2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
49 * There are three level of locking required by epoll :
53 * 3) ep->wq.lock (spinlock)
55 * The acquire order is the one listed above, from 1 to 3.
56 * We need a spinlock (ep->wq.lock) because we manipulate objects
57 * from inside the poll callback, that might be triggered from
58 * a wake_up() that in turn might be called from IRQ context.
59 * So we can't sleep inside the poll callback and hence we need
60 * a spinlock. During the event transfer loop (from kernel to
61 * user space) we could end up sleeping due a copy_to_user(), so
62 * we need a lock that will allow us to sleep. This lock is a
63 * mutex (ep->mtx). It is acquired during the event transfer loop,
64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65 * Then we also need a global mutex to serialize eventpoll_release_file()
67 * This mutex is acquired by ep_free() during the epoll file
68 * cleanup path and it is also acquired by eventpoll_release_file()
69 * if a file has been pushed inside an epoll set and it is then
70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71 * It is also acquired when inserting an epoll fd onto another epoll
72 * fd. We do this so that we walk the epoll tree and ensure that this
73 * insertion does not create a cycle of epoll file descriptors, which
74 * could lead to deadlock. We need a global mutex to prevent two
75 * simultaneous inserts (A into B and B into A) from racing and
76 * constructing a cycle without either insert observing that it is
78 * It is necessary to acquire multiple "ep->mtx"es at once in the
79 * case when one epoll fd is added to another. In this case, we
80 * always acquire the locks in the order of nesting (i.e. after
81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82 * before e2->mtx). Since we disallow cycles of epoll file
83 * descriptors, this ensures that the mutexes are well-ordered. In
84 * order to communicate this nesting to lockdep, when walking a tree
85 * of epoll file descriptors, we use the current recursion depth as
87 * It is possible to drop the "ep->mtx" and to use the global
88 * mutex "epmutex" (together with "ep->wq.lock") to have it working,
89 * but having "ep->mtx" will make the interface more scalable.
90 * Events that require holding "epmutex" are very rare, while for
91 * normal operations the epoll private "ep->mtx" will guarantee
92 * a better scalability.
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
108 #define EP_UNACTIVE_PTR ((void *) -1L)
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
112 struct epoll_filefd
{
118 * Structure used to track possible nested calls, for too deep recursions
121 struct nested_call_node
{
122 struct list_head llink
;
128 * This structure is used as collector for nested calls, to check for
129 * maximum recursion dept and loop cycles.
131 struct nested_calls
{
132 struct list_head tasks_call_list
;
137 * Each file descriptor added to the eventpoll interface will
138 * have an entry of this type linked to the "rbr" RB tree.
139 * Avoid increasing the size of this struct, there can be many thousands
140 * of these on a server and we do not want this to take another cache line.
144 /* RB tree node links this structure to the eventpoll RB tree */
146 /* Used to free the struct epitem */
150 /* List header used to link this structure to the eventpoll ready list */
151 struct list_head rdllink
;
154 * Works together "struct eventpoll"->ovflist in keeping the
155 * single linked chain of items.
159 /* The file descriptor information this item refers to */
160 struct epoll_filefd ffd
;
162 /* Number of active wait queue attached to poll operations */
165 /* List containing poll wait queues */
166 struct list_head pwqlist
;
168 /* The "container" of this item */
169 struct eventpoll
*ep
;
171 /* List header used to link this item to the "struct file" items list */
172 struct list_head fllink
;
174 /* wakeup_source used when EPOLLWAKEUP is set */
175 struct wakeup_source __rcu
*ws
;
177 /* The structure that describe the interested events and the source fd */
178 struct epoll_event event
;
182 * This structure is stored inside the "private_data" member of the file
183 * structure and represents the main data structure for the eventpoll
186 * Access to it is protected by the lock inside wq.
190 * This mutex is used to ensure that files are not removed
191 * while epoll is using them. This is held during the event
192 * collection loop, the file cleanup path, the epoll file exit
193 * code and the ctl operations.
197 /* Wait queue used by sys_epoll_wait() */
198 wait_queue_head_t wq
;
200 /* Wait queue used by file->poll() */
201 wait_queue_head_t poll_wait
;
203 /* List of ready file descriptors */
204 struct list_head rdllist
;
206 /* RB tree root used to store monitored fd structs */
207 struct rb_root_cached rbr
;
210 * This is a single linked list that chains all the "struct epitem" that
211 * happened while transferring ready events to userspace w/out
214 struct epitem
*ovflist
;
216 /* wakeup_source used when ep_scan_ready_list is running */
217 struct wakeup_source
*ws
;
219 /* The user that created the eventpoll descriptor */
220 struct user_struct
*user
;
224 /* used to optimize loop detection check */
226 struct list_head visited_list_link
;
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 /* used to track busy poll napi_id */
230 unsigned int napi_id
;
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry
{
236 /* List header used to link this structure to the "struct epitem" */
237 struct list_head llink
;
239 /* The "base" pointer is set to the container "struct epitem" */
243 * Wait queue item that will be linked to the target file wait
246 wait_queue_entry_t wait
;
248 /* The wait queue head that linked the "wait" wait queue item */
249 wait_queue_head_t
*whead
;
252 /* Wrapper struct used by poll queueing */
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data
{
261 struct epoll_event __user
*events
;
266 * Configuration options available inside /proc/sys/fs/epoll/
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly
;
272 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 static DEFINE_MUTEX(epmutex
);
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls
;
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache
*epi_cache __read_mostly
;
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache
*pwq_cache __read_mostly
;
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list
);
289 * List of files with newly added links, where we may need to limit the number
290 * of emanating paths. Protected by the epmutex.
