Linux 6.12-rc7
[linux-stable.git] / drivers / net / phy / sfp.c
bloba5684ef5884bda2690a6a1e173b0250bbe1b3f10
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
19 #include "sfp.h"
20 #include "swphy.h"
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
87 static const char *mod_state_to_str(unsigned short mod_state)
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
100 static const char *dev_state_to_str(unsigned short dev_state)
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
121 static const char *event_to_str(unsigned short event)
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
142 static const char *sm_state_to_str(unsigned short sm_state)
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 25
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
222 #define SFP_EEPROM_BLOCK_SIZE 16
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
248 bool need_poll;
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state_ignore_mask;
261 unsigned int state;
263 struct delayed_work poll;
264 struct delayed_work timeout;
265 struct mutex sm_mutex; /* Protects state machine */
266 unsigned char sm_mod_state;
267 unsigned char sm_mod_tries_init;
268 unsigned char sm_mod_tries;
269 unsigned char sm_dev_state;
270 unsigned short sm_state;
271 unsigned char sm_fault_retries;
272 unsigned char sm_phy_retries;
274 struct sfp_eeprom_id id;
275 unsigned int module_power_mW;
276 unsigned int module_t_start_up;
277 unsigned int module_t_wait;
278 unsigned int phy_t_retry;
280 unsigned int rate_kbd;
281 unsigned int rs_threshold_kbd;
282 unsigned int rs_state_mask;
284 bool have_a2;
286 const struct sfp_quirk *quirk;
288 #if IS_ENABLED(CONFIG_HWMON)
289 struct sfp_diag diag;
290 struct delayed_work hwmon_probe;
291 unsigned int hwmon_tries;
292 struct device *hwmon_dev;
293 char *hwmon_name;
294 #endif
296 #if IS_ENABLED(CONFIG_DEBUG_FS)
297 struct dentry *debugfs_dir;
298 #endif
301 static bool sff_module_supported(const struct sfp_eeprom_id *id)
303 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
304 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
307 static const struct sff_data sff_data = {
308 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
309 .module_supported = sff_module_supported,
312 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
314 if (id->base.phys_id == SFF8024_ID_SFP &&
315 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
316 return true;
318 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
319 * phys id SFF instead of SFP. Therefore mark this module explicitly
320 * as supported based on vendor name and pn match.
322 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
323 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
324 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
325 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
326 return true;
328 return false;
331 static const struct sff_data sfp_data = {
332 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
333 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
334 .module_supported = sfp_module_supported,
337 static const struct of_device_id sfp_of_match[] = {
338 { .compatible = "sff,sff", .data = &sff_data, },
339 { .compatible = "sff,sfp", .data = &sfp_data, },
340 { },
342 MODULE_DEVICE_TABLE(of, sfp_of_match);
344 static void sfp_fixup_long_startup(struct sfp *sfp)
346 sfp->module_t_start_up = T_START_UP_BAD_GPON;
349 static void sfp_fixup_ignore_los(struct sfp *sfp)
351 /* This forces LOS to zero, so we ignore transitions */
352 sfp->state_ignore_mask |= SFP_F_LOS;
353 /* Make sure that LOS options are clear */
354 sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED |
355 SFP_OPTIONS_LOS_NORMAL);
358 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
360 sfp->state_ignore_mask |= SFP_F_TX_FAULT;
363 static void sfp_fixup_nokia(struct sfp *sfp)
365 sfp_fixup_long_startup(sfp);
366 sfp_fixup_ignore_los(sfp);
369 // For 10GBASE-T short-reach modules
370 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
372 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
373 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
376 static void sfp_fixup_rollball(struct sfp *sfp)
378 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
380 /* RollBall modules may disallow access to PHY registers for up to 25
381 * seconds, and the reads return 0xffff before that. Increase the time
382 * between PHY probe retries from 50ms to 1s so that we will wait for
383 * the PHY for a sufficient amount of time.
385 sfp->phy_t_retry = msecs_to_jiffies(1000);
388 static void sfp_fixup_fs_2_5gt(struct sfp *sfp)
390 sfp_fixup_rollball(sfp);
392 /* The RollBall fixup is not enough for FS modules, the PHY chip inside
393 * them does not return 0xffff for PHY ID registers in all MMDs for the
394 * while initializing. They need a 4 second wait before accessing PHY.
396 sfp->module_t_wait = msecs_to_jiffies(4000);
399 static void sfp_fixup_fs_10gt(struct sfp *sfp)
401 sfp_fixup_10gbaset_30m(sfp);
402 sfp_fixup_fs_2_5gt(sfp);
405 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
407 /* Ignore the TX_FAULT and LOS signals on this module.
408 * these are possibly used for other purposes on this
409 * module, e.g. a serial port.
411 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
414 static void sfp_fixup_rollball_cc(struct sfp *sfp)
416 sfp_fixup_rollball(sfp);
418 /* Some RollBall SFPs may have wrong (zero) extended compliance code
419 * burned in EEPROM. For PHY probing we need the correct one.
421 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
424 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
428 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
429 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
432 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
433 unsigned long *modes,
434 unsigned long *interfaces)
436 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
439 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
440 unsigned long *modes,
441 unsigned long *interfaces)
443 /* Copper 2.5G SFP */
444 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
445 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
446 sfp_quirk_disable_autoneg(id, modes, interfaces);
449 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
450 unsigned long *modes,
451 unsigned long *interfaces)
453 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
454 * types including 10G Ethernet which is not truth. So clear all claimed
455 * modes and set only one mode which module supports: 1000baseX_Full.
457 linkmode_zero(modes);
458 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
461 #define SFP_QUIRK(_v, _p, _m, _f) \
462 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
463 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
464 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
466 static const struct sfp_quirk sfp_quirks[] = {
467 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
468 // report 2500MBd NRZ in their EEPROM
469 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
471 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
472 // NRZ in their EEPROM
473 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
474 sfp_fixup_nokia),
476 // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball
477 // protocol to talk to the PHY and needs 4 sec wait before probing the
478 // PHY.
479 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
481 // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and
482 // needs 4 sec wait before probing the PHY.
483 SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt),
485 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
486 // NRZ in their EEPROM
487 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
488 sfp_fixup_ignore_tx_fault),
490 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
492 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
493 // 2600MBd in their EERPOM
494 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
496 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
497 // their EEPROM
498 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
499 sfp_fixup_ignore_tx_fault),
501 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
502 // 2500MBd NRZ in their EEPROM
503 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
505 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
507 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
508 // Rollball protocol to talk to the PHY.
509 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
510 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
512 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
513 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
515 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
516 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
517 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
518 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
519 SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball),
520 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
521 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
524 static size_t sfp_strlen(const char *str, size_t maxlen)
526 size_t size, i;
528 /* Trailing characters should be filled with space chars, but
529 * some manufacturers can't read SFF-8472 and use NUL.
