bnx2x: fix crash on big-endian when adding VLAN
[linux-stable.git] / mm / page-writeback.c
blob6fe7d15bd1f7804e87f192c6b06b681ac6c51896
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
42 #include "internal.h"
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages = 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio = 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio = 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
113 int block_dump;
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
119 int laptop_mode;
121 EXPORT_SYMBOL(laptop_mode);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
145 unsigned long pos_ratio;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 return dtc->dom;
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 return dtc->dom;
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 return mdtc->gdtc;
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 return &wb->memcg_completions;
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
211 *minp = min;
212 *maxp = max;
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 return false;
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 return &global_wb_domain;
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 return NULL;
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 return NULL;
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
278 unsigned long nr_pages;
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
282 * Pages reserved for the kernel should not be considered
283 * dirtyable, to prevent a situation where reclaim has to
284 * clean pages in order to balance the zones.
286 nr_pages -= min(nr_pages, zone->totalreserve_pages);
288 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
291 return nr_pages;
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
296 #ifdef CONFIG_HIGHMEM
297 int node;
298 unsigned long x = 0;
300 for_each_node_state(node, N_HIGH_MEMORY) {
301 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
303 x += zone_dirtyable_memory(z);
306 * Unreclaimable memory (kernel memory or anonymous memory
307 * without swap) can bring down the dirtyable pages below
308 * the zone's dirty balance reserve and the above calculation
309 * will underflow. However we still want to add in nodes
310 * which are below threshold (negative values) to get a more
311 * accurate calculation but make sure that the total never
312 * underflows.
314 if ((long)x < 0)
315 x = 0;
318 * Make sure that the number of highmem pages is never larger
319 * than the number of the total dirtyable memory. This can only
320 * occur in very strange VM situations but we want to make sure
321 * that this does not occur.
323 return min(x, total);
324 #else
325 return 0;
326 #endif
330 * global_dirtyable_memory - number of globally dirtyable pages
332 * Returns the global number of pages potentially available for dirty
333 * page cache. This is the base value for the global dirty limits.
335 static unsigned long global_dirtyable_memory(void)
337 unsigned long x;
339 x = global_page_state(NR_FREE_PAGES);
341 * Pages reserved for the kernel should not be considered
342 * dirtyable, to prevent a situation where reclaim has to
343 * clean pages in order to balance the zones.
345 x -= min(x, totalreserve_pages);
347 x += global_page_state(NR_INACTIVE_FILE);
348 x += global_page_state(NR_ACTIVE_FILE);
350 if (!vm_highmem_is_dirtyable)
351 x -= highmem_dirtyable_memory(x);
353 return x + 1; /* Ensure that we never return 0 */
357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
358 * @dtc: dirty_throttle_control of interest
360 * Calculate @dtc->thresh and ->bg_thresh considering
361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
362 * must ensure that @dtc->avail is set before calling this function. The
363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
364 * real-time tasks.
366 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
368 const unsigned long available_memory = dtc->avail;
369 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
370 unsigned long bytes = vm_dirty_bytes;
371 unsigned long bg_bytes = dirty_background_bytes;
372 unsigned long ratio = vm_dirty_ratio;
373 unsigned long bg_ratio = dirty_background_ratio;
374 unsigned long thresh;
375 unsigned long bg_thresh;
376 struct task_struct *tsk;
378 /* gdtc is !NULL iff @dtc is for memcg domain */
379 if (gdtc) {
380 unsigned long global_avail = gdtc->avail;
383 * The byte settings can't be applied directly to memcg
384 * domains. Convert them to ratios by scaling against
385 * globally available memory.
387 if (bytes)
388 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
389 global_avail, 100UL);
390 if (bg_bytes)
391 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
392 global_avail, 100UL);
393 bytes = bg_bytes = 0;
396 if (bytes)
397 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
398 else
399 thresh = (ratio * available_memory) / 100;
401 if (bg_bytes)
402 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
403 else
404 bg_thresh = (bg_ratio * available_memory) / 100;
406 if (bg_thresh >= thresh)
407 bg_thresh = thresh / 2;
408 tsk = current;
409 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
410 bg_thresh += bg_thresh / 4;
411 thresh += thresh / 4;
413 dtc->thresh = thresh;
414 dtc->bg_thresh = bg_thresh;
416 /* we should eventually report the domain in the TP */
417 if (!gdtc)
418 trace_global_dirty_state(bg_thresh, thresh);
422 * global_dirty_limits - background-writeback and dirty-throttling thresholds
423 * @pbackground: out parameter for bg_thresh
424 * @pdirty: out parameter for thresh
426 * Calculate bg_thresh and thresh for global_wb_domain. See
427 * domain_dirty_limits() for details.
429 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
431 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
433 gdtc.avail = global_dirtyable_memory();
434 domain_dirty_limits(&gdtc);
436 *pbackground = gdtc.bg_thresh;
437 *pdirty = gdtc.thresh;
441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
442 * @zone: the zone
444 * Returns the maximum number of dirty pages allowed in a zone, based
445 * on the zone's dirtyable memory.
447 static unsigned long zone_dirty_limit(struct zone *zone)
449 unsigned long zone_memory = zone_dirtyable_memory(zone);
450 struct task_struct *tsk = current;
451 unsigned long dirty;
453 if (vm_dirty_bytes)
454 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
455 zone_memory / global_dirtyable_memory();
456 else
457 dirty = vm_dirty_ratio * zone_memory / 100;
459 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
460 dirty += dirty / 4;
462 return dirty;
466 * zone_dirty_ok - tells whether a zone is within its dirty limits
467 * @zone: the zone to check
469 * Returns %true when the dirty pages in @zone are within the zone's
470 * dirty limit, %false if the limit is exceeded.
472 bool zone_dirty_ok(struct zone *zone)
474 unsigned long limit = zone_dirty_limit(zone);
476 return zone_page_state(zone, NR_FILE_DIRTY) +
477 zone_page_state(zone, NR_UNSTABLE_NFS) +
478 zone_page_state(zone, NR_WRITEBACK) <= limit;
481 int dirty_background_ratio_handler(struct ctl_table *table, int write,
482 void __user *buffer, size_t *lenp,
483 loff_t *ppos)
485 int ret;
487 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
488 if (ret == 0 && write)
489 dirty_background_bytes = 0;
490 return ret;
493 int dirty_background_bytes_handler(struct ctl_table *table, int write,
494 void __user *buffer, size_t *lenp,
495 loff_t *ppos)
497 int ret;
499 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
500 if (ret == 0 && write)
501 dirty_background_ratio = 0;
502 return ret;
505 int dirty_ratio_handler(struct ctl_table *table, int write,
506 void __user *buffer, size_t *lenp,
507 loff_t *ppos)
509 int old_ratio = vm_dirty_ratio;
510 int ret;
512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
514 writeback_set_ratelimit();
515 vm_dirty_bytes = 0;
517 return ret;
520 int dirty_bytes_handler(struct ctl_table *table, int write,
521 void __user *buffer, size_t *lenp,
522 loff_t *ppos)
524 unsigned long old_bytes = vm_dirty_bytes;
525 int ret;
527 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
528 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
529 writeback_set_ratelimit();
530 vm_dirty_ratio = 0;
532 return ret;
535 static unsigned long wp_next_time(unsigned long cur_time)
537 cur_time += VM_COMPLETIONS_PERIOD_LEN;
538 /* 0 has a special meaning... */
539 if (!cur_time)
540 return 1;
541 return cur_time;
544 static void wb_domain_writeout_inc(struct wb_domain *dom,
545 struct fprop_local_percpu *completions,
546 unsigned int max_prop_frac)
548 __fprop_inc_percpu_max(&dom->completions, completions,
549 max_prop_frac);
550 /* First event after period switching was turned off? */
551 if (!unlikely(dom->period_time)) {
553 * We can race with other __bdi_writeout_inc calls here but
554 * it does not cause any harm since the resulting time when
555 * timer will fire and what is in writeout_period_time will be
556 * roughly the same.
558 dom->period_time = wp_next_time(jiffies);
559 mod_timer(&dom->period_timer, dom->period_time);
564 * Increment @wb's writeout completion count and the global writeout
565 * completion count. Called from test_clear_page_writeback().
567 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
569 struct wb_domain *cgdom;
571 __inc_wb_stat(wb, WB_WRITTEN);
572 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
573 wb->bdi->max_prop_frac);
575 cgdom = mem_cgroup_wb_domain(wb);
576 if (cgdom)
577 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
578 wb->bdi->max_prop_frac);
581 void wb_writeout_inc(struct bdi_writeback *wb)
583 unsigned long flags;
585 local_irq_save(flags);
586 __wb_writeout_inc(wb);
587 local_irq_restore(flags);
589 EXPORT_SYMBOL_GPL(wb_writeout_inc);
592 * On idle system, we can be called long after we scheduled because we use
593 * deferred timers so count with missed periods.
595 static void writeout_period(unsigned long t)
597 struct wb_domain *dom = (void *)t;
598 int miss_periods = (jiffies - dom->period_time) /
599 VM_COMPLETIONS_PERIOD_LEN;
601 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
602 dom->period_time = wp_next_time(dom->period_time +
603 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
604 mod_timer(&dom->period_timer, dom->period_time);
605 } else {
607 * Aging has zeroed all fractions. Stop wasting CPU on period
608 * updates.