292 static LIST_HEAD(tfile_check_list
);
296 #include <linux/sysctl.h>
299 static long long_max
= LONG_MAX
;
301 struct ctl_table epoll_table
[] = {
303 .procname
= "max_user_watches",
304 .data
= &max_user_watches
,
305 .maxlen
= sizeof(max_user_watches
),
307 .proc_handler
= proc_doulongvec_minmax
,
313 #endif /* CONFIG_SYSCTL */
315 static const struct file_operations eventpoll_fops
;
317 static inline int is_file_epoll(struct file
*f
)
319 return f
->f_op
== &eventpoll_fops
;
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
324 struct file
*file
, int fd
)
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
332 struct epoll_filefd
*p2
)
334 return (p1
->file
> p2
->file
? +1:
335 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct epitem
*epi
)
341 return !list_empty(&epi
->rdllink
);
344 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
346 return container_of(p
, struct eppoll_entry
, wait
);
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
352 return container_of(p
, struct eppoll_entry
, wait
)->base
;
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
358 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op
)
364 return op
!= EPOLL_CTL_DEL
;
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
370 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
371 spin_lock_init(&ncalls
->lock
);
375 * ep_events_available - Checks if ready events might be available.
377 * @ep: Pointer to the eventpoll context.
379 * Returns: Returns a value different than zero if ready events are available,
382 static inline int ep_events_available(struct eventpoll
*ep
)
384 return !list_empty_careful(&ep
->rdllist
) ||
385 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
388 #ifdef CONFIG_NET_RX_BUSY_POLL
389 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
391 struct eventpoll
*ep
= p
;
393 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
397 * Busy poll if globally on and supporting sockets found && no events,
398 * busy loop will return if need_resched or ep_events_available.
400 * we must do our busy polling with irqs enabled
402 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
404 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
406 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
407 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
410 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
417 * Set epoll busy poll NAPI ID from sk.
419 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
421 struct eventpoll
*ep
;
422 unsigned int napi_id
;
427 if (!net_busy_loop_on())
430 sock
= sock_from_file(epi
->ffd
.file
, &err
);
438 napi_id
= READ_ONCE(sk
->sk_napi_id
);
441 /* Non-NAPI IDs can be rejected
443 * Nothing to do if we already have this ID
445 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
448 /* record NAPI ID for use in next busy poll */
449 ep
->napi_id
= napi_id
;
454 static inline void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
458 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
462 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
466 #endif /* CONFIG_NET_RX_BUSY_POLL */
469 * ep_call_nested - Perform a bound (possibly) nested call, by checking
470 * that the recursion limit is not exceeded, and that
471 * the same nested call (by the meaning of same cookie) is
474 * @ncalls: Pointer to the nested_calls structure to be used for this call.
475 * @nproc: Nested call core function pointer.
476 * @priv: Opaque data to be passed to the @nproc callback.
477 * @cookie: Cookie to be used to identify this nested call.
478 * @ctx: This instance context.
480 * Returns: Returns the code returned by the @nproc callback, or -1 if
481 * the maximum recursion limit has been exceeded.
483 static int ep_call_nested(struct nested_calls
*ncalls
,
484 int (*nproc
)(void *, void *, int), void *priv
,
485 void *cookie
, void *ctx
)
487 int error
, call_nests
= 0;
489 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
490 struct nested_call_node
*tncur
;
491 struct nested_call_node tnode
;
493 spin_lock_irqsave(&ncalls
->lock
, flags
);
496 * Try to see if the current task is already inside this wakeup call.
497 * We use a list here, since the population inside this set is always
500 list_for_each_entry(tncur
, lsthead
, llink
) {
501 if (tncur
->ctx
== ctx
&&
502 (tncur
->cookie
== cookie
|| ++call_nests
> EP_MAX_NESTS
)) {
504 * Ops ... loop detected or maximum nest level reached.
505 * We abort this wake by breaking the cycle itself.
512 /* Add the current task and cookie to the list */
514 tnode
.cookie
= cookie
;
515 list_add(&tnode
.llink
, lsthead
);
517 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
519 /* Call the nested function */
520 error
= (*nproc
)(priv
, cookie
, call_nests
);
522 /* Remove the current task from the list */
523 spin_lock_irqsave(&ncalls
->lock
, flags
);
524 list_del(&tnode
.llink
);
526 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
532 * As described in commit 0ccf831cb lockdep: annotate epoll
533 * the use of wait queues used by epoll is done in a very controlled
534 * manner. Wake ups can nest inside each other, but are never done
535 * with the same locking. For example:
538 * efd1 = epoll_create();
539 * efd2 = epoll_create();
540 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
541 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
543 * When a packet arrives to the device underneath "dfd", the net code will
544 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
545 * callback wakeup entry on that queue, and the wake_up() performed by the
546 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
547 * (efd1) notices that it may have some event ready, so it needs to wake up
548 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
549 * that ends up in another wake_up(), after having checked about the
550 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
551 * avoid stack blasting.
553 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
554 * this special case of epoll.
556 #ifdef CONFIG_DEBUG_LOCK_ALLOC
558 static struct nested_calls poll_safewake_ncalls
;
560 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
563 wait_queue_head_t
*wqueue
= (wait_queue_head_t
*)cookie
;
565 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, call_nests
+ 1);
566 wake_up_locked_poll(wqueue
, EPOLLIN
);
567 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
572 static void ep_poll_safewake(wait_queue_head_t
*wq
)
574 int this_cpu
= get_cpu();
576 ep_call_nested(&poll_safewake_ncalls
,
577 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
584 static void ep_poll_safewake(wait_queue_head_t
*wq
)
586 wake_up_poll(wq
, EPOLLIN
);
591 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
593 wait_queue_head_t
*whead
;
597 * If it is cleared by POLLFREE, it should be rcu-safe.
598 * If we read NULL we need a barrier paired with
599 * smp_store_release() in ep_poll_callback(), otherwise
600 * we rely on whead->lock.
