arm pwqs.
4039 WARN_ON_ONCE(wq
->flush_color
== wq
->work_color
);
4040 WARN_ON_ONCE(wq
->flush_color
!= next
->flush_color
);
4042 list_del_init(&next
->list
);
4043 wq
->first_flusher
= next
;
4045 if (flush_workqueue_prep_pwqs(wq
, wq
->flush_color
, -1))
4049 * Meh... this color is already done, clear first
4050 * flusher and repeat cascading.
4052 wq
->first_flusher
= NULL
;
4056 mutex_unlock(&wq
->mutex
);
4058 EXPORT_SYMBOL(__flush_workqueue
);
4061 * drain_workqueue - drain a workqueue
4062 * @wq: workqueue to drain
4064 * Wait until the workqueue becomes empty. While draining is in progress,
4065 * only chain queueing is allowed. IOW, only currently pending or running
4066 * work items on @wq can queue further work items on it. @wq is flushed
4067 * repeatedly until it becomes empty. The number of flushing is determined
4068 * by the depth of chaining and should be relatively short. Whine if it
4071 void drain_workqueue(struct workqueue_struct
*wq
)
4073 unsigned int flush_cnt
= 0;
4074 struct pool_workqueue
*pwq
;
4077 * __queue_work() needs to test whether there are drainers, is much
4078 * hotter than drain_workqueue() and already looks at @wq->flags.
4079 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4081 mutex_lock(&wq
->mutex
);
4082 if (!wq
->nr_drainers
++)
4083 wq
->flags
|= __WQ_DRAINING
;
4084 mutex_unlock(&wq
->mutex
);
4086 __flush_workqueue(wq
);
4088 mutex_lock(&wq
->mutex
);
4090 for_each_pwq(pwq
, wq
) {
4093 raw_spin_lock_irq(&pwq
->pool
->lock
);
4094 drained
= pwq_is_empty(pwq
);
4095 raw_spin_unlock_irq(&pwq
->pool
->lock
);
4100 if (++flush_cnt
== 10 ||
4101 (flush_cnt
% 100 == 0 && flush_cnt
<= 1000))
4102 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4103 wq
->name
, __func__
, flush_cnt
);
4105 mutex_unlock(&wq
->mutex
);
4109 if (!--wq
->nr_drainers
)
4110 wq
->flags
&= ~__WQ_DRAINING
;
4111 mutex_unlock(&wq
->mutex
);
4113 EXPORT_SYMBOL_GPL(drain_workqueue
);
4115 static bool start_flush_work(struct work_struct
*work
, struct wq_barrier
*barr
,
4118 struct worker
*worker
= NULL
;
4119 struct worker_pool
*pool
;
4120 struct pool_workqueue
*pwq
;
4121 struct workqueue_struct
*wq
;
4124 pool
= get_work_pool(work
);
4130 raw_spin_lock_irq(&pool
->lock
);
4131 /* see the comment in try_to_grab_pending() with the same code */
4132 pwq
= get_work_pwq(work
);
4134 if (unlikely(pwq
->pool
!= pool
))
4137 worker
= find_worker_executing_work(pool
, work
);
4140 pwq
= worker
->current_pwq
;
4144 check_flush_dependency(wq
, work
);
4146 insert_wq_barrier(pwq
, barr
, work
, worker
);
4147 raw_spin_unlock_irq(&pool
->lock
);
4149 touch_work_lockdep_map(work
, wq
);
4152 * Force a lock recursion deadlock when using flush_work() inside a
4153 * single-threaded or rescuer equipped workqueue.
4155 * For single threaded workqueues the deadlock happens when the work
4156 * is after the work issuing the flush_work(). For rescuer equipped
4157 * workqueues the deadlock happens when the rescuer stalls, blocking
4160 if (!from_cancel
&& (wq
->saved_max_active
== 1 || wq
->rescuer
))
4161 touch_wq_lockdep_map(wq
);
4166 raw_spin_unlock_irq(&pool
->lock
);
4171 static bool __flush_work(struct work_struct
*work
, bool from_cancel
)
4173 struct wq_barrier barr
;
4175 if (WARN_ON(!wq_online
))
4178 if (WARN_ON(!work
->func
))
4181 if (!start_flush_work(work
, &barr
, from_cancel
))
4185 * start_flush_work() returned %true. If @from_cancel is set, we know
4186 * that @work must have been executing during start_flush_work() and
4187 * can't currently be queued. Its data must contain OFFQ bits. If @work
4188 * was queued on a BH workqueue, we also know that it was running in the
4189 * BH context and thus can be busy-waited.
4192 unsigned long data
= *work_data_bits(work
);
4194 if (!WARN_ON_ONCE(data
& WORK_STRUCT_PWQ
) &&
4195 (data
& WORK_OFFQ_BH
)) {
4197 * On RT, prevent a live lock when %current preempted
4198 * soft interrupt processing or prevents ksoftirqd from
4199 * running by keeping flipping BH. If the BH work item
4200 * runs on a different CPU then this has no effect other
4201 * than doing the BH disable/enable dance for nothing.
4202 * This is copied from
4203 * kernel/softirq.c::tasklet_unlock_spin_wait().
4205 while (!try_wait_for_completion(&barr
.done
)) {
4206 if (IS_ENABLED(CONFIG_PREEMPT_RT
)) {
4217 wait_for_completion(&barr
.done
);
4220 destroy_work_on_stack(&barr
.work
);
4225 * flush_work - wait for a work to finish executing the last queueing instance
4226 * @work: the work to flush
4228 * Wait until @work has finished execution. @work is guaranteed to be idle
4229 * on return if it hasn't been requeued since flush started.
4232 * %true if flush_work() waited for the work to finish execution,
4233 * %false if it was already idle.
4235 bool flush_work(struct work_struct
*work
)
4238 return __flush_work(work
, false);
4240 EXPORT_SYMBOL_GPL(flush_work
);
4243 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4244 * @dwork: the delayed work to flush
4246 * Delayed timer is cancelled and the pending work is queued for
4247 * immediate execution. Like flush_work(), this function only
4248 * considers the last queueing instance of @dwork.
4251 * %true if flush_work() waited for the work to finish execution,
4252 * %false if it was already idle.
4254 bool flush_delayed_work(struct delayed_work
*dwork
)
4256 local_irq_disable();
4257 if (del_timer_sync(&dwork
->timer
))
4258 __queue_work(dwork
->cpu
, dwork
->wq
, &dwork
->work
);
4260 return flush_work(&dwork
->work
);
4262 EXPORT_SYMBOL(flush_delayed_work
);
4265 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4266 * @rwork: the rcu work to flush
4269 * %true if flush_rcu_work() waited for the work to finish execution,
4270 * %false if it was already idle.
4272 bool flush_rcu_work(struct rcu_work
*rwork
)
4274 if (test_bit(WORK_STRUCT_PENDING_BIT
, work_data_bits(&rwork
->work
))) {
4276 flush_work(&rwork
->work
);
4279 return flush_work(&rwork
->work
);
4282 EXPORT_SYMBOL(flush_rcu_work
);
4284 static void work_offqd_disable(struct work_offq_data
*offqd
)
4286 const unsigned long max
= (1lu << WORK_OFFQ_DISABLE_BITS
) - 1;
4288 if (likely(offqd
->disable
< max
))
4291 WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4294 static void work_offqd_enable(struct work_offq_data
*offqd
)
4296 if (likely(offqd
->disable
> 0))
4299 WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4302 static bool __cancel_work(struct work_struct
*work
, u32 cflags
)
4304 struct work_offq_data offqd
;
4305 unsigned long irq_flags
;
4308 ret
= work_grab_pending(work
, cflags
, &irq_flags
);
4310 work_offqd_unpack(&offqd
, *work_data_bits(work
));
4312 if (cflags
& WORK_CANCEL_DISABLE
)
4313 work_offqd_disable(&offqd
);
4315 set_work_pool_and_clear_pending(work
, offqd
.pool_id
,
4316 work_offqd_pack_flags(&offqd
));
4317 local_irq_restore(irq_flags
);
4321 static bool __cancel_work_sync(struct work_struct
*work
, u32 cflags
)
4325 ret
= __cancel_work(work
, cflags
| WORK_CANCEL_DISABLE
);
4327 if (*work_data_bits(work
) & WORK_OFFQ_BH
)
4328 WARN_ON_ONCE(in_hardirq());
4333 * Skip __flush_work() during early boot when we know that @work isn't
4334 * executing. This allows canceling during early boot.
4337 __flush_work(work
, true);
4339 if (!(cflags
& WORK_CANCEL_DISABLE
))
4346 * See cancel_delayed_work()
4348 bool cancel_work(struct work_struct
*work
)
4350 return __cancel_work(work
, 0);
4352 EXPORT_SYMBOL(cancel_work
);
4355 * cancel_work_sync - cancel a work and wait for it to finish
4356 * @work: the work to cancel
4358 * Cancel @work and wait for its execution to finish. This function can be used
4359 * even if the work re-queues itself or migrates to another workqueue. On return
4360 * from this function, @work is guaranteed to be not pending or executing on any
4361 * CPU as long as there aren't racing enqueues.
4363 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4364 * Use cancel_delayed_work_sync() instead.
4366 * Must be called from a sleepable context if @work was last queued on a non-BH
4367 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4368 * if @work was last queued on a BH workqueue.
4370 * Returns %true if @work was pending, %false otherwise.
4372 bool cancel_work_sync(struct work_struct
*work
)
4374 return __cancel_work_sync(work
, 0);
4376 EXPORT_SYMBOL_GPL(cancel_work_sync
);
4379 * cancel_delayed_work - cancel a delayed work
4380 * @dwork: delayed_work to cancel
4382 * Kill off a pending delayed_work.
4384 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4388 * The work callback function may still be running on return, unless
4389 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4390 * use cancel_delayed_work_sync() to wait on it.
4392 * This function is safe to call from any context including IRQ handler.
4394 bool cancel_delayed_work(struct delayed_work
*dwork
)
4396 return __cancel_work(&dwork
->work
, WORK_CANCEL_DELAYED
);
4398 EXPORT_SYMBOL(cancel_delayed_work
);
4401 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4402 * @dwork: the delayed work cancel
4404 * This is cancel_work_sync() for delayed works.
4407 * %true if @dwork was pending, %false otherwise.
4409 bool cancel_delayed_work_sync(struct delayed_work
*dwork
)
4411 return __cancel_work_sync(&dwork
->work
, WORK_CANCEL_DELAYED
);
4413 EXPORT_SYMBOL(cancel_delayed_work_sync
);
4416 * disable_work - Disable and cancel a work item
4417 * @work: work item to disable
4419 * Disable @work by incrementing its disable count and cancel it if currently
4420 * pending. As long as the disable count is non-zero, any attempt to queue @work
4421 * will fail and return %false. The maximum supported disable depth is 2 to the
4422 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4424 * Can be called from any context. Returns %true if @work was pending, %false
4427 bool disable_work(struct work_struct
*work
)
4429 return __cancel_work(work
, WORK_CANCEL_DISABLE
);
4431 EXPORT_SYMBOL_GPL(disable_work
);
4434 * disable_work_sync - Disable, cancel and drain a work item
4435 * @work: work item to disable
4437 * Similar to disable_work() but also wait for @work to finish if currently
4440 * Must be called from a sleepable context if @work was last queued on a non-BH
4441 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4442 * if @work was last queued on a BH workqueue.
4444 * Returns %true if @work was pending, %false otherwise.
4446 bool disable_work_sync(struct work_struct
*work
)
4448 return __cancel_work_sync(work
, WORK_CANCEL_DISABLE
);
4450 EXPORT_SYMBOL_GPL(disable_work_sync
);
4453 * enable_work - Enable a work item
4454 * @work: work item to enable
4456 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4457 * only be queued if its disable count is 0.
4459 * Can be called from any context. Returns %true if the disable count reached 0.
4460 * Otherwise, %false.
4462 bool enable_work(struct work_struct
*work
)
4464 struct work_offq_data offqd
;
4465 unsigned long irq_flags
;
4467 work_grab_pending(work
, 0, &irq_flags
);
4469 work_offqd_unpack(&offqd
, *work_data_bits(work
));
4470 work_offqd_enable(&offqd
);
4471 set_work_pool_and_clear_pending(work
, offqd
.pool_id
,
4472 work_offqd_pack_flags(&offqd
));
4473 local_irq_restore(irq_flags
);
4475 return !offqd
.disable
;
4477 EXPORT_SYMBOL_GPL(enable_work
);
4480 * disable_delayed_work - Disable and cancel a delayed work item
4481 * @dwork: delayed work item to disable
4483 * disable_work() for delayed work items.
4485 bool disable_delayed_work(struct delayed_work
*dwork
)
4487 return __cancel_work(&dwork
->work
,
4488 WORK_CANCEL_DELAYED
| WORK_CANCEL_DISABLE
);
4490 EXPORT_SYMBOL_GPL(disable_delayed_work
);
4493 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4494 * @dwork: delayed work item to disable
4496 * disable_work_sync() for delayed work items.
4498 bool disable_delayed_work_sync(struct delayed_work
*dwork
)
4500 return __cancel_work_sync(&dwork
->work
,
4501 WORK_CANCEL_DELAYED
| WORK_CANCEL_DISABLE
);
4503 EXPORT_SYMBOL_GPL(disable_delayed_work_sync
);
4506 * enable_delayed_work - Enable a delayed work item
4507 * @dwork: delayed work item to enable
4509 * enable_work() for delayed work items.
4511 bool enable_delayed_work(struct delayed_work
*dwork
)
4513 return enable_work(&dwork
->work
);
4515 EXPORT_SYMBOL_GPL(enable_delayed_work
);
4518 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4519 * @func: the function to call
4521 * schedule_on_each_cpu() executes @func on each online CPU using the
4522 * system workqueue and blocks until all CPUs have completed.
4523 * schedule_on_each_cpu() is very slow.
4526 * 0 on success, -errno on failure.
4528 int schedule_on_each_cpu(work_func_t func
)
4531 struct work_struct __percpu
*works
;
4533 works
= alloc_percpu(struct work_struct
);
4539 for_each_online_cpu(cpu
) {
4540 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
4542 INIT_WORK(work
, func
);
4543 schedule_work_on(cpu
, work
);
4546 for_each_online_cpu(cpu
)
4547 flush_work(per_cpu_ptr(works
, cpu
));
4555 * execute_in_process_context - reliably execute the routine with user context
4556 * @fn: the function to execute
4557 * @ew: guaranteed storage for the execute work structure (must
4558 * be available when the work executes)
4560 * Executes the function immediately if process context is available,
4561 * otherwise schedules the function for delayed execution.
4563 * Return: 0 - function was executed
4564 * 1 - function was scheduled for execution
4566 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
4568 if (!in_interrupt()) {
4573 INIT_WORK(&ew
->work
, fn
);
4574 schedule_work(&ew
->work
);
4578 EXPORT_SYMBOL_GPL(execute_in_process_context
);
4581 * free_workqueue_attrs - free a workqueue_attrs
4582 * @attrs: workqueue_attrs to free
4584 * Undo alloc_workqueue_attrs().
