minmax: simplify min()/max()/clamp() implementation
[linux-stable.git] / fs / f2fs / segment.c
blob78c3198a6308f528594254995473c15feede7d9d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
35 static unsigned long __reverse_ulong(unsigned char *str)
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
47 return tmp;
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 static inline unsigned long __reverse_ffs(unsigned long word)
56 int num = 0;
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
105 if (offset >= size)
106 return size;
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
111 while (1) {
112 if (*p == 0)
113 goto pass;
115 tmp = __reverse_ulong((unsigned char *)p);
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
141 if (offset >= size)
142 return size;
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
151 tmp = __reverse_ulong((unsigned char *)p);
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
190 struct f2fs_inode_info *fi = F2FS_I(inode);
192 if (!f2fs_is_atomic_file(inode))
193 return;
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
204 F2FS_I(inode)->atomic_write_task = NULL;
206 if (clean) {
207 f2fs_i_size_write(inode, fi->original_i_size);
208 fi->original_i_size = 0;
210 /* avoid stale dirty inode during eviction */
211 sync_inode_metadata(inode, 0);
214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215 block_t new_addr, block_t *old_addr, bool recover)
217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 struct dnode_of_data dn;
219 struct node_info ni;
220 int err;
222 retry:
223 set_new_dnode(&dn, inode, NULL, NULL, 0);
224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225 if (err) {
226 if (err == -ENOMEM) {
227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 goto retry;
230 return err;
233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234 if (err) {
235 f2fs_put_dnode(&dn);
236 return err;
239 if (recover) {
240 /* dn.data_blkaddr is always valid */
241 if (!__is_valid_data_blkaddr(new_addr)) {
242 if (new_addr == NULL_ADDR)
243 dec_valid_block_count(sbi, inode, 1);
244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245 f2fs_update_data_blkaddr(&dn, new_addr);
246 } else {
247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248 new_addr, ni.version, true, true);
250 } else {
251 blkcnt_t count = 1;
253 err = inc_valid_block_count(sbi, inode, &count, true);
254 if (err) {
255 f2fs_put_dnode(&dn);
256 return err;
259 *old_addr = dn.data_blkaddr;
260 f2fs_truncate_data_blocks_range(&dn, 1);
261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264 ni.version, true, false);
267 f2fs_put_dnode(&dn);
269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270 index, old_addr ? *old_addr : 0, new_addr, recover);
271 return 0;
274 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275 bool revoke)
277 struct revoke_entry *cur, *tmp;
278 pgoff_t start_index = 0;
279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
281 list_for_each_entry_safe(cur, tmp, head, list) {
282 if (revoke) {
283 __replace_atomic_write_block(inode, cur->index,
284 cur->old_addr, NULL, true);
285 } else if (truncate) {
286 f2fs_truncate_hole(inode, start_index, cur->index);
287 start_index = cur->index + 1;
290 list_del(&cur->list);
291 kmem_cache_free(revoke_entry_slab, cur);
294 if (!revoke && truncate)
295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
298 static int __f2fs_commit_atomic_write(struct inode *inode)
300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 struct inode *cow_inode = fi->cow_inode;
303 struct revoke_entry *new;
304 struct list_head revoke_list;
305 block_t blkaddr;
306 struct dnode_of_data dn;
307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308 pgoff_t off = 0, blen, index;
309 int ret = 0, i;
311 INIT_LIST_HEAD(&revoke_list);
313 while (len) {
314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318 if (ret && ret != -ENOENT) {
319 goto out;
320 } else if (ret == -ENOENT) {
321 ret = 0;
322 if (dn.max_level == 0)
323 goto out;
324 goto next;
327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328 len);
329 index = off;
330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331 blkaddr = f2fs_data_blkaddr(&dn);
333 if (!__is_valid_data_blkaddr(blkaddr)) {
334 continue;
335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336 DATA_GENERIC_ENHANCE)) {
337 f2fs_put_dnode(&dn);
338 ret = -EFSCORRUPTED;
339 goto out;
342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 true, NULL);
345 ret = __replace_atomic_write_block(inode, index, blkaddr,
346 &new->old_addr, false);
347 if (ret) {
348 f2fs_put_dnode(&dn);
349 kmem_cache_free(revoke_entry_slab, new);
350 goto out;
353 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 new->index = index;
355 list_add_tail(&new->list, &revoke_list);
357 f2fs_put_dnode(&dn);
358 next:
359 off += blen;
360 len -= blen;
363 out:
364 if (ret) {
365 sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 } else {
367 sbi->committed_atomic_block += fi->atomic_write_cnt;
368 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
371 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
373 return ret;
376 int f2fs_commit_atomic_write(struct inode *inode)
378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 struct f2fs_inode_info *fi = F2FS_I(inode);
380 int err;
382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 if (err)
384 return err;
386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 f2fs_lock_op(sbi);
389 err = __f2fs_commit_atomic_write(inode);
391 f2fs_unlock_op(sbi);
392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
394 return err;
398 * This function balances dirty node and dentry pages.
399 * In addition, it controls garbage collection.
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
403 if (f2fs_cp_error(sbi))
404 return;
406 if (time_to_inject(sbi, FAULT_CHECKPOINT))
407 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
409 /* balance_fs_bg is able to be pending */
410 if (need && excess_cached_nats(sbi))
411 f2fs_balance_fs_bg(sbi, false);
413 if (!f2fs_is_checkpoint_ready(sbi))
414 return;
417 * We should do GC or end up with checkpoint, if there are so many dirty
418 * dir/node pages without enough free segments.
420 if (has_enough_free_secs(sbi, 0, 0))
421 return;
423 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
424 sbi->gc_thread->f2fs_gc_task) {
425 DEFINE_WAIT(wait);
427 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
428 TASK_UNINTERRUPTIBLE);
429 wake_up(&sbi->gc_thread->gc_wait_queue_head);
430 io_schedule();
431 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
432 } else {
433 struct f2fs_gc_control gc_control = {
434 .victim_segno = NULL_SEGNO,
435 .init_gc_type = BG_GC,
436 .no_bg_gc = true,
437 .should_migrate_blocks = false,
438 .err_gc_skipped = false,
439 .nr_free_secs = 1 };
440 f2fs_down_write(&sbi->gc_lock);
441 stat_inc_gc_call_count(sbi, FOREGROUND);
442 f2fs_gc(sbi, &gc_control);
446 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
448 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
449 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
450 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
451 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
452 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
453 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
454 unsigned int threshold =
455 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
456 unsigned int global_threshold = threshold * 3 / 2;
458 if (dents >= threshold || qdata >= threshold ||
459 nodes >= threshold || meta >= threshold ||
460 imeta >= threshold)
461 return true;
462 return dents + qdata + nodes + meta + imeta > global_threshold;
465 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 return;
470 /* try to shrink extent cache when there is no enough memory */
471 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
472 f2fs_shrink_read_extent_tree(sbi,
473 READ_EXTENT_CACHE_SHRINK_NUMBER);
475 /* try to shrink age extent cache when there is no enough memory */
476 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
477 f2fs_shrink_age_extent_tree(sbi,
478 AGE_EXTENT_CACHE_SHRINK_NUMBER);
480 /* check the # of cached NAT entries */
481 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
482 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
484 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
485 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
486 else
487 f2fs_build_free_nids(sbi, false, false);
489 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
490 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
491 goto do_sync;
493 /* there is background inflight IO or foreground operation recently */
494 if (is_inflight_io(sbi, REQ_TIME) ||
495 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
496 return;
498 /* exceed periodical checkpoint timeout threshold */
499 if (f2fs_time_over(sbi, CP_TIME))
500 goto do_sync;
502 /* checkpoint is the only way to shrink partial cached entries */
503 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
504 f2fs_available_free_memory(sbi, INO_ENTRIES))
505 return;
507 do_sync:
508 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
509 struct blk_plug plug;
511 mutex_lock(&sbi->flush_lock);
513 blk_start_plug(&plug);
514 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
515 blk_finish_plug(&plug);
517 mutex_unlock(&sbi->flush_lock);
519 stat_inc_cp_call_count(sbi, BACKGROUND);
520 f2fs_sync_fs(sbi->sb, 1);
523 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
524 struct block_device *bdev)
526 int ret = blkdev_issue_flush(bdev);
528 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
529 test_opt(sbi, FLUSH_MERGE), ret);
530 if (!ret)
531 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
532 return ret;
535 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
537 int ret = 0;
538 int i;
540 if (!f2fs_is_multi_device(sbi))
541 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
543 for (i = 0; i < sbi->s_ndevs; i++) {
544 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
545 continue;
546 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
547 if (ret)
548 break;
550 return ret;
553 static int issue_flush_thread(void *data)
555 struct f2fs_sb_info *sbi = data;
556 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
557 wait_queue_head_t *q = &fcc->flush_wait_queue;
558 repeat:
559 if (kthread_should_stop())
560 return 0;
562 if (!llist_empty(&fcc->issue_list)) {
563 struct flush_cmd *cmd, *next;
564 int ret;
566 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
567 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
569 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
571 ret = submit_flush_wait(sbi, cmd->ino);
572 atomic_inc(&fcc->issued_flush);
574 llist_for_each_entry_safe(cmd, next,
575 fcc->dispatch_list, llnode) {
576 cmd->ret = ret;
577 complete(&cmd->wait);
579 fcc->dispatch_list = NULL;
582 wait_event_interruptible(*q,
583 kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 goto repeat;
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 struct flush_cmd cmd;
591 int ret;
593 if (test_opt(sbi, NOBARRIER))
594 return 0;
596 if (!test_opt(sbi, FLUSH_MERGE)) {
597 atomic_inc(&fcc->queued_flush);
598 ret = submit_flush_wait(sbi, ino);
599 atomic_dec(&fcc->queued_flush);
600 atomic_inc(&fcc->issued_flush);
601 return ret;
604 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
605 f2fs_is_multi_device(sbi)) {
606 ret = submit_flush_wait(sbi, ino);
607 atomic_dec(&fcc->queued_flush);
609 atomic_inc(&fcc->issued_flush);
610 return ret;
613 cmd.ino = ino;
614 init_completion(&cmd.wait);
616 llist_add(&cmd.llnode, &fcc->issue_list);
619 * update issue_list before we wake up issue_flush thread, this
620 * smp_mb() pairs with another barrier in ___wait_event(), see
621 * more details in comments of waitqueue_active().
623 smp_mb();
625 if (waitqueue_active(&fcc->flush_wait_queue))
626 wake_up(&fcc->flush_wait_queue);
628 if (fcc->f2fs_issue_flush) {
629 wait_for_completion(&cmd.wait);
630 atomic_dec(&fcc->queued_flush);
631 } else {
632 struct llist_node *list;
634 list = llist_del_all(&fcc->issue_list);
635 if (!list) {
636 wait_for_completion(&cmd.wait);
637 atomic_dec(&fcc->queued_flush);
638 } else {
639 struct flush_cmd *tmp, *next;
641 ret = submit_flush_wait(sbi, ino);
643 llist_for_each_entry_safe(tmp, next, list, llnode) {
644 if (tmp == &cmd) {
645 cmd.ret = ret;
646 atomic_dec(&fcc->queued_flush);
647 continue;
649 tmp->ret = ret;
650 complete(&tmp->wait);
655 return cmd.ret;
658 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
660 dev_t dev = sbi->sb->s_bdev->bd_dev;
661 struct flush_cmd_control *fcc;
663 if (SM_I(sbi)->fcc_info) {
664 fcc = SM_I(sbi)->fcc_info;
665 if (fcc->f2fs_issue_flush)
666 return 0;
667 goto init_thread;
670 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
671 if (!fcc)
672 return -ENOMEM;
673 atomic_set(&fcc->issued_flush, 0);
674 atomic_set(&fcc->queued_flush, 0);
675 init_waitqueue_head(&fcc->flush_wait_queue);
676 init_llist_head(&fcc->issue_list);
677 SM_I(sbi)->fcc_info = fcc;
678 if (!test_opt(sbi, FLUSH_MERGE))
679 return 0;
681 init_thread:
682 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
683 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
684 if (IS_ERR(fcc->f2fs_issue_flush)) {
685 int err = PTR_ERR(fcc->f2fs_issue_flush);
687 fcc->f2fs_issue_flush = NULL;
688 return err;
691 return 0;
694 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
696 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
698 if (fcc && fcc->f2fs_issue_flush) {
699 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
701 fcc->f2fs_issue_flush = NULL;
702 kthread_stop(flush_thread);
704 if (free) {
705 kfree(fcc);
706 SM_I(sbi)->fcc_info = NULL;
710 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
712 int ret = 0, i;
714 if (!f2fs_is_multi_device(sbi))
715 return 0;
717 if (test_opt(sbi, NOBARRIER))
718 return 0;
720 for (i = 1; i < sbi->s_ndevs; i++) {
721 int count = DEFAULT_RETRY_IO_COUNT;
723 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
724 continue;
726 do {
727 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
728 if (ret)
729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
730 } while (ret && --count);
732 if (ret) {
733 f2fs_stop_checkpoint(sbi, false,
734 STOP_CP_REASON_FLUSH_FAIL);
735 break;
738 spin_lock(&sbi->dev_lock);
739 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
740 spin_unlock(&sbi->dev_lock);
743 return ret;
746 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
747 enum dirty_type dirty_type)
749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
751 /* need not be added */
752 if (IS_CURSEG(sbi, segno))
753 return;
755 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
756 dirty_i->nr_dirty[dirty_type]++;
758 if (dirty_type == DIRTY) {
759 struct seg_entry *sentry = get_seg_entry(sbi, segno);
760 enum dirty_type t = sentry->type;
762 if (unlikely(t >= DIRTY)) {
763 f2fs_bug_on(sbi, 1);
764 return;
766 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
767 dirty_i->nr_dirty[t]++;
769 if (__is_large_section(sbi)) {
770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771 block_t valid_blocks =
772 get_valid_blocks(sbi, segno, true);
774 f2fs_bug_on(sbi,
775 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
776 !valid_blocks) ||
777 valid_blocks == CAP_BLKS_PER_SEC(sbi));
779 if (!IS_CURSEC(sbi, secno))
780 set_bit(secno, dirty_i->dirty_secmap);
785 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
786 enum dirty_type dirty_type)
788 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
789 block_t valid_blocks;
791 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
792 dirty_i->nr_dirty[dirty_type]--;
794 if (dirty_type == DIRTY) {
795 struct seg_entry *sentry = get_seg_entry(sbi, segno);
796 enum dirty_type t = sentry->type;
798 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
799 dirty_i->nr_dirty[t]--;
801 valid_blocks = get_valid_blocks(sbi, segno, true);
802 if (valid_blocks == 0) {
803 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
804 dirty_i->victim_secmap);
805 #ifdef CONFIG_F2FS_CHECK_FS
806 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
807 #endif
809 if (__is_large_section(sbi)) {
810 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
812 if (!valid_blocks ||
813 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
814 clear_bit(secno, dirty_i->dirty_secmap);
815 return;
818 if (!IS_CURSEC(sbi, secno))
819 set_bit(secno, dirty_i->dirty_secmap);
825 * Should not occur error such as -ENOMEM.
826 * Adding dirty entry into seglist is not critical operation.
827 * If a given segment is one of current working segments, it won't be added.