602 whead
= smp_load_acquire(&pwq
->whead
);
604 remove_wait_queue(whead
, &pwq
->wait
);
609 * This function unregisters poll callbacks from the associated file
610 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
613 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
615 struct list_head
*lsthead
= &epi
->pwqlist
;
616 struct eppoll_entry
*pwq
;
618 while (!list_empty(lsthead
)) {
619 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
621 list_del(&pwq
->llink
);
622 ep_remove_wait_queue(pwq
);
623 kmem_cache_free(pwq_cache
, pwq
);
627 /* call only when ep->mtx is held */
628 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
630 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
633 /* call only when ep->mtx is held */
634 static inline void ep_pm_stay_awake(struct epitem
*epi
)
636 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
642 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
644 return rcu_access_pointer(epi
->ws
) ? true : false;
647 /* call when ep->mtx cannot be held (ep_poll_callback) */
648 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
650 struct wakeup_source
*ws
;
653 ws
= rcu_dereference(epi
->ws
);
660 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
661 * the scan code, to call f_op->poll(). Also allows for
662 * O(NumReady) performance.
664 * @ep: Pointer to the epoll private data structure.
665 * @sproc: Pointer to the scan callback.
666 * @priv: Private opaque data passed to the @sproc callback.
667 * @depth: The current depth of recursive f_op->poll calls.
668 * @ep_locked: caller already holds ep->mtx
670 * Returns: The same integer error code returned by the @sproc callback.
672 static __poll_t
ep_scan_ready_list(struct eventpoll
*ep
,
673 __poll_t (*sproc
)(struct eventpoll
*,
674 struct list_head
*, void *),
675 void *priv
, int depth
, bool ep_locked
)
679 struct epitem
*epi
, *nepi
;
682 lockdep_assert_irqs_enabled();
685 * We need to lock this because we could be hit by
686 * eventpoll_release_file() and epoll_ctl().
690 mutex_lock_nested(&ep
->mtx
, depth
);
693 * Steal the ready list, and re-init the original one to the
694 * empty list. Also, set ep->ovflist to NULL so that events
695 * happening while looping w/out locks, are not lost. We cannot
696 * have the poll callback to queue directly on ep->rdllist,
697 * because we want the "sproc" callback to be able to do it
700 spin_lock_irq(&ep
->wq
.lock
);
701 list_splice_init(&ep
->rdllist
, &txlist
);
702 WRITE_ONCE(ep
->ovflist
, NULL
);
703 spin_unlock_irq(&ep
->wq
.lock
);
706 * Now call the callback function.
708 res
= (*sproc
)(ep
, &txlist
, priv
);
710 spin_lock_irq(&ep
->wq
.lock
);
712 * During the time we spent inside the "sproc" callback, some
713 * other events might have been queued by the poll callback.
714 * We re-insert them inside the main ready-list here.
716 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
717 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
719 * We need to check if the item is already in the list.
720 * During the "sproc" callback execution time, items are
721 * queued into ->ovflist but the "txlist" might already
722 * contain them, and the list_splice() below takes care of them.
724 if (!ep_is_linked(epi
)) {
725 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
726 ep_pm_stay_awake(epi
);
730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
731 * releasing the lock, events will be queued in the normal way inside
734 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
737 * Quickly re-inject items left on "txlist".
739 list_splice(&txlist
, &ep
->rdllist
);
742 if (!list_empty(&ep
->rdllist
)) {
744 * Wake up (if active) both the eventpoll wait list and
745 * the ->poll() wait list (delayed after we release the lock).
747 if (waitqueue_active(&ep
->wq
))
748 wake_up_locked(&ep
->wq
);
749 if (waitqueue_active(&ep
->poll_wait
))
752 spin_unlock_irq(&ep
->wq
.lock
);
755 mutex_unlock(&ep
->mtx
);
757 /* We have to call this outside the lock */
759 ep_poll_safewake(&ep
->poll_wait
);
764 static void epi_rcu_free(struct rcu_head
*head
)
766 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
767 kmem_cache_free(epi_cache
, epi
);
771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
772 * all the associated resources. Must be called with "mtx" held.
774 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
776 struct file
*file
= epi
->ffd
.file
;
778 lockdep_assert_irqs_enabled();
781 * Removes poll wait queue hooks.
783 ep_unregister_pollwait(ep
, epi
);
785 /* Remove the current item from the list of epoll hooks */
786 spin_lock(&file
->f_lock
);
787 list_del_rcu(&epi
->fllink
);
788 spin_unlock(&file
->f_lock
);
790 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
792 spin_lock_irq(&ep
->wq
.lock
);
793 if (ep_is_linked(epi
))
794 list_del_init(&epi
->rdllink
);
795 spin_unlock_irq(&ep
->wq
.lock
);
797 wakeup_source_unregister(ep_wakeup_source(epi
));
799 * At this point it is safe to free the eventpoll item. Use the union
800 * field epi->rcu, since we are trying to minimize the size of
801 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
802 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
803 * use of the rbn field.
805 call_rcu(&epi
->rcu
, epi_rcu_free
);
807 atomic_long_dec(&ep
->user
->epoll_watches
);
812 static void ep_free(struct eventpoll
*ep
)
817 /* We need to release all tasks waiting for these file */
818 if (waitqueue_active(&ep
->poll_wait
))
819 ep_poll_safewake(&ep
->poll_wait
);
822 * We need to lock this because we could be hit by
823 * eventpoll_release_file() while we're freeing the "struct eventpoll".
824 * We do not need to hold "ep->mtx" here because the epoll file
825 * is on the way to be removed and no one has references to it
826 * anymore. The only hit might come from eventpoll_release_file() but
827 * holding "epmutex" is sufficient here.
829 mutex_lock(&epmutex
);
832 * Walks through the whole tree by unregistering poll callbacks.
834 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
835 epi
= rb_entry(rbp
, struct epitem
, rbn
);
837 ep_unregister_pollwait(ep
, epi
);
842 * Walks through the whole tree by freeing each "struct epitem". At this
843 * point we are sure no poll callbacks will be lingering around, and also by
844 * holding "epmutex" we can be sure that no file cleanup code will hit
845 * us during this operation. So we can avoid the lock on "ep->wq.lock".
846 * We do not need to lock ep->mtx, either, we only do it to prevent
849 mutex_lock(&ep
->mtx
);
850 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
851 epi
= rb_entry(rbp
, struct epitem
, rbn
);
855 mutex_unlock(&ep
->mtx
);
857 mutex_unlock(&epmutex
);
858 mutex_destroy(&ep
->mtx
);
860 wakeup_source_unregister(ep
->ws
);
864 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
866 struct eventpoll
*ep
= file
->private_data
;
874 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
876 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
880 * Differs from ep_eventpoll_poll() in that internal callers already have
881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882 * is correctly annotated.