4586 void free_workqueue_attrs(struct workqueue_attrs
*attrs
)
4589 free_cpumask_var(attrs
->cpumask
);
4590 free_cpumask_var(attrs
->__pod_cpumask
);
4596 * alloc_workqueue_attrs - allocate a workqueue_attrs
4598 * Allocate a new workqueue_attrs, initialize with default settings and
4601 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4603 struct workqueue_attrs
*alloc_workqueue_attrs(void)
4605 struct workqueue_attrs
*attrs
;
4607 attrs
= kzalloc(sizeof(*attrs
), GFP_KERNEL
);
4610 if (!alloc_cpumask_var(&attrs
->cpumask
, GFP_KERNEL
))
4612 if (!alloc_cpumask_var(&attrs
->__pod_cpumask
, GFP_KERNEL
))
4615 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
4616 attrs
->affn_scope
= WQ_AFFN_DFL
;
4619 free_workqueue_attrs(attrs
);
4623 static void copy_workqueue_attrs(struct workqueue_attrs
*to
,
4624 const struct workqueue_attrs
*from
)
4626 to
->nice
= from
->nice
;
4627 cpumask_copy(to
->cpumask
, from
->cpumask
);
4628 cpumask_copy(to
->__pod_cpumask
, from
->__pod_cpumask
);
4629 to
->affn_strict
= from
->affn_strict
;
4632 * Unlike hash and equality test, copying shouldn't ignore wq-only
4633 * fields as copying is used for both pool and wq attrs. Instead,
4634 * get_unbound_pool() explicitly clears the fields.
4636 to
->affn_scope
= from
->affn_scope
;
4637 to
->ordered
= from
->ordered
;
4641 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4642 * comments in 'struct workqueue_attrs' definition.
4644 static void wqattrs_clear_for_pool(struct workqueue_attrs
*attrs
)
4646 attrs
->affn_scope
= WQ_AFFN_NR_TYPES
;
4647 attrs
->ordered
= false;
4648 if (attrs
->affn_strict
)
4649 cpumask_copy(attrs
->cpumask
, cpu_possible_mask
);
4652 /* hash value of the content of @attr */
4653 static u32
wqattrs_hash(const struct workqueue_attrs
*attrs
)
4657 hash
= jhash_1word(attrs
->nice
, hash
);
4658 hash
= jhash_1word(attrs
->affn_strict
, hash
);
4659 hash
= jhash(cpumask_bits(attrs
->__pod_cpumask
),
4660 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
4661 if (!attrs
->affn_strict
)
4662 hash
= jhash(cpumask_bits(attrs
->cpumask
),
4663 BITS_TO_LONGS(nr_cpumask_bits
) * sizeof(long), hash
);
4667 /* content equality test */
4668 static bool wqattrs_equal(const struct workqueue_attrs
*a
,
4669 const struct workqueue_attrs
*b
)
4671 if (a
->nice
!= b
->nice
)
4673 if (a
->affn_strict
!= b
->affn_strict
)
4675 if (!cpumask_equal(a
->__pod_cpumask
, b
->__pod_cpumask
))
4677 if (!a
->affn_strict
&& !cpumask_equal(a
->cpumask
, b
->cpumask
))
4682 /* Update @attrs with actually available CPUs */
4683 static void wqattrs_actualize_cpumask(struct workqueue_attrs
*attrs
,
4684 const cpumask_t
*unbound_cpumask
)
4687 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4688 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4691 cpumask_and(attrs
->cpumask
, attrs
->cpumask
, unbound_cpumask
);
4692 if (unlikely(cpumask_empty(attrs
->cpumask
)))
4693 cpumask_copy(attrs
->cpumask
, unbound_cpumask
);
4696 /* find wq_pod_type to use for @attrs */
4697 static const struct wq_pod_type
*
4698 wqattrs_pod_type(const struct workqueue_attrs
*attrs
)
4700 enum wq_affn_scope scope
;
4701 struct wq_pod_type
*pt
;
4703 /* to synchronize access to wq_affn_dfl */
4704 lockdep_assert_held(&wq_pool_mutex
);
4706 if (attrs
->affn_scope
== WQ_AFFN_DFL
)
4707 scope
= wq_affn_dfl
;
4709 scope
= attrs
->affn_scope
;
4711 pt
= &wq_pod_types
[scope
];
4713 if (!WARN_ON_ONCE(attrs
->affn_scope
== WQ_AFFN_NR_TYPES
) &&
4714 likely(pt
->nr_pods
))
4718 * Before workqueue_init_topology(), only SYSTEM is available which is
4719 * initialized in workqueue_init_early().
4721 pt
= &wq_pod_types
[WQ_AFFN_SYSTEM
];
4722 BUG_ON(!pt
->nr_pods
);
4727 * init_worker_pool - initialize a newly zalloc'd worker_pool
4728 * @pool: worker_pool to initialize
4730 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4732 * Return: 0 on success, -errno on failure. Even on failure, all fields
4733 * inside @pool proper are initialized and put_unbound_pool() can be called
4734 * on @pool safely to release it.
4736 static int init_worker_pool(struct worker_pool
*pool
)
4738 raw_spin_lock_init(&pool
->lock
);
4741 pool
->node
= NUMA_NO_NODE
;
4742 pool
->flags
|= POOL_DISASSOCIATED
;
4743 pool
->watchdog_ts
= jiffies
;
4744 INIT_LIST_HEAD(&pool
->worklist
);
4745 INIT_LIST_HEAD(&pool
->idle_list
);
4746 hash_init(pool
->busy_hash
);
4748 timer_setup(&pool
->idle_timer
, idle_worker_timeout
, TIMER_DEFERRABLE
);
4749 INIT_WORK(&pool
->idle_cull_work
, idle_cull_fn
);
4751 timer_setup(&pool
->mayday_timer
, pool_mayday_timeout
, 0);
4753 INIT_LIST_HEAD(&pool
->workers
);
4755 ida_init(&pool
->worker_ida
);
4756 INIT_HLIST_NODE(&pool
->hash_node
);
4759 /* shouldn't fail above this point */
4760 pool
->attrs
= alloc_workqueue_attrs();
4764 wqattrs_clear_for_pool(pool
->attrs
);
4769 #ifdef CONFIG_LOCKDEP
4770 static void wq_init_lockdep(struct workqueue_struct
*wq
)
4774 lockdep_register_key(&wq
->key
);
4775 lock_name
= kasprintf(GFP_KERNEL
, "%s%s", "(wq_completion)", wq
->name
);
4777 lock_name
= wq
->name
;
4779 wq
->lock_name
= lock_name
;
4780 wq
->lockdep_map
= &wq
->__lockdep_map
;
4781 lockdep_init_map(wq
->lockdep_map
, lock_name
, &wq
->key
, 0);
4784 static void wq_unregister_lockdep(struct workqueue_struct
*wq
)
4786 if (wq
->lockdep_map
!= &wq
->__lockdep_map
)
4789 lockdep_unregister_key(&wq
->key
);
4792 static void wq_free_lockdep(struct workqueue_struct
*wq
)
4794 if (wq
->lockdep_map
!= &wq
->__lockdep_map
)
4797 if (wq
->lock_name
!= wq
->name
)
4798 kfree(wq
->lock_name
);
4801 static void wq_init_lockdep(struct workqueue_struct
*wq
)
4805 static void wq_unregister_lockdep(struct workqueue_struct
*wq
)
4809 static void wq_free_lockdep(struct workqueue_struct
*wq
)
4814 static void free_node_nr_active(struct wq_node_nr_active
**nna_ar
)
4818 for_each_node(node
) {
4819 kfree(nna_ar
[node
]);
4820 nna_ar
[node
] = NULL
;
4823 kfree(nna_ar
[nr_node_ids
]);
4824 nna_ar
[nr_node_ids
] = NULL
;
4827 static void init_node_nr_active(struct wq_node_nr_active
*nna
)
4829 nna
->max
= WQ_DFL_MIN_ACTIVE
;
4830 atomic_set(&nna
->nr
, 0);
4831 raw_spin_lock_init(&nna
->lock
);
4832 INIT_LIST_HEAD(&nna
->pending_pwqs
);
4836 * Each node's nr_active counter will be accessed mostly from its own node and
4837 * should be allocated in the node.
4839 static int alloc_node_nr_active(struct wq_node_nr_active
**nna_ar
)
4841 struct wq_node_nr_active
*nna
;
4844 for_each_node(node
) {
4845 nna
= kzalloc_node(sizeof(*nna
), GFP_KERNEL
, node
);
4848 init_node_nr_active(nna
);
4852 /* [nr_node_ids] is used as the fallback */
4853 nna
= kzalloc_node(sizeof(*nna
), GFP_KERNEL
, NUMA_NO_NODE
);
4856 init_node_nr_active(nna
);
4857 nna_ar
[nr_node_ids
] = nna
;
4862 free_node_nr_active(nna_ar
);
4866 static void rcu_free_wq(struct rcu_head
*rcu
)
4868 struct workqueue_struct
*wq
=
4869 container_of(rcu
, struct workqueue_struct
, rcu
);
4871 if (wq
->flags
& WQ_UNBOUND
)
4872 free_node_nr_active(wq
->node_nr_active
);
4874 wq_free_lockdep(wq
);
4875 free_percpu(wq
->cpu_pwq
);
4876 free_workqueue_attrs(wq
->unbound_attrs
);
4880 static void rcu_free_pool(struct rcu_head
*rcu
)
4882 struct worker_pool
*pool
= container_of(rcu
, struct worker_pool
, rcu
);
4884 ida_destroy(&pool
->worker_ida
);
4885 free_workqueue_attrs(pool
->attrs
);
4890 * put_unbound_pool - put a worker_pool
4891 * @pool: worker_pool to put
4893 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4894 * safe manner. get_unbound_pool() calls this function on its failure path
4895 * and this function should be able to release pools which went through,
4896 * successfully or not, init_worker_pool().
4898 * Should be called with wq_pool_mutex held.
4900 static void put_unbound_pool(struct worker_pool
*pool
)
4902 struct worker
*worker
;
4903 LIST_HEAD(cull_list
);
4905 lockdep_assert_held(&wq_pool_mutex
);
4911 if (WARN_ON(!(pool
->cpu
< 0)) ||
4912 WARN_ON(!list_empty(&pool
->worklist
)))
4915 /* release id and unhash */
4917 idr_remove(&worker_pool_idr
, pool
->id
);
4918 hash_del(&pool
->hash_node
);
4921 * Become the manager and destroy all workers. This prevents
4922 * @pool's workers from blocking on attach_mutex. We're the last
4923 * manager and @pool gets freed with the flag set.
4925 * Having a concurrent manager is quite unlikely to happen as we can
4926 * only get here with
4927 * pwq->refcnt == pool->refcnt == 0
4928 * which implies no work queued to the pool, which implies no worker can
4929 * become the manager. However a worker could have taken the role of
4930 * manager before the refcnts dropped to 0, since maybe_create_worker()
4934 rcuwait_wait_event(&manager_wait
,
4935 !(pool
->flags
& POOL_MANAGER_ACTIVE
),
4936 TASK_UNINTERRUPTIBLE
);
4938 mutex_lock(&wq_pool_attach_mutex
);
4939 raw_spin_lock_irq(&pool
->lock
);
4940 if (!(pool
->flags
& POOL_MANAGER_ACTIVE
)) {
4941 pool
->flags
|= POOL_MANAGER_ACTIVE
;
4944 raw_spin_unlock_irq(&pool
->lock
);
4945 mutex_unlock(&wq_pool_attach_mutex
);
4948 while ((worker
= first_idle_worker(pool
)))
4949 set_worker_dying(worker
, &cull_list
);
4950 WARN_ON(pool
->nr_workers
|| pool
->nr_idle
);
4951 raw_spin_unlock_irq(&pool
->lock
);
4953 detach_dying_workers(&cull_list
);
4955 mutex_unlock(&wq_pool_attach_mutex
);
4957 reap_dying_workers(&cull_list
);
4959 /* shut down the timers */
4960 del_timer_sync(&pool
->idle_timer
);
4961 cancel_work_sync(&pool
->idle_cull_work
);
4962 del_timer_sync(&pool
->mayday_timer
);
4964 /* RCU protected to allow dereferences from get_work_pool() */
4965 call_rcu(&pool
->rcu
, rcu_free_pool
);
4969 * get_unbound_pool - get a worker_pool with the specified attributes
4970 * @attrs: the attributes of the worker_pool to get
4972 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4973 * reference count and return it. If there already is a matching
4974 * worker_pool, it will be used; otherwise, this function attempts to
4977 * Should be called with wq_pool_mutex held.
4979 * Return: On success, a worker_pool with the same attributes as @attrs.
4980 * On failure, %NULL.
4982 static struct worker_pool
*get_unbound_pool(const struct workqueue_attrs
*attrs
)
4984 struct wq_pod_type
*pt
= &wq_pod_types
[WQ_AFFN_NUMA
];
4985 u32 hash
= wqattrs_hash(attrs
);
4986 struct worker_pool
*pool
;
4987 int pod
, node
= NUMA_NO_NODE
;
4989 lockdep_assert_held(&wq_pool_mutex
);
4991 /* do we already have a matching pool? */
4992 hash_for_each_possible(unbound_pool_hash
, pool
, hash_node
, hash
) {
4993 if (wqattrs_equal(pool
->attrs
, attrs
)) {
4999 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5000 for (pod
= 0; pod
< pt
->nr_pods
; pod
++) {
5001 if (cpumask_subset(attrs
->__pod_cpumask
, pt
->pod_cpus
[pod
])) {
5002 node
= pt
->pod_node
[pod
];
5007 /* nope, create a new one */
5008 pool
= kzalloc_node(sizeof(*pool
), GFP_KERNEL
, node
);
5009 if (!pool
|| init_worker_pool(pool
) < 0)
5013 copy_workqueue_attrs(pool
->attrs
, attrs
);
5014 wqattrs_clear_for_pool(pool
->attrs
);
5016 if (worker_pool_assign_id(pool
) < 0)
5019 /* create and start the initial worker */
5020 if (wq_online
&& !create_worker(pool
))
5024 hash_add(unbound_pool_hash
, &pool
->hash_node
, hash
);
5029 put_unbound_pool(pool
);
5034 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5035 * refcnt and needs to be destroyed.
5037 static void pwq_release_workfn(struct kthread_work
*work
)
5039 struct pool_workqueue
*pwq
= container_of(work
, struct pool_workqueue
,
5041 struct workqueue_struct
*wq
= pwq
->wq
;
5042 struct worker_pool
*pool
= pwq
->pool
;
5043 bool is_last
= false;
5046 * When @pwq is not linked, it doesn't hold any reference to the
5047 * @wq, and @wq is invalid to access.
5049 if (!list_empty(&pwq
->pwqs_node
)) {
5050 mutex_lock(&wq
->mutex
);
5051 list_del_rcu(&pwq
->pwqs_node
);
5052 is_last
= list_empty(&wq
->pwqs
);
5055 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5057 if (!is_last
&& (wq
->flags
& __WQ_ORDERED
))
5058 unplug_oldest_pwq(wq
);
5060 mutex_unlock(&wq
->mutex
);
5063 if (wq
->flags
& WQ_UNBOUND
) {
5064 mutex_lock(&wq_pool_mutex
);
5065 put_unbound_pool(pool
);
5066 mutex_unlock(&wq_pool_mutex
);
5069 if (!list_empty(&pwq
->pending_node
)) {
5070 struct wq_node_nr_active
*nna
=
5071 wq_node_nr_active(pwq
->wq
, pwq
->pool
->node
);
5073 raw_spin_lock_irq(&nna
->lock
);
5074 list_del_init(&pwq
->pending_node
);
5075 raw_spin_unlock_irq(&nna
->lock
);
5078 kfree_rcu(pwq
, rcu
);
5081 * If we're the last pwq going away, @wq is already dead and no one
5082 * is gonna access it anymore. Schedule RCU free.