610 dom->period_time = 0;
614 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
616 memset(dom, 0, sizeof(*dom));
618 spin_lock_init(&dom->lock);
620 init_timer_deferrable(&dom->period_timer);
621 dom->period_timer.function = writeout_period;
622 dom->period_timer.data = (unsigned long)dom;
624 dom->dirty_limit_tstamp = jiffies;
626 return fprop_global_init(&dom->completions, gfp);
629 #ifdef CONFIG_CGROUP_WRITEBACK
630 void wb_domain_exit(struct wb_domain *dom)
632 del_timer_sync(&dom->period_timer);
633 fprop_global_destroy(&dom->completions);
635 #endif
638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
639 * registered backing devices, which, for obvious reasons, can not
640 * exceed 100%.
642 static unsigned int bdi_min_ratio;
644 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
646 int ret = 0;
648 spin_lock_bh(&bdi_lock);
649 if (min_ratio > bdi->max_ratio) {
650 ret = -EINVAL;
651 } else {
652 min_ratio -= bdi->min_ratio;
653 if (bdi_min_ratio + min_ratio < 100) {
654 bdi_min_ratio += min_ratio;
655 bdi->min_ratio += min_ratio;
656 } else {
657 ret = -EINVAL;
660 spin_unlock_bh(&bdi_lock);
662 return ret;
665 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
667 int ret = 0;
669 if (max_ratio > 100)
670 return -EINVAL;
672 spin_lock_bh(&bdi_lock);
673 if (bdi->min_ratio > max_ratio) {
674 ret = -EINVAL;
675 } else {
676 bdi->max_ratio = max_ratio;
677 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
679 spin_unlock_bh(&bdi_lock);
681 return ret;
683 EXPORT_SYMBOL(bdi_set_max_ratio);
685 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
686 unsigned long bg_thresh)
688 return (thresh + bg_thresh) / 2;
691 static unsigned long hard_dirty_limit(struct wb_domain *dom,
692 unsigned long thresh)
694 return max(thresh, dom->dirty_limit);
698 * Memory which can be further allocated to a memcg domain is capped by
699 * system-wide clean memory excluding the amount being used in the domain.
701 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
702 unsigned long filepages, unsigned long headroom)
704 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
705 unsigned long clean = filepages - min(filepages, mdtc->dirty);
706 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
707 unsigned long other_clean = global_clean - min(global_clean, clean);
709 mdtc->avail = filepages + min(headroom, other_clean);
713 * __wb_calc_thresh - @wb's share of dirty throttling threshold
714 * @dtc: dirty_throttle_context of interest
716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
719 * Note that balance_dirty_pages() will only seriously take it as a hard limit
720 * when sleeping max_pause per page is not enough to keep the dirty pages under
721 * control. For example, when the device is completely stalled due to some error
722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
723 * In the other normal situations, it acts more gently by throttling the tasks
724 * more (rather than completely block them) when the wb dirty pages go high.
726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
727 * - starving fast devices
728 * - piling up dirty pages (that will take long time to sync) on slow devices
730 * The wb's share of dirty limit will be adapting to its throughput and
731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
733 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
735 struct wb_domain *dom = dtc_dom(dtc);
736 unsigned long thresh = dtc->thresh;
737 u64 wb_thresh;
738 long numerator, denominator;
739 unsigned long wb_min_ratio, wb_max_ratio;
742 * Calculate this BDI's share of the thresh ratio.
744 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
745 &numerator, &denominator);
747 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
748 wb_thresh *= numerator;
749 do_div(wb_thresh, denominator);
751 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
753 wb_thresh += (thresh * wb_min_ratio) / 100;
754 if (wb_thresh > (thresh * wb_max_ratio) / 100)
755 wb_thresh = thresh * wb_max_ratio / 100;
757 return wb_thresh;
760 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
762 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
763 .thresh = thresh };
764 return __wb_calc_thresh(&gdtc);
768 * setpoint - dirty 3
769 * f(dirty) := 1.0 + (----------------)
770 * limit - setpoint
772 * it's a 3rd order polynomial that subjects to
774 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
775 * (2) f(setpoint) = 1.0 => the balance point
776 * (3) f(limit) = 0 => the hard limit
777 * (4) df/dx <= 0 => negative feedback control
778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
779 * => fast response on large errors; small oscillation near setpoint
781 static long long pos_ratio_polynom(unsigned long setpoint,
782 unsigned long dirty,
783 unsigned long limit)
785 long long pos_ratio;
786 long x;
788 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
789 (limit - setpoint) | 1);
790 pos_ratio = x;
791 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
792 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
793 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
795 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
799 * Dirty position control.
801 * (o) global/bdi setpoints
803 * We want the dirty pages be balanced around the global/wb setpoints.
804 * When the number of dirty pages is higher/lower than the setpoint, the
805 * dirty position control ratio (and hence task dirty ratelimit) will be
806 * decreased/increased to bring the dirty pages back to the setpoint.
808 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
810 * if (dirty < setpoint) scale up pos_ratio
811 * if (dirty > setpoint) scale down pos_ratio
813 * if (wb_dirty < wb_setpoint) scale up pos_ratio
814 * if (wb_dirty > wb_setpoint) scale down pos_ratio
816 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
818 * (o) global control line
820 * ^ pos_ratio
822 * | |<===== global dirty control scope ======>|
823 * 2.0 .............*
824 * | .*
825 * | . *
826 * | . *
827 * | . *
828 * | . *
829 * | . *
830 * 1.0 ................................*
831 * | . . *
832 * | . . *
833 * | . . *
834 * | . . *
835 * | . . *
836 * 0 +------------.------------------.----------------------*------------->
837 * freerun^ setpoint^ limit^ dirty pages
839 * (o) wb control line
841 * ^ pos_ratio
843 * | *
844 * | *
845 * | *
846 * | *
847 * | * |<=========== span ============>|
848 * 1.0 .......................*
849 * | . *
850 * | . *
851 * | . *
852 * | . *
853 * | . *
854 * | . *
855 * | . *
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * 1/4 ...............................................* * * * * * * * * * * *
861 * | . .
862 * | . .
863 * | . .
864 * 0 +----------------------.-------------------------------.------------->
865 * wb_setpoint^ x_intercept^
867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
868 * be smoothly throttled down to normal if it starts high in situations like
869 * - start writing to a slow SD card and a fast disk at the same time. The SD
870 * card's wb_dirty may rush to many times higher than wb_setpoint.
871 * - the wb dirty thresh drops quickly due to change of JBOD workload
873 static void wb_position_ratio(struct dirty_throttle_control *dtc)
875 struct bdi_writeback *wb = dtc->wb;
876 unsigned long write_bw = wb->avg_write_bandwidth;
877 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
878 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
879 unsigned long wb_thresh = dtc->wb_thresh;
880 unsigned long x_intercept;
881 unsigned long setpoint; /* dirty pages' target balance point */
882 unsigned long wb_setpoint;
883 unsigned long span;
884 long long pos_ratio; /* for scaling up/down the rate limit */
885 long x;
887 dtc->pos_ratio = 0;
889 if (unlikely(dtc->dirty >= limit))
890 return;
893 * global setpoint
895 * See comment for pos_ratio_polynom().
897 setpoint = (freerun + limit) / 2;
898 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
901 * The strictlimit feature is a tool preventing mistrusted filesystems
902 * from growing a large number of dirty pages before throttling. For
903 * such filesystems balance_dirty_pages always checks wb counters
904 * against wb limits. Even if global "nr_dirty" is under "freerun".
905 * This is especially important for fuse which sets bdi->max_ratio to
906 * 1% by default. Without strictlimit feature, fuse writeback may
907 * consume arbitrary amount of RAM because it is accounted in
908 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
910 * Here, in wb_position_ratio(), we calculate pos_ratio based on
911 * two values: wb_dirty and wb_thresh. Let's consider an example:
912 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
913 * limits are set by default to 10% and 20% (background and throttle).
914 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
915 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
916 * about ~6K pages (as the average of background and throttle wb
917 * limits). The 3rd order polynomial will provide positive feedback if
918 * wb_dirty is under wb_setpoint and vice versa.
920 * Note, that we cannot use global counters in these calculations
921 * because we want to throttle process writing to a strictlimit wb
922 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
923 * in the example above).
925 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
926 long long wb_pos_ratio;
928 if (dtc->wb_dirty < 8) {
929 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
930 2 << RATELIMIT_CALC_SHIFT);
931 return;
934 if (dtc->wb_dirty >= wb_thresh)
935 return;
937 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
938 dtc->wb_bg_thresh);
940 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
941 return;
943 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
944 wb_thresh);
947 * Typically, for strictlimit case, wb_setpoint << setpoint
948 * and pos_ratio >> wb_pos_ratio. In the other words global
949 * state ("dirty") is not limiting factor and we have to
950 * make decision based on wb counters. But there is an
951 * important case when global pos_ratio should get precedence:
952 * global limits are exceeded (e.g. due to activities on other
953 * wb's) while given strictlimit wb is below limit.