884 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
887 struct eventpoll
*ep
;
890 pt
->_key
= epi
->event
.events
;
891 if (!is_file_epoll(epi
->ffd
.file
))
892 return vfs_poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
894 ep
= epi
->ffd
.file
->private_data
;
895 poll_wait(epi
->ffd
.file
, &ep
->poll_wait
, pt
);
896 locked
= pt
&& (pt
->_qproc
== ep_ptable_queue_proc
);
898 return ep_scan_ready_list(epi
->ffd
.file
->private_data
,
899 ep_read_events_proc
, &depth
, depth
,
900 locked
) & epi
->event
.events
;
903 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
906 struct epitem
*epi
, *tmp
;
908 int depth
= *(int *)priv
;
910 init_poll_funcptr(&pt
, NULL
);
913 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
914 if (ep_item_poll(epi
, &pt
, depth
)) {
915 return EPOLLIN
| EPOLLRDNORM
;
918 * Item has been dropped into the ready list by the poll
919 * callback, but it's not actually ready, as far as
920 * caller requested events goes. We can remove it here.
922 __pm_relax(ep_wakeup_source(epi
));
923 list_del_init(&epi
->rdllink
);
930 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
932 struct eventpoll
*ep
= file
->private_data
;
935 /* Insert inside our poll wait queue */
936 poll_wait(file
, &ep
->poll_wait
, wait
);
939 * Proceed to find out if wanted events are really available inside
942 return ep_scan_ready_list(ep
, ep_read_events_proc
,
943 &depth
, depth
, false);
946 #ifdef CONFIG_PROC_FS
947 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
949 struct eventpoll
*ep
= f
->private_data
;
952 mutex_lock(&ep
->mtx
);
953 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
954 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
955 struct inode
*inode
= file_inode(epi
->ffd
.file
);
957 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
958 " pos:%lli ino:%lx sdev:%x\n",
959 epi
->ffd
.fd
, epi
->event
.events
,
960 (long long)epi
->event
.data
,
961 (long long)epi
->ffd
.file
->f_pos
,
962 inode
->i_ino
, inode
->i_sb
->s_dev
);
963 if (seq_has_overflowed(m
))
966 mutex_unlock(&ep
->mtx
);
970 /* File callbacks that implement the eventpoll file behaviour */
971 static const struct file_operations eventpoll_fops
= {
972 #ifdef CONFIG_PROC_FS
973 .show_fdinfo
= ep_show_fdinfo
,
975 .release
= ep_eventpoll_release
,
976 .poll
= ep_eventpoll_poll
,
977 .llseek
= noop_llseek
,
981 * This is called from eventpoll_release() to unlink files from the eventpoll
982 * interface. We need to have this facility to cleanup correctly files that are
983 * closed without being removed from the eventpoll interface.
985 void eventpoll_release_file(struct file
*file
)
987 struct eventpoll
*ep
;
988 struct epitem
*epi
, *next
;
991 * We don't want to get "file->f_lock" because it is not
992 * necessary. It is not necessary because we're in the "struct file"
993 * cleanup path, and this means that no one is using this file anymore.
994 * So, for example, epoll_ctl() cannot hit here since if we reach this
995 * point, the file counter already went to zero and fget() would fail.
996 * The only hit might come from ep_free() but by holding the mutex
997 * will correctly serialize the operation. We do need to acquire
998 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
999 * from anywhere but ep_free().
1001 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1003 mutex_lock(&epmutex
);
1004 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
1006 mutex_lock_nested(&ep
->mtx
, 0);
1008 mutex_unlock(&ep
->mtx
);
1010 mutex_unlock(&epmutex
);
1013 static int ep_alloc(struct eventpoll
**pep
)
1016 struct user_struct
*user
;
1017 struct eventpoll
*ep
;
1019 user
= get_current_user();
1021 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1025 mutex_init(&ep
->mtx
);
1026 init_waitqueue_head(&ep
->wq
);
1027 init_waitqueue_head(&ep
->poll_wait
);
1028 INIT_LIST_HEAD(&ep
->rdllist
);
1029 ep
->rbr
= RB_ROOT_CACHED
;
1030 ep
->ovflist
= EP_UNACTIVE_PTR
;
1043 * Search the file inside the eventpoll tree. The RB tree operations
1044 * are protected by the "mtx" mutex, and ep_find() must be called with
1047 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1050 struct rb_node
*rbp
;
1051 struct epitem
*epi
, *epir
= NULL
;
1052 struct epoll_filefd ffd
;
1054 ep_set_ffd(&ffd
, file
, fd
);
1055 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1056 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1057 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1059 rbp
= rbp
->rb_right
;
1071 #ifdef CONFIG_CHECKPOINT_RESTORE
1072 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1074 struct rb_node
*rbp
;
1077 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1078 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1079 if (epi
->ffd
.fd
== tfd
) {
1091 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1094 struct file
*file_raw
;
1095 struct eventpoll
*ep
;
1098 if (!is_file_epoll(file
))
1099 return ERR_PTR(-EINVAL
);
1101 ep
= file
->private_data
;
1103 mutex_lock(&ep
->mtx
);
1104 epi
= ep_find_tfd(ep
, tfd
, toff
);
1106 file_raw
= epi
->ffd
.file
;
1108 file_raw
= ERR_PTR(-ENOENT
);
1109 mutex_unlock(&ep
->mtx
);
1113 #endif /* CONFIG_CHECKPOINT_RESTORE */
1116 * This is the callback that is passed to the wait queue wakeup
1117 * mechanism. It is called by the stored file descriptors when they
1118 * have events to report.