829 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
831 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
832 unsigned short valid_blocks, ckpt_valid_blocks;
833 unsigned int usable_blocks;
835 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
836 return;
838 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
839 mutex_lock(&dirty_i->seglist_lock);
841 valid_blocks = get_valid_blocks(sbi, segno, false);
842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 ckpt_valid_blocks == usable_blocks)) {
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 } else if (valid_blocks < usable_blocks) {
849 __locate_dirty_segment(sbi, segno, DIRTY);
850 } else {
851 /* Recovery routine with SSR needs this */
852 __remove_dirty_segment(sbi, segno, DIRTY);
855 mutex_unlock(&dirty_i->seglist_lock);
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 unsigned int segno;
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 if (get_valid_blocks(sbi, segno, false))
867 continue;
868 if (IS_CURSEG(sbi, segno))
869 continue;
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
873 mutex_unlock(&dirty_i->seglist_lock);
876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
878 int ovp_hole_segs =
879 (overprovision_segments(sbi) - reserved_segments(sbi));
880 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 block_t holes[2] = {0, 0}; /* DATA and NODE */
883 block_t unusable;
884 struct seg_entry *se;
885 unsigned int segno;
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 se = get_seg_entry(sbi, segno);
890 if (IS_NODESEG(se->type))
891 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
892 se->valid_blocks;
893 else
894 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
895 se->valid_blocks;
897 mutex_unlock(&dirty_i->seglist_lock);
899 unusable = max(holes[DATA], holes[NODE]);
900 if (unusable > ovp_holes)
901 return unusable - ovp_holes;
902 return 0;
905 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
907 int ovp_hole_segs =
908 (overprovision_segments(sbi) - reserved_segments(sbi));
910 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
911 return 0;
912 if (unusable > F2FS_OPTION(sbi).unusable_cap)
913 return -EAGAIN;
914 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
915 dirty_segments(sbi) > ovp_hole_segs)
916 return -EAGAIN;
917 if (has_not_enough_free_secs(sbi, 0, 0))
918 return -EAGAIN;
919 return 0;
922 /* This is only used by SBI_CP_DISABLED */
923 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926 unsigned int segno = 0;
928 mutex_lock(&dirty_i->seglist_lock);
929 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
930 if (get_valid_blocks(sbi, segno, false))
931 continue;
932 if (get_ckpt_valid_blocks(sbi, segno, false))
933 continue;
934 mutex_unlock(&dirty_i->seglist_lock);
935 return segno;
937 mutex_unlock(&dirty_i->seglist_lock);
938 return NULL_SEGNO;
941 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
942 struct block_device *bdev, block_t lstart,
943 block_t start, block_t len)
945 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
946 struct list_head *pend_list;
947 struct discard_cmd *dc;
949 f2fs_bug_on(sbi, !len);
951 pend_list = &dcc->pend_list[plist_idx(len)];
953 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
954 INIT_LIST_HEAD(&dc->list);
955 dc->bdev = bdev;
956 dc->di.lstart = lstart;
957 dc->di.start = start;
958 dc->di.len = len;
959 dc->ref = 0;
960 dc->state = D_PREP;
961 dc->queued = 0;
962 dc->error = 0;
963 init_completion(&dc->wait);
964 list_add_tail(&dc->list, pend_list);
965 spin_lock_init(&dc->lock);
966 dc->bio_ref = 0;
967 atomic_inc(&dcc->discard_cmd_cnt);
968 dcc->undiscard_blks += len;
970 return dc;
973 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
975 #ifdef CONFIG_F2FS_CHECK_FS
976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
978 struct discard_cmd *cur_dc, *next_dc;
980 while (cur) {
981 next = rb_next(cur);
982 if (!next)
983 return true;
985 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
986 next_dc = rb_entry(next, struct discard_cmd, rb_node);
988 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
989 f2fs_info(sbi, "broken discard_rbtree, "
990 "cur(%u, %u) next(%u, %u)",
991 cur_dc->di.lstart, cur_dc->di.len,
992 next_dc->di.lstart, next_dc->di.len);
993 return false;
995 cur = next;
997 #endif
998 return true;
1001 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1002 block_t blkaddr)
1004 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1005 struct rb_node *node = dcc->root.rb_root.rb_node;
1006 struct discard_cmd *dc;
1008 while (node) {
1009 dc = rb_entry(node, struct discard_cmd, rb_node);
1011 if (blkaddr < dc->di.lstart)
1012 node = node->rb_left;
1013 else if (blkaddr >= dc->di.lstart + dc->di.len)
1014 node = node->rb_right;
1015 else
1016 return dc;
1018 return NULL;
1021 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1022 block_t blkaddr,
1023 struct discard_cmd **prev_entry,
1024 struct discard_cmd **next_entry,
1025 struct rb_node ***insert_p,
1026 struct rb_node **insert_parent)
1028 struct rb_node **pnode = &root->rb_root.rb_node;
1029 struct rb_node *parent = NULL, *tmp_node;
1030 struct discard_cmd *dc;
1032 *insert_p = NULL;
1033 *insert_parent = NULL;
1034 *prev_entry = NULL;
1035 *next_entry = NULL;
1037 if (RB_EMPTY_ROOT(&root->rb_root))
1038 return NULL;
1040 while (*pnode) {
1041 parent = *pnode;
1042 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1044 if (blkaddr < dc->di.lstart)
1045 pnode = &(*pnode)->rb_left;
1046 else if (blkaddr >= dc->di.lstart + dc->di.len)
1047 pnode = &(*pnode)->rb_right;
1048 else
1049 goto lookup_neighbors;
1052 *insert_p = pnode;
1053 *insert_parent = parent;
1055 dc = rb_entry(parent, struct discard_cmd, rb_node);
1056 tmp_node = parent;
1057 if (parent && blkaddr > dc->di.lstart)
1058 tmp_node = rb_next(parent);
1059 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1061 tmp_node = parent;
1062 if (parent && blkaddr < dc->di.lstart)
1063 tmp_node = rb_prev(parent);
1064 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 return NULL;
1067 lookup_neighbors:
1068 /* lookup prev node for merging backward later */
1069 tmp_node = rb_prev(&dc->rb_node);
1070 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1072 /* lookup next node for merging frontward later */
1073 tmp_node = rb_next(&dc->rb_node);
1074 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1075 return dc;
1078 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1079 struct discard_cmd *dc)
1081 if (dc->state == D_DONE)
1082 atomic_sub(dc->queued, &dcc->queued_discard);
1084 list_del(&dc->list);
1085 rb_erase_cached(&dc->rb_node, &dcc->root);
1086 dcc->undiscard_blks -= dc->di.len;
1088 kmem_cache_free(discard_cmd_slab, dc);
1090 atomic_dec(&dcc->discard_cmd_cnt);
1093 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1094 struct discard_cmd *dc)
1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097 unsigned long flags;
1099 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1101 spin_lock_irqsave(&dc->lock, flags);
1102 if (dc->bio_ref) {
1103 spin_unlock_irqrestore(&dc->lock, flags);
1104 return;
1106 spin_unlock_irqrestore(&dc->lock, flags);
1108 f2fs_bug_on(sbi, dc->ref);
1110 if (dc->error == -EOPNOTSUPP)
1111 dc->error = 0;
1113 if (dc->error)
1114 f2fs_info_ratelimited(sbi,
1115 "Issue discard(%u, %u, %u) failed, ret: %d",
1116 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1117 __detach_discard_cmd(dcc, dc);
1120 static void f2fs_submit_discard_endio(struct bio *bio)
1122 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1123 unsigned long flags;
1125 spin_lock_irqsave(&dc->lock, flags);
1126 if (!dc->error)
1127 dc->error = blk_status_to_errno(bio->bi_status);
1128 dc->bio_ref--;
1129 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1130 dc->state = D_DONE;
1131 complete_all(&dc->wait);
1133 spin_unlock_irqrestore(&dc->lock, flags);
1134 bio_put(bio);
1137 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1138 block_t start, block_t end)
1140 #ifdef CONFIG_F2FS_CHECK_FS
1141 struct seg_entry *sentry;
1142 unsigned int segno;
1143 block_t blk = start;
1144 unsigned long offset, size, *map;
1146 while (blk < end) {
1147 segno = GET_SEGNO(sbi, blk);
1148 sentry = get_seg_entry(sbi, segno);
1149 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1151 if (end < START_BLOCK(sbi, segno + 1))
1152 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1153 else
1154 size = BLKS_PER_SEG(sbi);
1155 map = (unsigned long *)(sentry->cur_valid_map);
1156 offset = __find_rev_next_bit(map, size, offset);
1157 f2fs_bug_on(sbi, offset != size);
1158 blk = START_BLOCK(sbi, segno + 1);
1160 #endif
1163 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1164 struct discard_policy *dpolicy,
1165 int discard_type, unsigned int granularity)
1167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1169 /* common policy */
1170 dpolicy->type = discard_type;
1171 dpolicy->sync = true;
1172 dpolicy->ordered = false;
1173 dpolicy->granularity = granularity;
1175 dpolicy->max_requests = dcc->max_discard_request;
1176 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1177 dpolicy->timeout = false;
1179 if (discard_type == DPOLICY_BG) {
1180 dpolicy->min_interval = dcc->min_discard_issue_time;
1181 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1182 dpolicy->max_interval = dcc->max_discard_issue_time;
1183 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1184 dpolicy->io_aware = true;
1185 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1186 dpolicy->io_aware = false;
1187 dpolicy->sync = false;
1188 dpolicy->ordered = true;
1189 if (utilization(sbi) > dcc->discard_urgent_util) {
1190 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1191 if (atomic_read(&dcc->discard_cmd_cnt))
1192 dpolicy->max_interval =
1193 dcc->min_discard_issue_time;
1195 } else if (discard_type == DPOLICY_FORCE) {
1196 dpolicy->min_interval = dcc->min_discard_issue_time;
1197 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1198 dpolicy->max_interval = dcc->max_discard_issue_time;
1199 dpolicy->io_aware = false;
1200 } else if (discard_type == DPOLICY_FSTRIM) {
1201 dpolicy->io_aware = false;
1202 } else if (discard_type == DPOLICY_UMOUNT) {
1203 dpolicy->io_aware = false;
1204 /* we need to issue all to keep CP_TRIMMED_FLAG */
1205 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1206 dpolicy->timeout = true;
1210 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1211 struct block_device *bdev, block_t lstart,
1212 block_t start, block_t len);
1214 #ifdef CONFIG_BLK_DEV_ZONED
1215 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1216 struct discard_cmd *dc, blk_opf_t flag,
1217 struct list_head *wait_list,
1218 unsigned int *issued)
1220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221 struct block_device *bdev = dc->bdev;
1222 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1223 unsigned long flags;
1225 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1227 spin_lock_irqsave(&dc->lock, flags);
1228 dc->state = D_SUBMIT;
1229 dc->bio_ref++;
1230 spin_unlock_irqrestore(&dc->lock, flags);
1232 if (issued)
1233 (*issued)++;
1235 atomic_inc(&dcc->queued_discard);
1236 dc->queued++;
1237 list_move_tail(&dc->list, wait_list);
1239 /* sanity check on discard range */
1240 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1242 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1243 bio->bi_private = dc;
1244 bio->bi_end_io = f2fs_submit_discard_endio;
1245 submit_bio(bio);
1247 atomic_inc(&dcc->issued_discard);
1248 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1250 #endif
1252 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1253 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1254 struct discard_policy *dpolicy,
1255 struct discard_cmd *dc, int *issued)
1257 struct block_device *bdev = dc->bdev;
1258 unsigned int max_discard_blocks =
1259 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1261 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1262 &(dcc->fstrim_list) : &(dcc->wait_list);
1263 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1264 block_t lstart, start, len, total_len;
1265 int err = 0;
1267 if (dc->state != D_PREP)
1268 return 0;
1270 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1271 return 0;
1273 #ifdef CONFIG_BLK_DEV_ZONED
1274 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1275 int devi = f2fs_bdev_index(sbi, bdev);
1277 if (devi < 0)
1278 return -EINVAL;
1280 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1281 __submit_zone_reset_cmd(sbi, dc, flag,
1282 wait_list, issued);
1283 return 0;
1286 #endif
1288 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1290 lstart = dc->di.lstart;
1291 start = dc->di.start;
1292 len = dc->di.len;
1293 total_len = len;
1295 dc->di.len = 0;
1297 while (total_len && *issued < dpolicy->max_requests && !err) {
1298 struct bio *bio = NULL;
1299 unsigned long flags;
1300 bool last = true;
1302 if (len > max_discard_blocks) {
1303 len = max_discard_blocks;
1304 last = false;
1307 (*issued)++;
1308 if (*issued == dpolicy->max_requests)
1309 last = true;
1311 dc->di.len += len;
1313 if (time_to_inject(sbi, FAULT_DISCARD)) {
1314 err = -EIO;
1315 } else {
1316 err = __blkdev_issue_discard(bdev,
1317 SECTOR_FROM_BLOCK(start),
1318 SECTOR_FROM_BLOCK(len),
1319 GFP_NOFS, &bio);
1321 if (err) {
1322 spin_lock_irqsave(&dc->lock, flags);
1323 if (dc->state == D_PARTIAL)
1324 dc->state = D_SUBMIT;
1325 spin_unlock_irqrestore(&dc->lock, flags);
1327 break;
1330 f2fs_bug_on(sbi, !bio);
1333 * should keep before submission to avoid D_DONE
1334 * right away
1336 spin_lock_irqsave(&dc->lock, flags);
1337 if (last)
1338 dc->state = D_SUBMIT;
1339 else
1340 dc->state = D_PARTIAL;
1341 dc->bio_ref++;
1342 spin_unlock_irqrestore(&dc->lock, flags);
1344 atomic_inc(&dcc->queued_discard);
1345 dc->queued++;
1346 list_move_tail(&dc->list, wait_list);
1348 /* sanity check on discard range */
1349 __check_sit_bitmap(sbi, lstart, lstart + len);
1351 bio->bi_private = dc;
1352 bio->bi_end_io = f2fs_submit_discard_endio;
1353 bio->bi_opf |= flag;
1354 submit_bio(bio);
1356 atomic_inc(&dcc->issued_discard);
1358 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1360 lstart += len;
1361 start += len;
1362 total_len -= len;
1363 len = total_len;
1366 if (!err && len) {
1367 dcc->undiscard_blks -= len;
1368 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1370 return err;
1373 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1374 struct block_device *bdev, block_t lstart,
1375 block_t start, block_t len)
1377 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378 struct rb_node **p = &dcc->root.rb_root.rb_node;
1379 struct rb_node *parent = NULL;
1380 struct discard_cmd *dc;
1381 bool leftmost = true;
1383 /* look up rb tree to find parent node */
1384 while (*p) {
1385 parent = *p;
1386 dc = rb_entry(parent, struct discard_cmd, rb_node);
1388 if (lstart < dc->di.lstart) {
1389 p = &(*p)->rb_left;
1390 } else if (lstart >= dc->di.lstart + dc->di.len) {
1391 p = &(*p)->rb_right;
1392 leftmost = false;
1393 } else {
1394 /* Let's skip to add, if exists */
1395 return;
1399 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1401 rb_link_node(&dc->rb_node, parent, p);
1402 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1405 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1406 struct discard_cmd *dc)
1408 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1411 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1412 struct discard_cmd *dc, block_t blkaddr)
1414 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1415 struct discard_info di = dc->di;
1416 bool modified = false;
1418 if (dc->state == D_DONE || dc->di.len == 1) {
1419 __remove_discard_cmd(sbi, dc);
1420 return;
1423 dcc->undiscard_blks -= di.len;
1425 if (blkaddr > di.lstart) {
1426 dc->di.len = blkaddr - dc->di.lstart;
1427 dcc->undiscard_blks += dc->di.len;
1428 __relocate_discard_cmd(dcc, dc);
1429 modified = true;
1432 if (blkaddr < di.lstart + di.len - 1) {
1433 if (modified) {
1434 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1435 di.start + blkaddr + 1 - di.lstart,
1436 di.lstart + di.len - 1 - blkaddr);
1437 } else {
1438 dc->di.lstart++;
1439 dc->di.len--;
1440 dc->di.start++;
1441 dcc->undiscard_blks += dc->di.len;
1442 __relocate_discard_cmd(dcc, dc);
1447 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1448 struct block_device *bdev, block_t lstart,
1449 block_t start, block_t len)
1451 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1452 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1453 struct discard_cmd *dc;
1454 struct discard_info di = {0};
1455 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1456 unsigned int max_discard_blocks =
1457 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1458 block_t end = lstart + len;
1460 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1461 &prev_dc, &next_dc, &insert_p, &insert_parent);
1462 if (dc)
1463 prev_dc = dc;
1465 if (!prev_dc) {
1466 di.lstart = lstart;
1467 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1468 di.len = min(di.len, len);
1469 di.start = start;
1472 while (1) {
1473 struct rb_node *node;
1474 bool merged = false;
1475 struct discard_cmd *tdc = NULL;
1477 if (prev_dc) {
1478 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1479 if (di.lstart < lstart)
1480 di.lstart = lstart;
1481 if (di.lstart >= end)
1482 break;
1484 if (!next_dc || next_dc->di.lstart > end)
1485 di.len = end - di.lstart;
1486 else
1487 di.len = next_dc->di.lstart - di.lstart;
1488 di.start = start + di.lstart - lstart;
1491 if (!di.len)
1492 goto next;
1494 if (prev_dc && prev_dc->state == D_PREP &&
1495 prev_dc->bdev == bdev &&
1496 __is_discard_back_mergeable(&di, &prev_dc->di,
1497 max_discard_blocks)) {
1498 prev_dc->di.len += di.len;
1499 dcc->undiscard_blks += di.len;
1500 __relocate_discard_cmd(dcc, prev_dc);
1501 di = prev_dc->di;
1502 tdc = prev_dc;
1503 merged = true;
1506 if (next_dc && next_dc->state == D_PREP &&
1507 next_dc->bdev == bdev &&
1508 __is_discard_front_mergeable(&di, &next_dc->di,
1509 max_discard_blocks)) {
1510 next_dc->di.lstart = di.lstart;
1511 next_dc->di.len += di.len;
1512 next_dc->di.start = di.start;
1513 dcc->undiscard_blks += di.len;
1514 __relocate_discard_cmd(dcc, next_dc);
1515 if (tdc)
1516 __remove_discard_cmd(sbi, tdc);
1517 merged = true;
1520 if (!merged)
1521 __insert_discard_cmd(sbi, bdev,
1522 di.lstart, di.start, di.len);
1523 next:
1524 prev_dc = next_dc;
1525 if (!prev_dc)
1526 break;
1528 node = rb_next(&prev_dc->rb_node);
1529 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1533 #ifdef CONFIG_BLK_DEV_ZONED
1534 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1535 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1536 block_t blklen)
1538 trace_f2fs_queue_reset_zone(bdev, blkstart);
1540 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1541 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1542 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1544 #endif
1546 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1547 struct block_device *bdev, block_t blkstart, block_t blklen)
1549 block_t lblkstart = blkstart;
1551 if (!f2fs_bdev_support_discard(bdev))
1552 return;
1554 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1556 if (f2fs_is_multi_device(sbi)) {
1557 int devi = f2fs_target_device_index(sbi, blkstart);
1559 blkstart -= FDEV(devi).start_blk;
1561 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1562 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1563 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1566 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1567 struct discard_policy *dpolicy, int *issued)
1569 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1570 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1571 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1572 struct discard_cmd *dc;
1573 struct blk_plug plug;
1574 bool io_interrupted = false;
1576 mutex_lock(&dcc->cmd_lock);
1577 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1578 &prev_dc, &next_dc, &insert_p, &insert_parent);
1579 if (!dc)
1580 dc = next_dc;
1582 blk_start_plug(&plug);
1584 while (dc) {
1585 struct rb_node *node;
1586 int err = 0;
1588 if (dc->state != D_PREP)
1589 goto next;