531 for (i = 0, size = 0; i < maxlen; i++)
532 if (str[i] != ' ' && str[i] != '\0')
533 size = i + 1;
535 return size;
538 static bool sfp_match(const char *qs, const char *str, size_t len)
540 if (!qs)
541 return true;
542 if (strlen(qs) != len)
543 return false;
544 return !strncmp(qs, str, len);
547 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
549 const struct sfp_quirk *q;
550 unsigned int i;
551 size_t vs, ps;
553 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
554 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
556 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
557 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
558 sfp_match(q->part, id->base.vendor_pn, ps))
559 return q;
561 return NULL;
564 static unsigned long poll_jiffies;
566 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
568 unsigned int i, state, v;
570 for (i = state = 0; i < GPIO_MAX; i++) {
571 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
572 continue;
574 v = gpiod_get_value_cansleep(sfp->gpio[i]);
575 if (v)
576 state |= BIT(i);
579 return state;
582 static unsigned int sff_gpio_get_state(struct sfp *sfp)
584 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
587 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
589 unsigned int drive;
591 if (state & SFP_F_PRESENT)
592 /* If the module is present, drive the requested signals */
593 drive = sfp->state_hw_drive;
594 else
595 /* Otherwise, let them float to the pull-ups */
596 drive = 0;
598 if (sfp->gpio[GPIO_TX_DISABLE]) {
599 if (drive & SFP_F_TX_DISABLE)
600 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
601 state & SFP_F_TX_DISABLE);
602 else
603 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
606 if (sfp->gpio[GPIO_RS0]) {
607 if (drive & SFP_F_RS0)
608 gpiod_direction_output(sfp->gpio[GPIO_RS0],
609 state & SFP_F_RS0);
610 else
611 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
614 if (sfp->gpio[GPIO_RS1]) {
615 if (drive & SFP_F_RS1)
616 gpiod_direction_output(sfp->gpio[GPIO_RS1],
617 state & SFP_F_RS1);
618 else
619 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
623 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
624 size_t len)
626 struct i2c_msg msgs[2];
627 u8 bus_addr = a2 ? 0x51 : 0x50;
628 size_t block_size = sfp->i2c_block_size;
629 size_t this_len;
630 int ret;
632 msgs[0].addr = bus_addr;
633 msgs[0].flags = 0;
634 msgs[0].len = 1;
635 msgs[0].buf = &dev_addr;
636 msgs[1].addr = bus_addr;
637 msgs[1].flags = I2C_M_RD;
638 msgs[1].len = len;
639 msgs[1].buf = buf;
641 while (len) {
642 this_len = len;
643 if (this_len > block_size)
644 this_len = block_size;
646 msgs[1].len = this_len;
648 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
649 if (ret < 0)
650 return ret;
652 if (ret != ARRAY_SIZE(msgs))
653 break;
655 msgs[1].buf += this_len;
656 dev_addr += this_len;
657 len -= this_len;
660 return msgs[1].buf - (u8 *)buf;
663 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
664 size_t len)
666 struct i2c_msg msgs[1];
667 u8 bus_addr = a2 ? 0x51 : 0x50;
668 int ret;
670 msgs[0].addr = bus_addr;
671 msgs[0].flags = 0;
672 msgs[0].len = 1 + len;
673 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
674 if (!msgs[0].buf)
675 return -ENOMEM;
677 msgs[0].buf[0] = dev_addr;
678 memcpy(&msgs[0].buf[1], buf, len);
680 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
682 kfree(msgs[0].buf);
684 if (ret < 0)
685 return ret;
687 return ret == ARRAY_SIZE(msgs) ? len : 0;
690 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
692 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
693 return -EINVAL;
695 sfp->i2c = i2c;
696 sfp->read = sfp_i2c_read;
697 sfp->write = sfp_i2c_write;
699 return 0;
702 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
704 struct mii_bus *i2c_mii;
705 int ret;
707 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
708 if (IS_ERR(i2c_mii))
709 return PTR_ERR(i2c_mii);
711 i2c_mii->name = "SFP I2C Bus";
712 i2c_mii->phy_mask = ~0;
714 ret = mdiobus_register(i2c_mii);
715 if (ret < 0) {
716 mdiobus_free(i2c_mii);
717 return ret;
720 sfp->i2c_mii = i2c_mii;
722 return 0;
725 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
727 mdiobus_unregister(sfp->i2c_mii);
728 sfp->i2c_mii = NULL;
731 /* Interface */
732 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
734 return sfp->read(sfp, a2, addr, buf, len);
737 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
739 return sfp->write(sfp, a2, addr, buf, len);
742 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
744 int ret;
745 u8 old, v;
747 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
748 if (ret != sizeof(old))
749 return ret;
751 v = (old & ~mask) | (val & mask);
752 if (v == old)
753 return sizeof(v);
755 return sfp_write(sfp, a2, addr, &v, sizeof(v));
758 static unsigned int sfp_soft_get_state(struct sfp *sfp)
760 unsigned int state = 0;
761 u8 status;
762 int ret;
764 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
765 if (ret == sizeof(status)) {
766 if (status & SFP_STATUS_RX_LOS)
767 state |= SFP_F_LOS;
768 if (status & SFP_STATUS_TX_FAULT)
769 state |= SFP_F_TX_FAULT;
770 } else {
771 dev_err_ratelimited(sfp->dev,
772 "failed to read SFP soft status: %pe\n",
773 ERR_PTR(ret));
774 /* Preserve the current state */
775 state = sfp->state;
778 return state & sfp->state_soft_mask;
781 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
782 unsigned int soft)
784 u8 mask = 0;
785 u8 val = 0;
787 if (soft & SFP_F_TX_DISABLE)
788 mask |= SFP_STATUS_TX_DISABLE_FORCE;
789 if (state & SFP_F_TX_DISABLE)
790 val |= SFP_STATUS_TX_DISABLE_FORCE;
792 if (soft & SFP_F_RS0)
793 mask |= SFP_STATUS_RS0_SELECT;
794 if (state & SFP_F_RS0)
795 val |= SFP_STATUS_RS0_SELECT;
797 if (mask)
798 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
800 val = mask = 0;
801 if (soft & SFP_F_RS1)
802 mask |= SFP_EXT_STATUS_RS1_SELECT;
803 if (state & SFP_F_RS1)
804 val |= SFP_EXT_STATUS_RS1_SELECT;
806 if (mask)
807 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
810 static void sfp_soft_start_poll(struct sfp *sfp)
812 const struct sfp_eeprom_id *id = &sfp->id;
813 unsigned int mask = 0;
815 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
816 mask |= SFP_F_TX_DISABLE;
817 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
818 mask |= SFP_F_TX_FAULT;
819 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
820 mask |= SFP_F_LOS;
821 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
822 mask |= sfp->rs_state_mask;
824 mutex_lock(&sfp->st_mutex);
825 // Poll the soft state for hardware pins we want to ignore
826 sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask &
827 mask;
829 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
830 !sfp->need_poll)
831 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
832 mutex_unlock(&sfp->st_mutex);
835 static void sfp_soft_stop_poll(struct sfp *sfp)
837 mutex_lock(&sfp->st_mutex);
838 sfp->state_soft_mask = 0;
839 mutex_unlock(&sfp->st_mutex);
842 /* sfp_get_state() - must be called with st_mutex held, or in the
843 * initialisation path.
845 static unsigned int sfp_get_state(struct sfp *sfp)
847 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
848 unsigned int state;
850 state = sfp->get_state(sfp) & sfp->state_hw_mask;
851 if (state & SFP_F_PRESENT && soft)
852 state |= sfp_soft_get_state(sfp);
854 return state;
857 /* sfp_set_state() - must be called with st_mutex held, or in the
858 * initialisation path.
860 static void sfp_set_state(struct sfp *sfp, unsigned int state)
862 unsigned int soft;
864 sfp->set_state(sfp, state);
866 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
867 if (state & SFP_F_PRESENT && soft)
868 sfp_soft_set_state(sfp, state, soft);
871 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
873 mutex_lock(&sfp->st_mutex);
874 sfp->state = (sfp->state & ~mask) | set;
875 sfp_set_state(sfp, sfp->state);
876 mutex_unlock(&sfp->st_mutex);
879 static unsigned int sfp_check(void *buf, size_t len)
881 u8 *p, check;
883 for (p = buf, check = 0; len; p++, len--)
884 check += *p;
886 return check;
889 /* hwmon */
890 #if IS_ENABLED(CONFIG_HWMON)
891 static umode_t sfp_hwmon_is_visible(const void *data,
892 enum hwmon_sensor_types type,
893 u32 attr, int channel)
895 const struct sfp *sfp = data;
897 switch (type) {
898 case hwmon_temp:
899 switch (attr) {
900 case hwmon_temp_min_alarm:
901 case hwmon_temp_max_alarm:
902 case hwmon_temp_lcrit_alarm:
903 case hwmon_temp_crit_alarm:
904 case hwmon_temp_min:
905 case hwmon_temp_max:
906 case hwmon_temp_lcrit:
907 case hwmon_temp_crit:
908 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
909 return 0;
910 fallthrough;
911 case hwmon_temp_input:
912 case hwmon_temp_label:
913 return 0444;
914 default:
915 return 0;
917 case hwmon_in:
918 switch (attr) {
919 case hwmon_in_min_alarm:
920 case hwmon_in_max_alarm:
921 case hwmon_in_lcrit_alarm:
922 case hwmon_in_crit_alarm:
923 case hwmon_in_min:
924 case hwmon_in_max:
925 case hwmon_in_lcrit:
926 case hwmon_in_crit:
927 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
928 return 0;
929 fallthrough;
930 case hwmon_in_input:
931 case hwmon_in_label:
932 return 0444;
933 default:
934 return 0;
936 case hwmon_curr:
937 switch (attr) {
938 case hwmon_curr_min_alarm:
939 case hwmon_curr_max_alarm:
940 case hwmon_curr_lcrit_alarm:
941 case hwmon_curr_crit_alarm:
942 case hwmon_curr_min:
943 case hwmon_curr_max:
944 case hwmon_curr_lcrit:
945 case hwmon_curr_crit:
946 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
947 return 0;
948 fallthrough;
949 case hwmon_curr_input:
950 case hwmon_curr_label:
951 return 0444;
952 default:
953 return 0;
955 case hwmon_power:
956 /* External calibration of receive power requires
957 * floating point arithmetic. Doing that in the kernel
958 * is not easy, so just skip it. If the module does
959 * not require external calibration, we can however
960 * show receiver power, since FP is then not needed.