5085 wq_unregister_lockdep(wq
);
5086 call_rcu(&wq
->rcu
, rcu_free_wq
);
5090 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5091 static void init_pwq(struct pool_workqueue
*pwq
, struct workqueue_struct
*wq
,
5092 struct worker_pool
*pool
)
5094 BUG_ON((unsigned long)pwq
& ~WORK_STRUCT_PWQ_MASK
);
5096 memset(pwq
, 0, sizeof(*pwq
));
5100 pwq
->flush_color
= -1;
5102 INIT_LIST_HEAD(&pwq
->inactive_works
);
5103 INIT_LIST_HEAD(&pwq
->pending_node
);
5104 INIT_LIST_HEAD(&pwq
->pwqs_node
);
5105 INIT_LIST_HEAD(&pwq
->mayday_node
);
5106 kthread_init_work(&pwq
->release_work
, pwq_release_workfn
);
5109 /* sync @pwq with the current state of its associated wq and link it */
5110 static void link_pwq(struct pool_workqueue
*pwq
)
5112 struct workqueue_struct
*wq
= pwq
->wq
;
5114 lockdep_assert_held(&wq
->mutex
);
5116 /* may be called multiple times, ignore if already linked */
5117 if (!list_empty(&pwq
->pwqs_node
))
5120 /* set the matching work_color */
5121 pwq
->work_color
= wq
->work_color
;
5124 list_add_tail_rcu(&pwq
->pwqs_node
, &wq
->pwqs
);
5127 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5128 static struct pool_workqueue
*alloc_unbound_pwq(struct workqueue_struct
*wq
,
5129 const struct workqueue_attrs
*attrs
)
5131 struct worker_pool
*pool
;
5132 struct pool_workqueue
*pwq
;
5134 lockdep_assert_held(&wq_pool_mutex
);
5136 pool
= get_unbound_pool(attrs
);
5140 pwq
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
, pool
->node
);
5142 put_unbound_pool(pool
);
5146 init_pwq(pwq
, wq
, pool
);
5150 static void apply_wqattrs_lock(void)
5152 mutex_lock(&wq_pool_mutex
);
5155 static void apply_wqattrs_unlock(void)
5157 mutex_unlock(&wq_pool_mutex
);
5161 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5162 * @attrs: the wq_attrs of the default pwq of the target workqueue
5163 * @cpu: the target CPU
5165 * Calculate the cpumask a workqueue with @attrs should use on @pod.
5166 * The result is stored in @attrs->__pod_cpumask.
5168 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5169 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5170 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5172 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5174 static void wq_calc_pod_cpumask(struct workqueue_attrs
*attrs
, int cpu
)
5176 const struct wq_pod_type
*pt
= wqattrs_pod_type(attrs
);
5177 int pod
= pt
->cpu_pod
[cpu
];
5179 /* calculate possible CPUs in @pod that @attrs wants */
5180 cpumask_and(attrs
->__pod_cpumask
, pt
->pod_cpus
[pod
], attrs
->cpumask
);
5181 /* does @pod have any online CPUs @attrs wants? */
5182 if (!cpumask_intersects(attrs
->__pod_cpumask
, wq_online_cpumask
)) {
5183 cpumask_copy(attrs
->__pod_cpumask
, attrs
->cpumask
);
5188 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5189 static struct pool_workqueue
*install_unbound_pwq(struct workqueue_struct
*wq
,
5190 int cpu
, struct pool_workqueue
*pwq
)
5192 struct pool_workqueue __rcu
**slot
= unbound_pwq_slot(wq
, cpu
);
5193 struct pool_workqueue
*old_pwq
;
5195 lockdep_assert_held(&wq_pool_mutex
);
5196 lockdep_assert_held(&wq
->mutex
);
5198 /* link_pwq() can handle duplicate calls */
5201 old_pwq
= rcu_access_pointer(*slot
);
5202 rcu_assign_pointer(*slot
, pwq
);
5206 /* context to store the prepared attrs & pwqs before applying */
5207 struct apply_wqattrs_ctx
{
5208 struct workqueue_struct
*wq
; /* target workqueue */
5209 struct workqueue_attrs
*attrs
; /* attrs to apply */
5210 struct list_head list
; /* queued for batching commit */
5211 struct pool_workqueue
*dfl_pwq
;
5212 struct pool_workqueue
*pwq_tbl
[];
5215 /* free the resources after success or abort */
5216 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx
*ctx
)
5221 for_each_possible_cpu(cpu
)
5222 put_pwq_unlocked(ctx
->pwq_tbl
[cpu
]);
5223 put_pwq_unlocked(ctx
->dfl_pwq
);
5225 free_workqueue_attrs(ctx
->attrs
);
5231 /* allocate the attrs and pwqs for later installation */
5232 static struct apply_wqattrs_ctx
*
5233 apply_wqattrs_prepare(struct workqueue_struct
*wq
,
5234 const struct workqueue_attrs
*attrs
,
5235 const cpumask_var_t unbound_cpumask
)
5237 struct apply_wqattrs_ctx
*ctx
;
5238 struct workqueue_attrs
*new_attrs
;
5241 lockdep_assert_held(&wq_pool_mutex
);
5243 if (WARN_ON(attrs
->affn_scope
< 0 ||
5244 attrs
->affn_scope
>= WQ_AFFN_NR_TYPES
))
5245 return ERR_PTR(-EINVAL
);
5247 ctx
= kzalloc(struct_size(ctx
, pwq_tbl
, nr_cpu_ids
), GFP_KERNEL
);
5249 new_attrs
= alloc_workqueue_attrs();
5250 if (!ctx
|| !new_attrs
)
5254 * If something goes wrong during CPU up/down, we'll fall back to
5255 * the default pwq covering whole @attrs->cpumask. Always create
5256 * it even if we don't use it immediately.
5258 copy_workqueue_attrs(new_attrs
, attrs
);
5259 wqattrs_actualize_cpumask(new_attrs
, unbound_cpumask
);
5260 cpumask_copy(new_attrs
->__pod_cpumask
, new_attrs
->cpumask
);
5261 ctx
->dfl_pwq
= alloc_unbound_pwq(wq
, new_attrs
);
5265 for_each_possible_cpu(cpu
) {
5266 if (new_attrs
->ordered
) {
5267 ctx
->dfl_pwq
->refcnt
++;
5268 ctx
->pwq_tbl
[cpu
] = ctx
->dfl_pwq
;
5270 wq_calc_pod_cpumask(new_attrs
, cpu
);
5271 ctx
->pwq_tbl
[cpu
] = alloc_unbound_pwq(wq
, new_attrs
);
5272 if (!ctx
->pwq_tbl
[cpu
])
5277 /* save the user configured attrs and sanitize it. */
5278 copy_workqueue_attrs(new_attrs
, attrs
);
5279 cpumask_and(new_attrs
->cpumask
, new_attrs
->cpumask
, cpu_possible_mask
);
5280 cpumask_copy(new_attrs
->__pod_cpumask
, new_attrs
->cpumask
);
5281 ctx
->attrs
= new_attrs
;
5284 * For initialized ordered workqueues, there should only be one pwq
5285 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5286 * of newly queued work items until execution of older work items in
5287 * the old pwq's have completed.
5289 if ((wq
->flags
& __WQ_ORDERED
) && !list_empty(&wq
->pwqs
))
5290 ctx
->dfl_pwq
->plugged
= true;
5296 free_workqueue_attrs(new_attrs
);
5297 apply_wqattrs_cleanup(ctx
);
5298 return ERR_PTR(-ENOMEM
);
5301 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5302 static void apply_wqattrs_commit(struct apply_wqattrs_ctx
*ctx
)
5306 /* all pwqs have been created successfully, let's install'em */
5307 mutex_lock(&ctx
->wq
->mutex
);
5309 copy_workqueue_attrs(ctx
->wq
->unbound_attrs
, ctx
->attrs
);
5311 /* save the previous pwqs and install the new ones */
5312 for_each_possible_cpu(cpu
)
5313 ctx
->pwq_tbl
[cpu
] = install_unbound_pwq(ctx
->wq
, cpu
,
5315 ctx
->dfl_pwq
= install_unbound_pwq(ctx
->wq
, -1, ctx
->dfl_pwq
);
5317 /* update node_nr_active->max */
5318 wq_update_node_max_active(ctx
->wq
, -1);
5320 /* rescuer needs to respect wq cpumask changes */
5321 if (ctx
->wq
->rescuer
)
5322 set_cpus_allowed_ptr(ctx
->wq
->rescuer
->task
,
5323 unbound_effective_cpumask(ctx
->wq
));
5325 mutex_unlock(&ctx
->wq
->mutex
);
5328 static int apply_workqueue_attrs_locked(struct workqueue_struct
*wq
,
5329 const struct workqueue_attrs
*attrs
)
5331 struct apply_wqattrs_ctx
*ctx
;
5333 /* only unbound workqueues can change attributes */
5334 if (WARN_ON(!(wq
->flags
& WQ_UNBOUND
)))
5337 ctx
= apply_wqattrs_prepare(wq
, attrs
, wq_unbound_cpumask
);
5339 return PTR_ERR(ctx
);
5341 /* the ctx has been prepared successfully, let's commit it */
5342 apply_wqattrs_commit(ctx
);
5343 apply_wqattrs_cleanup(ctx
);
5349 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5350 * @wq: the target workqueue
5351 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5353 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5354 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5355 * work items are affine to the pod it was issued on. Older pwqs are released as
5356 * in-flight work items finish. Note that a work item which repeatedly requeues
5357 * itself back-to-back will stay on its current pwq.
5359 * Performs GFP_KERNEL allocations.
5361 * Return: 0 on success and -errno on failure.
5363 int apply_workqueue_attrs(struct workqueue_struct
*wq
,
5364 const struct workqueue_attrs
*attrs
)
5368 mutex_lock(&wq_pool_mutex
);
5369 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
5370 mutex_unlock(&wq_pool_mutex
);
5376 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5377 * @wq: the target workqueue
5378 * @cpu: the CPU to update the pwq slot for
5380 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5381 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged.
5384 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5385 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5387 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5388 * with a cpumask spanning multiple pods, the workers which were already
5389 * executing the work items for the workqueue will lose their CPU affinity and
5390 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5391 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5392 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5394 static void unbound_wq_update_pwq(struct workqueue_struct
*wq
, int cpu
)
5396 struct pool_workqueue
*old_pwq
= NULL
, *pwq
;
5397 struct workqueue_attrs
*target_attrs
;
5399 lockdep_assert_held(&wq_pool_mutex
);
5401 if (!(wq
->flags
& WQ_UNBOUND
) || wq
->unbound_attrs
->ordered
)
5405 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5406 * Let's use a preallocated one. The following buf is protected by
5407 * CPU hotplug exclusion.
5409 target_attrs
= unbound_wq_update_pwq_attrs_buf
;
5411 copy_workqueue_attrs(target_attrs
, wq
->unbound_attrs
);
5412 wqattrs_actualize_cpumask(target_attrs
, wq_unbound_cpumask
);
5414 /* nothing to do if the target cpumask matches the current pwq */
5415 wq_calc_pod_cpumask(target_attrs
, cpu
);
5416 if (wqattrs_equal(target_attrs
, unbound_pwq(wq
, cpu
)->pool
->attrs
))
5419 /* create a new pwq */
5420 pwq
= alloc_unbound_pwq(wq
, target_attrs
);
5422 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5427 /* Install the new pwq. */
5428 mutex_lock(&wq
->mutex
);
5429 old_pwq
= install_unbound_pwq(wq
, cpu
, pwq
);
5433 mutex_lock(&wq
->mutex
);
5434 pwq
= unbound_pwq(wq
, -1);
5435 raw_spin_lock_irq(&pwq
->pool
->lock
);
5437 raw_spin_unlock_irq(&pwq
->pool
->lock
);
5438 old_pwq
= install_unbound_pwq(wq
, cpu
, pwq
);
5440 mutex_unlock(&wq
->mutex
);
5441 put_pwq_unlocked(old_pwq
);
5444 static int alloc_and_link_pwqs(struct workqueue_struct
*wq
)
5446 bool highpri
= wq
->flags
& WQ_HIGHPRI
;
5449 lockdep_assert_held(&wq_pool_mutex
);
5451 wq
->cpu_pwq
= alloc_percpu(struct pool_workqueue
*);
5455 if (!(wq
->flags
& WQ_UNBOUND
)) {
5456 struct worker_pool __percpu
*pools
;
5458 if (wq
->flags
& WQ_BH
)
5459 pools
= bh_worker_pools
;
5461 pools
= cpu_worker_pools
;
5463 for_each_possible_cpu(cpu
) {
5464 struct pool_workqueue
**pwq_p
;
5465 struct worker_pool
*pool
;
5467 pool
= &(per_cpu_ptr(pools
, cpu
)[highpri
]);
5468 pwq_p
= per_cpu_ptr(wq
->cpu_pwq
, cpu
);
5470 *pwq_p
= kmem_cache_alloc_node(pwq_cache
, GFP_KERNEL
,
5475 init_pwq(*pwq_p
, wq
, pool
);
5477 mutex_lock(&wq
->mutex
);
5479 mutex_unlock(&wq
->mutex
);
5484 if (wq
->flags
& __WQ_ORDERED
) {
5485 struct pool_workqueue
*dfl_pwq
;
5487 ret
= apply_workqueue_attrs_locked(wq
, ordered_wq_attrs
[highpri
]);
5488 /* there should only be single pwq for ordering guarantee */
5489 dfl_pwq
= rcu_access_pointer(wq
->dfl_pwq
);
5490 WARN(!ret
&& (wq
->pwqs
.next
!= &dfl_pwq
->pwqs_node
||
5491 wq
->pwqs
.prev
!= &dfl_pwq
->pwqs_node
),
5492 "ordering guarantee broken for workqueue %s\n", wq
->name
);
5494 ret
= apply_workqueue_attrs_locked(wq
, unbound_std_wq_attrs
[highpri
]);
5501 for_each_possible_cpu(cpu
) {
5502 struct pool_workqueue
*pwq
= *per_cpu_ptr(wq
->cpu_pwq
, cpu
);
5505 kmem_cache_free(pwq_cache
, pwq
);
5507 free_percpu(wq
->cpu_pwq
);
5513 static int wq_clamp_max_active(int max_active
, unsigned int flags
,
5516 if (max_active
< 1 || max_active
> WQ_MAX_ACTIVE
)
5517 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5518 max_active
, name
, 1, WQ_MAX_ACTIVE
);
5520 return clamp_val(max_active
, 1, WQ_MAX_ACTIVE
);
5524 * Workqueues which may be used during memory reclaim should have a rescuer
5525 * to guarantee forward progress.