1591 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1592 io_interrupted = true;
1593 break;
1596 dcc->next_pos = dc->di.lstart + dc->di.len;
1597 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1599 if (*issued >= dpolicy->max_requests)
1600 break;
1601 next:
1602 node = rb_next(&dc->rb_node);
1603 if (err)
1604 __remove_discard_cmd(sbi, dc);
1605 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1608 blk_finish_plug(&plug);
1610 if (!dc)
1611 dcc->next_pos = 0;
1613 mutex_unlock(&dcc->cmd_lock);
1615 if (!(*issued) && io_interrupted)
1616 *issued = -1;
1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1619 struct discard_policy *dpolicy);
1621 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1622 struct discard_policy *dpolicy)
1624 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1625 struct list_head *pend_list;
1626 struct discard_cmd *dc, *tmp;
1627 struct blk_plug plug;
1628 int i, issued;
1629 bool io_interrupted = false;
1631 if (dpolicy->timeout)
1632 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1634 retry:
1635 issued = 0;
1636 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1637 if (dpolicy->timeout &&
1638 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1639 break;
1641 if (i + 1 < dpolicy->granularity)
1642 break;
1644 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1645 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1646 return issued;
1649 pend_list = &dcc->pend_list[i];
1651 mutex_lock(&dcc->cmd_lock);
1652 if (list_empty(pend_list))
1653 goto next;
1654 if (unlikely(dcc->rbtree_check))
1655 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1656 blk_start_plug(&plug);
1657 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1658 f2fs_bug_on(sbi, dc->state != D_PREP);
1660 if (dpolicy->timeout &&
1661 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1662 break;
1664 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1665 !is_idle(sbi, DISCARD_TIME)) {
1666 io_interrupted = true;
1667 break;
1670 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1672 if (issued >= dpolicy->max_requests)
1673 break;
1675 blk_finish_plug(&plug);
1676 next:
1677 mutex_unlock(&dcc->cmd_lock);
1679 if (issued >= dpolicy->max_requests || io_interrupted)
1680 break;
1683 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1684 __wait_all_discard_cmd(sbi, dpolicy);
1685 goto retry;
1688 if (!issued && io_interrupted)
1689 issued = -1;
1691 return issued;
1694 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 struct list_head *pend_list;
1698 struct discard_cmd *dc, *tmp;
1699 int i;
1700 bool dropped = false;
1702 mutex_lock(&dcc->cmd_lock);
1703 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1704 pend_list = &dcc->pend_list[i];
1705 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1706 f2fs_bug_on(sbi, dc->state != D_PREP);
1707 __remove_discard_cmd(sbi, dc);
1708 dropped = true;
1711 mutex_unlock(&dcc->cmd_lock);
1713 return dropped;
1716 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1718 __drop_discard_cmd(sbi);
1721 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1722 struct discard_cmd *dc)
1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1725 unsigned int len = 0;
1727 wait_for_completion_io(&dc->wait);
1728 mutex_lock(&dcc->cmd_lock);
1729 f2fs_bug_on(sbi, dc->state != D_DONE);
1730 dc->ref--;
1731 if (!dc->ref) {
1732 if (!dc->error)
1733 len = dc->di.len;
1734 __remove_discard_cmd(sbi, dc);
1736 mutex_unlock(&dcc->cmd_lock);
1738 return len;
1741 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1742 struct discard_policy *dpolicy,
1743 block_t start, block_t end)
1745 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1747 &(dcc->fstrim_list) : &(dcc->wait_list);
1748 struct discard_cmd *dc = NULL, *iter, *tmp;
1749 unsigned int trimmed = 0;
1751 next:
1752 dc = NULL;
1754 mutex_lock(&dcc->cmd_lock);
1755 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1756 if (iter->di.lstart + iter->di.len <= start ||
1757 end <= iter->di.lstart)
1758 continue;
1759 if (iter->di.len < dpolicy->granularity)
1760 continue;
1761 if (iter->state == D_DONE && !iter->ref) {
1762 wait_for_completion_io(&iter->wait);
1763 if (!iter->error)
1764 trimmed += iter->di.len;
1765 __remove_discard_cmd(sbi, iter);
1766 } else {
1767 iter->ref++;
1768 dc = iter;
1769 break;
1772 mutex_unlock(&dcc->cmd_lock);
1774 if (dc) {
1775 trimmed += __wait_one_discard_bio(sbi, dc);
1776 goto next;
1779 return trimmed;
1782 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1783 struct discard_policy *dpolicy)
1785 struct discard_policy dp;
1786 unsigned int discard_blks;
1788 if (dpolicy)
1789 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1791 /* wait all */
1792 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1793 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1794 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1795 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1797 return discard_blks;
1800 /* This should be covered by global mutex, &sit_i->sentry_lock */
1801 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1803 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1804 struct discard_cmd *dc;
1805 bool need_wait = false;
1807 mutex_lock(&dcc->cmd_lock);
1808 dc = __lookup_discard_cmd(sbi, blkaddr);
1809 #ifdef CONFIG_BLK_DEV_ZONED
1810 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1811 int devi = f2fs_bdev_index(sbi, dc->bdev);
1813 if (devi < 0) {
1814 mutex_unlock(&dcc->cmd_lock);
1815 return;
1818 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1819 /* force submit zone reset */
1820 if (dc->state == D_PREP)
1821 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1822 &dcc->wait_list, NULL);
1823 dc->ref++;
1824 mutex_unlock(&dcc->cmd_lock);
1825 /* wait zone reset */
1826 __wait_one_discard_bio(sbi, dc);
1827 return;
1830 #endif
1831 if (dc) {
1832 if (dc->state == D_PREP) {
1833 __punch_discard_cmd(sbi, dc, blkaddr);
1834 } else {
1835 dc->ref++;
1836 need_wait = true;
1839 mutex_unlock(&dcc->cmd_lock);
1841 if (need_wait)
1842 __wait_one_discard_bio(sbi, dc);
1845 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1847 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1849 if (dcc && dcc->f2fs_issue_discard) {
1850 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1852 dcc->f2fs_issue_discard = NULL;
1853 kthread_stop(discard_thread);
1858 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1859 * @sbi: the f2fs_sb_info data for discard cmd to issue
1861 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1863 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1865 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1867 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1868 struct discard_policy dpolicy;
1869 bool dropped;
1871 if (!atomic_read(&dcc->discard_cmd_cnt))
1872 return true;
1874 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1875 dcc->discard_granularity);
1876 __issue_discard_cmd(sbi, &dpolicy);
1877 dropped = __drop_discard_cmd(sbi);
1879 /* just to make sure there is no pending discard commands */
1880 __wait_all_discard_cmd(sbi, NULL);
1882 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1883 return !dropped;
1886 static int issue_discard_thread(void *data)
1888 struct f2fs_sb_info *sbi = data;
1889 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1890 wait_queue_head_t *q = &dcc->discard_wait_queue;
1891 struct discard_policy dpolicy;
1892 unsigned int wait_ms = dcc->min_discard_issue_time;
1893 int issued;
1895 set_freezable();
1897 do {
1898 wait_event_freezable_timeout(*q,
1899 kthread_should_stop() || dcc->discard_wake,
1900 msecs_to_jiffies(wait_ms));
1902 if (sbi->gc_mode == GC_URGENT_HIGH ||
1903 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1904 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1905 MIN_DISCARD_GRANULARITY);
1906 else
1907 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1908 dcc->discard_granularity);
1910 if (dcc->discard_wake)
1911 dcc->discard_wake = false;
1913 /* clean up pending candidates before going to sleep */
1914 if (atomic_read(&dcc->queued_discard))
1915 __wait_all_discard_cmd(sbi, NULL);
1917 if (f2fs_readonly(sbi->sb))
1918 continue;
1919 if (kthread_should_stop())
1920 return 0;
1921 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1922 !atomic_read(&dcc->discard_cmd_cnt)) {
1923 wait_ms = dpolicy.max_interval;
1924 continue;
1927 sb_start_intwrite(sbi->sb);
1929 issued = __issue_discard_cmd(sbi, &dpolicy);
1930 if (issued > 0) {
1931 __wait_all_discard_cmd(sbi, &dpolicy);
1932 wait_ms = dpolicy.min_interval;
1933 } else if (issued == -1) {
1934 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1935 if (!wait_ms)
1936 wait_ms = dpolicy.mid_interval;
1937 } else {
1938 wait_ms = dpolicy.max_interval;
1940 if (!atomic_read(&dcc->discard_cmd_cnt))
1941 wait_ms = dpolicy.max_interval;
1943 sb_end_intwrite(sbi->sb);
1945 } while (!kthread_should_stop());
1946 return 0;
1949 #ifdef CONFIG_BLK_DEV_ZONED
1950 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1951 struct block_device *bdev, block_t blkstart, block_t blklen)
1953 sector_t sector, nr_sects;
1954 block_t lblkstart = blkstart;
1955 int devi = 0;
1956 u64 remainder = 0;
1958 if (f2fs_is_multi_device(sbi)) {
1959 devi = f2fs_target_device_index(sbi, blkstart);
1960 if (blkstart < FDEV(devi).start_blk ||
1961 blkstart > FDEV(devi).end_blk) {
1962 f2fs_err(sbi, "Invalid block %x", blkstart);
1963 return -EIO;
1965 blkstart -= FDEV(devi).start_blk;
1968 /* For sequential zones, reset the zone write pointer */
1969 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1970 sector = SECTOR_FROM_BLOCK(blkstart);
1971 nr_sects = SECTOR_FROM_BLOCK(blklen);
1972 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1974 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1975 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1976 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1977 blkstart, blklen);
1978 return -EIO;
1981 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1982 unsigned int nofs_flags;
1983 int ret;
1985 trace_f2fs_issue_reset_zone(bdev, blkstart);
1986 nofs_flags = memalloc_nofs_save();
1987 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1988 sector, nr_sects);
1989 memalloc_nofs_restore(nofs_flags);
1990 return ret;
1993 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1994 return 0;
1997 /* For conventional zones, use regular discard if supported */
1998 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1999 return 0;
2001 #endif
2003 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2004 struct block_device *bdev, block_t blkstart, block_t blklen)
2006 #ifdef CONFIG_BLK_DEV_ZONED
2007 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2008 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2009 #endif
2010 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2011 return 0;
2014 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2015 block_t blkstart, block_t blklen)
2017 sector_t start = blkstart, len = 0;
2018 struct block_device *bdev;
2019 struct seg_entry *se;
2020 unsigned int offset;
2021 block_t i;
2022 int err = 0;
2024 bdev = f2fs_target_device(sbi, blkstart, NULL);
2026 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2027 if (i != start) {
2028 struct block_device *bdev2 =
2029 f2fs_target_device(sbi, i, NULL);
2031 if (bdev2 != bdev) {
2032 err = __issue_discard_async(sbi, bdev,
2033 start, len);
2034 if (err)
2035 return err;
2036 bdev = bdev2;
2037 start = i;
2038 len = 0;
2042 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2043 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2045 if (f2fs_block_unit_discard(sbi) &&
2046 !f2fs_test_and_set_bit(offset, se->discard_map))
2047 sbi->discard_blks--;
2050 if (len)
2051 err = __issue_discard_async(sbi, bdev, start, len);
2052 return err;
2055 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2056 bool check_only)
2058 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2059 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2060 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2061 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2062 unsigned long *discard_map = (unsigned long *)se->discard_map;
2063 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2064 unsigned int start = 0, end = -1;
2065 bool force = (cpc->reason & CP_DISCARD);
2066 struct discard_entry *de = NULL;
2067 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2068 int i;
2070 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2071 !f2fs_hw_support_discard(sbi) ||
2072 !f2fs_block_unit_discard(sbi))
2073 return false;
2075 if (!force) {
2076 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2077 SM_I(sbi)->dcc_info->nr_discards >=
2078 SM_I(sbi)->dcc_info->max_discards)
2079 return false;
2082 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2083 for (i = 0; i < entries; i++)
2084 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2085 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2087 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2088 SM_I(sbi)->dcc_info->max_discards) {
2089 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2090 if (start >= BLKS_PER_SEG(sbi))
2091 break;
2093 end = __find_rev_next_zero_bit(dmap,
2094 BLKS_PER_SEG(sbi), start + 1);
2095 if (force && start && end != BLKS_PER_SEG(sbi) &&
2096 (end - start) < cpc->trim_minlen)
2097 continue;
2099 if (check_only)
2100 return true;
2102 if (!de) {
2103 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2104 GFP_F2FS_ZERO, true, NULL);
2105 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2106 list_add_tail(&de->list, head);
2109 for (i = start; i < end; i++)
2110 __set_bit_le(i, (void *)de->discard_map);
2112 SM_I(sbi)->dcc_info->nr_discards += end - start;
2114 return false;
2117 static void release_discard_addr(struct discard_entry *entry)
2119 list_del(&entry->list);
2120 kmem_cache_free(discard_entry_slab, entry);
2123 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2125 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2126 struct discard_entry *entry, *this;
2128 /* drop caches */
2129 list_for_each_entry_safe(entry, this, head, list)
2130 release_discard_addr(entry);
2134 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2136 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2139 unsigned int segno;
2141 mutex_lock(&dirty_i->seglist_lock);
2142 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2143 __set_test_and_free(sbi, segno, false);
2144 mutex_unlock(&dirty_i->seglist_lock);
2147 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2148 struct cp_control *cpc)
2150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2151 struct list_head *head = &dcc->entry_list;
2152 struct discard_entry *entry, *this;
2153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2154 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2155 unsigned int start = 0, end = -1;
2156 unsigned int secno, start_segno;
2157 bool force = (cpc->reason & CP_DISCARD);
2158 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2159 DISCARD_UNIT_SECTION;
2161 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2162 section_alignment = true;
2164 mutex_lock(&dirty_i->seglist_lock);
2166 while (1) {
2167 int i;
2169 if (section_alignment && end != -1)
2170 end--;
2171 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2172 if (start >= MAIN_SEGS(sbi))
2173 break;
2174 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2175 start + 1);
2177 if (section_alignment) {
2178 start = rounddown(start, SEGS_PER_SEC(sbi));
2179 end = roundup(end, SEGS_PER_SEC(sbi));
2182 for (i = start; i < end; i++) {
2183 if (test_and_clear_bit(i, prefree_map))
2184 dirty_i->nr_dirty[PRE]--;
2187 if (!f2fs_realtime_discard_enable(sbi))
2188 continue;
2190 if (force && start >= cpc->trim_start &&
2191 (end - 1) <= cpc->trim_end)
2192 continue;
2194 /* Should cover 2MB zoned device for zone-based reset */
2195 if (!f2fs_sb_has_blkzoned(sbi) &&
2196 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2197 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2198 SEGS_TO_BLKS(sbi, end - start));
2199 continue;
2201 next:
2202 secno = GET_SEC_FROM_SEG(sbi, start);
2203 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2204 if (!IS_CURSEC(sbi, secno) &&
2205 !get_valid_blocks(sbi, start, true))
2206 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2207 BLKS_PER_SEC(sbi));
2209 start = start_segno + SEGS_PER_SEC(sbi);
2210 if (start < end)
2211 goto next;
2212 else
2213 end = start - 1;
2215 mutex_unlock(&dirty_i->seglist_lock);
2217 if (!f2fs_block_unit_discard(sbi))
2218 goto wakeup;
2220 /* send small discards */
2221 list_for_each_entry_safe(entry, this, head, list) {
2222 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2223 bool is_valid = test_bit_le(0, entry->discard_map);
2225 find_next:
2226 if (is_valid) {
2227 next_pos = find_next_zero_bit_le(entry->discard_map,
2228 BLKS_PER_SEG(sbi), cur_pos);
2229 len = next_pos - cur_pos;
2231 if (f2fs_sb_has_blkzoned(sbi) ||
2232 (force && len < cpc->trim_minlen))
2233 goto skip;
2235 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2236 len);
2237 total_len += len;
2238 } else {
2239 next_pos = find_next_bit_le(entry->discard_map,
2240 BLKS_PER_SEG(sbi), cur_pos);
2242 skip:
2243 cur_pos = next_pos;
2244 is_valid = !is_valid;
2246 if (cur_pos < BLKS_PER_SEG(sbi))
2247 goto find_next;
2249 release_discard_addr(entry);
2250 dcc->nr_discards -= total_len;
2253 wakeup:
2254 wake_up_discard_thread(sbi, false);
2257 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2259 dev_t dev = sbi->sb->s_bdev->bd_dev;
2260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2261 int err = 0;
2263 if (f2fs_sb_has_readonly(sbi)) {
2264 f2fs_info(sbi,
2265 "Skip to start discard thread for readonly image");
2266 return 0;
2269 if (!f2fs_realtime_discard_enable(sbi))
2270 return 0;
2272 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2273 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2274 if (IS_ERR(dcc->f2fs_issue_discard)) {
2275 err = PTR_ERR(dcc->f2fs_issue_discard);
2276 dcc->f2fs_issue_discard = NULL;
2279 return err;
2282 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2284 struct discard_cmd_control *dcc;
2285 int err = 0, i;
2287 if (SM_I(sbi)->dcc_info) {
2288 dcc = SM_I(sbi)->dcc_info;
2289 goto init_thread;
2292 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2293 if (!dcc)
2294 return -ENOMEM;
2296 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2297 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2298 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2299 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2300 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2301 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2302 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2303 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2305 INIT_LIST_HEAD(&dcc->entry_list);
2306 for (i = 0; i < MAX_PLIST_NUM; i++)
2307 INIT_LIST_HEAD(&dcc->pend_list[i]);
2308 INIT_LIST_HEAD(&dcc->wait_list);
2309 INIT_LIST_HEAD(&dcc->fstrim_list);
2310 mutex_init(&dcc->cmd_lock);
2311 atomic_set(&dcc->issued_discard, 0);
2312 atomic_set(&dcc->queued_discard, 0);
2313 atomic_set(&dcc->discard_cmd_cnt, 0);
2314 dcc->nr_discards = 0;
2315 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2316 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2317 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2318 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2319 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2320 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2321 dcc->undiscard_blks = 0;
2322 dcc->next_pos = 0;
2323 dcc->root = RB_ROOT_CACHED;
2324 dcc->rbtree_check = false;
2326 init_waitqueue_head(&dcc->discard_wait_queue);
2327 SM_I(sbi)->dcc_info = dcc;
2328 init_thread:
2329 err = f2fs_start_discard_thread(sbi);
2330 if (err) {
2331 kfree(dcc);
2332 SM_I(sbi)->dcc_info = NULL;
2335 return err;
2338 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2340 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2342 if (!dcc)
2343 return;
2345 f2fs_stop_discard_thread(sbi);
2348 * Recovery can cache discard commands, so in error path of
2349 * fill_super(), it needs to give a chance to handle them.