962 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
963 channel == 1)
964 return 0;
965 switch (attr) {
966 case hwmon_power_min_alarm:
967 case hwmon_power_max_alarm:
968 case hwmon_power_lcrit_alarm:
969 case hwmon_power_crit_alarm:
970 case hwmon_power_min:
971 case hwmon_power_max:
972 case hwmon_power_lcrit:
973 case hwmon_power_crit:
974 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
975 return 0;
976 fallthrough;
977 case hwmon_power_input:
978 case hwmon_power_label:
979 return 0444;
980 default:
981 return 0;
983 default:
984 return 0;
988 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
990 __be16 val;
991 int err;
993 err = sfp_read(sfp, true, reg, &val, sizeof(val));
994 if (err < 0)
995 return err;
997 *value = be16_to_cpu(val);
999 return 0;
1002 static void sfp_hwmon_to_rx_power(long *value)
1004 *value = DIV_ROUND_CLOSEST(*value, 10);
1007 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
1008 long *value)
1010 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
1011 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
1014 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
1016 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
1017 be16_to_cpu(sfp->diag.cal_t_offset), value);
1019 if (*value >= 0x8000)
1020 *value -= 0x10000;
1022 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
1025 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
1027 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1028 be16_to_cpu(sfp->diag.cal_v_offset), value);
1030 *value = DIV_ROUND_CLOSEST(*value, 10);
1033 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1035 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1036 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1038 *value = DIV_ROUND_CLOSEST(*value, 500);
1041 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1043 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1044 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1046 *value = DIV_ROUND_CLOSEST(*value, 10);
1049 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1051 int err;
1053 err = sfp_hwmon_read_sensor(sfp, reg, value);
1054 if (err < 0)
1055 return err;
1057 sfp_hwmon_calibrate_temp(sfp, value);
1059 return 0;
1062 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1064 int err;
1066 err = sfp_hwmon_read_sensor(sfp, reg, value);
1067 if (err < 0)
1068 return err;
1070 sfp_hwmon_calibrate_vcc(sfp, value);
1072 return 0;
1075 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1077 int err;
1079 err = sfp_hwmon_read_sensor(sfp, reg, value);
1080 if (err < 0)
1081 return err;
1083 sfp_hwmon_calibrate_bias(sfp, value);
1085 return 0;
1088 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1090 int err;
1092 err = sfp_hwmon_read_sensor(sfp, reg, value);
1093 if (err < 0)
1094 return err;
1096 sfp_hwmon_calibrate_tx_power(sfp, value);
1098 return 0;
1101 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1103 int err;
1105 err = sfp_hwmon_read_sensor(sfp, reg, value);
1106 if (err < 0)
1107 return err;
1109 sfp_hwmon_to_rx_power(value);
1111 return 0;
1114 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1116 u8 status;
1117 int err;
1119 switch (attr) {
1120 case hwmon_temp_input:
1121 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1123 case hwmon_temp_lcrit:
1124 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1125 sfp_hwmon_calibrate_temp(sfp, value);
1126 return 0;
1128 case hwmon_temp_min:
1129 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1130 sfp_hwmon_calibrate_temp(sfp, value);
1131 return 0;
1132 case hwmon_temp_max:
1133 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1134 sfp_hwmon_calibrate_temp(sfp, value);
1135 return 0;
1137 case hwmon_temp_crit:
1138 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1139 sfp_hwmon_calibrate_temp(sfp, value);
1140 return 0;
1142 case hwmon_temp_lcrit_alarm:
1143 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1144 if (err < 0)
1145 return err;
1147 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1148 return 0;
1150 case hwmon_temp_min_alarm:
1151 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1152 if (err < 0)
1153 return err;
1155 *value = !!(status & SFP_WARN0_TEMP_LOW);
1156 return 0;
1158 case hwmon_temp_max_alarm:
1159 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1160 if (err < 0)
1161 return err;
1163 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1164 return 0;
1166 case hwmon_temp_crit_alarm:
1167 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1168 if (err < 0)
1169 return err;
1171 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1172 return 0;
1173 default:
1174 return -EOPNOTSUPP;
1177 return -EOPNOTSUPP;
1180 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1182 u8 status;
1183 int err;
1185 switch (attr) {
1186 case hwmon_in_input:
1187 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1189 case hwmon_in_lcrit:
1190 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1191 sfp_hwmon_calibrate_vcc(sfp, value);
1192 return 0;
1194 case hwmon_in_min:
1195 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1196 sfp_hwmon_calibrate_vcc(sfp, value);
1197 return 0;
1199 case hwmon_in_max:
1200 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1201 sfp_hwmon_calibrate_vcc(sfp, value);
1202 return 0;
1204 case hwmon_in_crit:
1205 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1206 sfp_hwmon_calibrate_vcc(sfp, value);
1207 return 0;
1209 case hwmon_in_lcrit_alarm:
1210 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1211 if (err < 0)
1212 return err;
1214 *value = !!(status & SFP_ALARM0_VCC_LOW);
1215 return 0;
1217 case hwmon_in_min_alarm:
1218 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1219 if (err < 0)
1220 return err;
1222 *value = !!(status & SFP_WARN0_VCC_LOW);
1223 return 0;
1225 case hwmon_in_max_alarm:
1226 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1227 if (err < 0)
1228 return err;
1230 *value = !!(status & SFP_WARN0_VCC_HIGH);
1231 return 0;
1233 case hwmon_in_crit_alarm:
1234 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1235 if (err < 0)
1236 return err;
1238 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1239 return 0;
1240 default:
1241 return -EOPNOTSUPP;
1244 return -EOPNOTSUPP;
1247 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1249 u8 status;
1250 int err;
1252 switch (attr) {
1253 case hwmon_curr_input:
1254 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1256 case hwmon_curr_lcrit:
1257 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1258 sfp_hwmon_calibrate_bias(sfp, value);
1259 return 0;
1261 case hwmon_curr_min:
1262 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1263 sfp_hwmon_calibrate_bias(sfp, value);
1264 return 0;
1266 case hwmon_curr_max:
1267 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1268 sfp_hwmon_calibrate_bias(sfp, value);
1269 return 0;
1271 case hwmon_curr_crit:
1272 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1273 sfp_hwmon_calibrate_bias(sfp, value);
1274 return 0;
1276 case hwmon_curr_lcrit_alarm:
1277 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1278 if (err < 0)
1279 return err;
1281 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1282 return 0;
1284 case hwmon_curr_min_alarm:
1285 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1286 if (err < 0)
1287 return err;
1289 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1290 return 0;
1292 case hwmon_curr_max_alarm:
1293 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1294 if (err < 0)
1295 return err;
1297 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1298 return 0;
1300 case hwmon_curr_crit_alarm:
1301 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1302 if (err < 0)
1303 return err;
1305 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1306 return 0;
1307 default:
1308 return -EOPNOTSUPP;
1311 return -EOPNOTSUPP;
1314 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1316 u8 status;
1317 int err;
1319 switch (attr) {
1320 case hwmon_power_input:
1321 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1323 case hwmon_power_lcrit:
1324 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1325 sfp_hwmon_calibrate_tx_power(sfp, value);
1326 return 0;
1328 case hwmon_power_min:
1329 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1330 sfp_hwmon_calibrate_tx_power(sfp, value);
1331 return 0;
1333 case hwmon_power_max:
1334 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1335 sfp_hwmon_calibrate_tx_power(sfp, value);
1336 return 0;
1338 case hwmon_power_crit:
1339 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1340 sfp_hwmon_calibrate_tx_power(sfp, value);
1341 return 0;
1343 case hwmon_power_lcrit_alarm:
1344 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1345 if (err < 0)
1346 return err;
1348 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1349 return 0;
1351 case hwmon_power_min_alarm:
1352 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1353 if (err < 0)
1354 return err;
1356 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1357 return 0;
1359 case hwmon_power_max_alarm:
1360 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1361 if (err < 0)
1362 return err;
1364 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1365 return 0;
1367 case hwmon_power_crit_alarm:
1368 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1369 if (err < 0)
1370 return err;
1372 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1373 return 0;
1374 default:
1375 return -EOPNOTSUPP;
1378 return -EOPNOTSUPP;
1381 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1383 u8 status;
1384 int err;
1386 switch (attr) {
1387 case hwmon_power_input:
1388 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1390 case hwmon_power_lcrit:
1391 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1392 sfp_hwmon_to_rx_power(value);
1393 return 0;
1395 case hwmon_power_min:
1396 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1397 sfp_hwmon_to_rx_power(value);
1398 return 0;
1400 case hwmon_power_max:
1401 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1402 sfp_hwmon_to_rx_power(value);
1403 return 0;
1405 case hwmon_power_crit:
1406 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1407 sfp_hwmon_to_rx_power(value);
1408 return 0;
1410 case hwmon_power_lcrit_alarm:
1411 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1412 if (err < 0)
1413 return err;
1415 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1416 return 0;
1418 case hwmon_power_min_alarm:
1419 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1420 if (err < 0)
1421 return err;
1423 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1424 return 0;
1426 case hwmon_power_max_alarm:
1427 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1428 if (err < 0)