955 * "pos_ratio * wb_pos_ratio" would work for the case above,
956 * but it would look too non-natural for the case of all
957 * activity in the system coming from a single strictlimit wb
958 * with bdi->max_ratio == 100%.
960 * Note that min() below somewhat changes the dynamics of the
961 * control system. Normally, pos_ratio value can be well over 3
962 * (when globally we are at freerun and wb is well below wb
963 * setpoint). Now the maximum pos_ratio in the same situation
964 * is 2. We might want to tweak this if we observe the control
965 * system is too slow to adapt.
967 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
968 return;
972 * We have computed basic pos_ratio above based on global situation. If
973 * the wb is over/under its share of dirty pages, we want to scale
974 * pos_ratio further down/up. That is done by the following mechanism.
978 * wb setpoint
980 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
982 * x_intercept - wb_dirty
983 * := --------------------------
984 * x_intercept - wb_setpoint
986 * The main wb control line is a linear function that subjects to
988 * (1) f(wb_setpoint) = 1.0
989 * (2) k = - 1 / (8 * write_bw) (in single wb case)
990 * or equally: x_intercept = wb_setpoint + 8 * write_bw
992 * For single wb case, the dirty pages are observed to fluctuate
993 * regularly within range
994 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
995 * for various filesystems, where (2) can yield in a reasonable 12.5%
996 * fluctuation range for pos_ratio.
998 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
999 * own size, so move the slope over accordingly and choose a slope that
1000 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1002 if (unlikely(wb_thresh > dtc->thresh))
1003 wb_thresh = dtc->thresh;
1005 * It's very possible that wb_thresh is close to 0 not because the
1006 * device is slow, but that it has remained inactive for long time.
1007 * Honour such devices a reasonable good (hopefully IO efficient)
1008 * threshold, so that the occasional writes won't be blocked and active
1009 * writes can rampup the threshold quickly.
1011 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1013 * scale global setpoint to wb's:
1014 * wb_setpoint = setpoint * wb_thresh / thresh
1016 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017 wb_setpoint = setpoint * (u64)x >> 16;
1019 * Use span=(8*write_bw) in single wb case as indicated by
1020 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1022 * wb_thresh thresh - wb_thresh
1023 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024 * thresh thresh
1026 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027 x_intercept = wb_setpoint + span;
1029 if (dtc->wb_dirty < x_intercept - span / 4) {
1030 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031 (x_intercept - wb_setpoint) | 1);
1032 } else
1033 pos_ratio /= 4;
1036 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037 * It may push the desired control point of global dirty pages higher
1038 * than setpoint.
1040 x_intercept = wb_thresh / 2;
1041 if (dtc->wb_dirty < x_intercept) {
1042 if (dtc->wb_dirty > x_intercept / 8)
1043 pos_ratio = div_u64(pos_ratio * x_intercept,
1044 dtc->wb_dirty);
1045 else
1046 pos_ratio *= 8;
1049 dtc->pos_ratio = pos_ratio;
1052 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053 unsigned long elapsed,
1054 unsigned long written)
1056 const unsigned long period = roundup_pow_of_two(3 * HZ);
1057 unsigned long avg = wb->avg_write_bandwidth;
1058 unsigned long old = wb->write_bandwidth;
1059 u64 bw;
1062 * bw = written * HZ / elapsed
1064 * bw * elapsed + write_bandwidth * (period - elapsed)
1065 * write_bandwidth = ---------------------------------------------------
1066 * period
1068 * @written may have decreased due to account_page_redirty().
1069 * Avoid underflowing @bw calculation.
1071 bw = written - min(written, wb->written_stamp);
1072 bw *= HZ;
1073 if (unlikely(elapsed > period)) {
1074 do_div(bw, elapsed);
1075 avg = bw;
1076 goto out;
1078 bw += (u64)wb->write_bandwidth * (period - elapsed);
1079 bw >>= ilog2(period);
1082 * one more level of smoothing, for filtering out sudden spikes
1084 if (avg > old && old >= (unsigned long)bw)
1085 avg -= (avg - old) >> 3;
1087 if (avg < old && old <= (unsigned long)bw)
1088 avg += (old - avg) >> 3;
1090 out:
1091 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092 avg = max(avg, 1LU);
1093 if (wb_has_dirty_io(wb)) {
1094 long delta = avg - wb->avg_write_bandwidth;
1095 WARN_ON_ONCE(atomic_long_add_return(delta,
1096 &wb->bdi->tot_write_bandwidth) <= 0);
1098 wb->write_bandwidth = bw;
1099 wb->avg_write_bandwidth = avg;
1102 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1104 struct wb_domain *dom = dtc_dom(dtc);
1105 unsigned long thresh = dtc->thresh;
1106 unsigned long limit = dom->dirty_limit;
1109 * Follow up in one step.
1111 if (limit < thresh) {
1112 limit = thresh;
1113 goto update;
1117 * Follow down slowly. Use the higher one as the target, because thresh
1118 * may drop below dirty. This is exactly the reason to introduce
1119 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1121 thresh = max(thresh, dtc->dirty);
1122 if (limit > thresh) {
1123 limit -= (limit - thresh) >> 5;
1124 goto update;
1126 return;
1127 update:
1128 dom->dirty_limit = limit;
1131 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132 unsigned long now)
1134 struct wb_domain *dom = dtc_dom(dtc);
1137 * check locklessly first to optimize away locking for the most time
1139 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140 return;
1142 spin_lock(&dom->lock);
1143 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144 update_dirty_limit(dtc);
1145 dom->dirty_limit_tstamp = now;
1147 spin_unlock(&dom->lock);
1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1153 * Normal wb tasks will be curbed at or below it in long term.
1154 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1156 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157 unsigned long dirtied,
1158 unsigned long elapsed)
1160 struct bdi_writeback *wb = dtc->wb;
1161 unsigned long dirty = dtc->dirty;
1162 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164 unsigned long setpoint = (freerun + limit) / 2;
1165 unsigned long write_bw = wb->avg_write_bandwidth;
1166 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167 unsigned long dirty_rate;
1168 unsigned long task_ratelimit;
1169 unsigned long balanced_dirty_ratelimit;
1170 unsigned long step;
1171 unsigned long x;
1174 * The dirty rate will match the writeout rate in long term, except
1175 * when dirty pages are truncated by userspace or re-dirtied by FS.
1177 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1180 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1182 task_ratelimit = (u64)dirty_ratelimit *
1183 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1184 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1187 * A linear estimation of the "balanced" throttle rate. The theory is,
1188 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1189 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1190 * formula will yield the balanced rate limit (write_bw / N).
1192 * Note that the expanded form is not a pure rate feedback:
1193 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1194 * but also takes pos_ratio into account:
1195 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1197 * (1) is not realistic because pos_ratio also takes part in balancing
1198 * the dirty rate. Consider the state
1199 * pos_ratio = 0.5 (3)
1200 * rate = 2 * (write_bw / N) (4)
1201 * If (1) is used, it will stuck in that state! Because each dd will
1202 * be throttled at
1203 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1204 * yielding
1205 * dirty_rate = N * task_ratelimit = write_bw (6)
1206 * put (6) into (1) we get
1207 * rate_(i+1) = rate_(i) (7)
1209 * So we end up using (2) to always keep
1210 * rate_(i+1) ~= (write_bw / N) (8)
1211 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1212 * pos_ratio is able to drive itself to 1.0, which is not only where
1213 * the dirty count meet the setpoint, but also where the slope of
1214 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1216 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1217 dirty_rate | 1);
1219 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1221 if (unlikely(balanced_dirty_ratelimit > write_bw))
1222 balanced_dirty_ratelimit = write_bw;
1225 * We could safely do this and return immediately:
1227 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229 * However to get a more stable dirty_ratelimit, the below elaborated
1230 * code makes use of task_ratelimit to filter out singular points and
1231 * limit the step size.
1233 * The below code essentially only uses the relative value of
1235 * task_ratelimit - dirty_ratelimit
1236 * = (pos_ratio - 1) * dirty_ratelimit
1238 * which reflects the direction and size of dirty position error.
1242 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1243 * task_ratelimit is on the same side of dirty_ratelimit, too.
1244 * For example, when
1245 * - dirty_ratelimit > balanced_dirty_ratelimit
1246 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1247 * lowering dirty_ratelimit will help meet both the position and rate
1248 * control targets. Otherwise, don't update dirty_ratelimit if it will
1249 * only help meet the rate target. After all, what the users ultimately
1250 * feel and care are stable dirty rate and small position error.
1252 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1253 * and filter out the singular points of balanced_dirty_ratelimit. Which
1254 * keeps jumping around randomly and can even leap far away at times
1255 * due to the small 200ms estimation period of dirty_rate (we want to
1256 * keep that period small to reduce time lags).
1258 step = 0;
1261 * For strictlimit case, calculations above were based on wb counters
1262 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1263 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1264 * Hence, to calculate "step" properly, we have to use wb_dirty as
1265 * "dirty" and wb_setpoint as "setpoint".
1267 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1268 * it's possible that wb_thresh is close to zero due to inactivity
1269 * of backing device.