5527 static int init_rescuer(struct workqueue_struct
*wq
)
5529 struct worker
*rescuer
;
5530 char id_buf
[WORKER_ID_LEN
];
5533 lockdep_assert_held(&wq_pool_mutex
);
5535 if (!(wq
->flags
& WQ_MEM_RECLAIM
))
5538 rescuer
= alloc_worker(NUMA_NO_NODE
);
5540 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5545 rescuer
->rescue_wq
= wq
;
5546 format_worker_id(id_buf
, sizeof(id_buf
), rescuer
, NULL
);
5548 rescuer
->task
= kthread_create(rescuer_thread
, rescuer
, "%s", id_buf
);
5549 if (IS_ERR(rescuer
->task
)) {
5550 ret
= PTR_ERR(rescuer
->task
);
5551 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5552 wq
->name
, ERR_PTR(ret
));
5557 wq
->rescuer
= rescuer
;
5558 if (wq
->flags
& WQ_UNBOUND
)
5559 kthread_bind_mask(rescuer
->task
, unbound_effective_cpumask(wq
));
5561 kthread_bind_mask(rescuer
->task
, cpu_possible_mask
);
5562 wake_up_process(rescuer
->task
);
5568 * wq_adjust_max_active - update a wq's max_active to the current setting
5569 * @wq: target workqueue
5571 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5572 * activate inactive work items accordingly. If @wq is freezing, clear
5573 * @wq->max_active to zero.
5575 static void wq_adjust_max_active(struct workqueue_struct
*wq
)
5578 int new_max
, new_min
;
5580 lockdep_assert_held(&wq
->mutex
);
5582 if ((wq
->flags
& WQ_FREEZABLE
) && workqueue_freezing
) {
5586 new_max
= wq
->saved_max_active
;
5587 new_min
= wq
->saved_min_active
;
5590 if (wq
->max_active
== new_max
&& wq
->min_active
== new_min
)
5594 * Update @wq->max/min_active and then kick inactive work items if more
5595 * active work items are allowed. This doesn't break work item ordering
5596 * because new work items are always queued behind existing inactive
5597 * work items if there are any.
5599 WRITE_ONCE(wq
->max_active
, new_max
);
5600 WRITE_ONCE(wq
->min_active
, new_min
);
5602 if (wq
->flags
& WQ_UNBOUND
)
5603 wq_update_node_max_active(wq
, -1);
5609 * Round-robin through pwq's activating the first inactive work item
5610 * until max_active is filled.
5613 struct pool_workqueue
*pwq
;
5616 for_each_pwq(pwq
, wq
) {
5617 unsigned long irq_flags
;
5619 /* can be called during early boot w/ irq disabled */
5620 raw_spin_lock_irqsave(&pwq
->pool
->lock
, irq_flags
);
5621 if (pwq_activate_first_inactive(pwq
, true)) {
5623 kick_pool(pwq
->pool
);
5625 raw_spin_unlock_irqrestore(&pwq
->pool
->lock
, irq_flags
);
5627 } while (activated
);
5630 static struct workqueue_struct
*__alloc_workqueue(const char *fmt
,
5632 int max_active
, va_list args
)
5634 struct workqueue_struct
*wq
;
5638 if (flags
& WQ_BH
) {
5639 if (WARN_ON_ONCE(flags
& ~__WQ_BH_ALLOWS
))
5641 if (WARN_ON_ONCE(max_active
))
5645 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5646 if ((flags
& WQ_POWER_EFFICIENT
) && wq_power_efficient
)
5647 flags
|= WQ_UNBOUND
;
5649 /* allocate wq and format name */
5650 if (flags
& WQ_UNBOUND
)
5651 wq_size
= struct_size(wq
, node_nr_active
, nr_node_ids
+ 1);
5653 wq_size
= sizeof(*wq
);
5655 wq
= kzalloc(wq_size
, GFP_KERNEL
);
5659 if (flags
& WQ_UNBOUND
) {
5660 wq
->unbound_attrs
= alloc_workqueue_attrs();
5661 if (!wq
->unbound_attrs
)
5665 name_len
= vsnprintf(wq
->name
, sizeof(wq
->name
), fmt
, args
);
5667 if (name_len
>= WQ_NAME_LEN
)
5668 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5671 if (flags
& WQ_BH
) {
5673 * BH workqueues always share a single execution context per CPU
5674 * and don't impose any max_active limit.
5676 max_active
= INT_MAX
;
5678 max_active
= max_active
?: WQ_DFL_ACTIVE
;
5679 max_active
= wq_clamp_max_active(max_active
, flags
, wq
->name
);
5684 wq
->max_active
= max_active
;
5685 wq
->min_active
= min(max_active
, WQ_DFL_MIN_ACTIVE
);
5686 wq
->saved_max_active
= wq
->max_active
;
5687 wq
->saved_min_active
= wq
->min_active
;
5688 mutex_init(&wq
->mutex
);
5689 atomic_set(&wq
->nr_pwqs_to_flush
, 0);
5690 INIT_LIST_HEAD(&wq
->pwqs
);
5691 INIT_LIST_HEAD(&wq
->flusher_queue
);
5692 INIT_LIST_HEAD(&wq
->flusher_overflow
);
5693 INIT_LIST_HEAD(&wq
->maydays
);
5695 INIT_LIST_HEAD(&wq
->list
);
5697 if (flags
& WQ_UNBOUND
) {
5698 if (alloc_node_nr_active(wq
->node_nr_active
) < 0)
5703 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5704 * and the global freeze state.
5706 apply_wqattrs_lock();
5708 if (alloc_and_link_pwqs(wq
) < 0)
5709 goto err_unlock_free_node_nr_active
;
5711 mutex_lock(&wq
->mutex
);
5712 wq_adjust_max_active(wq
);
5713 mutex_unlock(&wq
->mutex
);
5715 list_add_tail_rcu(&wq
->list
, &workqueues
);
5717 if (wq_online
&& init_rescuer(wq
) < 0)
5718 goto err_unlock_destroy
;
5720 apply_wqattrs_unlock();
5722 if ((wq
->flags
& WQ_SYSFS
) && workqueue_sysfs_register(wq
))
5727 err_unlock_free_node_nr_active
:
5728 apply_wqattrs_unlock();
5730 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5731 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5732 * completes before calling kfree(wq).
5734 if (wq
->flags
& WQ_UNBOUND
) {
5735 kthread_flush_worker(pwq_release_worker
);
5736 free_node_nr_active(wq
->node_nr_active
);
5739 free_workqueue_attrs(wq
->unbound_attrs
);
5743 apply_wqattrs_unlock();
5745 destroy_workqueue(wq
);
5750 struct workqueue_struct
*alloc_workqueue(const char *fmt
,
5752 int max_active
, ...)
5754 struct workqueue_struct
*wq
;
5757 va_start(args
, max_active
);
5758 wq
= __alloc_workqueue(fmt
, flags
, max_active
, args
);
5763 wq_init_lockdep(wq
);
5767 EXPORT_SYMBOL_GPL(alloc_workqueue
);
5769 #ifdef CONFIG_LOCKDEP
5771 struct workqueue_struct
*
5772 alloc_workqueue_lockdep_map(const char *fmt
, unsigned int flags
,
5773 int max_active
, struct lockdep_map
*lockdep_map
, ...)
5775 struct workqueue_struct
*wq
;
5778 va_start(args
, lockdep_map
);
5779 wq
= __alloc_workqueue(fmt
, flags
, max_active
, args
);
5784 wq
->lockdep_map
= lockdep_map
;
5788 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map
);
5791 static bool pwq_busy(struct pool_workqueue
*pwq
)
5795 for (i
= 0; i
< WORK_NR_COLORS
; i
++)
5796 if (pwq
->nr_in_flight
[i
])
5799 if ((pwq
!= rcu_access_pointer(pwq
->wq
->dfl_pwq
)) && (pwq
->refcnt
> 1))
5801 if (!pwq_is_empty(pwq
))
5808 * destroy_workqueue - safely terminate a workqueue
5809 * @wq: target workqueue
5811 * Safely destroy a workqueue. All work currently pending will be done first.
5813 void destroy_workqueue(struct workqueue_struct
*wq
)
5815 struct pool_workqueue
*pwq
;
5819 * Remove it from sysfs first so that sanity check failure doesn't
5820 * lead to sysfs name conflicts.
5822 workqueue_sysfs_unregister(wq
);
5824 /* mark the workqueue destruction is in progress */
5825 mutex_lock(&wq
->mutex
);
5826 wq
->flags
|= __WQ_DESTROYING
;
5827 mutex_unlock(&wq
->mutex
);
5829 /* drain it before proceeding with destruction */
5830 drain_workqueue(wq
);
5832 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5834 struct worker
*rescuer
= wq
->rescuer
;
5836 /* this prevents new queueing */
5837 raw_spin_lock_irq(&wq_mayday_lock
);
5839 raw_spin_unlock_irq(&wq_mayday_lock
);
5841 /* rescuer will empty maydays list before exiting */
5842 kthread_stop(rescuer
->task
);
5847 * Sanity checks - grab all the locks so that we wait for all
5848 * in-flight operations which may do put_pwq().
5850 mutex_lock(&wq_pool_mutex
);
5851 mutex_lock(&wq
->mutex
);
5852 for_each_pwq(pwq
, wq
) {
5853 raw_spin_lock_irq(&pwq
->pool
->lock
);
5854 if (WARN_ON(pwq_busy(pwq
))) {
5855 pr_warn("%s: %s has the following busy pwq\n",
5856 __func__
, wq
->name
);
5858 raw_spin_unlock_irq(&pwq
->pool
->lock
);
5859 mutex_unlock(&wq
->mutex
);
5860 mutex_unlock(&wq_pool_mutex
);
5861 show_one_workqueue(wq
);
5864 raw_spin_unlock_irq(&pwq
->pool
->lock
);
5866 mutex_unlock(&wq
->mutex
);
5869 * wq list is used to freeze wq, remove from list after
5870 * flushing is complete in case freeze races us.
5872 list_del_rcu(&wq
->list
);
5873 mutex_unlock(&wq_pool_mutex
);
5876 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5877 * to put the base refs. @wq will be auto-destroyed from the last
5878 * pwq_put. RCU read lock prevents @wq from going away from under us.
5882 for_each_possible_cpu(cpu
) {
5883 put_pwq_unlocked(unbound_pwq(wq
, cpu
));
5884 RCU_INIT_POINTER(*unbound_pwq_slot(wq
, cpu
), NULL
);
5887 put_pwq_unlocked(unbound_pwq(wq
, -1));
5888 RCU_INIT_POINTER(*unbound_pwq_slot(wq
, -1), NULL
);
5892 EXPORT_SYMBOL_GPL(destroy_workqueue
);
5895 * workqueue_set_max_active - adjust max_active of a workqueue
5896 * @wq: target workqueue
5897 * @max_active: new max_active value.
5899 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5903 * Don't call from IRQ context.
5905 void workqueue_set_max_active(struct workqueue_struct
*wq
, int max_active
)
5907 /* max_active doesn't mean anything for BH workqueues */
5908 if (WARN_ON(wq
->flags
& WQ_BH
))
5910 /* disallow meddling with max_active for ordered workqueues */
5911 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
5914 max_active
= wq_clamp_max_active(max_active
, wq
->flags
, wq
->name
);
5916 mutex_lock(&wq
->mutex
);
5918 wq
->saved_max_active
= max_active
;
5919 if (wq
->flags
& WQ_UNBOUND
)
5920 wq
->saved_min_active
= min(wq
->saved_min_active
, max_active
);
5922 wq_adjust_max_active(wq
);
5924 mutex_unlock(&wq
->mutex
);
5926 EXPORT_SYMBOL_GPL(workqueue_set_max_active
);
5929 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5930 * @wq: target unbound workqueue
5931 * @min_active: new min_active value
5933 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5934 * unbound workqueue is not guaranteed to be able to process max_active
5935 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5936 * able to process min_active number of interdependent work items which is
5937 * %WQ_DFL_MIN_ACTIVE by default.
5939 * Use this function to adjust the min_active value between 0 and the current
5942 void workqueue_set_min_active(struct workqueue_struct
*wq
, int min_active
)
5944 /* min_active is only meaningful for non-ordered unbound workqueues */
5945 if (WARN_ON((wq
->flags
& (WQ_BH
| WQ_UNBOUND
| __WQ_ORDERED
)) !=
5949 mutex_lock(&wq
->mutex
);
5950 wq
->saved_min_active
= clamp(min_active
, 0, wq
->saved_max_active
);
5951 wq_adjust_max_active(wq
);
5952 mutex_unlock(&wq
->mutex
);
5956 * current_work - retrieve %current task's work struct
5958 * Determine if %current task is a workqueue worker and what it's working on.
5959 * Useful to find out the context that the %current task is running in.
5961 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5963 struct work_struct
*current_work(void)
5965 struct worker
*worker
= current_wq_worker();
5967 return worker
? worker
->current_work
: NULL
;
5969 EXPORT_SYMBOL(current_work
);
5972 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5974 * Determine whether %current is a workqueue rescuer. Can be used from
5975 * work functions to determine whether it's being run off the rescuer task.
5977 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5979 bool current_is_workqueue_rescuer(void)
5981 struct worker
*worker
= current_wq_worker();
5983 return worker
&& worker
->rescue_wq
;
5987 * workqueue_congested - test whether a workqueue is congested
5988 * @cpu: CPU in question
5989 * @wq: target workqueue
5991 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5992 * no synchronization around this function and the test result is
5993 * unreliable and only useful as advisory hints or for debugging.
5995 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5997 * With the exception of ordered workqueues, all workqueues have per-cpu
5998 * pool_workqueues, each with its own congested state. A workqueue being
5999 * congested on one CPU doesn't mean that the workqueue is contested on any
6003 * %true if congested, %false otherwise.
6005 bool workqueue_congested(int cpu
, struct workqueue_struct
*wq
)
6007 struct pool_workqueue
*pwq
;
6013 if (cpu
== WORK_CPU_UNBOUND
)
6014 cpu
= smp_processor_id();
6016 pwq
= *per_cpu_ptr(wq
->cpu_pwq
, cpu
);
6017 ret
= !list_empty(&pwq
->inactive_works
);
6024 EXPORT_SYMBOL_GPL(workqueue_congested
);
6027 * work_busy - test whether a work is currently pending or running
6028 * @work: the work to be tested
6030 * Test whether @work is currently pending or running. There is no
6031 * synchronization around this function and the test result is
6032 * unreliable and only useful as advisory hints or for debugging.
6035 * OR'd bitmask of WORK_BUSY_* bits.
6037 unsigned int work_busy(struct work_struct
*work
)
6039 struct worker_pool
*pool
;
6040 unsigned long irq_flags
;
6041 unsigned int ret
= 0;
6043 if (work_pending(work
))
6044 ret
|= WORK_BUSY_PENDING
;
6047 pool
= get_work_pool(work
);
6049 raw_spin_lock_irqsave(&pool
->lock
, irq_flags
);
6050 if (find_worker_executing_work(pool
, work
))
6051 ret
|= WORK_BUSY_RUNNING
;
6052 raw_spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
6058 EXPORT_SYMBOL_GPL(work_busy
);
6061 * set_worker_desc - set description for the current work item
6062 * @fmt: printf-style format string
6063 * @...: arguments for the format string
6065 * This function can be called by a running work function to describe what
6066 * the work item is about. If the worker task gets dumped, this
6067 * information will be printed out together to help debugging. The
6068 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6070 void set_worker_desc(const char *fmt
, ...)