1429 return err;
1431 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1432 return 0;
1434 case hwmon_power_crit_alarm:
1435 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1436 if (err < 0)
1437 return err;
1439 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1440 return 0;
1441 default:
1442 return -EOPNOTSUPP;
1445 return -EOPNOTSUPP;
1448 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1449 u32 attr, int channel, long *value)
1451 struct sfp *sfp = dev_get_drvdata(dev);
1453 switch (type) {
1454 case hwmon_temp:
1455 return sfp_hwmon_temp(sfp, attr, value);
1456 case hwmon_in:
1457 return sfp_hwmon_vcc(sfp, attr, value);
1458 case hwmon_curr:
1459 return sfp_hwmon_bias(sfp, attr, value);
1460 case hwmon_power:
1461 switch (channel) {
1462 case 0:
1463 return sfp_hwmon_tx_power(sfp, attr, value);
1464 case 1:
1465 return sfp_hwmon_rx_power(sfp, attr, value);
1466 default:
1467 return -EOPNOTSUPP;
1469 default:
1470 return -EOPNOTSUPP;
1474 static const char *const sfp_hwmon_power_labels[] = {
1475 "TX_power",
1476 "RX_power",
1479 static int sfp_hwmon_read_string(struct device *dev,
1480 enum hwmon_sensor_types type,
1481 u32 attr, int channel, const char **str)
1483 switch (type) {
1484 case hwmon_curr:
1485 switch (attr) {
1486 case hwmon_curr_label:
1487 *str = "bias";
1488 return 0;
1489 default:
1490 return -EOPNOTSUPP;
1492 break;
1493 case hwmon_temp:
1494 switch (attr) {
1495 case hwmon_temp_label:
1496 *str = "temperature";
1497 return 0;
1498 default:
1499 return -EOPNOTSUPP;
1501 break;
1502 case hwmon_in:
1503 switch (attr) {
1504 case hwmon_in_label:
1505 *str = "VCC";
1506 return 0;
1507 default:
1508 return -EOPNOTSUPP;
1510 break;
1511 case hwmon_power:
1512 switch (attr) {
1513 case hwmon_power_label:
1514 *str = sfp_hwmon_power_labels[channel];
1515 return 0;
1516 default:
1517 return -EOPNOTSUPP;
1519 break;
1520 default:
1521 return -EOPNOTSUPP;
1524 return -EOPNOTSUPP;
1527 static const struct hwmon_ops sfp_hwmon_ops = {
1528 .is_visible = sfp_hwmon_is_visible,
1529 .read = sfp_hwmon_read,
1530 .read_string = sfp_hwmon_read_string,
1533 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1534 HWMON_CHANNEL_INFO(chip,
1535 HWMON_C_REGISTER_TZ),
1536 HWMON_CHANNEL_INFO(in,
1537 HWMON_I_INPUT |
1538 HWMON_I_MAX | HWMON_I_MIN |
1539 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1540 HWMON_I_CRIT | HWMON_I_LCRIT |
1541 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1542 HWMON_I_LABEL),
1543 HWMON_CHANNEL_INFO(temp,
1544 HWMON_T_INPUT |
1545 HWMON_T_MAX | HWMON_T_MIN |
1546 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1547 HWMON_T_CRIT | HWMON_T_LCRIT |
1548 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1549 HWMON_T_LABEL),
1550 HWMON_CHANNEL_INFO(curr,
1551 HWMON_C_INPUT |
1552 HWMON_C_MAX | HWMON_C_MIN |
1553 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1554 HWMON_C_CRIT | HWMON_C_LCRIT |
1555 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1556 HWMON_C_LABEL),
1557 HWMON_CHANNEL_INFO(power,
1558 /* Transmit power */
1559 HWMON_P_INPUT |
1560 HWMON_P_MAX | HWMON_P_MIN |
1561 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1562 HWMON_P_CRIT | HWMON_P_LCRIT |
1563 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1564 HWMON_P_LABEL,
1565 /* Receive power */
1566 HWMON_P_INPUT |
1567 HWMON_P_MAX | HWMON_P_MIN |
1568 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1569 HWMON_P_CRIT | HWMON_P_LCRIT |
1570 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1571 HWMON_P_LABEL),
1572 NULL,
1575 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1576 .ops = &sfp_hwmon_ops,
1577 .info = sfp_hwmon_info,
1580 static void sfp_hwmon_probe(struct work_struct *work)
1582 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1583 int err;
1585 /* hwmon interface needs to access 16bit registers in atomic way to
1586 * guarantee coherency of the diagnostic monitoring data. If it is not
1587 * possible to guarantee coherency because EEPROM is broken in such way
1588 * that does not support atomic 16bit read operation then we have to
1589 * skip registration of hwmon device.
1591 if (sfp->i2c_block_size < 2) {
1592 dev_info(sfp->dev,
1593 "skipping hwmon device registration due to broken EEPROM\n");
1594 dev_info(sfp->dev,
1595 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1596 return;
1599 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1600 if (err < 0) {
1601 if (sfp->hwmon_tries--) {
1602 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1603 T_PROBE_RETRY_SLOW);
1604 } else {
1605 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1606 ERR_PTR(err));
1608 return;
1611 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1612 if (IS_ERR(sfp->hwmon_name)) {
1613 dev_err(sfp->dev, "out of memory for hwmon name\n");
1614 return;
1617 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1618 sfp->hwmon_name, sfp,
1619 &sfp_hwmon_chip_info,
1620 NULL);
1621 if (IS_ERR(sfp->hwmon_dev))
1622 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1623 PTR_ERR(sfp->hwmon_dev));
1626 static int sfp_hwmon_insert(struct sfp *sfp)
1628 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1629 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1630 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1633 return 0;
1636 static void sfp_hwmon_remove(struct sfp *sfp)
1638 cancel_delayed_work_sync(&sfp->hwmon_probe);
1639 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1640 hwmon_device_unregister(sfp->hwmon_dev);
1641 sfp->hwmon_dev = NULL;
1642 kfree(sfp->hwmon_name);
1646 static int sfp_hwmon_init(struct sfp *sfp)
1648 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1650 return 0;
1653 static void sfp_hwmon_exit(struct sfp *sfp)
1655 cancel_delayed_work_sync(&sfp->hwmon_probe);
1657 #else
1658 static int sfp_hwmon_insert(struct sfp *sfp)
1660 return 0;
1663 static void sfp_hwmon_remove(struct sfp *sfp)
1667 static int sfp_hwmon_init(struct sfp *sfp)
1669 return 0;
1672 static void sfp_hwmon_exit(struct sfp *sfp)
1675 #endif
1677 /* Helpers */
1678 static void sfp_module_tx_disable(struct sfp *sfp)
1680 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1681 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1682 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1685 static void sfp_module_tx_enable(struct sfp *sfp)
1687 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1688 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1689 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1692 #if IS_ENABLED(CONFIG_DEBUG_FS)
1693 static int sfp_debug_state_show(struct seq_file *s, void *data)
1695 struct sfp *sfp = s->private;
1697 seq_printf(s, "Module state: %s\n",
1698 mod_state_to_str(sfp->sm_mod_state));
1699 seq_printf(s, "Module probe attempts: %d %d\n",
1700 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1701 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1702 seq_printf(s, "Device state: %s\n",
1703 dev_state_to_str(sfp->sm_dev_state));
1704 seq_printf(s, "Main state: %s\n",
1705 sm_state_to_str(sfp->sm_state));
1706 seq_printf(s, "Fault recovery remaining retries: %d\n",
1707 sfp->sm_fault_retries);
1708 seq_printf(s, "PHY probe remaining retries: %d\n",
1709 sfp->sm_phy_retries);
1710 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1711 seq_printf(s, "Rate select threshold: %u kBd\n",
1712 sfp->rs_threshold_kbd);
1713 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1714 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1715 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1716 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1717 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1718 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1719 return 0;
1721 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1723 static void sfp_debugfs_init(struct sfp *sfp)
1725 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1727 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1728 &sfp_debug_state_fops);
1731 static void sfp_debugfs_exit(struct sfp *sfp)
1733 debugfs_remove_recursive(sfp->debugfs_dir);
1735 #else
1736 static void sfp_debugfs_init(struct sfp *sfp)
1740 static void sfp_debugfs_exit(struct sfp *sfp)
1743 #endif
1745 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1747 unsigned int state;
1749 mutex_lock(&sfp->st_mutex);
1750 state = sfp->state;
1751 if (!(state & SFP_F_TX_DISABLE)) {
1752 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1754 udelay(T_RESET_US);
1756 sfp_set_state(sfp, state);
1758 mutex_unlock(&sfp->st_mutex);
1761 /* SFP state machine */
1762 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1764 if (timeout)
1765 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1766 timeout);
1767 else
1768 cancel_delayed_work(&sfp->timeout);
1771 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1772 unsigned int timeout)
1774 sfp->sm_state = state;
1775 sfp_sm_set_timer(sfp, timeout);
1778 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1779 unsigned int timeout)
1781 sfp->sm_mod_state = state;
1782 sfp_sm_set_timer(sfp, timeout);
1785 static void sfp_sm_phy_detach(struct sfp *sfp)
1787 sfp_remove_phy(sfp->sfp_bus);
1788 phy_device_remove(sfp->mod_phy);
1789 phy_device_free(sfp->mod_phy);
1790 sfp->mod_phy = NULL;
1793 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1795 struct phy_device *phy;
1796 int err;
1798 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1799 if (phy == ERR_PTR(-ENODEV))
1800 return PTR_ERR(phy);
1801 if (IS_ERR(phy)) {
1802 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1803 return PTR_ERR(phy);
1806 /* Mark this PHY as being on a SFP module */
1807 phy->is_on_sfp_module = true;
1809 err = phy_device_register(phy);
1810 if (err) {
1811 phy_device_free(phy);
1812 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1813 ERR_PTR(err));
1814 return err;
1817 err = sfp_add_phy(sfp->sfp_bus, phy);
1818 if (err) {
1819 phy_device_remove(phy);
1820 phy_device_free(phy);
1821 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1822 return err;
1825 sfp->mod_phy = phy;
1827 return 0;
1830 static void sfp_sm_link_up(struct sfp *sfp)
1832 sfp_link_up(sfp->sfp_bus);
1833 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1836 static void sfp_sm_link_down(struct sfp *sfp)
1838 sfp_link_down(sfp->sfp_bus);
1841 static void sfp_sm_link_check_los(struct sfp *sfp)
1843 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1844 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1845 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1846 bool los = false;
1848 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1849 * are set, we assume that no LOS signal is available. If both are
1850 * set, we assume LOS is not implemented (and is meaningless.)