2351 f2fs_issue_discard_timeout(sbi);
2353 kfree(dcc);
2354 SM_I(sbi)->dcc_info = NULL;
2357 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2359 struct sit_info *sit_i = SIT_I(sbi);
2361 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2362 sit_i->dirty_sentries++;
2363 return false;
2366 return true;
2369 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2370 unsigned int segno, int modified)
2372 struct seg_entry *se = get_seg_entry(sbi, segno);
2374 se->type = type;
2375 if (modified)
2376 __mark_sit_entry_dirty(sbi, segno);
2379 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2380 block_t blkaddr)
2382 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2384 if (segno == NULL_SEGNO)
2385 return 0;
2386 return get_seg_entry(sbi, segno)->mtime;
2389 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2390 unsigned long long old_mtime)
2392 struct seg_entry *se;
2393 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2394 unsigned long long ctime = get_mtime(sbi, false);
2395 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2397 if (segno == NULL_SEGNO)
2398 return;
2400 se = get_seg_entry(sbi, segno);
2402 if (!se->mtime)
2403 se->mtime = mtime;
2404 else
2405 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2406 se->valid_blocks + 1);
2408 if (ctime > SIT_I(sbi)->max_mtime)
2409 SIT_I(sbi)->max_mtime = ctime;
2412 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2414 struct seg_entry *se;
2415 unsigned int segno, offset;
2416 long int new_vblocks;
2417 bool exist;
2418 #ifdef CONFIG_F2FS_CHECK_FS
2419 bool mir_exist;
2420 #endif
2422 segno = GET_SEGNO(sbi, blkaddr);
2423 if (segno == NULL_SEGNO)
2424 return;
2426 se = get_seg_entry(sbi, segno);
2427 new_vblocks = se->valid_blocks + del;
2428 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2430 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2431 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2433 se->valid_blocks = new_vblocks;
2435 /* Update valid block bitmap */
2436 if (del > 0) {
2437 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2438 #ifdef CONFIG_F2FS_CHECK_FS
2439 mir_exist = f2fs_test_and_set_bit(offset,
2440 se->cur_valid_map_mir);
2441 if (unlikely(exist != mir_exist)) {
2442 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2443 blkaddr, exist);
2444 f2fs_bug_on(sbi, 1);
2446 #endif
2447 if (unlikely(exist)) {
2448 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2449 blkaddr);
2450 f2fs_bug_on(sbi, 1);
2451 se->valid_blocks--;
2452 del = 0;
2455 if (f2fs_block_unit_discard(sbi) &&
2456 !f2fs_test_and_set_bit(offset, se->discard_map))
2457 sbi->discard_blks--;
2460 * SSR should never reuse block which is checkpointed
2461 * or newly invalidated.
2463 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2464 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2465 se->ckpt_valid_blocks++;
2467 } else {
2468 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2469 #ifdef CONFIG_F2FS_CHECK_FS
2470 mir_exist = f2fs_test_and_clear_bit(offset,
2471 se->cur_valid_map_mir);
2472 if (unlikely(exist != mir_exist)) {
2473 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2474 blkaddr, exist);
2475 f2fs_bug_on(sbi, 1);
2477 #endif
2478 if (unlikely(!exist)) {
2479 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2480 blkaddr);
2481 f2fs_bug_on(sbi, 1);
2482 se->valid_blocks++;
2483 del = 0;
2484 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2486 * If checkpoints are off, we must not reuse data that
2487 * was used in the previous checkpoint. If it was used
2488 * before, we must track that to know how much space we
2489 * really have.
2491 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2492 spin_lock(&sbi->stat_lock);
2493 sbi->unusable_block_count++;
2494 spin_unlock(&sbi->stat_lock);
2498 if (f2fs_block_unit_discard(sbi) &&
2499 f2fs_test_and_clear_bit(offset, se->discard_map))
2500 sbi->discard_blks++;
2502 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2503 se->ckpt_valid_blocks += del;
2505 __mark_sit_entry_dirty(sbi, segno);
2507 /* update total number of valid blocks to be written in ckpt area */
2508 SIT_I(sbi)->written_valid_blocks += del;
2510 if (__is_large_section(sbi))
2511 get_sec_entry(sbi, segno)->valid_blocks += del;
2514 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2516 unsigned int segno = GET_SEGNO(sbi, addr);
2517 struct sit_info *sit_i = SIT_I(sbi);
2519 f2fs_bug_on(sbi, addr == NULL_ADDR);
2520 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2521 return;
2523 f2fs_invalidate_internal_cache(sbi, addr);
2525 /* add it into sit main buffer */
2526 down_write(&sit_i->sentry_lock);
2528 update_segment_mtime(sbi, addr, 0);
2529 update_sit_entry(sbi, addr, -1);
2531 /* add it into dirty seglist */
2532 locate_dirty_segment(sbi, segno);
2534 up_write(&sit_i->sentry_lock);
2537 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2539 struct sit_info *sit_i = SIT_I(sbi);
2540 unsigned int segno, offset;
2541 struct seg_entry *se;
2542 bool is_cp = false;
2544 if (!__is_valid_data_blkaddr(blkaddr))
2545 return true;
2547 down_read(&sit_i->sentry_lock);
2549 segno = GET_SEGNO(sbi, blkaddr);
2550 se = get_seg_entry(sbi, segno);
2551 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2553 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2554 is_cp = true;
2556 up_read(&sit_i->sentry_lock);
2558 return is_cp;
2561 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2563 struct curseg_info *curseg = CURSEG_I(sbi, type);
2565 if (sbi->ckpt->alloc_type[type] == SSR)
2566 return BLKS_PER_SEG(sbi);
2567 return curseg->next_blkoff;
2571 * Calculate the number of current summary pages for writing
2573 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2575 int valid_sum_count = 0;
2576 int i, sum_in_page;
2578 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2579 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2580 valid_sum_count +=
2581 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2582 else
2583 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2586 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2587 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2588 if (valid_sum_count <= sum_in_page)
2589 return 1;
2590 else if ((valid_sum_count - sum_in_page) <=
2591 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2592 return 2;
2593 return 3;
2597 * Caller should put this summary page
2599 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2601 if (unlikely(f2fs_cp_error(sbi)))
2602 return ERR_PTR(-EIO);
2603 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2606 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2607 void *src, block_t blk_addr)
2609 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2611 memcpy(page_address(page), src, PAGE_SIZE);
2612 set_page_dirty(page);
2613 f2fs_put_page(page, 1);
2616 static void write_sum_page(struct f2fs_sb_info *sbi,
2617 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2619 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2622 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2623 int type, block_t blk_addr)
2625 struct curseg_info *curseg = CURSEG_I(sbi, type);
2626 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2627 struct f2fs_summary_block *src = curseg->sum_blk;
2628 struct f2fs_summary_block *dst;
2630 dst = (struct f2fs_summary_block *)page_address(page);
2631 memset(dst, 0, PAGE_SIZE);
2633 mutex_lock(&curseg->curseg_mutex);
2635 down_read(&curseg->journal_rwsem);
2636 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2637 up_read(&curseg->journal_rwsem);
2639 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2640 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2642 mutex_unlock(&curseg->curseg_mutex);
2644 set_page_dirty(page);
2645 f2fs_put_page(page, 1);
2648 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2649 struct curseg_info *curseg)
2651 unsigned int segno = curseg->segno + 1;
2652 struct free_segmap_info *free_i = FREE_I(sbi);
2654 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2655 return !test_bit(segno, free_i->free_segmap);
2656 return 0;
2660 * Find a new segment from the free segments bitmap to right order
2661 * This function should be returned with success, otherwise BUG
2663 static int get_new_segment(struct f2fs_sb_info *sbi,
2664 unsigned int *newseg, bool new_sec, bool pinning)
2666 struct free_segmap_info *free_i = FREE_I(sbi);
2667 unsigned int segno, secno, zoneno;
2668 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2669 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2670 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2671 bool init = true;
2672 int i;
2673 int ret = 0;
2675 spin_lock(&free_i->segmap_lock);
2677 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2678 ret = -ENOSPC;
2679 goto out_unlock;
2682 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2683 segno = find_next_zero_bit(free_i->free_segmap,
2684 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2685 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2686 goto got_it;
2690 * If we format f2fs on zoned storage, let's try to get pinned sections
2691 * from beginning of the storage, which should be a conventional one.
2693 if (f2fs_sb_has_blkzoned(sbi)) {
2694 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2695 hint = GET_SEC_FROM_SEG(sbi, segno);
2698 find_other_zone:
2699 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2700 if (secno >= MAIN_SECS(sbi)) {
2701 secno = find_first_zero_bit(free_i->free_secmap,
2702 MAIN_SECS(sbi));
2703 if (secno >= MAIN_SECS(sbi)) {
2704 ret = -ENOSPC;
2705 goto out_unlock;
2708 segno = GET_SEG_FROM_SEC(sbi, secno);
2709 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2711 /* give up on finding another zone */
2712 if (!init)
2713 goto got_it;
2714 if (sbi->secs_per_zone == 1)
2715 goto got_it;
2716 if (zoneno == old_zoneno)
2717 goto got_it;
2718 for (i = 0; i < NR_CURSEG_TYPE; i++)
2719 if (CURSEG_I(sbi, i)->zone == zoneno)
2720 break;
2722 if (i < NR_CURSEG_TYPE) {
2723 /* zone is in user, try another */
2724 if (zoneno + 1 >= total_zones)
2725 hint = 0;
2726 else
2727 hint = (zoneno + 1) * sbi->secs_per_zone;
2728 init = false;
2729 goto find_other_zone;
2731 got_it:
2732 /* set it as dirty segment in free segmap */
2733 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2735 /* no free section in conventional zone */
2736 if (new_sec && pinning &&
2737 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2738 ret = -EAGAIN;
2739 goto out_unlock;
2741 __set_inuse(sbi, segno);
2742 *newseg = segno;
2743 out_unlock:
2744 spin_unlock(&free_i->segmap_lock);
2746 if (ret == -ENOSPC) {
2747 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2748 f2fs_bug_on(sbi, 1);
2750 return ret;
2753 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2755 struct curseg_info *curseg = CURSEG_I(sbi, type);
2756 struct summary_footer *sum_footer;
2757 unsigned short seg_type = curseg->seg_type;
2759 /* only happen when get_new_segment() fails */
2760 if (curseg->next_segno == NULL_SEGNO)
2761 return;
2763 curseg->inited = true;
2764 curseg->segno = curseg->next_segno;
2765 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2766 curseg->next_blkoff = 0;
2767 curseg->next_segno = NULL_SEGNO;
2769 sum_footer = &(curseg->sum_blk->footer);
2770 memset(sum_footer, 0, sizeof(struct summary_footer));
2772 sanity_check_seg_type(sbi, seg_type);
2774 if (IS_DATASEG(seg_type))
2775 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2776 if (IS_NODESEG(seg_type))
2777 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2778 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2781 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2783 struct curseg_info *curseg = CURSEG_I(sbi, type);
2784 unsigned short seg_type = curseg->seg_type;
2786 sanity_check_seg_type(sbi, seg_type);
2787 if (__is_large_section(sbi)) {
2788 if (f2fs_need_rand_seg(sbi)) {
2789 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2791 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2792 return curseg->segno;
2793 return get_random_u32_inclusive(curseg->segno + 1,
2794 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2796 return curseg->segno;
2797 } else if (f2fs_need_rand_seg(sbi)) {
2798 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2801 /* inmem log may not locate on any segment after mount */
2802 if (!curseg->inited)
2803 return 0;
2805 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2806 return 0;
2808 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2809 return 0;
2811 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2812 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2814 /* find segments from 0 to reuse freed segments */
2815 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2816 return 0;
2818 return curseg->segno;
2822 * Allocate a current working segment.
2823 * This function always allocates a free segment in LFS manner.