1271 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1272 dirty = dtc->wb_dirty;
1273 if (dtc->wb_dirty < 8)
1274 setpoint = dtc->wb_dirty + 1;
1275 else
1276 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1279 if (dirty < setpoint) {
1280 x = min3(wb->balanced_dirty_ratelimit,
1281 balanced_dirty_ratelimit, task_ratelimit);
1282 if (dirty_ratelimit < x)
1283 step = x - dirty_ratelimit;
1284 } else {
1285 x = max3(wb->balanced_dirty_ratelimit,
1286 balanced_dirty_ratelimit, task_ratelimit);
1287 if (dirty_ratelimit > x)
1288 step = dirty_ratelimit - x;
1292 * Don't pursue 100% rate matching. It's impossible since the balanced
1293 * rate itself is constantly fluctuating. So decrease the track speed
1294 * when it gets close to the target. Helps eliminate pointless tremors.
1296 step >>= dirty_ratelimit / (2 * step + 1);
1298 * Limit the tracking speed to avoid overshooting.
1300 step = (step + 7) / 8;
1302 if (dirty_ratelimit < balanced_dirty_ratelimit)
1303 dirty_ratelimit += step;
1304 else
1305 dirty_ratelimit -= step;
1307 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1308 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1313 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1314 struct dirty_throttle_control *mdtc,
1315 unsigned long start_time,
1316 bool update_ratelimit)
1318 struct bdi_writeback *wb = gdtc->wb;
1319 unsigned long now = jiffies;
1320 unsigned long elapsed = now - wb->bw_time_stamp;
1321 unsigned long dirtied;
1322 unsigned long written;
1324 lockdep_assert_held(&wb->list_lock);
1327 * rate-limit, only update once every 200ms.
1329 if (elapsed < BANDWIDTH_INTERVAL)
1330 return;
1332 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1333 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1336 * Skip quiet periods when disk bandwidth is under-utilized.
1337 * (at least 1s idle time between two flusher runs)
1339 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1340 goto snapshot;
1342 if (update_ratelimit) {
1343 domain_update_bandwidth(gdtc, now);
1344 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1347 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1348 * compiler has no way to figure that out. Help it.
1350 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1351 domain_update_bandwidth(mdtc, now);
1352 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1355 wb_update_write_bandwidth(wb, elapsed, written);
1357 snapshot:
1358 wb->dirtied_stamp = dirtied;
1359 wb->written_stamp = written;
1360 wb->bw_time_stamp = now;
1363 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1365 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1371 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1372 * will look to see if it needs to start dirty throttling.
1374 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1375 * global_page_state() too often. So scale it near-sqrt to the safety margin
1376 * (the number of pages we may dirty without exceeding the dirty limits).
1378 static unsigned long dirty_poll_interval(unsigned long dirty,
1379 unsigned long thresh)
1381 if (thresh > dirty)
1382 return 1UL << (ilog2(thresh - dirty) >> 1);
1384 return 1;
1387 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1388 unsigned long wb_dirty)
1390 unsigned long bw = wb->avg_write_bandwidth;
1391 unsigned long t;
1394 * Limit pause time for small memory systems. If sleeping for too long
1395 * time, a small pool of dirty/writeback pages may go empty and disk go
1396 * idle.
1398 * 8 serves as the safety ratio.
1400 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1401 t++;
1403 return min_t(unsigned long, t, MAX_PAUSE);
1406 static long wb_min_pause(struct bdi_writeback *wb,
1407 long max_pause,
1408 unsigned long task_ratelimit,
1409 unsigned long dirty_ratelimit,
1410 int *nr_dirtied_pause)
1412 long hi = ilog2(wb->avg_write_bandwidth);
1413 long lo = ilog2(wb->dirty_ratelimit);
1414 long t; /* target pause */
1415 long pause; /* estimated next pause */
1416 int pages; /* target nr_dirtied_pause */
1418 /* target for 10ms pause on 1-dd case */
1419 t = max(1, HZ / 100);
1422 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1423 * overheads.
1425 * (N * 10ms) on 2^N concurrent tasks.
1427 if (hi > lo)
1428 t += (hi - lo) * (10 * HZ) / 1024;
1431 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1432 * on the much more stable dirty_ratelimit. However the next pause time
1433 * will be computed based on task_ratelimit and the two rate limits may
1434 * depart considerably at some time. Especially if task_ratelimit goes
1435 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1436 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1437 * result task_ratelimit won't be executed faithfully, which could
1438 * eventually bring down dirty_ratelimit.
1440 * We apply two rules to fix it up:
1441 * 1) try to estimate the next pause time and if necessary, use a lower
1442 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1443 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1444 * 2) limit the target pause time to max_pause/2, so that the normal
1445 * small fluctuations of task_ratelimit won't trigger rule (1) and
1446 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448 t = min(t, 1 + max_pause / 2);
1449 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1452 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1453 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1454 * When the 16 consecutive reads are often interrupted by some dirty
1455 * throttling pause during the async writes, cfq will go into idles
1456 * (deadline is fine). So push nr_dirtied_pause as high as possible
1457 * until reaches DIRTY_POLL_THRESH=32 pages.
1459 if (pages < DIRTY_POLL_THRESH) {
1460 t = max_pause;
1461 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1462 if (pages > DIRTY_POLL_THRESH) {
1463 pages = DIRTY_POLL_THRESH;
1464 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1468 pause = HZ * pages / (task_ratelimit + 1);
1469 if (pause > max_pause) {
1470 t = max_pause;
1471 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1474 *nr_dirtied_pause = pages;
1476 * The minimal pause time will normally be half the target pause time.
1478 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1481 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1483 struct bdi_writeback *wb = dtc->wb;
1484 unsigned long wb_reclaimable;
1487 * wb_thresh is not treated as some limiting factor as
1488 * dirty_thresh, due to reasons
1489 * - in JBOD setup, wb_thresh can fluctuate a lot
1490 * - in a system with HDD and USB key, the USB key may somehow
1491 * go into state (wb_dirty >> wb_thresh) either because
1492 * wb_dirty starts high, or because wb_thresh drops low.
1493 * In this case we don't want to hard throttle the USB key
1494 * dirtiers for 100 seconds until wb_dirty drops under
1495 * wb_thresh. Instead the auxiliary wb control line in
1496 * wb_position_ratio() will let the dirtier task progress
1497 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499 dtc->wb_thresh = __wb_calc_thresh(dtc);
1500 dtc->wb_bg_thresh = dtc->thresh ?
1501 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1504 * In order to avoid the stacked BDI deadlock we need
1505 * to ensure we accurately count the 'dirty' pages when
1506 * the threshold is low.
1508 * Otherwise it would be possible to get thresh+n pages
1509 * reported dirty, even though there are thresh-m pages
1510 * actually dirty; with m+n sitting in the percpu
1511 * deltas.
1513 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1514 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1515 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1516 } else {
1517 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1518 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1523 * balance_dirty_pages() must be called by processes which are generating dirty
1524 * data. It looks at the number of dirty pages in the machine and will force
1525 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1526 * If we're over `background_thresh' then the writeback threads are woken to
1527 * perform some writeout.
1529 static void balance_dirty_pages(struct address_space *mapping,
1530 struct bdi_writeback *wb,
1531 unsigned long pages_dirtied)
1533 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1534 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1535 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1536 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1537 &mdtc_stor : NULL;
1538 struct dirty_throttle_control *sdtc;
1539 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1540 long period;
1541 long pause;
1542 long max_pause;
1543 long min_pause;
1544 int nr_dirtied_pause;
1545 bool dirty_exceeded = false;
1546 unsigned long task_ratelimit;
1547 unsigned long dirty_ratelimit;
1548 struct backing_dev_info *bdi = wb->bdi;
1549 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1550 unsigned long start_time = jiffies;
1552 for (;;) {
1553 unsigned long now = jiffies;
1554 unsigned long dirty, thresh, bg_thresh;
1555 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1556 unsigned long m_thresh = 0;
1557 unsigned long m_bg_thresh = 0;
1560 * Unstable writes are a feature of certain networked
1561 * filesystems (i.e. NFS) in which data may have been
1562 * written to the server's write cache, but has not yet
1563 * been flushed to permanent storage.
1565 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1566 global_page_state(NR_UNSTABLE_NFS);
1567 gdtc->avail = global_dirtyable_memory();
1568 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570 domain_dirty_limits(gdtc);
1572 if (unlikely(strictlimit)) {
1573 wb_dirty_limits(gdtc);
1575 dirty = gdtc->wb_dirty;
1576 thresh = gdtc->wb_thresh;
1577 bg_thresh = gdtc->wb_bg_thresh;
1578 } else {
1579 dirty = gdtc->dirty;
1580 thresh = gdtc->thresh;
1581 bg_thresh = gdtc->bg_thresh;
1584 if (mdtc) {
1585 unsigned long filepages, headroom, writeback;
1588 * If @wb belongs to !root memcg, repeat the same
1589 * basic calculations for the memcg domain.