1852 if (los_options == los_inverted)
1853 los = !(sfp->state & SFP_F_LOS);
1854 else if (los_options == los_normal)
1855 los = !!(sfp->state & SFP_F_LOS);
1857 if (los)
1858 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1859 else
1860 sfp_sm_link_up(sfp);
1863 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1865 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1866 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1867 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1869 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1870 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1873 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1875 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1876 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1877 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1879 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1880 (los_options == los_normal && event == SFP_E_LOS_LOW);
1883 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1885 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1886 dev_err(sfp->dev,
1887 "module persistently indicates fault, disabling\n");
1888 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1889 } else {
1890 if (warn)
1891 dev_err(sfp->dev, "module transmit fault indicated\n");
1893 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1897 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1899 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1900 return sfp_i2c_mdiobus_create(sfp);
1902 return 0;
1905 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1906 * normally sits at I2C bus address 0x56, and may either be a clause 22
1907 * or clause 45 PHY.
1909 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1910 * negotiation enabled, but some may be in 1000base-X - which is for the
1911 * PHY driver to determine.
1913 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1914 * mode according to the negotiated line speed.
1916 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1918 int err = 0;
1920 switch (sfp->mdio_protocol) {
1921 case MDIO_I2C_NONE:
1922 break;
1924 case MDIO_I2C_MARVELL_C22:
1925 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1926 break;
1928 case MDIO_I2C_C45:
1929 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1930 break;
1932 case MDIO_I2C_ROLLBALL:
1933 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1934 break;
1937 return err;
1940 static int sfp_module_parse_power(struct sfp *sfp)
1942 u32 power_mW = 1000;
1943 bool supports_a2;
1945 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1946 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1947 power_mW = 1500;
1948 /* Added in Rev 11.9, but there is no compliance code for this */
1949 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1950 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1951 power_mW = 2000;
1953 /* Power level 1 modules (max. 1W) are always supported. */
1954 if (power_mW <= 1000) {
1955 sfp->module_power_mW = power_mW;
1956 return 0;
1959 supports_a2 = sfp->id.ext.sff8472_compliance !=
1960 SFP_SFF8472_COMPLIANCE_NONE ||
1961 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1963 if (power_mW > sfp->max_power_mW) {
1964 /* Module power specification exceeds the allowed maximum. */
1965 if (!supports_a2) {
1966 /* The module appears not to implement bus address
1967 * 0xa2, so assume that the module powers up in the
1968 * indicated mode.
1970 dev_err(sfp->dev,
1971 "Host does not support %u.%uW modules\n",
1972 power_mW / 1000, (power_mW / 100) % 10);
1973 return -EINVAL;
1974 } else {
1975 dev_warn(sfp->dev,
1976 "Host does not support %u.%uW modules, module left in power mode 1\n",
1977 power_mW / 1000, (power_mW / 100) % 10);
1978 return 0;
1982 if (!supports_a2) {
1983 /* The module power level is below the host maximum and the
1984 * module appears not to implement bus address 0xa2, so assume
1985 * that the module powers up in the indicated mode.
1987 return 0;
1990 /* If the module requires a higher power mode, but also requires
1991 * an address change sequence, warn the user that the module may
1992 * not be functional.
1994 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1995 dev_warn(sfp->dev,
1996 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1997 power_mW / 1000, (power_mW / 100) % 10);
1998 return 0;
2001 sfp->module_power_mW = power_mW;
2003 return 0;
2006 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
2008 int err;
2010 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
2011 SFP_EXT_STATUS_PWRLVL_SELECT,
2012 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
2013 if (err != sizeof(u8)) {
2014 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
2015 enable ? "en" : "dis", ERR_PTR(err));
2016 return -EAGAIN;
2019 if (enable)
2020 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
2021 sfp->module_power_mW / 1000,
2022 (sfp->module_power_mW / 100) % 10);
2024 return 0;
2027 static void sfp_module_parse_rate_select(struct sfp *sfp)
2029 u8 rate_id;
2031 sfp->rs_threshold_kbd = 0;
2032 sfp->rs_state_mask = 0;
2034 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2035 /* No support for RateSelect */
2036 return;
2038 /* Default to INF-8074 RateSelect operation. The signalling threshold
2039 * rate is not well specified, so always select "Full Bandwidth", but
2040 * SFF-8079 reveals that it is understood that RS0 will be low for
2041 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2042 * This method exists prior to SFF-8472.
2044 sfp->rs_state_mask = SFP_F_RS0;
2045 sfp->rs_threshold_kbd = 1594;
2047 /* Parse the rate identifier, which is complicated due to history:
2048 * SFF-8472 rev 9.5 marks this field as reserved.
2049 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2050 * compliance is not required.
2051 * SFF-8472 rev 10.2 defines this field using values 0..4
2052 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2053 * and even values.
2055 rate_id = sfp->id.base.rate_id;
2056 if (rate_id == 0)
2057 /* Unspecified */
2058 return;
2060 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2061 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2062 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2064 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2065 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2066 rate_id == 3)
2067 rate_id = SFF_RID_8431;
2069 if (rate_id & SFF_RID_8079) {
2070 /* SFF-8079 RateSelect / Application Select in conjunction with
2071 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2072 * with only bit 0 used, which takes precedence over SFF-8472.
2074 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2075 /* SFF-8079 Part 1 - rate selection between Fibre
2076 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2077 * is high for 2125, so we have to subtract 1 to
2078 * include it.
2080 sfp->rs_threshold_kbd = 2125 - 1;
2081 sfp->rs_state_mask = SFP_F_RS0;
2083 return;
2086 /* SFF-8472 rev 9.5 does not define the rate identifier */
2087 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2088 return;
2090 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2091 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2093 switch (rate_id) {
2094 case SFF_RID_8431_RX_ONLY:
2095 sfp->rs_threshold_kbd = 4250;
2096 sfp->rs_state_mask = SFP_F_RS0;
2097 break;
2099 case SFF_RID_8431_TX_ONLY:
2100 sfp->rs_threshold_kbd = 4250;
2101 sfp->rs_state_mask = SFP_F_RS1;
2102 break;
2104 case SFF_RID_8431:
2105 sfp->rs_threshold_kbd = 4250;
2106 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2107 break;
2109 case SFF_RID_10G8G:
2110 sfp->rs_threshold_kbd = 9000;
2111 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2112 break;
2116 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2117 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2118 * not support multibyte reads from the EEPROM. Each multi-byte read
2119 * operation returns just one byte of EEPROM followed by zeros. There is
2120 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2121 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2122 * name and vendor id into EEPROM, so there is even no way to detect if
2123 * module is V-SOL V2801F. Therefore check for those zeros in the read
2124 * data and then based on check switch to reading EEPROM to one byte
2125 * at a time.