6072 struct worker
*worker
= current_wq_worker();
6076 va_start(args
, fmt
);
6077 vsnprintf(worker
->desc
, sizeof(worker
->desc
), fmt
, args
);
6081 EXPORT_SYMBOL_GPL(set_worker_desc
);
6084 * print_worker_info - print out worker information and description
6085 * @log_lvl: the log level to use when printing
6086 * @task: target task
6088 * If @task is a worker and currently executing a work item, print out the
6089 * name of the workqueue being serviced and worker description set with
6090 * set_worker_desc() by the currently executing work item.
6092 * This function can be safely called on any task as long as the
6093 * task_struct itself is accessible. While safe, this function isn't
6094 * synchronized and may print out mixups or garbages of limited length.
6096 void print_worker_info(const char *log_lvl
, struct task_struct
*task
)
6098 work_func_t
*fn
= NULL
;
6099 char name
[WQ_NAME_LEN
] = { };
6100 char desc
[WORKER_DESC_LEN
] = { };
6101 struct pool_workqueue
*pwq
= NULL
;
6102 struct workqueue_struct
*wq
= NULL
;
6103 struct worker
*worker
;
6105 if (!(task
->flags
& PF_WQ_WORKER
))
6109 * This function is called without any synchronization and @task
6110 * could be in any state. Be careful with dereferences.
6112 worker
= kthread_probe_data(task
);
6115 * Carefully copy the associated workqueue's workfn, name and desc.
6116 * Keep the original last '\0' in case the original is garbage.
6118 copy_from_kernel_nofault(&fn
, &worker
->current_func
, sizeof(fn
));
6119 copy_from_kernel_nofault(&pwq
, &worker
->current_pwq
, sizeof(pwq
));
6120 copy_from_kernel_nofault(&wq
, &pwq
->wq
, sizeof(wq
));
6121 copy_from_kernel_nofault(name
, wq
->name
, sizeof(name
) - 1);
6122 copy_from_kernel_nofault(desc
, worker
->desc
, sizeof(desc
) - 1);
6124 if (fn
|| name
[0] || desc
[0]) {
6125 printk("%sWorkqueue: %s %ps", log_lvl
, name
, fn
);
6126 if (strcmp(name
, desc
))
6127 pr_cont(" (%s)", desc
);
6132 static void pr_cont_pool_info(struct worker_pool
*pool
)
6134 pr_cont(" cpus=%*pbl", nr_cpumask_bits
, pool
->attrs
->cpumask
);
6135 if (pool
->node
!= NUMA_NO_NODE
)
6136 pr_cont(" node=%d", pool
->node
);
6137 pr_cont(" flags=0x%x", pool
->flags
);
6138 if (pool
->flags
& POOL_BH
)
6140 pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
? "-hi" : "");
6142 pr_cont(" nice=%d", pool
->attrs
->nice
);
6145 static void pr_cont_worker_id(struct worker
*worker
)
6147 struct worker_pool
*pool
= worker
->pool
;
6149 if (pool
->flags
& WQ_BH
)
6151 pool
->attrs
->nice
== HIGHPRI_NICE_LEVEL
? "-hi" : "");
6153 pr_cont("%d%s", task_pid_nr(worker
->task
),
6154 worker
->rescue_wq
? "(RESCUER)" : "");
6157 struct pr_cont_work_struct
{
6163 static void pr_cont_work_flush(bool comma
, work_func_t func
, struct pr_cont_work_struct
*pcwsp
)
6167 if (func
== pcwsp
->func
) {
6171 if (pcwsp
->ctr
== 1)
6172 pr_cont("%s %ps", pcwsp
->comma
? "," : "", pcwsp
->func
);
6174 pr_cont("%s %ld*%ps", pcwsp
->comma
? "," : "", pcwsp
->ctr
, pcwsp
->func
);
6177 if ((long)func
== -1L)
6179 pcwsp
->comma
= comma
;
6184 static void pr_cont_work(bool comma
, struct work_struct
*work
, struct pr_cont_work_struct
*pcwsp
)
6186 if (work
->func
== wq_barrier_func
) {
6187 struct wq_barrier
*barr
;
6189 barr
= container_of(work
, struct wq_barrier
, work
);
6191 pr_cont_work_flush(comma
, (work_func_t
)-1, pcwsp
);
6192 pr_cont("%s BAR(%d)", comma
? "," : "",
6193 task_pid_nr(barr
->task
));
6196 pr_cont_work_flush(comma
, (work_func_t
)-1, pcwsp
);
6197 pr_cont_work_flush(comma
, work
->func
, pcwsp
);
6201 static void show_pwq(struct pool_workqueue
*pwq
)
6203 struct pr_cont_work_struct pcws
= { .ctr
= 0, };
6204 struct worker_pool
*pool
= pwq
->pool
;
6205 struct work_struct
*work
;
6206 struct worker
*worker
;
6207 bool has_in_flight
= false, has_pending
= false;
6210 pr_info(" pwq %d:", pool
->id
);
6211 pr_cont_pool_info(pool
);
6213 pr_cont(" active=%d refcnt=%d%s\n",
6214 pwq
->nr_active
, pwq
->refcnt
,
6215 !list_empty(&pwq
->mayday_node
) ? " MAYDAY" : "");
6217 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
6218 if (worker
->current_pwq
== pwq
) {
6219 has_in_flight
= true;
6223 if (has_in_flight
) {
6226 pr_info(" in-flight:");
6227 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
6228 if (worker
->current_pwq
!= pwq
)
6231 pr_cont(" %s", comma
? "," : "");
6232 pr_cont_worker_id(worker
);
6233 pr_cont(":%ps", worker
->current_func
);
6234 list_for_each_entry(work
, &worker
->scheduled
, entry
)
6235 pr_cont_work(false, work
, &pcws
);
6236 pr_cont_work_flush(comma
, (work_func_t
)-1L, &pcws
);
6242 list_for_each_entry(work
, &pool
->worklist
, entry
) {
6243 if (get_work_pwq(work
) == pwq
) {
6251 pr_info(" pending:");
6252 list_for_each_entry(work
, &pool
->worklist
, entry
) {
6253 if (get_work_pwq(work
) != pwq
)
6256 pr_cont_work(comma
, work
, &pcws
);
6257 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
6259 pr_cont_work_flush(comma
, (work_func_t
)-1L, &pcws
);
6263 if (!list_empty(&pwq
->inactive_works
)) {
6266 pr_info(" inactive:");
6267 list_for_each_entry(work
, &pwq
->inactive_works
, entry
) {
6268 pr_cont_work(comma
, work
, &pcws
);
6269 comma
= !(*work_data_bits(work
) & WORK_STRUCT_LINKED
);
6271 pr_cont_work_flush(comma
, (work_func_t
)-1L, &pcws
);
6277 * show_one_workqueue - dump state of specified workqueue
6278 * @wq: workqueue whose state will be printed
6280 void show_one_workqueue(struct workqueue_struct
*wq
)
6282 struct pool_workqueue
*pwq
;
6284 unsigned long irq_flags
;
6286 for_each_pwq(pwq
, wq
) {
6287 if (!pwq_is_empty(pwq
)) {
6292 if (idle
) /* Nothing to print for idle workqueue */
6295 pr_info("workqueue %s: flags=0x%x\n", wq
->name
, wq
->flags
);
6297 for_each_pwq(pwq
, wq
) {
6298 raw_spin_lock_irqsave(&pwq
->pool
->lock
, irq_flags
);
6299 if (!pwq_is_empty(pwq
)) {
6301 * Defer printing to avoid deadlocks in console
6302 * drivers that queue work while holding locks
6303 * also taken in their write paths.
6305 printk_deferred_enter();
6307 printk_deferred_exit();
6309 raw_spin_unlock_irqrestore(&pwq
->pool
->lock
, irq_flags
);
6311 * We could be printing a lot from atomic context, e.g.
6312 * sysrq-t -> show_all_workqueues(). Avoid triggering
6315 touch_nmi_watchdog();
6321 * show_one_worker_pool - dump state of specified worker pool
6322 * @pool: worker pool whose state will be printed
6324 static void show_one_worker_pool(struct worker_pool
*pool
)
6326 struct worker
*worker
;
6328 unsigned long irq_flags
;
6329 unsigned long hung
= 0;
6331 raw_spin_lock_irqsave(&pool
->lock
, irq_flags
);
6332 if (pool
->nr_workers
== pool
->nr_idle
)
6335 /* How long the first pending work is waiting for a worker. */
6336 if (!list_empty(&pool
->worklist
))
6337 hung
= jiffies_to_msecs(jiffies
- pool
->watchdog_ts
) / 1000;
6340 * Defer printing to avoid deadlocks in console drivers that
6341 * queue work while holding locks also taken in their write
6344 printk_deferred_enter();
6345 pr_info("pool %d:", pool
->id
);
6346 pr_cont_pool_info(pool
);
6347 pr_cont(" hung=%lus workers=%d", hung
, pool
->nr_workers
);
6349 pr_cont(" manager: %d",
6350 task_pid_nr(pool
->manager
->task
));
6351 list_for_each_entry(worker
, &pool
->idle_list
, entry
) {
6352 pr_cont(" %s", first
? "idle: " : "");
6353 pr_cont_worker_id(worker
);
6357 printk_deferred_exit();
6359 raw_spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
6361 * We could be printing a lot from atomic context, e.g.
6362 * sysrq-t -> show_all_workqueues(). Avoid triggering
6365 touch_nmi_watchdog();
6370 * show_all_workqueues - dump workqueue state
6372 * Called from a sysrq handler and prints out all busy workqueues and pools.
6374 void show_all_workqueues(void)
6376 struct workqueue_struct
*wq
;
6377 struct worker_pool
*pool
;
6382 pr_info("Showing busy workqueues and worker pools:\n");
6384 list_for_each_entry_rcu(wq
, &workqueues
, list
)
6385 show_one_workqueue(wq
);
6387 for_each_pool(pool
, pi
)
6388 show_one_worker_pool(pool
);
6394 * show_freezable_workqueues - dump freezable workqueue state
6396 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6399 void show_freezable_workqueues(void)
6401 struct workqueue_struct
*wq
;
6405 pr_info("Showing freezable workqueues that are still busy:\n");
6407 list_for_each_entry_rcu(wq
, &workqueues
, list
) {
6408 if (!(wq
->flags
& WQ_FREEZABLE
))
6410 show_one_workqueue(wq
);
6416 /* used to show worker information through /proc/PID/{comm,stat,status} */
6417 void wq_worker_comm(char *buf
, size_t size
, struct task_struct
*task
)
6419 /* stabilize PF_WQ_WORKER and worker pool association */
6420 mutex_lock(&wq_pool_attach_mutex
);
6422 if (task
->flags
& PF_WQ_WORKER
) {
6423 struct worker
*worker
= kthread_data(task
);
6424 struct worker_pool
*pool
= worker
->pool
;
6427 off
= format_worker_id(buf
, size
, worker
, pool
);
6430 raw_spin_lock_irq(&pool
->lock
);
6432 * ->desc tracks information (wq name or
6433 * set_worker_desc()) for the latest execution. If
6434 * current, prepend '+', otherwise '-'.
6436 if (worker
->desc
[0] != '\0') {
6437 if (worker
->current_work
)
6438 scnprintf(buf
+ off
, size
- off
, "+%s",
6441 scnprintf(buf
+ off
, size
- off
, "-%s",
6444 raw_spin_unlock_irq(&pool
->lock
);
6447 strscpy(buf
, task
->comm
, size
);
6450 mutex_unlock(&wq_pool_attach_mutex
);
6458 * There are two challenges in supporting CPU hotplug. Firstly, there
6459 * are a lot of assumptions on strong associations among work, pwq and
6460 * pool which make migrating pending and scheduled works very
6461 * difficult to implement without impacting hot paths. Secondly,
6462 * worker pools serve mix of short, long and very long running works making
6463 * blocked draining impractical.
6465 * This is solved by allowing the pools to be disassociated from the CPU
6466 * running as an unbound one and allowing it to be reattached later if the
6467 * cpu comes back online.
6470 static void unbind_workers(int cpu
)
6472 struct worker_pool
*pool
;
6473 struct worker
*worker
;
6475 for_each_cpu_worker_pool(pool
, cpu
) {
6476 mutex_lock(&wq_pool_attach_mutex
);
6477 raw_spin_lock_irq(&pool
->lock
);
6480 * We've blocked all attach/detach operations. Make all workers
6481 * unbound and set DISASSOCIATED. Before this, all workers
6482 * must be on the cpu. After this, they may become diasporas.
6483 * And the preemption disabled section in their sched callbacks
6484 * are guaranteed to see WORKER_UNBOUND since the code here
6485 * is on the same cpu.
6487 for_each_pool_worker(worker
, pool
)
6488 worker
->flags
|= WORKER_UNBOUND
;
6490 pool
->flags
|= POOL_DISASSOCIATED
;
6493 * The handling of nr_running in sched callbacks are disabled
6494 * now. Zap nr_running. After this, nr_running stays zero and
6495 * need_more_worker() and keep_working() are always true as
6496 * long as the worklist is not empty. This pool now behaves as
6497 * an unbound (in terms of concurrency management) pool which
6498 * are served by workers tied to the pool.
6500 pool
->nr_running
= 0;
6503 * With concurrency management just turned off, a busy
6504 * worker blocking could lead to lengthy stalls. Kick off
6505 * unbound chain execution of currently pending work items.
6509 raw_spin_unlock_irq(&pool
->lock
);
6511 for_each_pool_worker(worker
, pool
)
6512 unbind_worker(worker
);
6514 mutex_unlock(&wq_pool_attach_mutex
);
6519 * rebind_workers - rebind all workers of a pool to the associated CPU
6520 * @pool: pool of interest
6522 * @pool->cpu is coming online. Rebind all workers to the CPU.
6524 static void rebind_workers(struct worker_pool
*pool
)
6526 struct worker
*worker
;
6528 lockdep_assert_held(&wq_pool_attach_mutex
);
6531 * Restore CPU affinity of all workers. As all idle workers should
6532 * be on the run-queue of the associated CPU before any local
6533 * wake-ups for concurrency management happen, restore CPU affinity
6534 * of all workers first and then clear UNBOUND. As we're called
6535 * from CPU_ONLINE, the following shouldn't fail.
6537 for_each_pool_worker(worker
, pool
) {
6538 kthread_set_per_cpu(worker
->task
, pool
->cpu
);
6539 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
,
6540 pool_allowed_cpus(pool
)) < 0);
6543 raw_spin_lock_irq(&pool
->lock
);
6545 pool
->flags
&= ~POOL_DISASSOCIATED
;
6547 for_each_pool_worker(worker
, pool
) {
6548 unsigned int worker_flags
= worker
->flags
;
6551 * We want to clear UNBOUND but can't directly call
6552 * worker_clr_flags() or adjust nr_running. Atomically
6553 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6554 * @worker will clear REBOUND using worker_clr_flags() when
6555 * it initiates the next execution cycle thus restoring
6556 * concurrency management. Note that when or whether
6557 * @worker clears REBOUND doesn't affect correctness.