1591 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1592 &mdtc->dirty, &writeback);
1593 mdtc->dirty += writeback;
1594 mdtc_calc_avail(mdtc, filepages, headroom);
1596 domain_dirty_limits(mdtc);
1598 if (unlikely(strictlimit)) {
1599 wb_dirty_limits(mdtc);
1600 m_dirty = mdtc->wb_dirty;
1601 m_thresh = mdtc->wb_thresh;
1602 m_bg_thresh = mdtc->wb_bg_thresh;
1603 } else {
1604 m_dirty = mdtc->dirty;
1605 m_thresh = mdtc->thresh;
1606 m_bg_thresh = mdtc->bg_thresh;
1611 * Throttle it only when the background writeback cannot
1612 * catch-up. This avoids (excessively) small writeouts
1613 * when the wb limits are ramping up in case of !strictlimit.
1615 * In strictlimit case make decision based on the wb counters
1616 * and limits. Small writeouts when the wb limits are ramping
1617 * up are the price we consciously pay for strictlimit-ing.
1619 * If memcg domain is in effect, @dirty should be under
1620 * both global and memcg freerun ceilings.
1622 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1623 (!mdtc ||
1624 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1625 unsigned long intv = dirty_poll_interval(dirty, thresh);
1626 unsigned long m_intv = ULONG_MAX;
1628 current->dirty_paused_when = now;
1629 current->nr_dirtied = 0;
1630 if (mdtc)
1631 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1632 current->nr_dirtied_pause = min(intv, m_intv);
1633 break;
1636 if (unlikely(!writeback_in_progress(wb)))
1637 wb_start_background_writeback(wb);
1640 * Calculate global domain's pos_ratio and select the
1641 * global dtc by default.
1643 if (!strictlimit)
1644 wb_dirty_limits(gdtc);
1646 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1647 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1649 wb_position_ratio(gdtc);
1650 sdtc = gdtc;
1652 if (mdtc) {
1654 * If memcg domain is in effect, calculate its
1655 * pos_ratio. @wb should satisfy constraints from
1656 * both global and memcg domains. Choose the one
1657 * w/ lower pos_ratio.
1659 if (!strictlimit)
1660 wb_dirty_limits(mdtc);
1662 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1663 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1665 wb_position_ratio(mdtc);
1666 if (mdtc->pos_ratio < gdtc->pos_ratio)
1667 sdtc = mdtc;
1670 if (dirty_exceeded && !wb->dirty_exceeded)
1671 wb->dirty_exceeded = 1;
1673 if (time_is_before_jiffies(wb->bw_time_stamp +
1674 BANDWIDTH_INTERVAL)) {
1675 spin_lock(&wb->list_lock);
1676 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1677 spin_unlock(&wb->list_lock);
1680 /* throttle according to the chosen dtc */
1681 dirty_ratelimit = wb->dirty_ratelimit;
1682 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1683 RATELIMIT_CALC_SHIFT;
1684 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1685 min_pause = wb_min_pause(wb, max_pause,
1686 task_ratelimit, dirty_ratelimit,
1687 &nr_dirtied_pause);
1689 if (unlikely(task_ratelimit == 0)) {
1690 period = max_pause;
1691 pause = max_pause;
1692 goto pause;
1694 period = HZ * pages_dirtied / task_ratelimit;
1695 pause = period;
1696 if (current->dirty_paused_when)
1697 pause -= now - current->dirty_paused_when;
1699 * For less than 1s think time (ext3/4 may block the dirtier
1700 * for up to 800ms from time to time on 1-HDD; so does xfs,
1701 * however at much less frequency), try to compensate it in
1702 * future periods by updating the virtual time; otherwise just
1703 * do a reset, as it may be a light dirtier.
1705 if (pause < min_pause) {
1706 trace_balance_dirty_pages(wb,
1707 sdtc->thresh,
1708 sdtc->bg_thresh,
1709 sdtc->dirty,
1710 sdtc->wb_thresh,
1711 sdtc->wb_dirty,
1712 dirty_ratelimit,
1713 task_ratelimit,
1714 pages_dirtied,
1715 period,
1716 min(pause, 0L),
1717 start_time);
1718 if (pause < -HZ) {
1719 current->dirty_paused_when = now;
1720 current->nr_dirtied = 0;
1721 } else if (period) {
1722 current->dirty_paused_when += period;
1723 current->nr_dirtied = 0;
1724 } else if (current->nr_dirtied_pause <= pages_dirtied)
1725 current->nr_dirtied_pause += pages_dirtied;
1726 break;
1728 if (unlikely(pause > max_pause)) {
1729 /* for occasional dropped task_ratelimit */
1730 now += min(pause - max_pause, max_pause);
1731 pause = max_pause;
1734 pause:
1735 trace_balance_dirty_pages(wb,
1736 sdtc->thresh,
1737 sdtc->bg_thresh,
1738 sdtc->dirty,
1739 sdtc->wb_thresh,
1740 sdtc->wb_dirty,
1741 dirty_ratelimit,
1742 task_ratelimit,
1743 pages_dirtied,
1744 period,
1745 pause,
1746 start_time);
1747 __set_current_state(TASK_KILLABLE);
1748 io_schedule_timeout(pause);
1750 current->dirty_paused_when = now + pause;
1751 current->nr_dirtied = 0;
1752 current->nr_dirtied_pause = nr_dirtied_pause;
1755 * This is typically equal to (dirty < thresh) and can also
1756 * keep "1000+ dd on a slow USB stick" under control.
1758 if (task_ratelimit)
1759 break;
1762 * In the case of an unresponding NFS server and the NFS dirty
1763 * pages exceeds dirty_thresh, give the other good wb's a pipe
1764 * to go through, so that tasks on them still remain responsive.
1766 * In theory 1 page is enough to keep the comsumer-producer
1767 * pipe going: the flusher cleans 1 page => the task dirties 1
1768 * more page. However wb_dirty has accounting errors. So use
1769 * the larger and more IO friendly wb_stat_error.
1771 if (sdtc->wb_dirty <= wb_stat_error(wb))
1772 break;
1774 if (fatal_signal_pending(current))
1775 break;
1778 if (!dirty_exceeded && wb->dirty_exceeded)
1779 wb->dirty_exceeded = 0;
1781 if (writeback_in_progress(wb))
1782 return;
1785 * In laptop mode, we wait until hitting the higher threshold before
1786 * starting background writeout, and then write out all the way down
1787 * to the lower threshold. So slow writers cause minimal disk activity.
1789 * In normal mode, we start background writeout at the lower
1790 * background_thresh, to keep the amount of dirty memory low.
1792 if (laptop_mode)
1793 return;
1795 if (nr_reclaimable > gdtc->bg_thresh)
1796 wb_start_background_writeback(wb);
1799 static DEFINE_PER_CPU(int, bdp_ratelimits);
1802 * Normal tasks are throttled by
1803 * loop {
1804 * dirty tsk->nr_dirtied_pause pages;
1805 * take a snap in balance_dirty_pages();
1807 * However there is a worst case. If every task exit immediately when dirtied
1808 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1809 * called to throttle the page dirties. The solution is to save the not yet
1810 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1811 * randomly into the running tasks. This works well for the above worst case,
1812 * as the new task will pick up and accumulate the old task's leaked dirty
1813 * count and eventually get throttled.
1815 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1818 * balance_dirty_pages_ratelimited - balance dirty memory state
1819 * @mapping: address_space which was dirtied
1821 * Processes which are dirtying memory should call in here once for each page
1822 * which was newly dirtied. The function will periodically check the system's
1823 * dirty state and will initiate writeback if needed.
1825 * On really big machines, get_writeback_state is expensive, so try to avoid
1826 * calling it too often (ratelimiting). But once we're over the dirty memory
1827 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1828 * from overshooting the limit by (ratelimit_pages) each.
1830 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1832 struct inode *inode = mapping->host;
1833 struct backing_dev_info *bdi = inode_to_bdi(inode);
1834 struct bdi_writeback *wb = NULL;
1835 int ratelimit;
1836 int *p;
1838 if (!bdi_cap_account_dirty(bdi))
1839 return;
1841 if (inode_cgwb_enabled(inode))
1842 wb = wb_get_create_current(bdi, GFP_KERNEL);
1843 if (!wb)
1844 wb = &bdi->wb;
1846 ratelimit = current->nr_dirtied_pause;
1847 if (wb->dirty_exceeded)
1848 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1850 preempt_disable();
1852 * This prevents one CPU to accumulate too many dirtied pages without
1853 * calling into balance_dirty_pages(), which can happen when there are
1854 * 1000+ tasks, all of them start dirtying pages at exactly the same
1855 * time, hence all honoured too large initial task->nr_dirtied_pause.
1857 p = this_cpu_ptr(&bdp_ratelimits);
1858 if (unlikely(current->nr_dirtied >= ratelimit))
1859 *p = 0;
1860 else if (unlikely(*p >= ratelimit_pages)) {
1861 *p = 0;
1862 ratelimit = 0;
1865 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1866 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1867 * the dirty throttling and livelock other long-run dirtiers.