2825 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2827 struct curseg_info *curseg = CURSEG_I(sbi, type);
2828 unsigned int segno = curseg->segno;
2829 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2830 int ret;
2832 if (curseg->inited)
2833 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2835 segno = __get_next_segno(sbi, type);
2836 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2837 if (ret) {
2838 if (ret == -ENOSPC)
2839 curseg->segno = NULL_SEGNO;
2840 return ret;
2843 curseg->next_segno = segno;
2844 reset_curseg(sbi, type, 1);
2845 curseg->alloc_type = LFS;
2846 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2847 curseg->fragment_remained_chunk =
2848 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2849 return 0;
2852 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2853 int segno, block_t start)
2855 struct seg_entry *se = get_seg_entry(sbi, segno);
2856 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2857 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2858 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2859 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2860 int i;
2862 for (i = 0; i < entries; i++)
2863 target_map[i] = ckpt_map[i] | cur_map[i];
2865 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2868 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2869 struct curseg_info *seg)
2871 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2874 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2876 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2880 * This function always allocates a used segment(from dirty seglist) by SSR
2881 * manner, so it should recover the existing segment information of valid blocks
2883 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2885 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2886 struct curseg_info *curseg = CURSEG_I(sbi, type);
2887 unsigned int new_segno = curseg->next_segno;
2888 struct f2fs_summary_block *sum_node;
2889 struct page *sum_page;
2891 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2893 __set_test_and_inuse(sbi, new_segno);
2895 mutex_lock(&dirty_i->seglist_lock);
2896 __remove_dirty_segment(sbi, new_segno, PRE);
2897 __remove_dirty_segment(sbi, new_segno, DIRTY);
2898 mutex_unlock(&dirty_i->seglist_lock);
2900 reset_curseg(sbi, type, 1);
2901 curseg->alloc_type = SSR;
2902 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2904 sum_page = f2fs_get_sum_page(sbi, new_segno);
2905 if (IS_ERR(sum_page)) {
2906 /* GC won't be able to use stale summary pages by cp_error */
2907 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2908 return PTR_ERR(sum_page);
2910 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2911 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2912 f2fs_put_page(sum_page, 1);
2913 return 0;
2916 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2917 int alloc_mode, unsigned long long age);
2919 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2920 int target_type, int alloc_mode,
2921 unsigned long long age)
2923 struct curseg_info *curseg = CURSEG_I(sbi, type);
2924 int ret = 0;
2926 curseg->seg_type = target_type;
2928 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2929 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2931 curseg->seg_type = se->type;
2932 ret = change_curseg(sbi, type);
2933 } else {
2934 /* allocate cold segment by default */
2935 curseg->seg_type = CURSEG_COLD_DATA;
2936 ret = new_curseg(sbi, type, true);
2938 stat_inc_seg_type(sbi, curseg);
2939 return ret;
2942 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2944 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2945 int ret = 0;
2947 if (!sbi->am.atgc_enabled && !force)
2948 return 0;
2950 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2952 mutex_lock(&curseg->curseg_mutex);
2953 down_write(&SIT_I(sbi)->sentry_lock);
2955 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2956 CURSEG_COLD_DATA, SSR, 0);
2958 up_write(&SIT_I(sbi)->sentry_lock);
2959 mutex_unlock(&curseg->curseg_mutex);
2961 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2962 return ret;
2965 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2967 return __f2fs_init_atgc_curseg(sbi, false);
2970 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
2972 int ret;
2974 if (!test_opt(sbi, ATGC))
2975 return 0;
2976 if (sbi->am.atgc_enabled)
2977 return 0;
2978 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
2979 sbi->am.age_threshold)
2980 return 0;
2982 ret = __f2fs_init_atgc_curseg(sbi, true);
2983 if (!ret) {
2984 sbi->am.atgc_enabled = true;
2985 f2fs_info(sbi, "reenabled age threshold GC");
2987 return ret;
2990 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2992 struct curseg_info *curseg = CURSEG_I(sbi, type);
2994 mutex_lock(&curseg->curseg_mutex);
2995 if (!curseg->inited)
2996 goto out;
2998 if (get_valid_blocks(sbi, curseg->segno, false)) {
2999 write_sum_page(sbi, curseg->sum_blk,
3000 GET_SUM_BLOCK(sbi, curseg->segno));
3001 } else {
3002 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3003 __set_test_and_free(sbi, curseg->segno, true);
3004 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3006 out:
3007 mutex_unlock(&curseg->curseg_mutex);
3010 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3012 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3014 if (sbi->am.atgc_enabled)
3015 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3018 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3020 struct curseg_info *curseg = CURSEG_I(sbi, type);
3022 mutex_lock(&curseg->curseg_mutex);
3023 if (!curseg->inited)
3024 goto out;
3025 if (get_valid_blocks(sbi, curseg->segno, false))
3026 goto out;
3028 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3029 __set_test_and_inuse(sbi, curseg->segno);
3030 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3031 out:
3032 mutex_unlock(&curseg->curseg_mutex);
3035 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3037 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3039 if (sbi->am.atgc_enabled)
3040 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3043 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3044 int alloc_mode, unsigned long long age)
3046 struct curseg_info *curseg = CURSEG_I(sbi, type);
3047 unsigned segno = NULL_SEGNO;
3048 unsigned short seg_type = curseg->seg_type;
3049 int i, cnt;
3050 bool reversed = false;
3052 sanity_check_seg_type(sbi, seg_type);
3054 /* f2fs_need_SSR() already forces to do this */
3055 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3056 curseg->next_segno = segno;
3057 return 1;
3060 /* For node segments, let's do SSR more intensively */
3061 if (IS_NODESEG(seg_type)) {
3062 if (seg_type >= CURSEG_WARM_NODE) {
3063 reversed = true;
3064 i = CURSEG_COLD_NODE;
3065 } else {
3066 i = CURSEG_HOT_NODE;
3068 cnt = NR_CURSEG_NODE_TYPE;
3069 } else {
3070 if (seg_type >= CURSEG_WARM_DATA) {
3071 reversed = true;
3072 i = CURSEG_COLD_DATA;
3073 } else {
3074 i = CURSEG_HOT_DATA;
3076 cnt = NR_CURSEG_DATA_TYPE;
3079 for (; cnt-- > 0; reversed ? i-- : i++) {
3080 if (i == seg_type)
3081 continue;
3082 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3083 curseg->next_segno = segno;
3084 return 1;
3088 /* find valid_blocks=0 in dirty list */
3089 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3090 segno = get_free_segment(sbi);
3091 if (segno != NULL_SEGNO) {
3092 curseg->next_segno = segno;
3093 return 1;
3096 return 0;
3099 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3101 struct curseg_info *curseg = CURSEG_I(sbi, type);
3103 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3104 curseg->seg_type == CURSEG_WARM_NODE)
3105 return true;
3106 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3107 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3108 return true;
3109 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3110 return true;
3111 return false;
3114 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3115 unsigned int start, unsigned int end)
3117 struct curseg_info *curseg = CURSEG_I(sbi, type);
3118 unsigned int segno;
3119 int ret = 0;
3121 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3122 mutex_lock(&curseg->curseg_mutex);
3123 down_write(&SIT_I(sbi)->sentry_lock);
3125 segno = CURSEG_I(sbi, type)->segno;
3126 if (segno < start || segno > end)
3127 goto unlock;
3129 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3130 ret = change_curseg(sbi, type);
3131 else
3132 ret = new_curseg(sbi, type, true);
3134 stat_inc_seg_type(sbi, curseg);
3136 locate_dirty_segment(sbi, segno);
3137 unlock:
3138 up_write(&SIT_I(sbi)->sentry_lock);
3140 if (segno != curseg->segno)
3141 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3142 type, segno, curseg->segno);
3144 mutex_unlock(&curseg->curseg_mutex);
3145 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3146 return ret;
3149 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3150 bool new_sec, bool force)
3152 struct curseg_info *curseg = CURSEG_I(sbi, type);
3153 unsigned int old_segno;
3154 int err = 0;
3156 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3157 goto allocate;
3159 if (!force && curseg->inited &&
3160 !curseg->next_blkoff &&
3161 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3162 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3163 return 0;
3165 allocate:
3166 old_segno = curseg->segno;
3167 err = new_curseg(sbi, type, true);
3168 if (err)
3169 return err;
3170 stat_inc_seg_type(sbi, curseg);
3171 locate_dirty_segment(sbi, old_segno);
3172 return 0;
3175 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3177 int ret;
3179 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3180 down_write(&SIT_I(sbi)->sentry_lock);
3181 ret = __allocate_new_segment(sbi, type, true, force);
3182 up_write(&SIT_I(sbi)->sentry_lock);
3183 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3185 return ret;
3188 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3190 int err;
3191 bool gc_required = true;
3193 retry:
3194 f2fs_lock_op(sbi);
3195 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3196 f2fs_unlock_op(sbi);
3198 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3199 f2fs_down_write(&sbi->gc_lock);
3200 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3201 f2fs_up_write(&sbi->gc_lock);
3203 gc_required = false;
3204 if (!err)
3205 goto retry;
3208 return err;
3211 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3213 int i;
3214 int err = 0;
3216 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3217 down_write(&SIT_I(sbi)->sentry_lock);
3218 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3219 err += __allocate_new_segment(sbi, i, false, false);
3220 up_write(&SIT_I(sbi)->sentry_lock);
3221 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3223 return err;
3226 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3227 struct cp_control *cpc)
3229 __u64 trim_start = cpc->trim_start;
3230 bool has_candidate = false;
3232 down_write(&SIT_I(sbi)->sentry_lock);
3233 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3234 if (add_discard_addrs(sbi, cpc, true)) {
3235 has_candidate = true;
3236 break;
3239 up_write(&SIT_I(sbi)->sentry_lock);
3241 cpc->trim_start = trim_start;
3242 return has_candidate;
3245 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3246 struct discard_policy *dpolicy,
3247 unsigned int start, unsigned int end)
3249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3250 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3251 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3252 struct discard_cmd *dc;
3253 struct blk_plug plug;
3254 int issued;
3255 unsigned int trimmed = 0;
3257 next:
3258 issued = 0;
3260 mutex_lock(&dcc->cmd_lock);
3261 if (unlikely(dcc->rbtree_check))
3262 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3264 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3265 &prev_dc, &next_dc, &insert_p, &insert_parent);
3266 if (!dc)
3267 dc = next_dc;
3269 blk_start_plug(&plug);
3271 while (dc && dc->di.lstart <= end) {
3272 struct rb_node *node;
3273 int err = 0;
3275 if (dc->di.len < dpolicy->granularity)
3276 goto skip;
3278 if (dc->state != D_PREP) {
3279 list_move_tail(&dc->list, &dcc->fstrim_list);
3280 goto skip;
3283 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3285 if (issued >= dpolicy->max_requests) {
3286 start = dc->di.lstart + dc->di.len;
3288 if (err)
3289 __remove_discard_cmd(sbi, dc);
3291 blk_finish_plug(&plug);
3292 mutex_unlock(&dcc->cmd_lock);
3293 trimmed += __wait_all_discard_cmd(sbi, NULL);
3294 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3295 goto next;
3297 skip:
3298 node = rb_next(&dc->rb_node);
3299 if (err)
3300 __remove_discard_cmd(sbi, dc);
3301 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3303 if (fatal_signal_pending(current))
3304 break;
3307 blk_finish_plug(&plug);
3308 mutex_unlock(&dcc->cmd_lock);
3310 return trimmed;
3313 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3315 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3316 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3317 unsigned int start_segno, end_segno;
3318 block_t start_block, end_block;
3319 struct cp_control cpc;
3320 struct discard_policy dpolicy;
3321 unsigned long long trimmed = 0;
3322 int err = 0;
3323 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3325 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3326 return -EINVAL;
3328 if (end < MAIN_BLKADDR(sbi))
3329 goto out;
3331 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3332 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3333 return -EFSCORRUPTED;
3336 /* start/end segment number in main_area */
3337 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3338 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3339 GET_SEGNO(sbi, end);
3340 if (need_align) {
3341 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3342 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3345 cpc.reason = CP_DISCARD;
3346 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3347 cpc.trim_start = start_segno;
3348 cpc.trim_end = end_segno;
3350 if (sbi->discard_blks == 0)
3351 goto out;
3353 f2fs_down_write(&sbi->gc_lock);
3354 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3355 err = f2fs_write_checkpoint(sbi, &cpc);
3356 f2fs_up_write(&sbi->gc_lock);
3357 if (err)
3358 goto out;
3361 * We filed discard candidates, but actually we don't need to wait for
3362 * all of them, since they'll be issued in idle time along with runtime
3363 * discard option. User configuration looks like using runtime discard
3364 * or periodic fstrim instead of it.
3366 if (f2fs_realtime_discard_enable(sbi))
3367 goto out;
3369 start_block = START_BLOCK(sbi, start_segno);
3370 end_block = START_BLOCK(sbi, end_segno + 1);
3372 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3373 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3374 start_block, end_block);
3376 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3377 start_block, end_block);
3378 out:
3379 if (!err)
3380 range->len = F2FS_BLK_TO_BYTES(trimmed);
3381 return err;
3384 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3386 if (F2FS_OPTION(sbi).active_logs == 2)
3387 return CURSEG_HOT_DATA;
3388 else if (F2FS_OPTION(sbi).active_logs == 4)
3389 return CURSEG_COLD_DATA;
3391 /* active_log == 6 */
3392 switch (hint) {
3393 case WRITE_LIFE_SHORT:
3394 return CURSEG_HOT_DATA;
3395 case WRITE_LIFE_EXTREME:
3396 return CURSEG_COLD_DATA;
3397 default:
3398 return CURSEG_WARM_DATA;
3403 * This returns write hints for each segment type. This hints will be
3404 * passed down to block layer as below by default.
3406 * User F2FS Block
3407 * ---- ---- -----
3408 * META WRITE_LIFE_NONE|REQ_META
3409 * HOT_NODE WRITE_LIFE_NONE
3410 * WARM_NODE WRITE_LIFE_MEDIUM
3411 * COLD_NODE WRITE_LIFE_LONG
3412 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3413 * extension list " "
3415 * -- buffered io
3416 * COLD_DATA WRITE_LIFE_EXTREME
3417 * HOT_DATA WRITE_LIFE_SHORT
3418 * WARM_DATA WRITE_LIFE_NOT_SET
3420 * -- direct io
3421 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3422 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3423 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3424 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3425 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3426 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3428 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3429 enum page_type type, enum temp_type temp)
3431 switch (type) {
3432 case DATA:
3433 switch (temp) {
3434 case WARM:
3435 return WRITE_LIFE_NOT_SET;
3436 case HOT:
3437 return WRITE_LIFE_SHORT;
3438 case COLD:
3439 return WRITE_LIFE_EXTREME;
3440 default:
3441 return WRITE_LIFE_NONE;
3443 case NODE:
3444 switch (temp) {
3445 case WARM:
3446 return WRITE_LIFE_MEDIUM;
3447 case HOT:
3448 return WRITE_LIFE_NONE;
3449 case COLD:
3450 return WRITE_LIFE_LONG;
3451 default:
3452 return WRITE_LIFE_NONE;
3454 case META:
3455 return WRITE_LIFE_NONE;
3456 default:
3457 return WRITE_LIFE_NONE;
3461 static int __get_segment_type_2(struct f2fs_io_info *fio)
3463 if (fio->type == DATA)
3464 return CURSEG_HOT_DATA;
3465 else
3466 return CURSEG_HOT_NODE;
3469 static int __get_segment_type_4(struct f2fs_io_info *fio)
3471 if (fio->type == DATA) {
3472 struct inode *inode = fio->page->mapping->host;
3474 if (S_ISDIR(inode->i_mode))
3475 return CURSEG_HOT_DATA;
3476 else
3477 return CURSEG_COLD_DATA;
3478 } else {
3479 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3480 return CURSEG_WARM_NODE;
3481 else
3482 return CURSEG_COLD_NODE;
3486 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3489 struct extent_info ei = {};
3491 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3492 if (!ei.age)
3493 return NO_CHECK_TYPE;
3494 if (ei.age <= sbi->hot_data_age_threshold)
3495 return CURSEG_HOT_DATA;
3496 if (ei.age <= sbi->warm_data_age_threshold)
3497 return CURSEG_WARM_DATA;
3498 return CURSEG_COLD_DATA;
3500 return NO_CHECK_TYPE;
3503 static int __get_segment_type_6(struct f2fs_io_info *fio)
3505 if (fio->type == DATA) {
3506 struct inode *inode = fio->page->mapping->host;
3507 int type;
3509 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3510 return CURSEG_COLD_DATA_PINNED;
3512 if (page_private_gcing(fio->page)) {
3513 if (fio->sbi->am.atgc_enabled &&
3514 (fio->io_type == FS_DATA_IO) &&
3515 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3516 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3517 !is_inode_flag_set(inode, FI_OPU_WRITE))
3518 return CURSEG_ALL_DATA_ATGC;
3519 else
3520 return CURSEG_COLD_DATA;
3522 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3523 return CURSEG_COLD_DATA;
3525 type = __get_age_segment_type(inode, fio->page->index);
3526 if (type != NO_CHECK_TYPE)
3527 return type;
3529 if (file_is_hot(inode) ||
3530 is_inode_flag_set(inode, FI_HOT_DATA) ||
3531 f2fs_is_cow_file(inode))
3532 return CURSEG_HOT_DATA;
3533 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3534 inode->i_write_hint);
3535 } else {
3536 if (IS_DNODE(fio->page))
3537 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3538 CURSEG_HOT_NODE;
3539 return CURSEG_COLD_NODE;
3543 int f2fs_get_segment_temp(int seg_type)
3545 if (IS_HOT(seg_type))
3546 return HOT;
3547 else if (IS_WARM(seg_type))
3548 return WARM;
3549 return COLD;
3552 static int __get_segment_type(struct f2fs_io_info *fio)
3554 int type = 0;
3556 switch (F2FS_OPTION(fio->sbi).active_logs) {
3557 case 2:
3558 type = __get_segment_type_2(fio);
3559 break;
3560 case 4:
3561 type = __get_segment_type_4(fio);
3562 break;
3563 case 6:
3564 type = __get_segment_type_6(fio);
3565 break;
3566 default:
3567 f2fs_bug_on(fio->sbi, true);
3570 fio->temp = f2fs_get_segment_temp(type);
3572 return type;
3575 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3576 struct curseg_info *seg)
3578 /* To allocate block chunks in different sizes, use random number */
3579 if (--seg->fragment_remained_chunk > 0)
3580 return;
3582 seg->fragment_remained_chunk =
3583 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3584 seg->next_blkoff +=
3585 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3588 static void reset_curseg_fields(struct curseg_info *curseg)
3590 curseg->inited = false;
3591 curseg->segno = NULL_SEGNO;
3592 curseg->next_segno = 0;
3595 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3596 block_t old_blkaddr, block_t *new_blkaddr,
3597 struct f2fs_summary *sum, int type,
3598 struct f2fs_io_info *fio)
3600 struct sit_info *sit_i = SIT_I(sbi);
3601 struct curseg_info *curseg = CURSEG_I(sbi, type);
3602 unsigned long long old_mtime;
3603 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3604 struct seg_entry *se = NULL;
3605 bool segment_full = false;
3606 int ret = 0;
3608 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3610 mutex_lock(&curseg->curseg_mutex);
3611 down_write(&sit_i->sentry_lock);
3613 if (curseg->segno == NULL_SEGNO) {
3614 ret = -ENOSPC;
3615 goto out_err;
3618 if (from_gc) {
3619 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3620 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3621 sanity_check_seg_type(sbi, se->type);
3622 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3624 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3626 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3628 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3630 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3631 if (curseg->alloc_type == SSR) {
3632 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3633 } else {
3634 curseg->next_blkoff++;
3635 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3636 f2fs_randomize_chunk(sbi, curseg);
3638 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3639 segment_full = true;
3640 stat_inc_block_count(sbi, curseg);
3642 if (from_gc) {
3643 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3644 } else {
3645 update_segment_mtime(sbi, old_blkaddr, 0);
3646 old_mtime = 0;
3648 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3651 * SIT information should be updated before segment allocation,
3652 * since SSR needs latest valid block information.