6559 * WRITE_ONCE() is necessary because @worker->flags may be
6560 * tested without holding any lock in
6561 * wq_worker_running(). Without it, NOT_RUNNING test may
6562 * fail incorrectly leading to premature concurrency
6563 * management operations.
6565 WARN_ON_ONCE(!(worker_flags
& WORKER_UNBOUND
));
6566 worker_flags
|= WORKER_REBOUND
;
6567 worker_flags
&= ~WORKER_UNBOUND
;
6568 WRITE_ONCE(worker
->flags
, worker_flags
);
6571 raw_spin_unlock_irq(&pool
->lock
);
6575 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6576 * @pool: unbound pool of interest
6577 * @cpu: the CPU which is coming up
6579 * An unbound pool may end up with a cpumask which doesn't have any online
6580 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6581 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6582 * online CPU before, cpus_allowed of all its workers should be restored.
6584 static void restore_unbound_workers_cpumask(struct worker_pool
*pool
, int cpu
)
6586 static cpumask_t cpumask
;
6587 struct worker
*worker
;
6589 lockdep_assert_held(&wq_pool_attach_mutex
);
6591 /* is @cpu allowed for @pool? */
6592 if (!cpumask_test_cpu(cpu
, pool
->attrs
->cpumask
))
6595 cpumask_and(&cpumask
, pool
->attrs
->cpumask
, cpu_online_mask
);
6597 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6598 for_each_pool_worker(worker
, pool
)
6599 WARN_ON_ONCE(set_cpus_allowed_ptr(worker
->task
, &cpumask
) < 0);
6602 int workqueue_prepare_cpu(unsigned int cpu
)
6604 struct worker_pool
*pool
;
6606 for_each_cpu_worker_pool(pool
, cpu
) {
6607 if (pool
->nr_workers
)
6609 if (!create_worker(pool
))
6615 int workqueue_online_cpu(unsigned int cpu
)
6617 struct worker_pool
*pool
;
6618 struct workqueue_struct
*wq
;
6621 mutex_lock(&wq_pool_mutex
);
6623 cpumask_set_cpu(cpu
, wq_online_cpumask
);
6625 for_each_pool(pool
, pi
) {
6626 /* BH pools aren't affected by hotplug */
6627 if (pool
->flags
& POOL_BH
)
6630 mutex_lock(&wq_pool_attach_mutex
);
6631 if (pool
->cpu
== cpu
)
6632 rebind_workers(pool
);
6633 else if (pool
->cpu
< 0)
6634 restore_unbound_workers_cpumask(pool
, cpu
);
6635 mutex_unlock(&wq_pool_attach_mutex
);
6638 /* update pod affinity of unbound workqueues */
6639 list_for_each_entry(wq
, &workqueues
, list
) {
6640 struct workqueue_attrs
*attrs
= wq
->unbound_attrs
;
6643 const struct wq_pod_type
*pt
= wqattrs_pod_type(attrs
);
6646 for_each_cpu(tcpu
, pt
->pod_cpus
[pt
->cpu_pod
[cpu
]])
6647 unbound_wq_update_pwq(wq
, tcpu
);
6649 mutex_lock(&wq
->mutex
);
6650 wq_update_node_max_active(wq
, -1);
6651 mutex_unlock(&wq
->mutex
);
6655 mutex_unlock(&wq_pool_mutex
);
6659 int workqueue_offline_cpu(unsigned int cpu
)
6661 struct workqueue_struct
*wq
;
6663 /* unbinding per-cpu workers should happen on the local CPU */
6664 if (WARN_ON(cpu
!= smp_processor_id()))
6667 unbind_workers(cpu
);
6669 /* update pod affinity of unbound workqueues */
6670 mutex_lock(&wq_pool_mutex
);
6672 cpumask_clear_cpu(cpu
, wq_online_cpumask
);
6674 list_for_each_entry(wq
, &workqueues
, list
) {
6675 struct workqueue_attrs
*attrs
= wq
->unbound_attrs
;
6678 const struct wq_pod_type
*pt
= wqattrs_pod_type(attrs
);
6681 for_each_cpu(tcpu
, pt
->pod_cpus
[pt
->cpu_pod
[cpu
]])
6682 unbound_wq_update_pwq(wq
, tcpu
);
6684 mutex_lock(&wq
->mutex
);
6685 wq_update_node_max_active(wq
, cpu
);
6686 mutex_unlock(&wq
->mutex
);
6689 mutex_unlock(&wq_pool_mutex
);
6694 struct work_for_cpu
{
6695 struct work_struct work
;
6701 static void work_for_cpu_fn(struct work_struct
*work
)
6703 struct work_for_cpu
*wfc
= container_of(work
, struct work_for_cpu
, work
);
6705 wfc
->ret
= wfc
->fn(wfc
->arg
);
6709 * work_on_cpu_key - run a function in thread context on a particular cpu
6710 * @cpu: the cpu to run on
6711 * @fn: the function to run
6712 * @arg: the function arg
6713 * @key: The lock class key for lock debugging purposes
6715 * It is up to the caller to ensure that the cpu doesn't go offline.
6716 * The caller must not hold any locks which would prevent @fn from completing.
6718 * Return: The value @fn returns.
6720 long work_on_cpu_key(int cpu
, long (*fn
)(void *),
6721 void *arg
, struct lock_class_key
*key
)
6723 struct work_for_cpu wfc
= { .fn
= fn
, .arg
= arg
};
6725 INIT_WORK_ONSTACK_KEY(&wfc
.work
, work_for_cpu_fn
, key
);
6726 schedule_work_on(cpu
, &wfc
.work
);
6727 flush_work(&wfc
.work
);
6728 destroy_work_on_stack(&wfc
.work
);
6731 EXPORT_SYMBOL_GPL(work_on_cpu_key
);
6734 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6735 * @cpu: the cpu to run on
6736 * @fn: the function to run
6737 * @arg: the function argument
6738 * @key: The lock class key for lock debugging purposes
6740 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6741 * any locks which would prevent @fn from completing.
6743 * Return: The value @fn returns.
6745 long work_on_cpu_safe_key(int cpu
, long (*fn
)(void *),
6746 void *arg
, struct lock_class_key
*key
)
6751 if (cpu_online(cpu
))
6752 ret
= work_on_cpu_key(cpu
, fn
, arg
, key
);
6756 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key
);
6757 #endif /* CONFIG_SMP */
6759 #ifdef CONFIG_FREEZER
6762 * freeze_workqueues_begin - begin freezing workqueues
6764 * Start freezing workqueues. After this function returns, all freezable
6765 * workqueues will queue new works to their inactive_works list instead of
6769 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6771 void freeze_workqueues_begin(void)
6773 struct workqueue_struct
*wq
;
6775 mutex_lock(&wq_pool_mutex
);
6777 WARN_ON_ONCE(workqueue_freezing
);
6778 workqueue_freezing
= true;
6780 list_for_each_entry(wq
, &workqueues
, list
) {
6781 mutex_lock(&wq
->mutex
);
6782 wq_adjust_max_active(wq
);
6783 mutex_unlock(&wq
->mutex
);
6786 mutex_unlock(&wq_pool_mutex
);
6790 * freeze_workqueues_busy - are freezable workqueues still busy?
6792 * Check whether freezing is complete. This function must be called
6793 * between freeze_workqueues_begin() and thaw_workqueues().
6796 * Grabs and releases wq_pool_mutex.
6799 * %true if some freezable workqueues are still busy. %false if freezing
6802 bool freeze_workqueues_busy(void)
6805 struct workqueue_struct
*wq
;
6806 struct pool_workqueue
*pwq
;
6808 mutex_lock(&wq_pool_mutex
);
6810 WARN_ON_ONCE(!workqueue_freezing
);
6812 list_for_each_entry(wq
, &workqueues
, list
) {
6813 if (!(wq
->flags
& WQ_FREEZABLE
))
6816 * nr_active is monotonically decreasing. It's safe
6817 * to peek without lock.
6820 for_each_pwq(pwq
, wq
) {
6821 WARN_ON_ONCE(pwq
->nr_active
< 0);
6822 if (pwq
->nr_active
) {
6831 mutex_unlock(&wq_pool_mutex
);
6836 * thaw_workqueues - thaw workqueues
6838 * Thaw workqueues. Normal queueing is restored and all collected
6839 * frozen works are transferred to their respective pool worklists.
6842 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6844 void thaw_workqueues(void)
6846 struct workqueue_struct
*wq
;
6848 mutex_lock(&wq_pool_mutex
);
6850 if (!workqueue_freezing
)
6853 workqueue_freezing
= false;
6855 /* restore max_active and repopulate worklist */
6856 list_for_each_entry(wq
, &workqueues
, list
) {
6857 mutex_lock(&wq
->mutex
);
6858 wq_adjust_max_active(wq
);
6859 mutex_unlock(&wq
->mutex
);
6863 mutex_unlock(&wq_pool_mutex
);
6865 #endif /* CONFIG_FREEZER */
6867 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask
)
6871 struct workqueue_struct
*wq
;
6872 struct apply_wqattrs_ctx
*ctx
, *n
;
6874 lockdep_assert_held(&wq_pool_mutex
);
6876 list_for_each_entry(wq
, &workqueues
, list
) {
6877 if (!(wq
->flags
& WQ_UNBOUND
) || (wq
->flags
& __WQ_DESTROYING
))
6880 ctx
= apply_wqattrs_prepare(wq
, wq
->unbound_attrs
, unbound_cpumask
);
6886 list_add_tail(&ctx
->list
, &ctxs
);
6889 list_for_each_entry_safe(ctx
, n
, &ctxs
, list
) {
6891 apply_wqattrs_commit(ctx
);
6892 apply_wqattrs_cleanup(ctx
);
6896 mutex_lock(&wq_pool_attach_mutex
);
6897 cpumask_copy(wq_unbound_cpumask
, unbound_cpumask
);
6898 mutex_unlock(&wq_pool_attach_mutex
);
6904 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6905 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6907 * This function can be called from cpuset code to provide a set of isolated
6908 * CPUs that should be excluded from wq_unbound_cpumask.
6910 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask
)
6912 cpumask_var_t cpumask
;
6915 if (!zalloc_cpumask_var(&cpumask
, GFP_KERNEL
))
6918 mutex_lock(&wq_pool_mutex
);
6921 * If the operation fails, it will fall back to
6922 * wq_requested_unbound_cpumask which is initially set to
6923 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6924 * by any subsequent write to workqueue/cpumask sysfs file.
6926 if (!cpumask_andnot(cpumask
, wq_requested_unbound_cpumask
, exclude_cpumask
))
6927 cpumask_copy(cpumask
, wq_requested_unbound_cpumask
);
6928 if (!cpumask_equal(cpumask
, wq_unbound_cpumask
))
6929 ret
= workqueue_apply_unbound_cpumask(cpumask
);
6931 /* Save the current isolated cpumask & export it via sysfs */
6933 cpumask_copy(wq_isolated_cpumask
, exclude_cpumask
);
6935 mutex_unlock(&wq_pool_mutex
);
6936 free_cpumask_var(cpumask
);
6940 static int parse_affn_scope(const char *val
)
6944 for (i
= 0; i
< ARRAY_SIZE(wq_affn_names
); i
++) {
6945 if (!strncasecmp(val
, wq_affn_names
[i
], strlen(wq_affn_names
[i
])))
6951 static int wq_affn_dfl_set(const char *val
, const struct kernel_param
*kp
)
6953 struct workqueue_struct
*wq
;
6956 affn
= parse_affn_scope(val
);
6959 if (affn
== WQ_AFFN_DFL
)
6963 mutex_lock(&wq_pool_mutex
);
6967 list_for_each_entry(wq
, &workqueues
, list
) {
6968 for_each_online_cpu(cpu
)
6969 unbound_wq_update_pwq(wq
, cpu
);
6972 mutex_unlock(&wq_pool_mutex
);
6978 static int wq_affn_dfl_get(char *buffer
, const struct kernel_param
*kp
)
6980 return scnprintf(buffer
, PAGE_SIZE
, "%s\n", wq_affn_names
[wq_affn_dfl
]);
6983 static const struct kernel_param_ops wq_affn_dfl_ops
= {
6984 .set
= wq_affn_dfl_set
,
6985 .get
= wq_affn_dfl_get
,
6988 module_param_cb(default_affinity_scope
, &wq_affn_dfl_ops
, NULL
, 0644);
6992 * Workqueues with WQ_SYSFS flag set is visible to userland via
6993 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6994 * following attributes.
6996 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6997 * max_active RW int : maximum number of in-flight work items
6999 * Unbound workqueues have the following extra attributes.