2127 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2129 size_t i, block_size = sfp->i2c_block_size;
2131 /* Already using byte IO */
2132 if (block_size == 1)
2133 return false;
2135 for (i = 1; i < len; i += block_size) {
2136 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2137 return false;
2139 return true;
2142 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2144 u8 check;
2145 int err;
2147 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2148 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2149 id->base.connector != SFF8024_CONNECTOR_LC) {
2150 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2151 id->base.phys_id = SFF8024_ID_SFF_8472;
2152 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2153 id->base.connector = SFF8024_CONNECTOR_LC;
2154 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2155 if (err != 3) {
2156 dev_err(sfp->dev,
2157 "Failed to rewrite module EEPROM: %pe\n",
2158 ERR_PTR(err));
2159 return err;
2162 /* Cotsworks modules have been found to require a delay between write operations. */
2163 mdelay(50);
2165 /* Update base structure checksum */
2166 check = sfp_check(&id->base, sizeof(id->base) - 1);
2167 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2168 if (err != 1) {
2169 dev_err(sfp->dev,
2170 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2171 ERR_PTR(err));
2172 return err;
2175 return 0;
2178 static int sfp_module_parse_sff8472(struct sfp *sfp)
2180 /* If the module requires address swap mode, warn about it */
2181 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2182 dev_warn(sfp->dev,
2183 "module address swap to access page 0xA2 is not supported.\n");
2184 else
2185 sfp->have_a2 = true;
2187 return 0;
2190 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2192 /* SFP module inserted - read I2C data */
2193 struct sfp_eeprom_id id;
2194 bool cotsworks_sfbg;
2195 unsigned int mask;
2196 bool cotsworks;
2197 u8 check;
2198 int ret;
2200 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2202 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2203 if (ret < 0) {
2204 if (report)
2205 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2206 ERR_PTR(ret));
2207 return -EAGAIN;
2210 if (ret != sizeof(id.base)) {
2211 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2212 return -EAGAIN;
2215 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2216 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2217 * that EEPROM supports atomic 16bit read operation for diagnostic
2218 * fields, so do not switch to one byte reading at a time unless it
2219 * is really required and we have no other option.
2221 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2222 dev_info(sfp->dev,
2223 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2224 dev_info(sfp->dev,
2225 "Switching to reading EEPROM to one byte at a time\n");
2226 sfp->i2c_block_size = 1;
2228 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2229 if (ret < 0) {
2230 if (report)
2231 dev_err(sfp->dev,
2232 "failed to read EEPROM: %pe\n",
2233 ERR_PTR(ret));
2234 return -EAGAIN;
2237 if (ret != sizeof(id.base)) {
2238 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2239 ERR_PTR(ret));
2240 return -EAGAIN;
2244 /* Cotsworks do not seem to update the checksums when they
2245 * do the final programming with the final module part number,
2246 * serial number and date code.
2248 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2249 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2251 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2252 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2253 * Cotsworks PN matches and bytes are not correct.
2255 if (cotsworks && cotsworks_sfbg) {
2256 ret = sfp_cotsworks_fixup_check(sfp, &id);
2257 if (ret < 0)
2258 return ret;
2261 /* Validate the checksum over the base structure */
2262 check = sfp_check(&id.base, sizeof(id.base) - 1);
2263 if (check != id.base.cc_base) {
2264 if (cotsworks) {
2265 dev_warn(sfp->dev,
2266 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2267 check, id.base.cc_base);
2268 } else {
2269 dev_err(sfp->dev,
2270 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2271 check, id.base.cc_base);
2272 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2273 16, 1, &id, sizeof(id), true);
2274 return -EINVAL;
2278 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2279 if (ret < 0) {
2280 if (report)
2281 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2282 ERR_PTR(ret));
2283 return -EAGAIN;
2286 if (ret != sizeof(id.ext)) {
2287 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2288 return -EAGAIN;
2291 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2292 if (check != id.ext.cc_ext) {
2293 if (cotsworks) {
2294 dev_warn(sfp->dev,
2295 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2296 check, id.ext.cc_ext);
2297 } else {
2298 dev_err(sfp->dev,
2299 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2300 check, id.ext.cc_ext);
2301 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2302 16, 1, &id, sizeof(id), true);
2303 memset(&id.ext, 0, sizeof(id.ext));
2307 sfp->id = id;
2309 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2310 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2311 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2312 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2313 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2314 (int)sizeof(id.ext.datecode), id.ext.datecode);
2316 /* Check whether we support this module */
2317 if (!sfp->type->module_supported(&id)) {
2318 dev_err(sfp->dev,
2319 "module is not supported - phys id 0x%02x 0x%02x\n",
2320 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2321 return -EINVAL;
2324 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2325 ret = sfp_module_parse_sff8472(sfp);
2326 if (ret < 0)
2327 return ret;
2330 /* Parse the module power requirement */
2331 ret = sfp_module_parse_power(sfp);
2332 if (ret < 0)
2333 return ret;
2335 sfp_module_parse_rate_select(sfp);
2337 mask = SFP_F_PRESENT;
2338 if (sfp->gpio[GPIO_TX_DISABLE])
2339 mask |= SFP_F_TX_DISABLE;
2340 if (sfp->gpio[GPIO_TX_FAULT])
2341 mask |= SFP_F_TX_FAULT;
2342 if (sfp->gpio[GPIO_LOS])
2343 mask |= SFP_F_LOS;
2344 if (sfp->gpio[GPIO_RS0])
2345 mask |= SFP_F_RS0;
2346 if (sfp->gpio[GPIO_RS1])
2347 mask |= SFP_F_RS1;
2349 sfp->module_t_start_up = T_START_UP;
2350 sfp->module_t_wait = T_WAIT;
2351 sfp->phy_t_retry = T_PHY_RETRY;
2353 sfp->state_ignore_mask = 0;
2355 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2356 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2357 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2358 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2359 sfp->mdio_protocol = MDIO_I2C_C45;
2360 else if (sfp->id.base.e1000_base_t)
2361 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2362 else
2363 sfp->mdio_protocol = MDIO_I2C_NONE;
2365 sfp->quirk = sfp_lookup_quirk(&id);
2367 mutex_lock(&sfp->st_mutex);
2368 /* Initialise state bits to use from hardware */
2369 sfp->state_hw_mask = mask;
2371 /* We want to drive the rate select pins that the module is using */
2372 sfp->state_hw_drive |= sfp->rs_state_mask;
2374 if (sfp->quirk && sfp->quirk->fixup)
2375 sfp->quirk->fixup(sfp);
2377 sfp->state_hw_mask &= ~sfp->state_ignore_mask;
2378 mutex_unlock(&sfp->st_mutex);
2380 return 0;
2383 static void sfp_sm_mod_remove(struct sfp *sfp)
2385 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2386 sfp_module_remove(sfp->sfp_bus);
2388 sfp_hwmon_remove(sfp);
2390 memset(&sfp->id, 0, sizeof(sfp->id));
2391 sfp->module_power_mW = 0;
2392 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2393 sfp->have_a2 = false;
2395 dev_info(sfp->dev, "module removed\n");
2398 /* This state machine tracks the upstream's state */
2399 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2401 switch (sfp->sm_dev_state) {
2402 default:
2403 if (event == SFP_E_DEV_ATTACH)
2404 sfp->sm_dev_state = SFP_DEV_DOWN;
2405 break;
2407 case SFP_DEV_DOWN:
2408 if (event == SFP_E_DEV_DETACH)
2409 sfp->sm_dev_state = SFP_DEV_DETACHED;
2410 else if (event == SFP_E_DEV_UP)
2411 sfp->sm_dev_state = SFP_DEV_UP;
2412 break;
2414 case SFP_DEV_UP:
2415 if (event == SFP_E_DEV_DETACH)
2416 sfp->sm_dev_state = SFP_DEV_DETACHED;
2417 else if (event == SFP_E_DEV_DOWN)
2418 sfp->sm_dev_state = SFP_DEV_DOWN;
2419 break;
2423 /* This state machine tracks the insert/remove state of the module, probes
2424 * the on-board EEPROM, and sets up the power level.
2426 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2428 int err;
2430 /* Handle remove event globally, it resets this state machine */
2431 if (event == SFP_E_REMOVE) {
2432 sfp_sm_mod_remove(sfp);
2433 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2434 return;
2437 /* Handle device detach globally */
2438 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2439 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2440 if (sfp->module_power_mW > 1000 &&
2441 sfp->sm_mod_state > SFP_MOD_HPOWER)
2442 sfp_sm_mod_hpower(sfp, false);
2443 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2444 return;
2447 switch (sfp->sm_mod_state) {
2448 default:
2449 if (event == SFP_E_INSERT) {
2450 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2451 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2452 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2454 break;
2456 case SFP_MOD_PROBE:
2457 /* Wait for T_PROBE_INIT to time out */
2458 if (event != SFP_E_TIMEOUT)
2459 break;
2461 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2462 if (err == -EAGAIN) {
2463 if (sfp->sm_mod_tries_init &&
2464 --sfp->sm_mod_tries_init) {
2465 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2466 break;
2467 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2468 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2469 dev_warn(sfp->dev,
2470 "please wait, module slow to respond\n");
2471 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2472 break;
2475 if (err < 0) {
2476 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2477 break;
2480 /* Force a poll to re-read the hardware signal state after
2481 * sfp_sm_mod_probe() changed state_hw_mask.