3654 update_sit_entry(sbi, *new_blkaddr, 1);
3655 update_sit_entry(sbi, old_blkaddr, -1);
3658 * If the current segment is full, flush it out and replace it with a
3659 * new segment.
3661 if (segment_full) {
3662 if (type == CURSEG_COLD_DATA_PINNED &&
3663 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3664 write_sum_page(sbi, curseg->sum_blk,
3665 GET_SUM_BLOCK(sbi, curseg->segno));
3666 reset_curseg_fields(curseg);
3667 goto skip_new_segment;
3670 if (from_gc) {
3671 ret = get_atssr_segment(sbi, type, se->type,
3672 AT_SSR, se->mtime);
3673 } else {
3674 if (need_new_seg(sbi, type))
3675 ret = new_curseg(sbi, type, false);
3676 else
3677 ret = change_curseg(sbi, type);
3678 stat_inc_seg_type(sbi, curseg);
3681 if (ret)
3682 goto out_err;
3685 skip_new_segment:
3687 * segment dirty status should be updated after segment allocation,
3688 * so we just need to update status only one time after previous
3689 * segment being closed.
3691 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3692 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3694 if (IS_DATASEG(curseg->seg_type))
3695 atomic64_inc(&sbi->allocated_data_blocks);
3697 up_write(&sit_i->sentry_lock);
3699 if (page && IS_NODESEG(curseg->seg_type)) {
3700 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3702 f2fs_inode_chksum_set(sbi, page);
3705 if (fio) {
3706 struct f2fs_bio_info *io;
3708 INIT_LIST_HEAD(&fio->list);
3709 fio->in_list = 1;
3710 io = sbi->write_io[fio->type] + fio->temp;
3711 spin_lock(&io->io_lock);
3712 list_add_tail(&fio->list, &io->io_list);
3713 spin_unlock(&io->io_lock);
3716 mutex_unlock(&curseg->curseg_mutex);
3717 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3718 return 0;
3720 out_err:
3721 *new_blkaddr = NULL_ADDR;
3722 up_write(&sit_i->sentry_lock);
3723 mutex_unlock(&curseg->curseg_mutex);
3724 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3725 return ret;
3728 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3729 block_t blkaddr, unsigned int blkcnt)
3731 if (!f2fs_is_multi_device(sbi))
3732 return;
3734 while (1) {
3735 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3736 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3738 /* update device state for fsync */
3739 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3741 /* update device state for checkpoint */
3742 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3743 spin_lock(&sbi->dev_lock);
3744 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3745 spin_unlock(&sbi->dev_lock);
3748 if (blkcnt <= blks)
3749 break;
3750 blkcnt -= blks;
3751 blkaddr += blks;
3755 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3757 int type = __get_segment_type(fio);
3758 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3760 if (keep_order)
3761 f2fs_down_read(&fio->sbi->io_order_lock);
3763 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3764 &fio->new_blkaddr, sum, type, fio)) {
3765 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3766 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3767 end_page_writeback(fio->page);
3768 if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3769 f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3770 goto out;
3772 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3773 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3775 /* writeout dirty page into bdev */
3776 f2fs_submit_page_write(fio);
3778 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3779 out:
3780 if (keep_order)
3781 f2fs_up_read(&fio->sbi->io_order_lock);
3784 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3785 enum iostat_type io_type)
3787 struct f2fs_io_info fio = {
3788 .sbi = sbi,
3789 .type = META,
3790 .temp = HOT,
3791 .op = REQ_OP_WRITE,
3792 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3793 .old_blkaddr = page->index,
3794 .new_blkaddr = page->index,
3795 .page = page,
3796 .encrypted_page = NULL,
3797 .in_list = 0,
3800 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3801 fio.op_flags &= ~REQ_META;
3803 set_page_writeback(page);
3804 f2fs_submit_page_write(&fio);
3806 stat_inc_meta_count(sbi, page->index);
3807 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3810 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3812 struct f2fs_summary sum;
3814 set_summary(&sum, nid, 0, 0);
3815 do_write_page(&sum, fio);
3817 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3820 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3821 struct f2fs_io_info *fio)
3823 struct f2fs_sb_info *sbi = fio->sbi;
3824 struct f2fs_summary sum;
3826 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3827 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3828 f2fs_update_age_extent_cache(dn);
3829 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3830 do_write_page(&sum, fio);
3831 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3833 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3836 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3838 int err;
3839 struct f2fs_sb_info *sbi = fio->sbi;
3840 unsigned int segno;
3842 fio->new_blkaddr = fio->old_blkaddr;
3843 /* i/o temperature is needed for passing down write hints */
3844 __get_segment_type(fio);
3846 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3848 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3849 set_sbi_flag(sbi, SBI_NEED_FSCK);
3850 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3851 __func__, segno);
3852 err = -EFSCORRUPTED;
3853 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3854 goto drop_bio;
3857 if (f2fs_cp_error(sbi)) {
3858 err = -EIO;
3859 goto drop_bio;
3862 if (fio->meta_gc)
3863 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3865 stat_inc_inplace_blocks(fio->sbi);
3867 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3868 err = f2fs_merge_page_bio(fio);
3869 else
3870 err = f2fs_submit_page_bio(fio);
3871 if (!err) {
3872 f2fs_update_device_state(fio->sbi, fio->ino,
3873 fio->new_blkaddr, 1);
3874 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3875 fio->io_type, F2FS_BLKSIZE);
3878 return err;
3879 drop_bio:
3880 if (fio->bio && *(fio->bio)) {
3881 struct bio *bio = *(fio->bio);
3883 bio->bi_status = BLK_STS_IOERR;
3884 bio_endio(bio);
3885 *(fio->bio) = NULL;
3887 return err;
3890 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3891 unsigned int segno)
3893 int i;
3895 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3896 if (CURSEG_I(sbi, i)->segno == segno)
3897 break;
3899 return i;
3902 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3903 block_t old_blkaddr, block_t new_blkaddr,
3904 bool recover_curseg, bool recover_newaddr,
3905 bool from_gc)
3907 struct sit_info *sit_i = SIT_I(sbi);
3908 struct curseg_info *curseg;
3909 unsigned int segno, old_cursegno;
3910 struct seg_entry *se;
3911 int type;
3912 unsigned short old_blkoff;
3913 unsigned char old_alloc_type;
3915 segno = GET_SEGNO(sbi, new_blkaddr);
3916 se = get_seg_entry(sbi, segno);
3917 type = se->type;
3919 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3921 if (!recover_curseg) {
3922 /* for recovery flow */
3923 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3924 if (old_blkaddr == NULL_ADDR)
3925 type = CURSEG_COLD_DATA;
3926 else
3927 type = CURSEG_WARM_DATA;
3929 } else {
3930 if (IS_CURSEG(sbi, segno)) {
3931 /* se->type is volatile as SSR allocation */
3932 type = __f2fs_get_curseg(sbi, segno);
3933 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3934 } else {
3935 type = CURSEG_WARM_DATA;
3939 f2fs_bug_on(sbi, !IS_DATASEG(type));
3940 curseg = CURSEG_I(sbi, type);
3942 mutex_lock(&curseg->curseg_mutex);
3943 down_write(&sit_i->sentry_lock);
3945 old_cursegno = curseg->segno;
3946 old_blkoff = curseg->next_blkoff;
3947 old_alloc_type = curseg->alloc_type;
3949 /* change the current segment */
3950 if (segno != curseg->segno) {
3951 curseg->next_segno = segno;
3952 if (change_curseg(sbi, type))
3953 goto out_unlock;
3956 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3957 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3959 if (!recover_curseg || recover_newaddr) {
3960 if (!from_gc)
3961 update_segment_mtime(sbi, new_blkaddr, 0);
3962 update_sit_entry(sbi, new_blkaddr, 1);
3964 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3965 f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3966 if (!from_gc)
3967 update_segment_mtime(sbi, old_blkaddr, 0);
3968 update_sit_entry(sbi, old_blkaddr, -1);
3971 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3972 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3974 locate_dirty_segment(sbi, old_cursegno);
3976 if (recover_curseg) {
3977 if (old_cursegno != curseg->segno) {
3978 curseg->next_segno = old_cursegno;
3979 if (change_curseg(sbi, type))
3980 goto out_unlock;
3982 curseg->next_blkoff = old_blkoff;
3983 curseg->alloc_type = old_alloc_type;
3986 out_unlock:
3987 up_write(&sit_i->sentry_lock);
3988 mutex_unlock(&curseg->curseg_mutex);
3989 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3992 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3993 block_t old_addr, block_t new_addr,
3994 unsigned char version, bool recover_curseg,
3995 bool recover_newaddr)
3997 struct f2fs_summary sum;
3999 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4001 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4002 recover_curseg, recover_newaddr, false);
4004 f2fs_update_data_blkaddr(dn, new_addr);
4007 void f2fs_wait_on_page_writeback(struct page *page,
4008 enum page_type type, bool ordered, bool locked)
4010 if (folio_test_writeback(page_folio(page))) {
4011 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4013 /* submit cached LFS IO */
4014 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4015 /* submit cached IPU IO */
4016 f2fs_submit_merged_ipu_write(sbi, NULL, page);
4017 if (ordered) {
4018 wait_on_page_writeback(page);
4019 f2fs_bug_on(sbi, locked &&
4020 folio_test_writeback(page_folio(page)));
4021 } else {
4022 wait_for_stable_page(page);
4027 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4030 struct page *cpage;
4032 if (!f2fs_meta_inode_gc_required(inode))
4033 return;
4035 if (!__is_valid_data_blkaddr(blkaddr))
4036 return;
4038 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4039 if (cpage) {
4040 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4041 f2fs_put_page(cpage, 1);
4045 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4046 block_t len)
4048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4049 block_t i;
4051 if (!f2fs_meta_inode_gc_required(inode))
4052 return;
4054 for (i = 0; i < len; i++)
4055 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4057 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4060 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4062 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4063 struct curseg_info *seg_i;
4064 unsigned char *kaddr;
4065 struct page *page;
4066 block_t start;
4067 int i, j, offset;
4069 start = start_sum_block(sbi);
4071 page = f2fs_get_meta_page(sbi, start++);
4072 if (IS_ERR(page))
4073 return PTR_ERR(page);
4074 kaddr = (unsigned char *)page_address(page);
4076 /* Step 1: restore nat cache */
4077 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4078 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4080 /* Step 2: restore sit cache */
4081 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4082 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4083 offset = 2 * SUM_JOURNAL_SIZE;
4085 /* Step 3: restore summary entries */
4086 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4087 unsigned short blk_off;
4088 unsigned int segno;
4090 seg_i = CURSEG_I(sbi, i);
4091 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4092 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4093 seg_i->next_segno = segno;
4094 reset_curseg(sbi, i, 0);
4095 seg_i->alloc_type = ckpt->alloc_type[i];
4096 seg_i->next_blkoff = blk_off;
4098 if (seg_i->alloc_type == SSR)
4099 blk_off = BLKS_PER_SEG(sbi);
4101 for (j = 0; j < blk_off; j++) {
4102 struct f2fs_summary *s;
4104 s = (struct f2fs_summary *)(kaddr + offset);
4105 seg_i->sum_blk->entries[j] = *s;
4106 offset += SUMMARY_SIZE;
4107 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4108 SUM_FOOTER_SIZE)
4109 continue;
4111 f2fs_put_page(page, 1);
4112 page = NULL;
4114 page = f2fs_get_meta_page(sbi, start++);
4115 if (IS_ERR(page))
4116 return PTR_ERR(page);
4117 kaddr = (unsigned char *)page_address(page);
4118 offset = 0;
4121 f2fs_put_page(page, 1);
4122 return 0;
4125 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4127 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4128 struct f2fs_summary_block *sum;
4129 struct curseg_info *curseg;
4130 struct page *new;
4131 unsigned short blk_off;
4132 unsigned int segno = 0;
4133 block_t blk_addr = 0;
4134 int err = 0;
4136 /* get segment number and block addr */
4137 if (IS_DATASEG(type)) {
4138 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4139 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4140 CURSEG_HOT_DATA]);
4141 if (__exist_node_summaries(sbi))
4142 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4143 else
4144 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4145 } else {
4146 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4147 CURSEG_HOT_NODE]);
4148 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4149 CURSEG_HOT_NODE]);
4150 if (__exist_node_summaries(sbi))
4151 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4152 type - CURSEG_HOT_NODE);
4153 else
4154 blk_addr = GET_SUM_BLOCK(sbi, segno);
4157 new = f2fs_get_meta_page(sbi, blk_addr);
4158 if (IS_ERR(new))
4159 return PTR_ERR(new);
4160 sum = (struct f2fs_summary_block *)page_address(new);
4162 if (IS_NODESEG(type)) {
4163 if (__exist_node_summaries(sbi)) {
4164 struct f2fs_summary *ns = &sum->entries[0];
4165 int i;
4167 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4168 ns->version = 0;
4169 ns->ofs_in_node = 0;
4171 } else {
4172 err = f2fs_restore_node_summary(sbi, segno, sum);
4173 if (err)
4174 goto out;
4178 /* set uncompleted segment to curseg */
4179 curseg = CURSEG_I(sbi, type);
4180 mutex_lock(&curseg->curseg_mutex);
4182 /* update journal info */
4183 down_write(&curseg->journal_rwsem);
4184 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4185 up_write(&curseg->journal_rwsem);
4187 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4188 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4189 curseg->next_segno = segno;
4190 reset_curseg(sbi, type, 0);
4191 curseg->alloc_type = ckpt->alloc_type[type];
4192 curseg->next_blkoff = blk_off;
4193 mutex_unlock(&curseg->curseg_mutex);
4194 out:
4195 f2fs_put_page(new, 1);
4196 return err;
4199 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4201 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4202 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4203 int type = CURSEG_HOT_DATA;
4204 int err;
4206 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4207 int npages = f2fs_npages_for_summary_flush(sbi, true);
4209 if (npages >= 2)
4210 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4211 META_CP, true);
4213 /* restore for compacted data summary */
4214 err = read_compacted_summaries(sbi);
4215 if (err)
4216 return err;
4217 type = CURSEG_HOT_NODE;
4220 if (__exist_node_summaries(sbi))
4221 f2fs_ra_meta_pages(sbi,
4222 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4223 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4225 for (; type <= CURSEG_COLD_NODE; type++) {
4226 err = read_normal_summaries(sbi, type);
4227 if (err)
4228 return err;
4231 /* sanity check for summary blocks */
4232 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4233 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4234 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4235 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4236 return -EINVAL;
4239 return 0;
4242 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4244 struct page *page;
4245 unsigned char *kaddr;
4246 struct f2fs_summary *summary;
4247 struct curseg_info *seg_i;
4248 int written_size = 0;
4249 int i, j;
4251 page = f2fs_grab_meta_page(sbi, blkaddr++);
4252 kaddr = (unsigned char *)page_address(page);
4253 memset(kaddr, 0, PAGE_SIZE);
4255 /* Step 1: write nat cache */
4256 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4257 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4258 written_size += SUM_JOURNAL_SIZE;
4260 /* Step 2: write sit cache */
4261 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4262 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4263 written_size += SUM_JOURNAL_SIZE;
4265 /* Step 3: write summary entries */
4266 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4267 seg_i = CURSEG_I(sbi, i);
4268 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4269 if (!page) {
4270 page = f2fs_grab_meta_page(sbi, blkaddr++);
4271 kaddr = (unsigned char *)page_address(page);
4272 memset(kaddr, 0, PAGE_SIZE);
4273 written_size = 0;
4275 summary = (struct f2fs_summary *)(kaddr + written_size);
4276 *summary = seg_i->sum_blk->entries[j];
4277 written_size += SUMMARY_SIZE;
4279 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4280 SUM_FOOTER_SIZE)
4281 continue;
4283 set_page_dirty(page);
4284 f2fs_put_page(page, 1);
4285 page = NULL;
4288 if (page) {
4289 set_page_dirty(page);
4290 f2fs_put_page(page, 1);
4294 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4295 block_t blkaddr, int type)
4297 int i, end;
4299 if (IS_DATASEG(type))
4300 end = type + NR_CURSEG_DATA_TYPE;
4301 else
4302 end = type + NR_CURSEG_NODE_TYPE;
4304 for (i = type; i < end; i++)
4305 write_current_sum_page(sbi, i, blkaddr + (i - type));
4308 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4310 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4311 write_compacted_summaries(sbi, start_blk);
4312 else
4313 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4316 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4318 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4321 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4322 unsigned int val, int alloc)
4324 int i;
4326 if (type == NAT_JOURNAL) {
4327 for (i = 0; i < nats_in_cursum(journal); i++) {
4328 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4329 return i;
4331 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4332 return update_nats_in_cursum(journal, 1);
4333 } else if (type == SIT_JOURNAL) {
4334 for (i = 0; i < sits_in_cursum(journal); i++)
4335 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4336 return i;
4337 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4338 return update_sits_in_cursum(journal, 1);
4340 return -1;
4343 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4344 unsigned int segno)
4346 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4349 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4350 unsigned int start)
4352 struct sit_info *sit_i = SIT_I(sbi);
4353 struct page *page;
4354 pgoff_t src_off, dst_off;
4356 src_off = current_sit_addr(sbi, start);
4357 dst_off = next_sit_addr(sbi, src_off);
4359 page = f2fs_grab_meta_page(sbi, dst_off);
4360 seg_info_to_sit_page(sbi, page, start);
4362 set_page_dirty(page);
4363 set_to_next_sit(sit_i, start);
4365 return page;
4368 static struct sit_entry_set *grab_sit_entry_set(void)
4370 struct sit_entry_set *ses =
4371 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4372 GFP_NOFS, true, NULL);
4374 ses->entry_cnt = 0;
4375 INIT_LIST_HEAD(&ses->set_list);
4376 return ses;
4379 static void release_sit_entry_set(struct sit_entry_set *ses)
4381 list_del(&ses->set_list);
4382 kmem_cache_free(sit_entry_set_slab, ses);
4385 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4386 struct list_head *head)
4388 struct sit_entry_set *next = ses;
4390 if (list_is_last(&ses->set_list, head))
4391 return;
4393 list_for_each_entry_continue(next, head, set_list)
4394 if (ses->entry_cnt <= next->entry_cnt) {
4395 list_move_tail(&ses->set_list, &next->set_list);
4396 return;
4399 list_move_tail(&ses->set_list, head);
4402 static void add_sit_entry(unsigned int segno, struct list_head *head)
4404 struct sit_entry_set *ses;
4405 unsigned int start_segno = START_SEGNO(segno);
4407 list_for_each_entry(ses, head, set_list) {
4408 if (ses->start_segno == start_segno) {
4409 ses->entry_cnt++;
4410 adjust_sit_entry_set(ses, head);
4411 return;
4415 ses = grab_sit_entry_set();
4417 ses->start_segno = start_segno;
4418 ses->entry_cnt++;
4419 list_add(&ses->set_list, head);
4422 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4424 struct f2fs_sm_info *sm_info = SM_I(sbi);
4425 struct list_head *set_list = &sm_info->sit_entry_set;
4426 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4427 unsigned int segno;
4429 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4430 add_sit_entry(segno, set_list);
4433 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4435 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4436 struct f2fs_journal *journal = curseg->journal;
4437 int i;
4439 down_write(&curseg->journal_rwsem);
4440 for (i = 0; i < sits_in_cursum(journal); i++) {
4441 unsigned int segno;
4442 bool dirtied;
4444 segno = le32_to_cpu(segno_in_journal(journal, i));
4445 dirtied = __mark_sit_entry_dirty(sbi, segno);
4447 if (!dirtied)
4448 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4450 update_sits_in_cursum(journal, -i);
4451 up_write(&curseg->journal_rwsem);
4455 * CP calls this function, which flushes SIT entries including sit_journal,
4456 * and moves prefree segs to free segs.