7001 * nice RW int : nice value of the workers
7002 * cpumask RW mask : bitmask of allowed CPUs for the workers
7003 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
7004 * affinity_strict RW bool : worker CPU affinity is strict
7007 struct workqueue_struct
*wq
;
7011 static struct workqueue_struct
*dev_to_wq(struct device
*dev
)
7013 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
7018 static ssize_t
per_cpu_show(struct device
*dev
, struct device_attribute
*attr
,
7021 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7023 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (bool)!(wq
->flags
& WQ_UNBOUND
));
7025 static DEVICE_ATTR_RO(per_cpu
);
7027 static ssize_t
max_active_show(struct device
*dev
,
7028 struct device_attribute
*attr
, char *buf
)
7030 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7032 return scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->saved_max_active
);
7035 static ssize_t
max_active_store(struct device
*dev
,
7036 struct device_attribute
*attr
, const char *buf
,
7039 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7042 if (sscanf(buf
, "%d", &val
) != 1 || val
<= 0)
7045 workqueue_set_max_active(wq
, val
);
7048 static DEVICE_ATTR_RW(max_active
);
7050 static struct attribute
*wq_sysfs_attrs
[] = {
7051 &dev_attr_per_cpu
.attr
,
7052 &dev_attr_max_active
.attr
,
7055 ATTRIBUTE_GROUPS(wq_sysfs
);
7057 static ssize_t
wq_nice_show(struct device
*dev
, struct device_attribute
*attr
,
7060 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7063 mutex_lock(&wq
->mutex
);
7064 written
= scnprintf(buf
, PAGE_SIZE
, "%d\n", wq
->unbound_attrs
->nice
);
7065 mutex_unlock(&wq
->mutex
);
7070 /* prepare workqueue_attrs for sysfs store operations */
7071 static struct workqueue_attrs
*wq_sysfs_prep_attrs(struct workqueue_struct
*wq
)
7073 struct workqueue_attrs
*attrs
;
7075 lockdep_assert_held(&wq_pool_mutex
);
7077 attrs
= alloc_workqueue_attrs();
7081 copy_workqueue_attrs(attrs
, wq
->unbound_attrs
);
7085 static ssize_t
wq_nice_store(struct device
*dev
, struct device_attribute
*attr
,
7086 const char *buf
, size_t count
)
7088 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7089 struct workqueue_attrs
*attrs
;
7092 apply_wqattrs_lock();
7094 attrs
= wq_sysfs_prep_attrs(wq
);
7098 if (sscanf(buf
, "%d", &attrs
->nice
) == 1 &&
7099 attrs
->nice
>= MIN_NICE
&& attrs
->nice
<= MAX_NICE
)
7100 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
7105 apply_wqattrs_unlock();
7106 free_workqueue_attrs(attrs
);
7107 return ret
?: count
;
7110 static ssize_t
wq_cpumask_show(struct device
*dev
,
7111 struct device_attribute
*attr
, char *buf
)
7113 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7116 mutex_lock(&wq
->mutex
);
7117 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n",
7118 cpumask_pr_args(wq
->unbound_attrs
->cpumask
));
7119 mutex_unlock(&wq
->mutex
);
7123 static ssize_t
wq_cpumask_store(struct device
*dev
,
7124 struct device_attribute
*attr
,
7125 const char *buf
, size_t count
)
7127 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7128 struct workqueue_attrs
*attrs
;
7131 apply_wqattrs_lock();
7133 attrs
= wq_sysfs_prep_attrs(wq
);
7137 ret
= cpumask_parse(buf
, attrs
->cpumask
);
7139 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
7142 apply_wqattrs_unlock();
7143 free_workqueue_attrs(attrs
);
7144 return ret
?: count
;
7147 static ssize_t
wq_affn_scope_show(struct device
*dev
,
7148 struct device_attribute
*attr
, char *buf
)
7150 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7153 mutex_lock(&wq
->mutex
);
7154 if (wq
->unbound_attrs
->affn_scope
== WQ_AFFN_DFL
)
7155 written
= scnprintf(buf
, PAGE_SIZE
, "%s (%s)\n",
7156 wq_affn_names
[WQ_AFFN_DFL
],
7157 wq_affn_names
[wq_affn_dfl
]);
7159 written
= scnprintf(buf
, PAGE_SIZE
, "%s\n",
7160 wq_affn_names
[wq
->unbound_attrs
->affn_scope
]);
7161 mutex_unlock(&wq
->mutex
);
7166 static ssize_t
wq_affn_scope_store(struct device
*dev
,
7167 struct device_attribute
*attr
,
7168 const char *buf
, size_t count
)
7170 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7171 struct workqueue_attrs
*attrs
;
7172 int affn
, ret
= -ENOMEM
;
7174 affn
= parse_affn_scope(buf
);
7178 apply_wqattrs_lock();
7179 attrs
= wq_sysfs_prep_attrs(wq
);
7181 attrs
->affn_scope
= affn
;
7182 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
7184 apply_wqattrs_unlock();
7185 free_workqueue_attrs(attrs
);
7186 return ret
?: count
;
7189 static ssize_t
wq_affinity_strict_show(struct device
*dev
,
7190 struct device_attribute
*attr
, char *buf
)
7192 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7194 return scnprintf(buf
, PAGE_SIZE
, "%d\n",
7195 wq
->unbound_attrs
->affn_strict
);
7198 static ssize_t
wq_affinity_strict_store(struct device
*dev
,
7199 struct device_attribute
*attr
,
7200 const char *buf
, size_t count
)
7202 struct workqueue_struct
*wq
= dev_to_wq(dev
);
7203 struct workqueue_attrs
*attrs
;
7204 int v
, ret
= -ENOMEM
;
7206 if (sscanf(buf
, "%d", &v
) != 1)
7209 apply_wqattrs_lock();
7210 attrs
= wq_sysfs_prep_attrs(wq
);
7212 attrs
->affn_strict
= (bool)v
;
7213 ret
= apply_workqueue_attrs_locked(wq
, attrs
);
7215 apply_wqattrs_unlock();
7216 free_workqueue_attrs(attrs
);
7217 return ret
?: count
;
7220 static struct device_attribute wq_sysfs_unbound_attrs
[] = {
7221 __ATTR(nice
, 0644, wq_nice_show
, wq_nice_store
),
7222 __ATTR(cpumask
, 0644, wq_cpumask_show
, wq_cpumask_store
),
7223 __ATTR(affinity_scope
, 0644, wq_affn_scope_show
, wq_affn_scope_store
),
7224 __ATTR(affinity_strict
, 0644, wq_affinity_strict_show
, wq_affinity_strict_store
),
7228 static const struct bus_type wq_subsys
= {
7229 .name
= "workqueue",
7230 .dev_groups
= wq_sysfs_groups
,
7234 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7235 * @cpumask: the cpumask to set
7237 * The low-level workqueues cpumask is a global cpumask that limits
7238 * the affinity of all unbound workqueues. This function check the @cpumask
7239 * and apply it to all unbound workqueues and updates all pwqs of them.
7241 * Return: 0 - Success
7242 * -EINVAL - Invalid @cpumask
7243 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
7245 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask
)
7250 * Not excluding isolated cpus on purpose.
7251 * If the user wishes to include them, we allow that.
7253 cpumask_and(cpumask
, cpumask
, cpu_possible_mask
);
7254 if (!cpumask_empty(cpumask
)) {
7256 apply_wqattrs_lock();
7257 if (!cpumask_equal(cpumask
, wq_unbound_cpumask
))
7258 ret
= workqueue_apply_unbound_cpumask(cpumask
);
7260 cpumask_copy(wq_requested_unbound_cpumask
, cpumask
);
7261 apply_wqattrs_unlock();
7267 static ssize_t
__wq_cpumask_show(struct device
*dev
,
7268 struct device_attribute
*attr
, char *buf
, cpumask_var_t mask
)
7272 mutex_lock(&wq_pool_mutex
);
7273 written
= scnprintf(buf
, PAGE_SIZE
, "%*pb\n", cpumask_pr_args(mask
));
7274 mutex_unlock(&wq_pool_mutex
);
7279 static ssize_t
cpumask_requested_show(struct device
*dev
,
7280 struct device_attribute
*attr
, char *buf
)
7282 return __wq_cpumask_show(dev
, attr
, buf
, wq_requested_unbound_cpumask
);
7284 static DEVICE_ATTR_RO(cpumask_requested
);
7286 static ssize_t
cpumask_isolated_show(struct device
*dev
,
7287 struct device_attribute
*attr
, char *buf
)
7289 return __wq_cpumask_show(dev
, attr
, buf
, wq_isolated_cpumask
);
7291 static DEVICE_ATTR_RO(cpumask_isolated
);
7293 static ssize_t
cpumask_show(struct device
*dev
,
7294 struct device_attribute
*attr
, char *buf
)
7296 return __wq_cpumask_show(dev
, attr
, buf
, wq_unbound_cpumask
);
7299 static ssize_t
cpumask_store(struct device
*dev
,
7300 struct device_attribute
*attr
, const char *buf
, size_t count
)
7302 cpumask_var_t cpumask
;
7305 if (!zalloc_cpumask_var(&cpumask
, GFP_KERNEL
))
7308 ret
= cpumask_parse(buf
, cpumask
);
7310 ret
= workqueue_set_unbound_cpumask(cpumask
);
7312 free_cpumask_var(cpumask
);
7313 return ret
? ret
: count
;
7315 static DEVICE_ATTR_RW(cpumask
);
7317 static struct attribute
*wq_sysfs_cpumask_attrs
[] = {
7318 &dev_attr_cpumask
.attr
,
7319 &dev_attr_cpumask_requested
.attr
,
7320 &dev_attr_cpumask_isolated
.attr
,
7323 ATTRIBUTE_GROUPS(wq_sysfs_cpumask
);
7325 static int __init
wq_sysfs_init(void)
7327 return subsys_virtual_register(&wq_subsys
, wq_sysfs_cpumask_groups
);
7329 core_initcall(wq_sysfs_init
);
7331 static void wq_device_release(struct device
*dev
)
7333 struct wq_device
*wq_dev
= container_of(dev
, struct wq_device
, dev
);
7339 * workqueue_sysfs_register - make a workqueue visible in sysfs
7340 * @wq: the workqueue to register
7342 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7343 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7344 * which is the preferred method.
7346 * Workqueue user should use this function directly iff it wants to apply
7347 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7348 * apply_workqueue_attrs() may race against userland updating the
7351 * Return: 0 on success, -errno on failure.
7353 int workqueue_sysfs_register(struct workqueue_struct
*wq
)
7355 struct wq_device
*wq_dev
;
7359 * Adjusting max_active breaks ordering guarantee. Disallow exposing
7360 * ordered workqueues.
7362 if (WARN_ON(wq
->flags
& __WQ_ORDERED
))
7365 wq
->wq_dev
= wq_dev
= kzalloc(sizeof(*wq_dev
), GFP_KERNEL
);
7370 wq_dev
->dev
.bus
= &wq_subsys
;
7371 wq_dev
->dev
.release
= wq_device_release
;
7372 dev_set_name(&wq_dev
->dev
, "%s", wq
->name
);
7375 * unbound_attrs are created separately. Suppress uevent until
7376 * everything is ready.
7378 dev_set_uevent_suppress(&wq_dev
->dev
, true);
7380 ret
= device_register(&wq_dev
->dev
);
7382 put_device(&wq_dev
->dev
);
7387 if (wq
->flags
& WQ_UNBOUND
) {
7388 struct device_attribute
*attr
;
7390 for (attr
= wq_sysfs_unbound_attrs
; attr
->attr
.name
; attr
++) {
7391 ret
= device_create_file(&wq_dev
->dev
, attr
);
7393 device_unregister(&wq_dev
->dev
);
7400 dev_set_uevent_suppress(&wq_dev
->dev
, false);
7401 kobject_uevent(&wq_dev
->dev
.kobj
, KOBJ_ADD
);
7406 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7407 * @wq: the workqueue to unregister
7409 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7411 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
)
7413 struct wq_device
*wq_dev
= wq
->wq_dev
;
7419 device_unregister(&wq_dev
->dev
);
7421 #else /* CONFIG_SYSFS */
7422 static void workqueue_sysfs_unregister(struct workqueue_struct
*wq
) { }
7423 #endif /* CONFIG_SYSFS */
7426 * Workqueue watchdog.
7428 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7429 * flush dependency, a concurrency managed work item which stays RUNNING
7430 * indefinitely. Workqueue stalls can be very difficult to debug as the
7431 * usual warning mechanisms don't trigger and internal workqueue state is
7434 * Workqueue watchdog monitors all worker pools periodically and dumps
7435 * state if some pools failed to make forward progress for a while where
7436 * forward progress is defined as the first item on ->worklist changing.
7438 * This mechanism is controlled through the kernel parameter
7439 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7440 * corresponding sysfs parameter file.
7442 #ifdef CONFIG_WQ_WATCHDOG
7444 static unsigned long wq_watchdog_thresh
= 30;
7445 static struct timer_list wq_watchdog_timer
;
7447 static unsigned long wq_watchdog_touched
= INITIAL_JIFFIES
;
7448 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu
) = INITIAL_JIFFIES
;
7450 static unsigned int wq_panic_on_stall
;
7451 module_param_named(panic_on_stall
, wq_panic_on_stall
, uint
, 0644);
7454 * Show workers that might prevent the processing of pending work items.
7455 * The only candidates are CPU-bound workers in the running state.
7456 * Pending work items should be handled by another idle worker
7457 * in all other situations.
7459 static void show_cpu_pool_hog(struct worker_pool
*pool
)
7461 struct worker
*worker
;
7462 unsigned long irq_flags
;
7465 raw_spin_lock_irqsave(&pool
->lock
, irq_flags
);
7467 hash_for_each(pool
->busy_hash
, bkt
, worker
, hentry
) {
7468 if (task_is_running(worker
->task
)) {
7470 * Defer printing to avoid deadlocks in console
7471 * drivers that queue work while holding locks
7472 * also taken in their write paths.
7474 printk_deferred_enter();
7476 pr_info("pool %d:\n", pool
->id
);
7477 sched_show_task(worker
->task
);
7479 printk_deferred_exit();
7483 raw_spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
7486 static void show_cpu_pools_hogs(void)
7488 struct worker_pool
*pool
;
7491 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7495 for_each_pool(pool
, pi
) {
7496 if (pool
->cpu_stall
)
7497 show_cpu_pool_hog(pool
);
7504 static void panic_on_wq_watchdog(void)
7506 static unsigned int wq_stall
;
7508 if (wq_panic_on_stall
) {
7510 BUG_ON(wq_stall
>= wq_panic_on_stall
);
7514 static void wq_watchdog_reset_touched(void)
7518 wq_watchdog_touched
= jiffies
;
7519 for_each_possible_cpu(cpu
)
7520 per_cpu(wq_watchdog_touched_cpu
, cpu
) = jiffies
;
7523 static void wq_watchdog_timer_fn(struct timer_list
*unused
)
7525 unsigned long thresh
= READ_ONCE(wq_watchdog_thresh
) * HZ
;
7526 bool lockup_detected
= false;
7527 bool cpu_pool_stall
= false;
7528 unsigned long now
= jiffies
;
7529 struct worker_pool
*pool
;
7537 for_each_pool(pool
, pi
) {
7538 unsigned long pool_ts
, touched
, ts
;
7540 pool
->cpu_stall
= false;
7541 if (list_empty(&pool
->worklist
))
7545 * If a virtual machine is stopped by the host it can look to
7546 * the watchdog like a stall.