2483 mod_delayed_work(system_wq, &sfp->poll, 1);
2485 err = sfp_hwmon_insert(sfp);
2486 if (err)
2487 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2488 ERR_PTR(err));
2490 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2491 fallthrough;
2492 case SFP_MOD_WAITDEV:
2493 /* Ensure that the device is attached before proceeding */
2494 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2495 break;
2497 /* Report the module insertion to the upstream device */
2498 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2499 sfp->quirk);
2500 if (err < 0) {
2501 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2502 break;
2505 /* If this is a power level 1 module, we are done */
2506 if (sfp->module_power_mW <= 1000)
2507 goto insert;
2509 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2510 fallthrough;
2511 case SFP_MOD_HPOWER:
2512 /* Enable high power mode */
2513 err = sfp_sm_mod_hpower(sfp, true);
2514 if (err < 0) {
2515 if (err != -EAGAIN) {
2516 sfp_module_remove(sfp->sfp_bus);
2517 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2518 } else {
2519 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2521 break;
2524 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2525 break;
2527 case SFP_MOD_WAITPWR:
2528 /* Wait for T_HPOWER_LEVEL to time out */
2529 if (event != SFP_E_TIMEOUT)
2530 break;
2532 insert:
2533 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2534 break;
2536 case SFP_MOD_PRESENT:
2537 case SFP_MOD_ERROR:
2538 break;
2542 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2544 unsigned long timeout;
2545 int ret;
2547 /* Some events are global */
2548 if (sfp->sm_state != SFP_S_DOWN &&
2549 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2550 sfp->sm_dev_state != SFP_DEV_UP)) {
2551 if (sfp->sm_state == SFP_S_LINK_UP &&
2552 sfp->sm_dev_state == SFP_DEV_UP)
2553 sfp_sm_link_down(sfp);
2554 if (sfp->sm_state > SFP_S_INIT)
2555 sfp_module_stop(sfp->sfp_bus);
2556 if (sfp->mod_phy)
2557 sfp_sm_phy_detach(sfp);
2558 if (sfp->i2c_mii)
2559 sfp_i2c_mdiobus_destroy(sfp);
2560 sfp_module_tx_disable(sfp);
2561 sfp_soft_stop_poll(sfp);
2562 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2563 return;
2566 /* The main state machine */
2567 switch (sfp->sm_state) {
2568 case SFP_S_DOWN:
2569 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2570 sfp->sm_dev_state != SFP_DEV_UP)
2571 break;
2573 /* Only use the soft state bits if we have access to the A2h
2574 * memory, which implies that we have some level of SFF-8472
2575 * compliance.
2577 if (sfp->have_a2)
2578 sfp_soft_start_poll(sfp);
2580 sfp_module_tx_enable(sfp);
2582 /* Initialise the fault clearance retries */
2583 sfp->sm_fault_retries = N_FAULT_INIT;
2585 /* We need to check the TX_FAULT state, which is not defined
2586 * while TX_DISABLE is asserted. The earliest we want to do
2587 * anything (such as probe for a PHY) is 50ms (or more on
2588 * specific modules).
2590 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2591 break;
2593 case SFP_S_WAIT:
2594 if (event != SFP_E_TIMEOUT)
2595 break;
2597 if (sfp->state & SFP_F_TX_FAULT) {
2598 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2599 * from the TX_DISABLE deassertion for the module to
2600 * initialise, which is indicated by TX_FAULT
2601 * deasserting.
2603 timeout = sfp->module_t_start_up;
2604 if (timeout > sfp->module_t_wait)
2605 timeout -= sfp->module_t_wait;
2606 else
2607 timeout = 1;
2609 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2610 } else {
2611 /* TX_FAULT is not asserted, assume the module has
2612 * finished initialising.
2614 goto init_done;
2616 break;
2618 case SFP_S_INIT:
2619 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2620 /* TX_FAULT is still asserted after t_init
2621 * or t_start_up, so assume there is a fault.
2623 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2624 sfp->sm_fault_retries == N_FAULT_INIT);
2625 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2626 init_done:
2627 /* Create mdiobus and start trying for PHY */
2628 ret = sfp_sm_add_mdio_bus(sfp);
2629 if (ret < 0) {
2630 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2631 break;
2633 sfp->sm_phy_retries = R_PHY_RETRY;
2634 goto phy_probe;
2636 break;
2638 case SFP_S_INIT_PHY:
2639 if (event != SFP_E_TIMEOUT)
2640 break;
2641 phy_probe:
2642 /* TX_FAULT deasserted or we timed out with TX_FAULT
2643 * clear. Probe for the PHY and check the LOS state.
2645 ret = sfp_sm_probe_for_phy(sfp);
2646 if (ret == -ENODEV) {
2647 if (--sfp->sm_phy_retries) {
2648 sfp_sm_next(sfp, SFP_S_INIT_PHY,
2649 sfp->phy_t_retry);
2650 dev_dbg(sfp->dev,
2651 "no PHY detected, %u tries left\n",
2652 sfp->sm_phy_retries);
2653 break;
2654 } else {
2655 dev_info(sfp->dev, "no PHY detected\n");
2657 } else if (ret) {
2658 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2659 break;
2661 if (sfp_module_start(sfp->sfp_bus)) {
2662 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2663 break;
2665 sfp_sm_link_check_los(sfp);
2667 /* Reset the fault retry count */
2668 sfp->sm_fault_retries = N_FAULT;
2669 break;
2671 case SFP_S_INIT_TX_FAULT:
2672 if (event == SFP_E_TIMEOUT) {
2673 sfp_module_tx_fault_reset(sfp);
2674 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2676 break;
2678 case SFP_S_WAIT_LOS:
2679 if (event == SFP_E_TX_FAULT)
2680 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2681 else if (sfp_los_event_inactive(sfp, event))
2682 sfp_sm_link_up(sfp);
2683 break;
2685 case SFP_S_LINK_UP:
2686 if (event == SFP_E_TX_FAULT) {
2687 sfp_sm_link_down(sfp);
2688 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2689 } else if (sfp_los_event_active(sfp, event)) {
2690 sfp_sm_link_down(sfp);
2691 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2693 break;
2695 case SFP_S_TX_FAULT:
2696 if (event == SFP_E_TIMEOUT) {
2697 sfp_module_tx_fault_reset(sfp);
2698 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2700 break;
2702 case SFP_S_REINIT:
2703 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2704 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2705 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2706 dev_info(sfp->dev, "module transmit fault recovered\n");
2707 sfp_sm_link_check_los(sfp);
2709 break;
2711 case SFP_S_TX_DISABLE:
2712 break;
2716 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2718 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2719 mod_state_to_str(sfp->sm_mod_state),
2720 dev_state_to_str(sfp->sm_dev_state),
2721 sm_state_to_str(sfp->sm_state),
2722 event_to_str(event));
2724 sfp_sm_device(sfp, event);
2725 sfp_sm_module(sfp, event);
2726 sfp_sm_main(sfp, event);
2728 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2729 mod_state_to_str(sfp->sm_mod_state),
2730 dev_state_to_str(sfp->sm_dev_state),
2731 sm_state_to_str(sfp->sm_state));
2734 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2736 mutex_lock(&sfp->sm_mutex);
2737 __sfp_sm_event(sfp, event);
2738 mutex_unlock(&sfp->sm_mutex);
2741 static void sfp_attach(struct sfp *sfp)
2743 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2746 static void sfp_detach(struct sfp *sfp)
2748 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2751 static void sfp_start(struct sfp *sfp)
2753 sfp_sm_event(sfp, SFP_E_DEV_UP);
2756 static void sfp_stop(struct sfp *sfp)
2758 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2761 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2763 unsigned int set;
2765 sfp->rate_kbd = rate_kbd;
2767 if (rate_kbd > sfp->rs_threshold_kbd)
2768 set = sfp->rs_state_mask;
2769 else
2770 set = 0;
2772 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2775 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2777 /* locking... and check module is present */
2779 if (sfp->id.ext.sff8472_compliance &&
2780 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2781 modinfo->type = ETH_MODULE_SFF_8472;
2782 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2783 } else {
2784 modinfo->type = ETH_MODULE_SFF_8079;
2785 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2787 return 0;
2790 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2791 u8 *data)
2793 unsigned int first, last, len;
2794 int ret;
2796 if (!(sfp->state & SFP_F_PRESENT))
2797 return -ENODEV;
2799 if (ee->len == 0)
2800 return -EINVAL;
2802 first = ee->offset;
2803 last = ee->offset + ee->len;
2804 if (first < ETH_MODULE_SFF_8079_LEN) {
2805 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2806 len -= first;
2808 ret = sfp_read(sfp, false, first, data, len);
2809 if (ret < 0)
2810 return ret;
2812 first += len;
2813 data += len;
2815 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2816 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2817 len -= first;
2818 first -= ETH_MODULE_SFF_8079_LEN;
2820 ret = sfp_read(sfp, true, first, data, len);
2821 if (ret < 0)
2822 return ret;
2824 return 0;
2827 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2828 const struct ethtool_module_eeprom *page,
2829 struct netlink_ext_ack *extack)
2831 if (!(sfp->state & SFP_F_PRESENT))
2832 return -ENODEV;
2834 if (page->bank) {
2835 NL_SET_ERR_MSG(extack, "Banks not supported");
2836 return -EOPNOTSUPP;
2839 if (page->page) {
2840 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2841 return -EOPNOTSUPP;
2844 if (page->i2c_address != 0x50 &&
2845 page->i2c_address != 0x51) {
2846 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2847 return -EOPNOTSUPP;
2850 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2851 page->data, page->length);
2854 static const struct sfp_socket_ops sfp_module_ops = {
2855 .attach = sfp_attach,
2856 .detach = sfp_detach,
2857 .start = sfp_start,
2858 .stop = sfp_stop,
2859 .set_signal_rate = sfp_set_signal_rate,
2860 .module_info = sfp_module_info,
2861 .module_eeprom = sfp_module_eeprom,
2862 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2865 static void sfp_timeout(struct work_struct *work)
2867 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2869 rtnl_lock();
2870 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2871 rtnl_unlock();
2874 static void sfp_check_state(struct sfp *sfp)
2876 unsigned int state, i, changed;
2878 rtnl_lock();
2879 mutex_lock(&sfp->st_mutex);
2880 state = sfp_get_state(sfp);
2881 changed = state ^ sfp->state;
2882 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2884 for (i = 0; i < GPIO_MAX; i++)
2885 if (changed & BIT(i))
2886 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2887 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2889 state |= sfp->state & SFP_F_OUTPUTS;
2890 sfp->state = state;
2891 mutex_unlock(&sfp->st_mutex);
2893 mutex_lock(&sfp->sm_mutex);
2894 if (changed & SFP_F_PRESENT)
2895 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2896 SFP_E_INSERT : SFP_E_REMOVE);
2898 if (changed & SFP_F_TX_FAULT)
2899 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2900 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2902 if (changed & SFP_F_LOS)
2903 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2904 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2905 mutex_unlock(&sfp->sm_mutex);
2906 rtnl_unlock();
2909 static irqreturn_t sfp_irq(int irq, void *data)
2911 struct sfp *sfp = data;
2913 sfp_check_state(sfp);
2915 return IRQ_HANDLED;
2918 static void sfp_poll(struct work_struct *work)
2920 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2922 sfp_check_state(sfp);
2924 // st_mutex doesn't need to be held here for state_soft_mask,
2925 // it's unimportant if we race while reading this.