1869 p = this_cpu_ptr(&dirty_throttle_leaks);
1870 if (*p > 0 && current->nr_dirtied < ratelimit) {
1871 unsigned long nr_pages_dirtied;
1872 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1873 *p -= nr_pages_dirtied;
1874 current->nr_dirtied += nr_pages_dirtied;
1876 preempt_enable();
1878 if (unlikely(current->nr_dirtied >= ratelimit))
1879 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1881 wb_put(wb);
1883 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1886 * wb_over_bg_thresh - does @wb need to be written back?
1887 * @wb: bdi_writeback of interest
1889 * Determines whether background writeback should keep writing @wb or it's
1890 * clean enough. Returns %true if writeback should continue.
1892 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1894 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1895 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1896 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1897 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1898 &mdtc_stor : NULL;
1901 * Similar to balance_dirty_pages() but ignores pages being written
1902 * as we're trying to decide whether to put more under writeback.
1904 gdtc->avail = global_dirtyable_memory();
1905 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1906 global_page_state(NR_UNSTABLE_NFS);
1907 domain_dirty_limits(gdtc);
1909 if (gdtc->dirty > gdtc->bg_thresh)
1910 return true;
1912 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1913 return true;
1915 if (mdtc) {
1916 unsigned long filepages, headroom, writeback;
1918 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1919 &writeback);
1920 mdtc_calc_avail(mdtc, filepages, headroom);
1921 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1923 if (mdtc->dirty > mdtc->bg_thresh)
1924 return true;
1926 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1927 return true;
1930 return false;
1933 void throttle_vm_writeout(gfp_t gfp_mask)
1935 unsigned long background_thresh;
1936 unsigned long dirty_thresh;
1938 for ( ; ; ) {
1939 global_dirty_limits(&background_thresh, &dirty_thresh);
1940 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1943 * Boost the allowable dirty threshold a bit for page
1944 * allocators so they don't get DoS'ed by heavy writers
1946 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1948 if (global_page_state(NR_UNSTABLE_NFS) +
1949 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1950 break;
1951 congestion_wait(BLK_RW_ASYNC, HZ/10);
1954 * The caller might hold locks which can prevent IO completion
1955 * or progress in the filesystem. So we cannot just sit here
1956 * waiting for IO to complete.
1958 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1959 break;
1964 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1966 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1967 void __user *buffer, size_t *length, loff_t *ppos)
1969 proc_dointvec(table, write, buffer, length, ppos);
1970 return 0;
1973 #ifdef CONFIG_BLOCK
1974 void laptop_mode_timer_fn(unsigned long data)
1976 struct request_queue *q = (struct request_queue *)data;
1977 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1978 global_page_state(NR_UNSTABLE_NFS);
1979 struct bdi_writeback *wb;
1982 * We want to write everything out, not just down to the dirty
1983 * threshold
1985 if (!bdi_has_dirty_io(&q->backing_dev_info))
1986 return;
1988 rcu_read_lock();
1989 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1990 if (wb_has_dirty_io(wb))
1991 wb_start_writeback(wb, nr_pages, true,
1992 WB_REASON_LAPTOP_TIMER);
1993 rcu_read_unlock();
1997 * We've spun up the disk and we're in laptop mode: schedule writeback
1998 * of all dirty data a few seconds from now. If the flush is already scheduled
1999 * then push it back - the user is still using the disk.
2001 void laptop_io_completion(struct backing_dev_info *info)
2003 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2007 * We're in laptop mode and we've just synced. The sync's writes will have
2008 * caused another writeback to be scheduled by laptop_io_completion.
2009 * Nothing needs to be written back anymore, so we unschedule the writeback.
2011 void laptop_sync_completion(void)
2013 struct backing_dev_info *bdi;
2015 rcu_read_lock();
2017 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2018 del_timer(&bdi->laptop_mode_wb_timer);
2020 rcu_read_unlock();
2022 #endif
2025 * If ratelimit_pages is too high then we can get into dirty-data overload
2026 * if a large number of processes all perform writes at the same time.
2027 * If it is too low then SMP machines will call the (expensive)
2028 * get_writeback_state too often.
2030 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2031 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2032 * thresholds.
2035 void writeback_set_ratelimit(void)
2037 struct wb_domain *dom = &global_wb_domain;
2038 unsigned long background_thresh;
2039 unsigned long dirty_thresh;
2041 global_dirty_limits(&background_thresh, &dirty_thresh);
2042 dom->dirty_limit = dirty_thresh;
2043 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2044 if (ratelimit_pages < 16)
2045 ratelimit_pages = 16;
2048 static int
2049 ratelimit_handler(struct notifier_block *self, unsigned long action,
2050 void *hcpu)
2053 switch (action & ~CPU_TASKS_FROZEN) {
2054 case CPU_ONLINE:
2055 case CPU_DEAD:
2056 writeback_set_ratelimit();
2057 return NOTIFY_OK;
2058 default:
2059 return NOTIFY_DONE;
2063 static struct notifier_block ratelimit_nb = {
2064 .notifier_call = ratelimit_handler,
2065 .next = NULL,
2069 * Called early on to tune the page writeback dirty limits.
2071 * We used to scale dirty pages according to how total memory
2072 * related to pages that could be allocated for buffers (by
2073 * comparing nr_free_buffer_pages() to vm_total_pages.
2075 * However, that was when we used "dirty_ratio" to scale with
2076 * all memory, and we don't do that any more. "dirty_ratio"
2077 * is now applied to total non-HIGHPAGE memory (by subtracting
2078 * totalhigh_pages from vm_total_pages), and as such we can't
2079 * get into the old insane situation any more where we had
2080 * large amounts of dirty pages compared to a small amount of
2081 * non-HIGHMEM memory.
2083 * But we might still want to scale the dirty_ratio by how
2084 * much memory the box has..
2086 void __init page_writeback_init(void)
2088 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2090 writeback_set_ratelimit();
2091 register_cpu_notifier(&ratelimit_nb);
2095 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2096 * @mapping: address space structure to write
2097 * @start: starting page index
2098 * @end: ending page index (inclusive)
2100 * This function scans the page range from @start to @end (inclusive) and tags
2101 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2102 * that write_cache_pages (or whoever calls this function) will then use
2103 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2104 * used to avoid livelocking of writeback by a process steadily creating new
2105 * dirty pages in the file (thus it is important for this function to be quick
2106 * so that it can tag pages faster than a dirtying process can create them).
2109 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2111 void tag_pages_for_writeback(struct address_space *mapping,
2112 pgoff_t start, pgoff_t end)
2114 #define WRITEBACK_TAG_BATCH 4096
2115 unsigned long tagged;
2117 do {
2118 spin_lock_irq(&mapping->tree_lock);
2119 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2120 &start, end, WRITEBACK_TAG_BATCH,
2121 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2122 spin_unlock_irq(&mapping->tree_lock);
2123 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2124 cond_resched();
2125 /* We check 'start' to handle wrapping when end == ~0UL */
2126 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2128 EXPORT_SYMBOL(tag_pages_for_writeback);
2131 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2132 * @mapping: address space structure to write
2133 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2134 * @writepage: function called for each page
2135 * @data: data passed to writepage function
2137 * If a page is already under I/O, write_cache_pages() skips it, even
2138 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2139 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2140 * and msync() need to guarantee that all the data which was dirty at the time
2141 * the call was made get new I/O started against them. If wbc->sync_mode is
2142 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2143 * existing IO to complete.
2145 * To avoid livelocks (when other process dirties new pages), we first tag
2146 * pages which should be written back with TOWRITE tag and only then start
2147 * writing them. For data-integrity sync we have to be careful so that we do
2148 * not miss some pages (e.g., because some other process has cleared TOWRITE
2149 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2150 * by the process clearing the DIRTY tag (and submitting the page for IO).
2152 int write_cache_pages(struct address_space *mapping,
2153 struct writeback_control *wbc, writepage_t writepage,
2154 void *data)
2156 int ret = 0;
2157 int done = 0;
2158 struct pagevec pvec;
2159 int nr_pages;
2160 pgoff_t uninitialized_var(writeback_index);
2161 pgoff_t index;
2162 pgoff_t end; /* Inclusive */
2163 pgoff_t done_index;
2164 int cycled;
2165 int range_whole = 0;
2166 int tag;
2168 pagevec_init(&pvec, 0);
2169 if (wbc->range_cyclic) {
2170 writeback_index = mapping->writeback_index; /* prev offset */
2171 index = writeback_index;
2172 if (index == 0)
2173 cycled = 1;
2174 else
2175 cycled = 0;
2176 end = -1;
2177 } else {
2178 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2179 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2180 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2181 range_whole = 1;
2182 cycled = 1; /* ignore range_cyclic tests */
2184 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2185 tag = PAGECACHE_TAG_TOWRITE;
2186 else
2187 tag = PAGECACHE_TAG_DIRTY;
2188 retry:
2189 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190 tag_pages_for_writeback(mapping, index, end);
2191 done_index = index;
2192 while (!done && (index <= end)) {
2193 int i;
2195 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2196 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2197 if (nr_pages == 0)
2198 break;
2200 for (i = 0; i < nr_pages; i++) {
2201 struct page *page = pvec.pages[i];
2204 * At this point, the page may be truncated or
2205 * invalidated (changing page->mapping to NULL), or
2206 * even swizzled back from swapper_space to tmpfs file
2207 * mapping. However, page->index will not change
2208 * because we have a reference on the page.