1120 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1123 unsigned long flags
;
1124 struct epitem
*epi
= ep_item_from_wait(wait
);
1125 struct eventpoll
*ep
= epi
->ep
;
1126 __poll_t pollflags
= key_to_poll(key
);
1129 spin_lock_irqsave(&ep
->wq
.lock
, flags
);
1131 ep_set_busy_poll_napi_id(epi
);
1134 * If the event mask does not contain any poll(2) event, we consider the
1135 * descriptor to be disabled. This condition is likely the effect of the
1136 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1137 * until the next EPOLL_CTL_MOD will be issued.
1139 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1143 * Check the events coming with the callback. At this stage, not
1144 * every device reports the events in the "key" parameter of the
1145 * callback. We need to be able to handle both cases here, hence the
1146 * test for "key" != NULL before the event match test.
1148 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1152 * If we are transferring events to userspace, we can hold no locks
1153 * (because we're accessing user memory, and because of linux f_op->poll()
1154 * semantics). All the events that happen during that period of time are
1155 * chained in ep->ovflist and requeued later on.
1157 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1158 if (epi
->next
== EP_UNACTIVE_PTR
) {
1159 epi
->next
= READ_ONCE(ep
->ovflist
);
1160 WRITE_ONCE(ep
->ovflist
, epi
);
1163 * Activate ep->ws since epi->ws may get
1164 * deactivated at any time.
1166 __pm_stay_awake(ep
->ws
);
1173 /* If this file is already in the ready list we exit soon */
1174 if (!ep_is_linked(epi
)) {
1175 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1176 ep_pm_stay_awake_rcu(epi
);
1180 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1183 if (waitqueue_active(&ep
->wq
)) {
1184 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1185 !(pollflags
& POLLFREE
)) {
1186 switch (pollflags
& EPOLLINOUT_BITS
) {
1188 if (epi
->event
.events
& EPOLLIN
)
1192 if (epi
->event
.events
& EPOLLOUT
)
1200 wake_up_locked(&ep
->wq
);
1202 if (waitqueue_active(&ep
->poll_wait
))
1206 spin_unlock_irqrestore(&ep
->wq
.lock
, flags
);
1208 /* We have to call this outside the lock */
1210 ep_poll_safewake(&ep
->poll_wait
);
1212 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1215 if (pollflags
& POLLFREE
) {
1217 * If we race with ep_remove_wait_queue() it can miss
1218 * ->whead = NULL and do another remove_wait_queue() after
1219 * us, so we can't use __remove_wait_queue().
1221 list_del_init(&wait
->entry
);
1223 * ->whead != NULL protects us from the race with ep_free()
1224 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1225 * held by the caller. Once we nullify it, nothing protects
1226 * ep/epi or even wait.
1228 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1235 * This is the callback that is used to add our wait queue to the
1236 * target file wakeup lists.
1238 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1241 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1242 struct eppoll_entry
*pwq
;
1244 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1245 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1248 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1249 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1251 add_wait_queue(whead
, &pwq
->wait
);
1252 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1255 /* We have to signal that an error occurred */
1260 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1263 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1264 struct epitem
*epic
;
1265 bool leftmost
= true;
1269 epic
= rb_entry(parent
, struct epitem
, rbn
);
1270 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1272 p
= &parent
->rb_right
;
1275 p
= &parent
->rb_left
;
1277 rb_link_node(&epi
->rbn
, parent
, p
);
1278 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1283 #define PATH_ARR_SIZE 5
1285 * These are the number paths of length 1 to 5, that we are allowing to emanate
1286 * from a single file of interest. For example, we allow 1000 paths of length
1287 * 1, to emanate from each file of interest. This essentially represents the
1288 * potential wakeup paths, which need to be limited in order to avoid massive
1289 * uncontrolled wakeup storms. The common use case should be a single ep which
1290 * is connected to n file sources. In this case each file source has 1 path
1291 * of length 1. Thus, the numbers below should be more than sufficient. These
1292 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1293 * and delete can't add additional paths. Protected by the epmutex.
1295 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1296 static int path_count
[PATH_ARR_SIZE
];
1298 static int path_count_inc(int nests
)
1300 /* Allow an arbitrary number of depth 1 paths */
1304 if (++path_count
[nests
] > path_limits
[nests
])
1309 static void path_count_init(void)
1313 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1317 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1320 struct file
*file
= priv
;
1321 struct file
*child_file
;
1324 /* CTL_DEL can remove links here, but that can't increase our count */
1326 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1327 child_file
= epi
->ep
->file
;
1328 if (is_file_epoll(child_file
)) {
1329 if (list_empty(&child_file
->f_ep_links
)) {
1330 if (path_count_inc(call_nests
)) {
1335 error
= ep_call_nested(&poll_loop_ncalls
,
1336 reverse_path_check_proc
,
1337 child_file
, child_file
,
1343 printk(KERN_ERR
"reverse_path_check_proc: "
1344 "file is not an ep!\n");
1352 * reverse_path_check - The tfile_check_list is list of file *, which have
1353 * links that are proposed to be newly added. We need to
1354 * make sure that those added links don't add too many
1355 * paths such that we will spend all our time waking up
1356 * eventpoll objects.
1358 * Returns: Returns zero if the proposed links don't create too many paths,
1361 static int reverse_path_check(void)
1364 struct file
*current_file
;
1366 /* let's call this for all tfiles */
1367 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1369 error
= ep_call_nested(&poll_loop_ncalls
,
1370 reverse_path_check_proc
, current_file
,
1371 current_file
, current
);
1378 static int ep_create_wakeup_source(struct epitem
*epi
)
1381 struct wakeup_source
*ws
;
1384 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1389 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1390 ws
= wakeup_source_register(name
);
1394 rcu_assign_pointer(epi
->ws
, ws
);
1399 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1400 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1402 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1404 RCU_INIT_POINTER(epi
->ws
, NULL
);
1407 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1408 * used internally by wakeup_source_remove, too (called by
1409 * wakeup_source_unregister), so we cannot use call_rcu
1412 wakeup_source_unregister(ws
);
1416 * Must be called with "mtx" held.