2926 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2927 sfp->need_poll)
2928 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2931 static struct sfp *sfp_alloc(struct device *dev)
2933 struct sfp *sfp;
2935 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2936 if (!sfp)
2937 return ERR_PTR(-ENOMEM);
2939 sfp->dev = dev;
2940 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2942 mutex_init(&sfp->sm_mutex);
2943 mutex_init(&sfp->st_mutex);
2944 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2945 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2947 sfp_hwmon_init(sfp);
2949 return sfp;
2952 static void sfp_cleanup(void *data)
2954 struct sfp *sfp = data;
2956 sfp_hwmon_exit(sfp);
2958 cancel_delayed_work_sync(&sfp->poll);
2959 cancel_delayed_work_sync(&sfp->timeout);
2960 if (sfp->i2c_mii) {
2961 mdiobus_unregister(sfp->i2c_mii);
2962 mdiobus_free(sfp->i2c_mii);
2964 if (sfp->i2c)
2965 i2c_put_adapter(sfp->i2c);
2966 kfree(sfp);
2969 static int sfp_i2c_get(struct sfp *sfp)
2971 struct fwnode_handle *h;
2972 struct i2c_adapter *i2c;
2973 int err;
2975 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2976 if (IS_ERR(h)) {
2977 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2978 return -ENODEV;
2981 i2c = i2c_get_adapter_by_fwnode(h);
2982 if (!i2c) {
2983 err = -EPROBE_DEFER;
2984 goto put;
2987 err = sfp_i2c_configure(sfp, i2c);
2988 if (err)
2989 i2c_put_adapter(i2c);
2990 put:
2991 fwnode_handle_put(h);
2992 return err;
2995 static int sfp_probe(struct platform_device *pdev)
2997 const struct sff_data *sff;
2998 char *sfp_irq_name;
2999 struct sfp *sfp;
3000 int err, i;
3002 sfp = sfp_alloc(&pdev->dev);
3003 if (IS_ERR(sfp))
3004 return PTR_ERR(sfp);
3006 platform_set_drvdata(pdev, sfp);
3008 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
3009 if (err < 0)
3010 return err;
3012 sff = device_get_match_data(sfp->dev);
3013 if (!sff)
3014 sff = &sfp_data;
3016 sfp->type = sff;
3018 err = sfp_i2c_get(sfp);
3019 if (err)
3020 return err;
3022 for (i = 0; i < GPIO_MAX; i++)
3023 if (sff->gpios & BIT(i)) {
3024 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
3025 gpio_names[i], gpio_flags[i]);
3026 if (IS_ERR(sfp->gpio[i]))
3027 return PTR_ERR(sfp->gpio[i]);
3030 sfp->state_hw_mask = SFP_F_PRESENT;
3031 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3033 sfp->get_state = sfp_gpio_get_state;
3034 sfp->set_state = sfp_gpio_set_state;
3036 /* Modules that have no detect signal are always present */
3037 if (!(sfp->gpio[GPIO_MODDEF0]))
3038 sfp->get_state = sff_gpio_get_state;
3040 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3041 &sfp->max_power_mW);
3042 if (sfp->max_power_mW < 1000) {
3043 if (sfp->max_power_mW)
3044 dev_warn(sfp->dev,
3045 "Firmware bug: host maximum power should be at least 1W\n");
3046 sfp->max_power_mW = 1000;
3049 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3050 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3052 /* Get the initial state, and always signal TX disable,
3053 * since the network interface will not be up.
3055 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3057 if (sfp->gpio[GPIO_RS0] &&
3058 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3059 sfp->state |= SFP_F_RS0;
3060 sfp_set_state(sfp, sfp->state);
3061 sfp_module_tx_disable(sfp);
3062 if (sfp->state & SFP_F_PRESENT) {
3063 rtnl_lock();
3064 sfp_sm_event(sfp, SFP_E_INSERT);
3065 rtnl_unlock();
3068 for (i = 0; i < GPIO_MAX; i++) {
3069 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3070 continue;
3072 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3073 if (sfp->gpio_irq[i] < 0) {
3074 sfp->gpio_irq[i] = 0;
3075 sfp->need_poll = true;
3076 continue;
3079 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3080 "%s-%s", dev_name(sfp->dev),
3081 gpio_names[i]);
3083 if (!sfp_irq_name)
3084 return -ENOMEM;
3086 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3087 NULL, sfp_irq,
3088 IRQF_ONESHOT |
3089 IRQF_TRIGGER_RISING |
3090 IRQF_TRIGGER_FALLING,
3091 sfp_irq_name, sfp);
3092 if (err) {
3093 sfp->gpio_irq[i] = 0;
3094 sfp->need_poll = true;
3098 if (sfp->need_poll)
3099 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3101 /* We could have an issue in cases no Tx disable pin is available or
3102 * wired as modules using a laser as their light source will continue to
3103 * be active when the fiber is removed. This could be a safety issue and
3104 * we should at least warn the user about that.
3106 if (!sfp->gpio[GPIO_TX_DISABLE])
3107 dev_warn(sfp->dev,
3108 "No tx_disable pin: SFP modules will always be emitting.\n");
3110 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3111 if (!sfp->sfp_bus)
3112 return -ENOMEM;
3114 sfp_debugfs_init(sfp);
3116 return 0;
3119 static void sfp_remove(struct platform_device *pdev)
3121 struct sfp *sfp = platform_get_drvdata(pdev);
3123 sfp_debugfs_exit(sfp);
3124 sfp_unregister_socket(sfp->sfp_bus);
3126 rtnl_lock();
3127 sfp_sm_event(sfp, SFP_E_REMOVE);
3128 rtnl_unlock();
3131 static void sfp_shutdown(struct platform_device *pdev)
3133 struct sfp *sfp = platform_get_drvdata(pdev);
3134 int i;
3136 for (i = 0; i < GPIO_MAX; i++) {
3137 if (!sfp->gpio_irq[i])
3138 continue;
3140 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3143 cancel_delayed_work_sync(&sfp->poll);
3144 cancel_delayed_work_sync(&sfp->timeout);
3147 static struct platform_driver sfp_driver = {
3148 .probe = sfp_probe,
3149 .remove_new = sfp_remove,
3150 .shutdown = sfp_shutdown,
3151 .driver = {
3152 .name = "sfp",
3153 .of_match_table = sfp_of_match,
3157 static int sfp_init(void)
3159 poll_jiffies = msecs_to_jiffies(100);
3161 return platform_driver_register(&sfp_driver);
3163 module_init(sfp_init);
3165 static void sfp_exit(void)
3167 platform_driver_unregister(&sfp_driver);
3169 module_exit(sfp_exit);
3171 MODULE_ALIAS("platform:sfp");
3172 MODULE_AUTHOR("Russell King");
3173 MODULE_LICENSE("GPL v2");
3174 MODULE_DESCRIPTION("SFP cage support");