4458 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4460 struct sit_info *sit_i = SIT_I(sbi);
4461 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4462 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4463 struct f2fs_journal *journal = curseg->journal;
4464 struct sit_entry_set *ses, *tmp;
4465 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4466 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4467 struct seg_entry *se;
4469 down_write(&sit_i->sentry_lock);
4471 if (!sit_i->dirty_sentries)
4472 goto out;
4475 * add and account sit entries of dirty bitmap in sit entry
4476 * set temporarily
4478 add_sits_in_set(sbi);
4481 * if there are no enough space in journal to store dirty sit
4482 * entries, remove all entries from journal and add and account
4483 * them in sit entry set.
4485 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4486 !to_journal)
4487 remove_sits_in_journal(sbi);
4490 * there are two steps to flush sit entries:
4491 * #1, flush sit entries to journal in current cold data summary block.
4492 * #2, flush sit entries to sit page.
4494 list_for_each_entry_safe(ses, tmp, head, set_list) {
4495 struct page *page = NULL;
4496 struct f2fs_sit_block *raw_sit = NULL;
4497 unsigned int start_segno = ses->start_segno;
4498 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4499 (unsigned long)MAIN_SEGS(sbi));
4500 unsigned int segno = start_segno;
4502 if (to_journal &&
4503 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4504 to_journal = false;
4506 if (to_journal) {
4507 down_write(&curseg->journal_rwsem);
4508 } else {
4509 page = get_next_sit_page(sbi, start_segno);
4510 raw_sit = page_address(page);
4513 /* flush dirty sit entries in region of current sit set */
4514 for_each_set_bit_from(segno, bitmap, end) {
4515 int offset, sit_offset;
4517 se = get_seg_entry(sbi, segno);
4518 #ifdef CONFIG_F2FS_CHECK_FS
4519 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4520 SIT_VBLOCK_MAP_SIZE))
4521 f2fs_bug_on(sbi, 1);
4522 #endif
4524 /* add discard candidates */
4525 if (!(cpc->reason & CP_DISCARD)) {
4526 cpc->trim_start = segno;
4527 add_discard_addrs(sbi, cpc, false);
4530 if (to_journal) {
4531 offset = f2fs_lookup_journal_in_cursum(journal,
4532 SIT_JOURNAL, segno, 1);
4533 f2fs_bug_on(sbi, offset < 0);
4534 segno_in_journal(journal, offset) =
4535 cpu_to_le32(segno);
4536 seg_info_to_raw_sit(se,
4537 &sit_in_journal(journal, offset));
4538 check_block_count(sbi, segno,
4539 &sit_in_journal(journal, offset));
4540 } else {
4541 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4542 seg_info_to_raw_sit(se,
4543 &raw_sit->entries[sit_offset]);
4544 check_block_count(sbi, segno,
4545 &raw_sit->entries[sit_offset]);
4548 __clear_bit(segno, bitmap);
4549 sit_i->dirty_sentries--;
4550 ses->entry_cnt--;
4553 if (to_journal)
4554 up_write(&curseg->journal_rwsem);
4555 else
4556 f2fs_put_page(page, 1);
4558 f2fs_bug_on(sbi, ses->entry_cnt);
4559 release_sit_entry_set(ses);
4562 f2fs_bug_on(sbi, !list_empty(head));
4563 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4564 out:
4565 if (cpc->reason & CP_DISCARD) {
4566 __u64 trim_start = cpc->trim_start;
4568 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4569 add_discard_addrs(sbi, cpc, false);
4571 cpc->trim_start = trim_start;
4573 up_write(&sit_i->sentry_lock);
4575 set_prefree_as_free_segments(sbi);
4578 static int build_sit_info(struct f2fs_sb_info *sbi)
4580 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4581 struct sit_info *sit_i;
4582 unsigned int sit_segs, start;
4583 char *src_bitmap, *bitmap;
4584 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4585 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4587 /* allocate memory for SIT information */
4588 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4589 if (!sit_i)
4590 return -ENOMEM;
4592 SM_I(sbi)->sit_info = sit_i;
4594 sit_i->sentries =
4595 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4596 MAIN_SEGS(sbi)),
4597 GFP_KERNEL);
4598 if (!sit_i->sentries)
4599 return -ENOMEM;
4601 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4602 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4603 GFP_KERNEL);
4604 if (!sit_i->dirty_sentries_bitmap)
4605 return -ENOMEM;
4607 #ifdef CONFIG_F2FS_CHECK_FS
4608 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4609 #else
4610 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4611 #endif
4612 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4613 if (!sit_i->bitmap)
4614 return -ENOMEM;
4616 bitmap = sit_i->bitmap;
4618 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4619 sit_i->sentries[start].cur_valid_map = bitmap;
4620 bitmap += SIT_VBLOCK_MAP_SIZE;
4622 sit_i->sentries[start].ckpt_valid_map = bitmap;
4623 bitmap += SIT_VBLOCK_MAP_SIZE;
4625 #ifdef CONFIG_F2FS_CHECK_FS
4626 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4627 bitmap += SIT_VBLOCK_MAP_SIZE;
4628 #endif
4630 if (discard_map) {
4631 sit_i->sentries[start].discard_map = bitmap;
4632 bitmap += SIT_VBLOCK_MAP_SIZE;
4636 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4637 if (!sit_i->tmp_map)
4638 return -ENOMEM;
4640 if (__is_large_section(sbi)) {
4641 sit_i->sec_entries =
4642 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4643 MAIN_SECS(sbi)),
4644 GFP_KERNEL);
4645 if (!sit_i->sec_entries)
4646 return -ENOMEM;
4649 /* get information related with SIT */
4650 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4652 /* setup SIT bitmap from ckeckpoint pack */
4653 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4654 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4656 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4657 if (!sit_i->sit_bitmap)
4658 return -ENOMEM;
4660 #ifdef CONFIG_F2FS_CHECK_FS
4661 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4662 sit_bitmap_size, GFP_KERNEL);
4663 if (!sit_i->sit_bitmap_mir)
4664 return -ENOMEM;
4666 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4667 main_bitmap_size, GFP_KERNEL);
4668 if (!sit_i->invalid_segmap)
4669 return -ENOMEM;
4670 #endif
4672 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4673 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4674 sit_i->written_valid_blocks = 0;
4675 sit_i->bitmap_size = sit_bitmap_size;
4676 sit_i->dirty_sentries = 0;
4677 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4678 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4679 sit_i->mounted_time = ktime_get_boottime_seconds();
4680 init_rwsem(&sit_i->sentry_lock);
4681 return 0;
4684 static int build_free_segmap(struct f2fs_sb_info *sbi)
4686 struct free_segmap_info *free_i;
4687 unsigned int bitmap_size, sec_bitmap_size;
4689 /* allocate memory for free segmap information */
4690 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4691 if (!free_i)
4692 return -ENOMEM;
4694 SM_I(sbi)->free_info = free_i;
4696 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4697 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4698 if (!free_i->free_segmap)
4699 return -ENOMEM;
4701 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4702 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4703 if (!free_i->free_secmap)
4704 return -ENOMEM;
4706 /* set all segments as dirty temporarily */
4707 memset(free_i->free_segmap, 0xff, bitmap_size);
4708 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4710 /* init free segmap information */
4711 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4712 free_i->free_segments = 0;
4713 free_i->free_sections = 0;
4714 spin_lock_init(&free_i->segmap_lock);
4715 return 0;
4718 static int build_curseg(struct f2fs_sb_info *sbi)
4720 struct curseg_info *array;
4721 int i;
4723 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4724 sizeof(*array)), GFP_KERNEL);
4725 if (!array)
4726 return -ENOMEM;
4728 SM_I(sbi)->curseg_array = array;
4730 for (i = 0; i < NO_CHECK_TYPE; i++) {
4731 mutex_init(&array[i].curseg_mutex);
4732 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4733 if (!array[i].sum_blk)
4734 return -ENOMEM;
4735 init_rwsem(&array[i].journal_rwsem);
4736 array[i].journal = f2fs_kzalloc(sbi,
4737 sizeof(struct f2fs_journal), GFP_KERNEL);
4738 if (!array[i].journal)
4739 return -ENOMEM;
4740 if (i < NR_PERSISTENT_LOG)
4741 array[i].seg_type = CURSEG_HOT_DATA + i;
4742 else if (i == CURSEG_COLD_DATA_PINNED)
4743 array[i].seg_type = CURSEG_COLD_DATA;
4744 else if (i == CURSEG_ALL_DATA_ATGC)
4745 array[i].seg_type = CURSEG_COLD_DATA;
4746 reset_curseg_fields(&array[i]);
4748 return restore_curseg_summaries(sbi);
4751 static int build_sit_entries(struct f2fs_sb_info *sbi)
4753 struct sit_info *sit_i = SIT_I(sbi);
4754 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4755 struct f2fs_journal *journal = curseg->journal;
4756 struct seg_entry *se;
4757 struct f2fs_sit_entry sit;
4758 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4759 unsigned int i, start, end;
4760 unsigned int readed, start_blk = 0;
4761 int err = 0;
4762 block_t sit_valid_blocks[2] = {0, 0};
4764 do {
4765 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4766 META_SIT, true);
4768 start = start_blk * sit_i->sents_per_block;
4769 end = (start_blk + readed) * sit_i->sents_per_block;
4771 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4772 struct f2fs_sit_block *sit_blk;
4773 struct page *page;
4775 se = &sit_i->sentries[start];
4776 page = get_current_sit_page(sbi, start);
4777 if (IS_ERR(page))
4778 return PTR_ERR(page);
4779 sit_blk = (struct f2fs_sit_block *)page_address(page);
4780 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4781 f2fs_put_page(page, 1);
4783 err = check_block_count(sbi, start, &sit);
4784 if (err)
4785 return err;
4786 seg_info_from_raw_sit(se, &sit);
4788 if (se->type >= NR_PERSISTENT_LOG) {
4789 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4790 se->type, start);
4791 f2fs_handle_error(sbi,
4792 ERROR_INCONSISTENT_SUM_TYPE);
4793 return -EFSCORRUPTED;
4796 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4798 if (!f2fs_block_unit_discard(sbi))
4799 goto init_discard_map_done;
4801 /* build discard map only one time */
4802 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4803 memset(se->discard_map, 0xff,
4804 SIT_VBLOCK_MAP_SIZE);
4805 goto init_discard_map_done;
4807 memcpy(se->discard_map, se->cur_valid_map,
4808 SIT_VBLOCK_MAP_SIZE);
4809 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4810 se->valid_blocks;
4811 init_discard_map_done:
4812 if (__is_large_section(sbi))
4813 get_sec_entry(sbi, start)->valid_blocks +=
4814 se->valid_blocks;
4816 start_blk += readed;
4817 } while (start_blk < sit_blk_cnt);
4819 down_read(&curseg->journal_rwsem);
4820 for (i = 0; i < sits_in_cursum(journal); i++) {
4821 unsigned int old_valid_blocks;
4823 start = le32_to_cpu(segno_in_journal(journal, i));
4824 if (start >= MAIN_SEGS(sbi)) {
4825 f2fs_err(sbi, "Wrong journal entry on segno %u",
4826 start);
4827 err = -EFSCORRUPTED;
4828 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4829 break;
4832 se = &sit_i->sentries[start];
4833 sit = sit_in_journal(journal, i);
4835 old_valid_blocks = se->valid_blocks;
4837 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4839 err = check_block_count(sbi, start, &sit);
4840 if (err)
4841 break;
4842 seg_info_from_raw_sit(se, &sit);
4844 if (se->type >= NR_PERSISTENT_LOG) {
4845 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4846 se->type, start);
4847 err = -EFSCORRUPTED;
4848 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4849 break;
4852 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4854 if (f2fs_block_unit_discard(sbi)) {
4855 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4856 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4857 } else {
4858 memcpy(se->discard_map, se->cur_valid_map,
4859 SIT_VBLOCK_MAP_SIZE);
4860 sbi->discard_blks += old_valid_blocks;
4861 sbi->discard_blks -= se->valid_blocks;
4865 if (__is_large_section(sbi)) {
4866 get_sec_entry(sbi, start)->valid_blocks +=
4867 se->valid_blocks;
4868 get_sec_entry(sbi, start)->valid_blocks -=
4869 old_valid_blocks;
4872 up_read(&curseg->journal_rwsem);
4874 if (err)
4875 return err;
4877 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4878 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4879 sit_valid_blocks[NODE], valid_node_count(sbi));
4880 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4881 return -EFSCORRUPTED;
4884 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4885 valid_user_blocks(sbi)) {
4886 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4887 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4888 valid_user_blocks(sbi));
4889 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4890 return -EFSCORRUPTED;
4893 return 0;
4896 static void init_free_segmap(struct f2fs_sb_info *sbi)
4898 unsigned int start;
4899 int type;
4900 struct seg_entry *sentry;
4902 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4903 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4904 continue;
4905 sentry = get_seg_entry(sbi, start);
4906 if (!sentry->valid_blocks)
4907 __set_free(sbi, start);
4908 else
4909 SIT_I(sbi)->written_valid_blocks +=
4910 sentry->valid_blocks;
4913 /* set use the current segments */
4914 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4915 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4917 __set_test_and_inuse(sbi, curseg_t->segno);
4921 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4923 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4924 struct free_segmap_info *free_i = FREE_I(sbi);
4925 unsigned int segno = 0, offset = 0, secno;
4926 block_t valid_blocks, usable_blks_in_seg;
4928 while (1) {
4929 /* find dirty segment based on free segmap */
4930 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4931 if (segno >= MAIN_SEGS(sbi))
4932 break;
4933 offset = segno + 1;
4934 valid_blocks = get_valid_blocks(sbi, segno, false);
4935 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4936 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4937 continue;
4938 if (valid_blocks > usable_blks_in_seg) {
4939 f2fs_bug_on(sbi, 1);
4940 continue;
4942 mutex_lock(&dirty_i->seglist_lock);
4943 __locate_dirty_segment(sbi, segno, DIRTY);
4944 mutex_unlock(&dirty_i->seglist_lock);
4947 if (!__is_large_section(sbi))
4948 return;
4950 mutex_lock(&dirty_i->seglist_lock);
4951 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4952 valid_blocks = get_valid_blocks(sbi, segno, true);
4953 secno = GET_SEC_FROM_SEG(sbi, segno);
4955 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4956 continue;
4957 if (IS_CURSEC(sbi, secno))
4958 continue;
4959 set_bit(secno, dirty_i->dirty_secmap);
4961 mutex_unlock(&dirty_i->seglist_lock);
4964 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4966 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4967 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4969 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4970 if (!dirty_i->victim_secmap)
4971 return -ENOMEM;
4973 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4974 if (!dirty_i->pinned_secmap)
4975 return -ENOMEM;
4977 dirty_i->pinned_secmap_cnt = 0;
4978 dirty_i->enable_pin_section = true;
4979 return 0;
4982 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4984 struct dirty_seglist_info *dirty_i;
4985 unsigned int bitmap_size, i;
4987 /* allocate memory for dirty segments list information */
4988 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4989 GFP_KERNEL);
4990 if (!dirty_i)
4991 return -ENOMEM;
4993 SM_I(sbi)->dirty_info = dirty_i;
4994 mutex_init(&dirty_i->seglist_lock);
4996 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4998 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4999 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5000 GFP_KERNEL);
5001 if (!dirty_i->dirty_segmap[i])
5002 return -ENOMEM;
5005 if (__is_large_section(sbi)) {
5006 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5007 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5008 bitmap_size, GFP_KERNEL);
5009 if (!dirty_i->dirty_secmap)
5010 return -ENOMEM;
5013 init_dirty_segmap(sbi);
5014 return init_victim_secmap(sbi);
5017 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5019 int i;
5022 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5023 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5025 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5026 struct curseg_info *curseg = CURSEG_I(sbi, i);
5027 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5028 unsigned int blkofs = curseg->next_blkoff;
5030 if (f2fs_sb_has_readonly(sbi) &&
5031 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5032 continue;
5034 sanity_check_seg_type(sbi, curseg->seg_type);
5036 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5037 f2fs_err(sbi,
5038 "Current segment has invalid alloc_type:%d",
5039 curseg->alloc_type);
5040 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5041 return -EFSCORRUPTED;
5044 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5045 goto out;
5047 if (curseg->alloc_type == SSR)
5048 continue;
5050 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5051 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5052 continue;
5053 out:
5054 f2fs_err(sbi,
5055 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5056 i, curseg->segno, curseg->alloc_type,
5057 curseg->next_blkoff, blkofs);
5058 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5059 return -EFSCORRUPTED;
5062 return 0;
5065 #ifdef CONFIG_BLK_DEV_ZONED
5066 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5067 struct f2fs_dev_info *fdev,
5068 struct blk_zone *zone)
5070 unsigned int zone_segno;
5071 block_t zone_block, valid_block_cnt;
5072 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5073 int ret;
5074 unsigned int nofs_flags;
5076 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5077 return 0;
5079 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5080 zone_segno = GET_SEGNO(sbi, zone_block);
5083 * Skip check of zones cursegs point to, since
5084 * fix_curseg_write_pointer() checks them.