1418 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1419 struct file
*tfile
, int fd
, int full_check
)
1421 int error
, pwake
= 0;
1425 struct ep_pqueue epq
;
1427 lockdep_assert_irqs_enabled();
1429 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1430 if (unlikely(user_watches
>= max_user_watches
))
1432 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1435 /* Item initialization follow here ... */
1436 INIT_LIST_HEAD(&epi
->rdllink
);
1437 INIT_LIST_HEAD(&epi
->fllink
);
1438 INIT_LIST_HEAD(&epi
->pwqlist
);
1440 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1441 epi
->event
= *event
;
1443 epi
->next
= EP_UNACTIVE_PTR
;
1444 if (epi
->event
.events
& EPOLLWAKEUP
) {
1445 error
= ep_create_wakeup_source(epi
);
1447 goto error_create_wakeup_source
;
1449 RCU_INIT_POINTER(epi
->ws
, NULL
);
1452 /* Initialize the poll table using the queue callback */
1454 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1457 * Attach the item to the poll hooks and get current event bits.
1458 * We can safely use the file* here because its usage count has
1459 * been increased by the caller of this function. Note that after
1460 * this operation completes, the poll callback can start hitting
1463 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1466 * We have to check if something went wrong during the poll wait queue
1467 * install process. Namely an allocation for a wait queue failed due
1468 * high memory pressure.
1472 goto error_unregister
;
1474 /* Add the current item to the list of active epoll hook for this file */
1475 spin_lock(&tfile
->f_lock
);
1476 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1477 spin_unlock(&tfile
->f_lock
);
1480 * Add the current item to the RB tree. All RB tree operations are
1481 * protected by "mtx", and ep_insert() is called with "mtx" held.
1483 ep_rbtree_insert(ep
, epi
);
1485 /* now check if we've created too many backpaths */
1487 if (full_check
&& reverse_path_check())
1488 goto error_remove_epi
;
1490 /* We have to drop the new item inside our item list to keep track of it */
1491 spin_lock_irq(&ep
->wq
.lock
);
1493 /* record NAPI ID of new item if present */
1494 ep_set_busy_poll_napi_id(epi
);
1496 /* If the file is already "ready" we drop it inside the ready list */
1497 if (revents
&& !ep_is_linked(epi
)) {
1498 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1499 ep_pm_stay_awake(epi
);
1501 /* Notify waiting tasks that events are available */
1502 if (waitqueue_active(&ep
->wq
))
1503 wake_up_locked(&ep
->wq
);
1504 if (waitqueue_active(&ep
->poll_wait
))
1508 spin_unlock_irq(&ep
->wq
.lock
);
1510 atomic_long_inc(&ep
->user
->epoll_watches
);
1512 /* We have to call this outside the lock */
1514 ep_poll_safewake(&ep
->poll_wait
);
1519 spin_lock(&tfile
->f_lock
);
1520 list_del_rcu(&epi
->fllink
);
1521 spin_unlock(&tfile
->f_lock
);
1523 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1526 ep_unregister_pollwait(ep
, epi
);
1529 * We need to do this because an event could have been arrived on some
1530 * allocated wait queue. Note that we don't care about the ep->ovflist
1531 * list, since that is used/cleaned only inside a section bound by "mtx".
1532 * And ep_insert() is called with "mtx" held.
1534 spin_lock_irq(&ep
->wq
.lock
);
1535 if (ep_is_linked(epi
))
1536 list_del_init(&epi
->rdllink
);
1537 spin_unlock_irq(&ep
->wq
.lock
);
1539 wakeup_source_unregister(ep_wakeup_source(epi
));
1541 error_create_wakeup_source
:
1542 kmem_cache_free(epi_cache
, epi
);
1548 * Modify the interest event mask by dropping an event if the new mask
1549 * has a match in the current file status. Must be called with "mtx" held.
1551 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1552 const struct epoll_event
*event
)
1557 lockdep_assert_irqs_enabled();
1559 init_poll_funcptr(&pt
, NULL
);
1562 * Set the new event interest mask before calling f_op->poll();
1563 * otherwise we might miss an event that happens between the
1564 * f_op->poll() call and the new event set registering.
1566 epi
->event
.events
= event
->events
; /* need barrier below */
1567 epi
->event
.data
= event
->data
; /* protected by mtx */
1568 if (epi
->event
.events
& EPOLLWAKEUP
) {
1569 if (!ep_has_wakeup_source(epi
))
1570 ep_create_wakeup_source(epi
);
1571 } else if (ep_has_wakeup_source(epi
)) {
1572 ep_destroy_wakeup_source(epi
);
1576 * The following barrier has two effects:
1578 * 1) Flush epi changes above to other CPUs. This ensures
1579 * we do not miss events from ep_poll_callback if an
1580 * event occurs immediately after we call f_op->poll().
1581 * We need this because we did not take ep->wq.lock while
1582 * changing epi above (but ep_poll_callback does take
1585 * 2) We also need to ensure we do not miss _past_ events
1586 * when calling f_op->poll(). This barrier also
1587 * pairs with the barrier in wq_has_sleeper (see
1588 * comments for wq_has_sleeper).
1590 * This barrier will now guarantee ep_poll_callback or f_op->poll
1591 * (or both) will notice the readiness of an item.
1596 * Get current event bits. We can safely use the file* here because
1597 * its usage count has been increased by the caller of this function.
1598 * If the item is "hot" and it is not registered inside the ready
1599 * list, push it inside.
1601 if (ep_item_poll(epi
, &pt
, 1)) {
1602 spin_lock_irq(&ep
->wq
.lock
);
1603 if (!ep_is_linked(epi
)) {
1604 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1605 ep_pm_stay_awake(epi
);
1607 /* Notify waiting tasks that events are available */
1608 if (waitqueue_active(&ep
->wq
))
1609 wake_up_locked(&ep
->wq
);
1610 if (waitqueue_active(&ep
->poll_wait
))
1613 spin_unlock_irq(&ep
->wq
.lock
);
1616 /* We have to call this outside the lock */
1618 ep_poll_safewake(&ep
->poll_wait
);
1623 static __poll_t
ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1626 struct ep_send_events_data
*esed
= priv
;
1628 struct epitem
*epi
, *tmp
;
1629 struct epoll_event __user
*uevent
= esed
->events
;
1630 struct wakeup_source
*ws
;
1633 init_poll_funcptr(&pt
, NULL
);
1637 * We can loop without lock because we are passed a task private list.