7548 kvm_check_and_clear_guest_paused();
7550 /* get the latest of pool and touched timestamps */
7552 touched
= READ_ONCE(per_cpu(wq_watchdog_touched_cpu
, pool
->cpu
));
7554 touched
= READ_ONCE(wq_watchdog_touched
);
7555 pool_ts
= READ_ONCE(pool
->watchdog_ts
);
7557 if (time_after(pool_ts
, touched
))
7563 if (time_after(now
, ts
+ thresh
)) {
7564 lockup_detected
= true;
7565 if (pool
->cpu
>= 0 && !(pool
->flags
& POOL_BH
)) {
7566 pool
->cpu_stall
= true;
7567 cpu_pool_stall
= true;
7569 pr_emerg("BUG: workqueue lockup - pool");
7570 pr_cont_pool_info(pool
);
7571 pr_cont(" stuck for %us!\n",
7572 jiffies_to_msecs(now
- pool_ts
) / 1000);
7580 if (lockup_detected
)
7581 show_all_workqueues();
7584 show_cpu_pools_hogs();
7586 if (lockup_detected
)
7587 panic_on_wq_watchdog();
7589 wq_watchdog_reset_touched();
7590 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
);
7593 notrace
void wq_watchdog_touch(int cpu
)
7595 unsigned long thresh
= READ_ONCE(wq_watchdog_thresh
) * HZ
;
7596 unsigned long touch_ts
= READ_ONCE(wq_watchdog_touched
);
7597 unsigned long now
= jiffies
;
7600 per_cpu(wq_watchdog_touched_cpu
, cpu
) = now
;
7602 WARN_ONCE(1, "%s should be called with valid CPU", __func__
);
7604 /* Don't unnecessarily store to global cacheline */
7605 if (time_after(now
, touch_ts
+ thresh
/ 4))
7606 WRITE_ONCE(wq_watchdog_touched
, jiffies
);
7609 static void wq_watchdog_set_thresh(unsigned long thresh
)
7611 wq_watchdog_thresh
= 0;
7612 del_timer_sync(&wq_watchdog_timer
);
7615 wq_watchdog_thresh
= thresh
;
7616 wq_watchdog_reset_touched();
7617 mod_timer(&wq_watchdog_timer
, jiffies
+ thresh
* HZ
);
7621 static int wq_watchdog_param_set_thresh(const char *val
,
7622 const struct kernel_param
*kp
)
7624 unsigned long thresh
;
7627 ret
= kstrtoul(val
, 0, &thresh
);
7632 wq_watchdog_set_thresh(thresh
);
7634 wq_watchdog_thresh
= thresh
;
7639 static const struct kernel_param_ops wq_watchdog_thresh_ops
= {
7640 .set
= wq_watchdog_param_set_thresh
,
7641 .get
= param_get_ulong
,
7644 module_param_cb(watchdog_thresh
, &wq_watchdog_thresh_ops
, &wq_watchdog_thresh
,
7647 static void wq_watchdog_init(void)
7649 timer_setup(&wq_watchdog_timer
, wq_watchdog_timer_fn
, TIMER_DEFERRABLE
);
7650 wq_watchdog_set_thresh(wq_watchdog_thresh
);
7653 #else /* CONFIG_WQ_WATCHDOG */
7655 static inline void wq_watchdog_init(void) { }
7657 #endif /* CONFIG_WQ_WATCHDOG */
7659 static void bh_pool_kick_normal(struct irq_work
*irq_work
)
7661 raise_softirq_irqoff(TASKLET_SOFTIRQ
);
7664 static void bh_pool_kick_highpri(struct irq_work
*irq_work
)
7666 raise_softirq_irqoff(HI_SOFTIRQ
);
7669 static void __init
restrict_unbound_cpumask(const char *name
, const struct cpumask
*mask
)
7671 if (!cpumask_intersects(wq_unbound_cpumask
, mask
)) {
7672 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7673 cpumask_pr_args(wq_unbound_cpumask
), name
, cpumask_pr_args(mask
));
7677 cpumask_and(wq_unbound_cpumask
, wq_unbound_cpumask
, mask
);
7680 static void __init
init_cpu_worker_pool(struct worker_pool
*pool
, int cpu
, int nice
)
7682 BUG_ON(init_worker_pool(pool
));
7684 cpumask_copy(pool
->attrs
->cpumask
, cpumask_of(cpu
));
7685 cpumask_copy(pool
->attrs
->__pod_cpumask
, cpumask_of(cpu
));
7686 pool
->attrs
->nice
= nice
;
7687 pool
->attrs
->affn_strict
= true;
7688 pool
->node
= cpu_to_node(cpu
);
7691 mutex_lock(&wq_pool_mutex
);
7692 BUG_ON(worker_pool_assign_id(pool
));
7693 mutex_unlock(&wq_pool_mutex
);
7697 * workqueue_init_early - early init for workqueue subsystem
7699 * This is the first step of three-staged workqueue subsystem initialization and
7700 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7701 * up. It sets up all the data structures and system workqueues and allows early
7702 * boot code to create workqueues and queue/cancel work items. Actual work item
7703 * execution starts only after kthreads can be created and scheduled right
7704 * before early initcalls.
7706 void __init
workqueue_init_early(void)
7708 struct wq_pod_type
*pt
= &wq_pod_types
[WQ_AFFN_SYSTEM
];
7709 int std_nice
[NR_STD_WORKER_POOLS
] = { 0, HIGHPRI_NICE_LEVEL
};
7710 void (*irq_work_fns
[2])(struct irq_work
*) = { bh_pool_kick_normal
,
7711 bh_pool_kick_highpri
};
7714 BUILD_BUG_ON(__alignof__(struct pool_workqueue
) < __alignof__(long long));
7716 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask
, GFP_KERNEL
));
7717 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask
, GFP_KERNEL
));
7718 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask
, GFP_KERNEL
));
7719 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask
, GFP_KERNEL
));
7721 cpumask_copy(wq_online_cpumask
, cpu_online_mask
);
7722 cpumask_copy(wq_unbound_cpumask
, cpu_possible_mask
);
7723 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ
));
7724 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN
));
7725 if (!cpumask_empty(&wq_cmdline_cpumask
))
7726 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask
);
7728 cpumask_copy(wq_requested_unbound_cpumask
, wq_unbound_cpumask
);
7730 pwq_cache
= KMEM_CACHE(pool_workqueue
, SLAB_PANIC
);
7732 unbound_wq_update_pwq_attrs_buf
= alloc_workqueue_attrs();
7733 BUG_ON(!unbound_wq_update_pwq_attrs_buf
);
7736 * If nohz_full is enabled, set power efficient workqueue as unbound.
7737 * This allows workqueue items to be moved to HK CPUs.
7739 if (housekeeping_enabled(HK_TYPE_TICK
))
7740 wq_power_efficient
= true;
7742 /* initialize WQ_AFFN_SYSTEM pods */
7743 pt
->pod_cpus
= kcalloc(1, sizeof(pt
->pod_cpus
[0]), GFP_KERNEL
);
7744 pt
->pod_node
= kcalloc(1, sizeof(pt
->pod_node
[0]), GFP_KERNEL
);
7745 pt
->cpu_pod
= kcalloc(nr_cpu_ids
, sizeof(pt
->cpu_pod
[0]), GFP_KERNEL
);
7746 BUG_ON(!pt
->pod_cpus
|| !pt
->pod_node
|| !pt
->cpu_pod
);
7748 BUG_ON(!zalloc_cpumask_var_node(&pt
->pod_cpus
[0], GFP_KERNEL
, NUMA_NO_NODE
));
7751 cpumask_copy(pt
->pod_cpus
[0], cpu_possible_mask
);
7752 pt
->pod_node
[0] = NUMA_NO_NODE
;
7755 /* initialize BH and CPU pools */
7756 for_each_possible_cpu(cpu
) {
7757 struct worker_pool
*pool
;
7760 for_each_bh_worker_pool(pool
, cpu
) {
7761 init_cpu_worker_pool(pool
, cpu
, std_nice
[i
]);
7762 pool
->flags
|= POOL_BH
;
7763 init_irq_work(bh_pool_irq_work(pool
), irq_work_fns
[i
]);
7768 for_each_cpu_worker_pool(pool
, cpu
)
7769 init_cpu_worker_pool(pool
, cpu
, std_nice
[i
++]);
7772 /* create default unbound and ordered wq attrs */
7773 for (i
= 0; i
< NR_STD_WORKER_POOLS
; i
++) {
7774 struct workqueue_attrs
*attrs
;
7776 BUG_ON(!(attrs
= alloc_workqueue_attrs()));
7777 attrs
->nice
= std_nice
[i
];
7778 unbound_std_wq_attrs
[i
] = attrs
;
7781 * An ordered wq should have only one pwq as ordering is
7782 * guaranteed by max_active which is enforced by pwqs.
7784 BUG_ON(!(attrs
= alloc_workqueue_attrs()));
7785 attrs
->nice
= std_nice
[i
];
7786 attrs
->ordered
= true;
7787 ordered_wq_attrs
[i
] = attrs
;
7790 system_wq
= alloc_workqueue("events", 0, 0);
7791 system_highpri_wq
= alloc_workqueue("events_highpri", WQ_HIGHPRI
, 0);
7792 system_long_wq
= alloc_workqueue("events_long", 0, 0);
7793 system_unbound_wq
= alloc_workqueue("events_unbound", WQ_UNBOUND
,
7795 system_freezable_wq
= alloc_workqueue("events_freezable",
7797 system_power_efficient_wq
= alloc_workqueue("events_power_efficient",
7798 WQ_POWER_EFFICIENT
, 0);
7799 system_freezable_power_efficient_wq
= alloc_workqueue("events_freezable_pwr_efficient",
7800 WQ_FREEZABLE
| WQ_POWER_EFFICIENT
,
7802 system_bh_wq
= alloc_workqueue("events_bh", WQ_BH
, 0);
7803 system_bh_highpri_wq
= alloc_workqueue("events_bh_highpri",
7804 WQ_BH
| WQ_HIGHPRI
, 0);
7805 BUG_ON(!system_wq
|| !system_highpri_wq
|| !system_long_wq
||
7806 !system_unbound_wq
|| !system_freezable_wq
||
7807 !system_power_efficient_wq
||
7808 !system_freezable_power_efficient_wq
||
7809 !system_bh_wq
|| !system_bh_highpri_wq
);
7812 static void __init
wq_cpu_intensive_thresh_init(void)
7814 unsigned long thresh
;
7817 pwq_release_worker
= kthread_create_worker(0, "pool_workqueue_release");
7818 BUG_ON(IS_ERR(pwq_release_worker
));
7820 /* if the user set it to a specific value, keep it */
7821 if (wq_cpu_intensive_thresh_us
!= ULONG_MAX
)
7825 * The default of 10ms is derived from the fact that most modern (as of
7826 * 2023) processors can do a lot in 10ms and that it's just below what
7827 * most consider human-perceivable. However, the kernel also runs on a
7828 * lot slower CPUs including microcontrollers where the threshold is way
7831 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7832 * This is by no means accurate but it doesn't have to be. The mechanism
7833 * is still useful even when the threshold is fully scaled up. Also, as
7834 * the reports would usually be applicable to everyone, some machines
7835 * operating on longer thresholds won't significantly diminish their
7838 thresh
= 10 * USEC_PER_MSEC
;
7840 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7841 bogo
= max_t(unsigned long, loops_per_jiffy
/ 500000 * HZ
, 1);
7843 thresh
= min_t(unsigned long, thresh
* 4000 / bogo
, USEC_PER_SEC
);
7845 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7846 loops_per_jiffy
, bogo
, thresh
);
7848 wq_cpu_intensive_thresh_us
= thresh
;
7852 * workqueue_init - bring workqueue subsystem fully online
7854 * This is the second step of three-staged workqueue subsystem initialization
7855 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7856 * been created and work items queued on them, but there are no kworkers
7857 * executing the work items yet. Populate the worker pools with the initial
7858 * workers and enable future kworker creations.
7860 void __init
workqueue_init(void)
7862 struct workqueue_struct
*wq
;
7863 struct worker_pool
*pool
;
7866 wq_cpu_intensive_thresh_init();
7868 mutex_lock(&wq_pool_mutex
);
7871 * Per-cpu pools created earlier could be missing node hint. Fix them
7872 * up. Also, create a rescuer for workqueues that requested it.
7874 for_each_possible_cpu(cpu
) {
7875 for_each_bh_worker_pool(pool
, cpu
)
7876 pool
->node
= cpu_to_node(cpu
);
7877 for_each_cpu_worker_pool(pool
, cpu
)
7878 pool
->node
= cpu_to_node(cpu
);
7881 list_for_each_entry(wq
, &workqueues
, list
) {
7882 WARN(init_rescuer(wq
),
7883 "workqueue: failed to create early rescuer for %s",
7887 mutex_unlock(&wq_pool_mutex
);
7890 * Create the initial workers. A BH pool has one pseudo worker that
7891 * represents the shared BH execution context and thus doesn't get
7892 * affected by hotplug events. Create the BH pseudo workers for all
7893 * possible CPUs here.
7895 for_each_possible_cpu(cpu
)
7896 for_each_bh_worker_pool(pool
, cpu
)
7897 BUG_ON(!create_worker(pool
));
7899 for_each_online_cpu(cpu
) {
7900 for_each_cpu_worker_pool(pool
, cpu
) {
7901 pool
->flags
&= ~POOL_DISASSOCIATED
;
7902 BUG_ON(!create_worker(pool
));
7906 hash_for_each(unbound_pool_hash
, bkt
, pool
, hash_node
)
7907 BUG_ON(!create_worker(pool
));
7914 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7915 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7916 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7918 static void __init
init_pod_type(struct wq_pod_type
*pt
,
7919 bool (*cpus_share_pod
)(int, int))
7921 int cur
, pre
, cpu
, pod
;
7925 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7926 pt
->cpu_pod
= kcalloc(nr_cpu_ids
, sizeof(pt
->cpu_pod
[0]), GFP_KERNEL
);
7927 BUG_ON(!pt
->cpu_pod
);
7929 for_each_possible_cpu(cur
) {
7930 for_each_possible_cpu(pre
) {
7932 pt
->cpu_pod
[cur
] = pt
->nr_pods
++;
7935 if (cpus_share_pod(cur
, pre
)) {
7936 pt
->cpu_pod
[cur
] = pt
->cpu_pod
[pre
];
7942 /* init the rest to match @pt->cpu_pod[] */
7943 pt
->pod_cpus
= kcalloc(pt
->nr_pods
, sizeof(pt
->pod_cpus
[0]), GFP_KERNEL
);
7944 pt
->pod_node
= kcalloc(pt
->nr_pods
, sizeof(pt
->pod_node
[0]), GFP_KERNEL
);
7945 BUG_ON(!pt
->pod_cpus
|| !pt
->pod_node
);
7947 for (pod
= 0; pod
< pt
->nr_pods
; pod
++)
7948 BUG_ON(!zalloc_cpumask_var(&pt
->pod_cpus
[pod
], GFP_KERNEL
));
7950 for_each_possible_cpu(cpu
) {
7951 cpumask_set_cpu(cpu
, pt
->pod_cpus
[pt
->cpu_pod
[cpu
]]);
7952 pt
->pod_node
[pt
->cpu_pod
[cpu
]] = cpu_to_node(cpu
);
7956 static bool __init
cpus_dont_share(int cpu0
, int cpu1
)
7961 static bool __init
cpus_share_smt(int cpu0
, int cpu1
)
7963 #ifdef CONFIG_SCHED_SMT
7964 return cpumask_test_cpu(cpu0
, cpu_smt_mask(cpu1
));
7970 static bool __init
cpus_share_numa(int cpu0
, int cpu1
)
7972 return cpu_to_node(cpu0
) == cpu_to_node(cpu1
);
7976 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7978 * This is the third step of three-staged workqueue subsystem initialization and
7979 * invoked after SMP and topology information are fully initialized. It
7980 * initializes the unbound CPU pods accordingly.
7982 void __init
workqueue_init_topology(void)
7984 struct workqueue_struct
*wq
;
7987 init_pod_type(&wq_pod_types
[WQ_AFFN_CPU
], cpus_dont_share
);
7988 init_pod_type(&wq_pod_types
[WQ_AFFN_SMT
], cpus_share_smt
);
7989 init_pod_type(&wq_pod_types
[WQ_AFFN_CACHE
], cpus_share_cache
);
7990 init_pod_type(&wq_pod_types
[WQ_AFFN_NUMA
], cpus_share_numa
);
7992 wq_topo_initialized
= true;
7994 mutex_lock(&wq_pool_mutex
);
7997 * Workqueues allocated earlier would have all CPUs sharing the default
7998 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7999 * and CPU combinations to apply per-pod sharing.
8001 list_for_each_entry(wq
, &workqueues
, list
) {
8002 for_each_online_cpu(cpu
)
8003 unbound_wq_update_pwq(wq
, cpu
);
8004 if (wq
->flags
& WQ_UNBOUND
) {
8005 mutex_lock(&wq
->mutex
);
8006 wq_update_node_max_active(wq
, -1);
8007 mutex_unlock(&wq
->mutex
);
8011 mutex_unlock(&wq_pool_mutex
);
8014 void __warn_flushing_systemwide_wq(void)
8016 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8019 EXPORT_SYMBOL(__warn_flushing_systemwide_wq
);
8021 static int __init
workqueue_unbound_cpus_setup(char *str
)
8023 if (cpulist_parse(str
, &wq_cmdline_cpumask
) < 0) {
8024 cpumask_clear(&wq_cmdline_cpumask
);
8025 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8030 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup
);