5086 if (zone_segno >= MAIN_SEGS(sbi))
5087 return 0;
5090 * Get # of valid block of the zone.
5092 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5093 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5094 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5095 zone_segno, valid_block_cnt,
5096 blk_zone_cond_str(zone->cond));
5097 return 0;
5100 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5101 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5102 return 0;
5104 if (!valid_block_cnt) {
5105 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5106 "pointer. Reset the write pointer: cond[%s]",
5107 blk_zone_cond_str(zone->cond));
5108 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5109 zone->len >> log_sectors_per_block);
5110 if (ret)
5111 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5112 fdev->path, ret);
5113 return ret;
5117 * If there are valid blocks and the write pointer doesn't match
5118 * with them, we need to report the inconsistency and fill
5119 * the zone till the end to close the zone. This inconsistency
5120 * does not cause write error because the zone will not be
5121 * selected for write operation until it get discarded.
5123 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5124 "pointer: valid block[0x%x,0x%x] cond[%s]",
5125 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5127 nofs_flags = memalloc_nofs_save();
5128 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5129 zone->start, zone->len);
5130 memalloc_nofs_restore(nofs_flags);
5131 if (ret == -EOPNOTSUPP) {
5132 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5133 zone->len - (zone->wp - zone->start),
5134 GFP_NOFS, 0);
5135 if (ret)
5136 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5137 fdev->path, ret);
5138 } else if (ret) {
5139 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5140 fdev->path, ret);
5143 return ret;
5146 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5147 block_t zone_blkaddr)
5149 int i;
5151 for (i = 0; i < sbi->s_ndevs; i++) {
5152 if (!bdev_is_zoned(FDEV(i).bdev))
5153 continue;
5154 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5155 zone_blkaddr <= FDEV(i).end_blk))
5156 return &FDEV(i);
5159 return NULL;
5162 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5163 void *data)
5165 memcpy(data, zone, sizeof(struct blk_zone));
5166 return 0;
5169 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5171 struct curseg_info *cs = CURSEG_I(sbi, type);
5172 struct f2fs_dev_info *zbd;
5173 struct blk_zone zone;
5174 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5175 block_t cs_zone_block, wp_block;
5176 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5177 sector_t zone_sector;
5178 int err;
5180 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5181 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5183 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5184 if (!zbd)
5185 return 0;
5187 /* report zone for the sector the curseg points to */
5188 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5189 << log_sectors_per_block;
5190 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5191 report_one_zone_cb, &zone);
5192 if (err != 1) {
5193 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5194 zbd->path, err);
5195 return err;
5198 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5199 return 0;
5202 * When safely unmounted in the previous mount, we could use current
5203 * segments. Otherwise, allocate new sections.
5205 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5206 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5207 wp_segno = GET_SEGNO(sbi, wp_block);
5208 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5209 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5211 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5212 wp_sector_off == 0)
5213 return 0;
5215 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5216 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5217 cs->next_blkoff, wp_segno, wp_blkoff);
5220 /* Allocate a new section if it's not new. */
5221 if (cs->next_blkoff ||
5222 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5223 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5225 f2fs_allocate_new_section(sbi, type, true);
5226 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5227 "[0x%x,0x%x] -> [0x%x,0x%x]",
5228 type, old_segno, old_blkoff,
5229 cs->segno, cs->next_blkoff);
5232 /* check consistency of the zone curseg pointed to */
5233 if (check_zone_write_pointer(sbi, zbd, &zone))
5234 return -EIO;
5236 /* check newly assigned zone */
5237 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5238 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5240 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5241 if (!zbd)
5242 return 0;
5244 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5245 << log_sectors_per_block;
5246 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5247 report_one_zone_cb, &zone);
5248 if (err != 1) {
5249 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5250 zbd->path, err);
5251 return err;
5254 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5255 return 0;
5257 if (zone.wp != zone.start) {
5258 f2fs_notice(sbi,
5259 "New zone for curseg[%d] is not yet discarded. "
5260 "Reset the zone: curseg[0x%x,0x%x]",
5261 type, cs->segno, cs->next_blkoff);
5262 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5263 zone.len >> log_sectors_per_block);
5264 if (err) {
5265 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5266 zbd->path, err);
5267 return err;
5271 return 0;
5274 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5276 int i, ret;
5278 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5279 ret = fix_curseg_write_pointer(sbi, i);
5280 if (ret)
5281 return ret;
5284 return 0;
5287 struct check_zone_write_pointer_args {
5288 struct f2fs_sb_info *sbi;
5289 struct f2fs_dev_info *fdev;
5292 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5293 void *data)
5295 struct check_zone_write_pointer_args *args;
5297 args = (struct check_zone_write_pointer_args *)data;
5299 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5302 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5304 int i, ret;
5305 struct check_zone_write_pointer_args args;
5307 for (i = 0; i < sbi->s_ndevs; i++) {
5308 if (!bdev_is_zoned(FDEV(i).bdev))
5309 continue;
5311 args.sbi = sbi;
5312 args.fdev = &FDEV(i);
5313 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5314 check_zone_write_pointer_cb, &args);
5315 if (ret < 0)
5316 return ret;
5319 return 0;
5323 * Return the number of usable blocks in a segment. The number of blocks
5324 * returned is always equal to the number of blocks in a segment for
5325 * segments fully contained within a sequential zone capacity or a
5326 * conventional zone. For segments partially contained in a sequential
5327 * zone capacity, the number of usable blocks up to the zone capacity
5328 * is returned. 0 is returned in all other cases.
5330 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5331 struct f2fs_sb_info *sbi, unsigned int segno)
5333 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5334 unsigned int secno;
5336 if (!sbi->unusable_blocks_per_sec)
5337 return BLKS_PER_SEG(sbi);
5339 secno = GET_SEC_FROM_SEG(sbi, segno);
5340 seg_start = START_BLOCK(sbi, segno);
5341 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5342 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5345 * If segment starts before zone capacity and spans beyond
5346 * zone capacity, then usable blocks are from seg start to
5347 * zone capacity. If the segment starts after the zone capacity,
5348 * then there are no usable blocks.
5350 if (seg_start >= sec_cap_blkaddr)
5351 return 0;
5352 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5353 return sec_cap_blkaddr - seg_start;
5355 return BLKS_PER_SEG(sbi);
5357 #else
5358 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5360 return 0;
5363 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5365 return 0;
5368 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5369 unsigned int segno)
5371 return 0;
5374 #endif
5375 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5376 unsigned int segno)
5378 if (f2fs_sb_has_blkzoned(sbi))
5379 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5381 return BLKS_PER_SEG(sbi);
5384 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5385 unsigned int segno)
5387 if (f2fs_sb_has_blkzoned(sbi))
5388 return CAP_SEGS_PER_SEC(sbi);
5390 return SEGS_PER_SEC(sbi);
5394 * Update min, max modified time for cost-benefit GC algorithm
5396 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5398 struct sit_info *sit_i = SIT_I(sbi);
5399 unsigned int segno;
5401 down_write(&sit_i->sentry_lock);
5403 sit_i->min_mtime = ULLONG_MAX;
5405 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5406 unsigned int i;
5407 unsigned long long mtime = 0;
5409 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5410 mtime += get_seg_entry(sbi, segno + i)->mtime;
5412 mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5414 if (sit_i->min_mtime > mtime)
5415 sit_i->min_mtime = mtime;
5417 sit_i->max_mtime = get_mtime(sbi, false);
5418 sit_i->dirty_max_mtime = 0;
5419 up_write(&sit_i->sentry_lock);
5422 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5424 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5425 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5426 struct f2fs_sm_info *sm_info;
5427 int err;
5429 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5430 if (!sm_info)
5431 return -ENOMEM;
5433 /* init sm info */
5434 sbi->sm_info = sm_info;
5435 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5436 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5437 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5438 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5439 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5440 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5441 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5442 sm_info->rec_prefree_segments = sm_info->main_segments *
5443 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5444 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5445 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5447 if (!f2fs_lfs_mode(sbi))
5448 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5449 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5450 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5451 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5452 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5453 sm_info->min_ssr_sections = reserved_sections(sbi);
5455 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5457 init_f2fs_rwsem(&sm_info->curseg_lock);
5459 err = f2fs_create_flush_cmd_control(sbi);
5460 if (err)
5461 return err;
5463 err = create_discard_cmd_control(sbi);
5464 if (err)
5465 return err;
5467 err = build_sit_info(sbi);
5468 if (err)
5469 return err;
5470 err = build_free_segmap(sbi);
5471 if (err)
5472 return err;
5473 err = build_curseg(sbi);
5474 if (err)
5475 return err;
5477 /* reinit free segmap based on SIT */
5478 err = build_sit_entries(sbi);
5479 if (err)
5480 return err;
5482 init_free_segmap(sbi);
5483 err = build_dirty_segmap(sbi);
5484 if (err)
5485 return err;
5487 err = sanity_check_curseg(sbi);
5488 if (err)
5489 return err;
5491 init_min_max_mtime(sbi);
5492 return 0;
5495 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5496 enum dirty_type dirty_type)
5498 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5500 mutex_lock(&dirty_i->seglist_lock);
5501 kvfree(dirty_i->dirty_segmap[dirty_type]);
5502 dirty_i->nr_dirty[dirty_type] = 0;
5503 mutex_unlock(&dirty_i->seglist_lock);
5506 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5508 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5510 kvfree(dirty_i->pinned_secmap);
5511 kvfree(dirty_i->victim_secmap);
5514 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5517 int i;
5519 if (!dirty_i)
5520 return;
5522 /* discard pre-free/dirty segments list */
5523 for (i = 0; i < NR_DIRTY_TYPE; i++)
5524 discard_dirty_segmap(sbi, i);
5526 if (__is_large_section(sbi)) {
5527 mutex_lock(&dirty_i->seglist_lock);
5528 kvfree(dirty_i->dirty_secmap);
5529 mutex_unlock(&dirty_i->seglist_lock);
5532 destroy_victim_secmap(sbi);
5533 SM_I(sbi)->dirty_info = NULL;
5534 kfree(dirty_i);
5537 static void destroy_curseg(struct f2fs_sb_info *sbi)
5539 struct curseg_info *array = SM_I(sbi)->curseg_array;
5540 int i;
5542 if (!array)
5543 return;
5544 SM_I(sbi)->curseg_array = NULL;
5545 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5546 kfree(array[i].sum_blk);
5547 kfree(array[i].journal);
5549 kfree(array);
5552 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5554 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5556 if (!free_i)
5557 return;
5558 SM_I(sbi)->free_info = NULL;
5559 kvfree(free_i->free_segmap);
5560 kvfree(free_i->free_secmap);
5561 kfree(free_i);
5564 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5566 struct sit_info *sit_i = SIT_I(sbi);
5568 if (!sit_i)
5569 return;
5571 if (sit_i->sentries)
5572 kvfree(sit_i->bitmap);
5573 kfree(sit_i->tmp_map);
5575 kvfree(sit_i->sentries);
5576 kvfree(sit_i->sec_entries);
5577 kvfree(sit_i->dirty_sentries_bitmap);
5579 SM_I(sbi)->sit_info = NULL;
5580 kvfree(sit_i->sit_bitmap);
5581 #ifdef CONFIG_F2FS_CHECK_FS
5582 kvfree(sit_i->sit_bitmap_mir);
5583 kvfree(sit_i->invalid_segmap);
5584 #endif
5585 kfree(sit_i);
5588 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5590 struct f2fs_sm_info *sm_info = SM_I(sbi);
5592 if (!sm_info)
5593 return;
5594 f2fs_destroy_flush_cmd_control(sbi, true);
5595 destroy_discard_cmd_control(sbi);
5596 destroy_dirty_segmap(sbi);
5597 destroy_curseg(sbi);
5598 destroy_free_segmap(sbi);
5599 destroy_sit_info(sbi);
5600 sbi->sm_info = NULL;
5601 kfree(sm_info);
5604 int __init f2fs_create_segment_manager_caches(void)
5606 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5607 sizeof(struct discard_entry));
5608 if (!discard_entry_slab)
5609 goto fail;
5611 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5612 sizeof(struct discard_cmd));
5613 if (!discard_cmd_slab)
5614 goto destroy_discard_entry;
5616 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5617 sizeof(struct sit_entry_set));
5618 if (!sit_entry_set_slab)
5619 goto destroy_discard_cmd;
5621 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5622 sizeof(struct revoke_entry));
5623 if (!revoke_entry_slab)
5624 goto destroy_sit_entry_set;
5625 return 0;
5627 destroy_sit_entry_set:
5628 kmem_cache_destroy(sit_entry_set_slab);
5629 destroy_discard_cmd:
5630 kmem_cache_destroy(discard_cmd_slab);
5631 destroy_discard_entry:
5632 kmem_cache_destroy(discard_entry_slab);
5633 fail:
5634 return -ENOMEM;
5637 void f2fs_destroy_segment_manager_caches(void)
5639 kmem_cache_destroy(sit_entry_set_slab);
5640 kmem_cache_destroy(discard_cmd_slab);
5641 kmem_cache_destroy(discard_entry_slab);
5642 kmem_cache_destroy(revoke_entry_slab);