1638 * Items cannot vanish during the loop because ep_scan_ready_list() is
1639 * holding "mtx" during this call.
1641 lockdep_assert_held(&ep
->mtx
);
1643 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
1644 if (esed
->res
>= esed
->maxevents
)
1648 * Activate ep->ws before deactivating epi->ws to prevent
1649 * triggering auto-suspend here (in case we reactive epi->ws
1652 * This could be rearranged to delay the deactivation of epi->ws
1653 * instead, but then epi->ws would temporarily be out of sync
1654 * with ep_is_linked().
1656 ws
= ep_wakeup_source(epi
);
1659 __pm_stay_awake(ep
->ws
);
1663 list_del_init(&epi
->rdllink
);
1666 * If the event mask intersect the caller-requested one,
1667 * deliver the event to userspace. Again, ep_scan_ready_list()
1668 * is holding ep->mtx, so no operations coming from userspace
1669 * can change the item.
1671 revents
= ep_item_poll(epi
, &pt
, 1);
1675 if (__put_user(revents
, &uevent
->events
) ||
1676 __put_user(epi
->event
.data
, &uevent
->data
)) {
1677 list_add(&epi
->rdllink
, head
);
1678 ep_pm_stay_awake(epi
);
1680 esed
->res
= -EFAULT
;
1685 if (epi
->event
.events
& EPOLLONESHOT
)
1686 epi
->event
.events
&= EP_PRIVATE_BITS
;
1687 else if (!(epi
->event
.events
& EPOLLET
)) {
1689 * If this file has been added with Level
1690 * Trigger mode, we need to insert back inside
1691 * the ready list, so that the next call to
1692 * epoll_wait() will check again the events
1693 * availability. At this point, no one can insert
1694 * into ep->rdllist besides us. The epoll_ctl()
1695 * callers are locked out by
1696 * ep_scan_ready_list() holding "mtx" and the
1697 * poll callback will queue them in ep->ovflist.
1699 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1700 ep_pm_stay_awake(epi
);
1707 static int ep_send_events(struct eventpoll
*ep
,
1708 struct epoll_event __user
*events
, int maxevents
)
1710 struct ep_send_events_data esed
;
1712 esed
.maxevents
= maxevents
;
1713 esed
.events
= events
;
1715 ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1719 static inline struct timespec64
ep_set_mstimeout(long ms
)
1721 struct timespec64 now
, ts
= {
1722 .tv_sec
= ms
/ MSEC_PER_SEC
,
1723 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1726 ktime_get_ts64(&now
);
1727 return timespec64_add_safe(now
, ts
);
1731 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1734 * @ep: Pointer to the eventpoll context.
1735 * @events: Pointer to the userspace buffer where the ready events should be
1737 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1738 * @timeout: Maximum timeout for the ready events fetch operation, in
1739 * milliseconds. If the @timeout is zero, the function will not block,
1740 * while if the @timeout is less than zero, the function will block
1741 * until at least one event has been retrieved (or an error
1744 * Returns: Returns the number of ready events which have been fetched, or an
1745 * error code, in case of error.
1747 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1748 int maxevents
, long timeout
)
1750 int res
= 0, eavail
, timed_out
= 0;
1752 bool waiter
= false;
1753 wait_queue_entry_t wait
;
1754 ktime_t expires
, *to
= NULL
;
1756 lockdep_assert_irqs_enabled();
1759 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1761 slack
= select_estimate_accuracy(&end_time
);
1763 *to
= timespec64_to_ktime(end_time
);
1764 } else if (timeout
== 0) {
1766 * Avoid the unnecessary trip to the wait queue loop, if the
1767 * caller specified a non blocking operation. We still need
1768 * lock because we could race and not see an epi being added
1769 * to the ready list while in irq callback. Thus incorrectly
1770 * returning 0 back to userspace.
1774 spin_lock_irq(&ep
->wq
.lock
);
1775 eavail
= ep_events_available(ep
);
1776 spin_unlock_irq(&ep
->wq
.lock
);
1783 if (!ep_events_available(ep
))
1784 ep_busy_loop(ep
, timed_out
);
1786 eavail
= ep_events_available(ep
);
1791 * Busy poll timed out. Drop NAPI ID for now, we can add
1792 * it back in when we have moved a socket with a valid NAPI
1793 * ID onto the ready list.
1795 ep_reset_busy_poll_napi_id(ep
);
1798 * We don't have any available event to return to the caller. We need
1799 * to sleep here, and we will be woken by ep_poll_callback() when events
1804 init_waitqueue_entry(&wait
, current
);
1806 spin_lock_irq(&ep
->wq
.lock
);
1807 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1808 spin_unlock_irq(&ep
->wq
.lock
);
1813 * We don't want to sleep if the ep_poll_callback() sends us
1814 * a wakeup in between. That's why we set the task state
1815 * to TASK_INTERRUPTIBLE before doing the checks.
1817 set_current_state(TASK_INTERRUPTIBLE
);
1819 * Always short-circuit for fatal signals to allow
1820 * threads to make a timely exit without the chance of
1821 * finding more events available and fetching
1824 if (fatal_signal_pending(current
)) {
1829 eavail
= ep_events_available(ep
);
1832 if (signal_pending(current
)) {
1837 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
)) {
1843 __set_current_state(TASK_RUNNING
);
1847 * Try to transfer events to user space. In case we get 0 events and
1848 * there's still timeout left over, we go trying again in search of
1851 if (!res
&& eavail
&&
1852 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1856 spin_lock_irq(&ep
->wq
.lock
);
1857 __remove_wait_queue(&ep
->wq
, &wait
);
1858 spin_unlock_irq(&ep
->wq
.lock
);
1865 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1866 * API, to verify that adding an epoll file inside another
1867 * epoll structure, does not violate the constraints, in
1868 * terms of closed loops, or too deep chains (which can
1869 * result in excessive stack usage).