2210 if (page->index > end) {
2212 * can't be range_cyclic (1st pass) because
2213 * end == -1 in that case.
2215 done = 1;
2216 break;
2219 done_index = page->index;
2221 lock_page(page);
2224 * Page truncated or invalidated. We can freely skip it
2225 * then, even for data integrity operations: the page
2226 * has disappeared concurrently, so there could be no
2227 * real expectation of this data interity operation
2228 * even if there is now a new, dirty page at the same
2229 * pagecache address.
2231 if (unlikely(page->mapping != mapping)) {
2232 continue_unlock:
2233 unlock_page(page);
2234 continue;
2237 if (!PageDirty(page)) {
2238 /* someone wrote it for us */
2239 goto continue_unlock;
2242 if (PageWriteback(page)) {
2243 if (wbc->sync_mode != WB_SYNC_NONE)
2244 wait_on_page_writeback(page);
2245 else
2246 goto continue_unlock;
2249 BUG_ON(PageWriteback(page));
2250 if (!clear_page_dirty_for_io(page))
2251 goto continue_unlock;
2253 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2254 ret = (*writepage)(page, wbc, data);
2255 if (unlikely(ret)) {
2256 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2257 unlock_page(page);
2258 ret = 0;
2259 } else {
2261 * done_index is set past this page,
2262 * so media errors will not choke
2263 * background writeout for the entire
2264 * file. This has consequences for
2265 * range_cyclic semantics (ie. it may
2266 * not be suitable for data integrity
2267 * writeout).
2269 done_index = page->index + 1;
2270 done = 1;
2271 break;
2276 * We stop writing back only if we are not doing
2277 * integrity sync. In case of integrity sync we have to
2278 * keep going until we have written all the pages
2279 * we tagged for writeback prior to entering this loop.
2281 if (--wbc->nr_to_write <= 0 &&
2282 wbc->sync_mode == WB_SYNC_NONE) {
2283 done = 1;
2284 break;
2287 pagevec_release(&pvec);
2288 cond_resched();
2290 if (!cycled && !done) {
2292 * range_cyclic:
2293 * We hit the last page and there is more work to be done: wrap
2294 * back to the start of the file
2296 cycled = 1;
2297 index = 0;
2298 end = writeback_index - 1;
2299 goto retry;
2301 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2302 mapping->writeback_index = done_index;
2304 return ret;
2306 EXPORT_SYMBOL(write_cache_pages);
2309 * Function used by generic_writepages to call the real writepage
2310 * function and set the mapping flags on error
2312 static int __writepage(struct page *page, struct writeback_control *wbc,
2313 void *data)
2315 struct address_space *mapping = data;
2316 int ret = mapping->a_ops->writepage(page, wbc);
2317 mapping_set_error(mapping, ret);
2318 return ret;
2322 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2323 * @mapping: address space structure to write
2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326 * This is a library function, which implements the writepages()
2327 * address_space_operation.
2329 int generic_writepages(struct address_space *mapping,
2330 struct writeback_control *wbc)
2332 struct blk_plug plug;
2333 int ret;
2335 /* deal with chardevs and other special file */
2336 if (!mapping->a_ops->writepage)
2337 return 0;
2339 blk_start_plug(&plug);
2340 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341 blk_finish_plug(&plug);
2342 return ret;
2345 EXPORT_SYMBOL(generic_writepages);
2347 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2349 int ret;
2351 if (wbc->nr_to_write <= 0)
2352 return 0;
2353 if (mapping->a_ops->writepages)
2354 ret = mapping->a_ops->writepages(mapping, wbc);
2355 else
2356 ret = generic_writepages(mapping, wbc);
2357 return ret;
2361 * write_one_page - write out a single page and optionally wait on I/O
2362 * @page: the page to write
2363 * @wait: if true, wait on writeout
2365 * The page must be locked by the caller and will be unlocked upon return.
2367 * write_one_page() returns a negative error code if I/O failed.
2369 int write_one_page(struct page *page, int wait)
2371 struct address_space *mapping = page->mapping;
2372 int ret = 0;
2373 struct writeback_control wbc = {
2374 .sync_mode = WB_SYNC_ALL,
2375 .nr_to_write = 1,
2378 BUG_ON(!PageLocked(page));
2380 if (wait)
2381 wait_on_page_writeback(page);
2383 if (clear_page_dirty_for_io(page)) {
2384 page_cache_get(page);
2385 ret = mapping->a_ops->writepage(page, &wbc);
2386 if (ret == 0 && wait) {
2387 wait_on_page_writeback(page);
2388 if (PageError(page))
2389 ret = -EIO;
2391 page_cache_release(page);
2392 } else {
2393 unlock_page(page);
2395 return ret;
2397 EXPORT_SYMBOL(write_one_page);
2400 * For address_spaces which do not use buffers nor write back.
2402 int __set_page_dirty_no_writeback(struct page *page)
2404 if (!PageDirty(page))
2405 return !TestSetPageDirty(page);
2406 return 0;
2410 * Helper function for set_page_dirty family.
2412 * Caller must hold mem_cgroup_begin_page_stat().
2414 * NOTE: This relies on being atomic wrt interrupts.
2416 void account_page_dirtied(struct page *page, struct address_space *mapping,
2417 struct mem_cgroup *memcg)
2419 struct inode *inode = mapping->host;
2421 trace_writeback_dirty_page(page, mapping);
2423 if (mapping_cap_account_dirty(mapping)) {
2424 struct bdi_writeback *wb;
2426 inode_attach_wb(inode, page);
2427 wb = inode_to_wb(inode);
2429 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2430 __inc_zone_page_state(page, NR_FILE_DIRTY);
2431 __inc_zone_page_state(page, NR_DIRTIED);
2432 __inc_wb_stat(wb, WB_RECLAIMABLE);
2433 __inc_wb_stat(wb, WB_DIRTIED);
2434 task_io_account_write(PAGE_CACHE_SIZE);
2435 current->nr_dirtied++;
2436 this_cpu_inc(bdp_ratelimits);
2439 EXPORT_SYMBOL(account_page_dirtied);
2442 * Helper function for deaccounting dirty page without writeback.
2444 * Caller must hold mem_cgroup_begin_page_stat().
2446 void account_page_cleaned(struct page *page, struct address_space *mapping,
2447 struct mem_cgroup *memcg, struct bdi_writeback *wb)
2449 if (mapping_cap_account_dirty(mapping)) {
2450 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2451 dec_zone_page_state(page, NR_FILE_DIRTY);
2452 dec_wb_stat(wb, WB_RECLAIMABLE);
2453 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2458 * For address_spaces which do not use buffers. Just tag the page as dirty in
2459 * its radix tree.
2461 * This is also used when a single buffer is being dirtied: we want to set the
2462 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2463 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2465 * The caller must ensure this doesn't race with truncation. Most will simply
2466 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2467 * the pte lock held, which also locks out truncation.
2469 int __set_page_dirty_nobuffers(struct page *page)
2471 struct mem_cgroup *memcg;
2473 memcg = mem_cgroup_begin_page_stat(page);
2474 if (!TestSetPageDirty(page)) {
2475 struct address_space *mapping = page_mapping(page);
2476 unsigned long flags;
2478 if (!mapping) {
2479 mem_cgroup_end_page_stat(memcg);
2480 return 1;
2483 spin_lock_irqsave(&mapping->tree_lock, flags);
2484 BUG_ON(page_mapping(page) != mapping);
2485 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486 account_page_dirtied(page, mapping, memcg);
2487 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488 PAGECACHE_TAG_DIRTY);
2489 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490 mem_cgroup_end_page_stat(memcg);
2492 if (mapping->host) {
2493 /* !PageAnon && !swapper_space */
2494 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2496 return 1;
2498 mem_cgroup_end_page_stat(memcg);
2499 return 0;
2501 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504 * Call this whenever redirtying a page, to de-account the dirty counters
2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508 * control.
2510 void account_page_redirty(struct page *page)
2512 struct address_space *mapping = page->mapping;
2514 if (mapping && mapping_cap_account_dirty(mapping)) {
2515 struct inode *inode = mapping->host;
2516 struct bdi_writeback *wb;
2517 bool locked;
2519 wb = unlocked_inode_to_wb_begin(inode, &locked);
2520 current->nr_dirtied--;
2521 dec_zone_page_state(page, NR_DIRTIED);
2522 dec_wb_stat(wb, WB_DIRTIED);
2523 unlocked_inode_to_wb_end(inode, locked);
2526 EXPORT_SYMBOL(account_page_redirty);
2529 * When a writepage implementation decides that it doesn't want to write this
2530 * page for some reason, it should redirty the locked page via
2531 * redirty_page_for_writepage() and it should then unlock the page and return 0
2533 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2535 int ret;
2537 wbc->pages_skipped++;
2538 ret = __set_page_dirty_nobuffers(page);
2539 account_page_redirty(page);
2540 return ret;
2542 EXPORT_SYMBOL(redirty_page_for_writepage);
2545 * Dirty a page.
2547 * For pages with a mapping this should be done under the page lock
2548 * for the benefit of asynchronous memory errors who prefer a consistent
2549 * dirty state. This rule can be broken in some special cases,
2550 * but should be better not to.
2552 * If the mapping doesn't provide a set_page_dirty a_op, then
2553 * just fall through and assume that it wants buffer_heads.
2555 int set_page_dirty(struct page *page)
2557 struct address_space *mapping = page_mapping(page);
2559 if (likely(mapping)) {
2560 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2562 * readahead/lru_deactivate_page could remain
2563 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564 * About readahead, if the page is written, the flags would be
2565 * reset. So no problem.
2566 * About lru_deactivate_page, if the page is redirty, the flag
2567 * will be reset. So no problem. but if the page is used by readahead
2568 * it will confuse readahead and make it restart the size rampup
2569 * process. But it's a trivial problem.
2571 if (PageReclaim(page))
2572 ClearPageReclaim(page);
2573 #ifdef CONFIG_BLOCK
2574 if (!spd)
2575 spd = __set_page_dirty_buffers;
2576 #endif
2577 return (*spd)(page);
2579 if (!PageDirty(page)) {
2580 if (!TestSetPageDirty(page))
2581 return 1;
2583 return 0;
2585 EXPORT_SYMBOL(set_page_dirty);
2588 * set_page_dirty() is racy if the caller has no reference against
2589 * page->mapping->host, and if the page is unlocked. This is because another
2590 * CPU could truncate the page off the mapping and then free the mapping.
2592 * Usually, the page _is_ locked, or the caller is a user-space process which
2593 * holds a reference on the inode by having an open file.
2595 * In other cases, the page should be locked before running set_page_dirty().
2597 int set_page_dirty_lock(struct page *page)
2599 int ret;
2601 lock_page(page);
2602 ret = set_page_dirty(page);
2603 unlock_page(page);
2604 return ret;
2606 EXPORT_SYMBOL(set_page_dirty_lock);
2609 * This cancels just the dirty bit on the kernel page itself, it does NOT
2610 * actually remove dirty bits on any mmap's that may be around. It also
2611 * leaves the page tagged dirty, so any sync activity will still find it on
2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613 * look at the dirty bits in the VM.
2615 * Doing this should *normally* only ever be done when a page is truncated,
2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617 * this when it notices that somebody has cleaned out all the buffers on a
2618 * page without actually doing it through the VM. Can you say "ext3 is
2619 * horribly ugly"? Thought you could.
2621 void cancel_dirty_page(struct page *page)
2623 struct address_space *mapping = page_mapping(page);
2625 if (mapping_cap_account_dirty(mapping)) {
2626 struct inode *inode = mapping->host;
2627 struct bdi_writeback *wb;
2628 struct mem_cgroup *memcg;
2629 bool locked;
2631 memcg = mem_cgroup_begin_page_stat(page);
2632 wb = unlocked_inode_to_wb_begin(inode, &locked);
2634 if (TestClearPageDirty(page))
2635 account_page_cleaned(page, mapping, memcg, wb);
2637 unlocked_inode_to_wb_end(inode, locked);
2638 mem_cgroup_end_page_stat(memcg);
2639 } else {
2640 ClearPageDirty(page);
2643 EXPORT_SYMBOL(cancel_dirty_page);
2646 * Clear a page's dirty flag, while caring for dirty memory accounting.
2647 * Returns true if the page was previously dirty.
2649 * This is for preparing to put the page under writeout. We leave the page
2650 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2651 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2652 * implementation will run either set_page_writeback() or set_page_dirty(),
2653 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2654 * back into sync.
2656 * This incoherency between the page's dirty flag and radix-tree tag is
2657 * unfortunate, but it only exists while the page is locked.
2659 int clear_page_dirty_for_io(struct page *page)
2661 struct address_space *mapping = page_mapping(page);
2662 int ret = 0;
2664 BUG_ON(!PageLocked(page));
2666 if (mapping && mapping_cap_account_dirty(mapping)) {
2667 struct inode *inode = mapping->host;
2668 struct bdi_writeback *wb;
2669 struct mem_cgroup *memcg;
2670 bool locked;
2673 * Yes, Virginia, this is indeed insane.
2675 * We use this sequence to make sure that
2676 * (a) we account for dirty stats properly
2677 * (b) we tell the low-level filesystem to
2678 * mark the whole page dirty if it was
2679 * dirty in a pagetable. Only to then
2680 * (c) clean the page again and return 1 to
2681 * cause the writeback.
2683 * This way we avoid all nasty races with the
2684 * dirty bit in multiple places and clearing
2685 * them concurrently from different threads.
2687 * Note! Normally the "set_page_dirty(page)"
2688 * has no effect on the actual dirty bit - since
2689 * that will already usually be set. But we
2690 * need the side effects, and it can help us
2691 * avoid races.
2693 * We basically use the page "master dirty bit"
2694 * as a serialization point for all the different
2695 * threads doing their things.
2697 if (page_mkclean(page))
2698 set_page_dirty(page);
2700 * We carefully synchronise fault handlers against
2701 * installing a dirty pte and marking the page dirty
2702 * at this point. We do this by having them hold the
2703 * page lock while dirtying the page, and pages are
2704 * always locked coming in here, so we get the desired
2705 * exclusion.
2707 memcg = mem_cgroup_begin_page_stat(page);
2708 wb = unlocked_inode_to_wb_begin(inode, &locked);
2709 if (TestClearPageDirty(page)) {
2710 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2711 dec_zone_page_state(page, NR_FILE_DIRTY);
2712 dec_wb_stat(wb, WB_RECLAIMABLE);
2713 ret = 1;
2715 unlocked_inode_to_wb_end(inode, locked);
2716 mem_cgroup_end_page_stat(memcg);
2717 return ret;
2719 return TestClearPageDirty(page);
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2723 int test_clear_page_writeback(struct page *page)
2725 struct address_space *mapping = page_mapping(page);
2726 struct mem_cgroup *memcg;
2727 int ret;
2729 memcg = mem_cgroup_begin_page_stat(page);
2730 if (mapping) {
2731 struct inode *inode = mapping->host;
2732 struct backing_dev_info *bdi = inode_to_bdi(inode);
2733 unsigned long flags;
2735 spin_lock_irqsave(&mapping->tree_lock, flags);
2736 ret = TestClearPageWriteback(page);
2737 if (ret) {
2738 radix_tree_tag_clear(&mapping->page_tree,
2739 page_index(page),
2740 PAGECACHE_TAG_WRITEBACK);
2741 if (bdi_cap_account_writeback(bdi)) {
2742 struct bdi_writeback *wb = inode_to_wb(inode);
2744 __dec_wb_stat(wb, WB_WRITEBACK);
2745 __wb_writeout_inc(wb);
2748 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2749 } else {
2750 ret = TestClearPageWriteback(page);
2752 if (ret) {
2753 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2754 dec_zone_page_state(page, NR_WRITEBACK);
2755 inc_zone_page_state(page, NR_WRITTEN);
2757 mem_cgroup_end_page_stat(memcg);
2758 return ret;
2761 int __test_set_page_writeback(struct page *page, bool keep_write)
2763 struct address_space *mapping = page_mapping(page);
2764 struct mem_cgroup *memcg;
2765 int ret;
2767 memcg = mem_cgroup_begin_page_stat(page);
2768 if (mapping) {
2769 struct inode *inode = mapping->host;
2770 struct backing_dev_info *bdi = inode_to_bdi(inode);
2771 unsigned long flags;
2773 spin_lock_irqsave(&mapping->tree_lock, flags);
2774 ret = TestSetPageWriteback(page);
2775 if (!ret) {
2776 radix_tree_tag_set(&mapping->page_tree,
2777 page_index(page),
2778 PAGECACHE_TAG_WRITEBACK);
2779 if (bdi_cap_account_writeback(bdi))
2780 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2782 if (!PageDirty(page))
2783 radix_tree_tag_clear(&mapping->page_tree,
2784 page_index(page),
2785 PAGECACHE_TAG_DIRTY);
2786 if (!keep_write)
2787 radix_tree_tag_clear(&mapping->page_tree,
2788 page_index(page),
2789 PAGECACHE_TAG_TOWRITE);
2790 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2791 } else {
2792 ret = TestSetPageWriteback(page);
2794 if (!ret) {
2795 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2796 inc_zone_page_state(page, NR_WRITEBACK);
2798 mem_cgroup_end_page_stat(memcg);
2799 return ret;
2802 EXPORT_SYMBOL(__test_set_page_writeback);
2805 * Return true if any of the pages in the mapping are marked with the
2806 * passed tag.
2808 int mapping_tagged(struct address_space *mapping, int tag)
2810 return radix_tree_tagged(&mapping->page_tree, tag);
2812 EXPORT_SYMBOL(mapping_tagged);
2815 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2816 * @page: The page to wait on.
2818 * This function determines if the given page is related to a backing device
2819 * that requires page contents to be held stable during writeback. If so, then
2820 * it will wait for any pending writeback to complete.
2822 void wait_for_stable_page(struct page *page)
2824 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2825 wait_on_page_writeback(page);
2827 EXPORT_SYMBOL_GPL(wait_for_stable_page);