1871 * @priv: Pointer to the epoll file to be currently checked.
1872 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1873 * data structure pointer.
1874 * @call_nests: Current dept of the @ep_call_nested() call stack.
1876 * Returns: Returns zero if adding the epoll @file inside current epoll
1877 * structure @ep does not violate the constraints, or -1 otherwise.
1879 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1882 struct file
*file
= priv
;
1883 struct eventpoll
*ep
= file
->private_data
;
1884 struct eventpoll
*ep_tovisit
;
1885 struct rb_node
*rbp
;
1888 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1890 list_add(&ep
->visited_list_link
, &visited_list
);
1891 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1892 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1893 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1894 ep_tovisit
= epi
->ffd
.file
->private_data
;
1895 if (ep_tovisit
->visited
)
1897 error
= ep_call_nested(&poll_loop_ncalls
,
1898 ep_loop_check_proc
, epi
->ffd
.file
,
1899 ep_tovisit
, current
);
1904 * If we've reached a file that is not associated with
1905 * an ep, then we need to check if the newly added
1906 * links are going to add too many wakeup paths. We do
1907 * this by adding it to the tfile_check_list, if it's
1908 * not already there, and calling reverse_path_check()
1909 * during ep_insert().
1911 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1912 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1916 mutex_unlock(&ep
->mtx
);
1922 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1923 * another epoll file (represented by @ep) does not create
1924 * closed loops or too deep chains.
1926 * @ep: Pointer to the epoll private data structure.
1927 * @file: Pointer to the epoll file to be checked.
1929 * Returns: Returns zero if adding the epoll @file inside current epoll
1930 * structure @ep does not violate the constraints, or -1 otherwise.
1932 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1935 struct eventpoll
*ep_cur
, *ep_next
;
1937 ret
= ep_call_nested(&poll_loop_ncalls
,
1938 ep_loop_check_proc
, file
, ep
, current
);
1939 /* clear visited list */
1940 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1941 visited_list_link
) {
1942 ep_cur
->visited
= 0;
1943 list_del(&ep_cur
->visited_list_link
);
1948 static void clear_tfile_check_list(void)
1952 /* first clear the tfile_check_list */
1953 while (!list_empty(&tfile_check_list
)) {
1954 file
= list_first_entry(&tfile_check_list
, struct file
,
1956 list_del_init(&file
->f_tfile_llink
);
1958 INIT_LIST_HEAD(&tfile_check_list
);
1962 * Open an eventpoll file descriptor.
1964 static int do_epoll_create(int flags
)
1967 struct eventpoll
*ep
= NULL
;
1970 /* Check the EPOLL_* constant for consistency. */
1971 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1973 if (flags
& ~EPOLL_CLOEXEC
)
1976 * Create the internal data structure ("struct eventpoll").
1978 error
= ep_alloc(&ep
);
1982 * Creates all the items needed to setup an eventpoll file. That is,
1983 * a file structure and a free file descriptor.
1985 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1990 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1991 O_RDWR
| (flags
& O_CLOEXEC
));
1993 error
= PTR_ERR(file
);
1997 fd_install(fd
, file
);
2007 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2009 return do_epoll_create(flags
);
2012 SYSCALL_DEFINE1(epoll_create
, int, size
)
2017 return do_epoll_create(0);
2021 * The following function implements the controller interface for
2022 * the eventpoll file that enables the insertion/removal/change of
2023 * file descriptors inside the interest set.
2025 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2026 struct epoll_event __user
*, event
)
2031 struct eventpoll
*ep
;
2033 struct epoll_event epds
;
2034 struct eventpoll
*tep
= NULL
;
2037 if (ep_op_has_event(op
) &&
2038 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2046 /* Get the "struct file *" for the target file */
2051 /* The target file descriptor must support poll */
2053 if (!file_can_poll(tf
.file
))
2054 goto error_tgt_fput
;
2056 /* Check if EPOLLWAKEUP is allowed */
2057 if (ep_op_has_event(op
))
2058 ep_take_care_of_epollwakeup(&epds
);
2061 * We have to check that the file structure underneath the file descriptor
2062 * the user passed to us _is_ an eventpoll file. And also we do not permit
2063 * adding an epoll file descriptor inside itself.
2066 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2067 goto error_tgt_fput
;
2070 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2071 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2072 * Also, we do not currently supported nested exclusive wakeups.
2074 if (ep_op_has_event(op
) && (epds
.events
& EPOLLEXCLUSIVE
)) {
2075 if (op
== EPOLL_CTL_MOD
)
2076 goto error_tgt_fput
;
2077 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2078 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2079 goto error_tgt_fput
;
2083 * At this point it is safe to assume that the "private_data" contains
2084 * our own data structure.
2086 ep
= f
.file
->private_data
;
2089 * When we insert an epoll file descriptor, inside another epoll file
2090 * descriptor, there is the change of creating closed loops, which are
2091 * better be handled here, than in more critical paths. While we are
2092 * checking for loops we also determine the list of files reachable
2093 * and hang them on the tfile_check_list, so we can check that we
2094 * haven't created too many possible wakeup paths.
2096 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2097 * the epoll file descriptor is attaching directly to a wakeup source,
2098 * unless the epoll file descriptor is nested. The purpose of taking the
2099 * 'epmutex' on add is to prevent complex toplogies such as loops and
2100 * deep wakeup paths from forming in parallel through multiple
2101 * EPOLL_CTL_ADD operations.
2103 mutex_lock_nested(&ep
->mtx
, 0);
2104 if (op
== EPOLL_CTL_ADD
) {
2105 if (!list_empty(&f
.file
->f_ep_links
) ||
2106 is_file_epoll(tf
.file
)) {
2108 mutex_unlock(&ep
->mtx
);
2109 mutex_lock(&epmutex
);
2110 if (is_file_epoll(tf
.file
)) {
2112 if (ep_loop_check(ep
, tf
.file
) != 0) {
2113 clear_tfile_check_list();
2114 goto error_tgt_fput
;
2117 list_add(&tf
.file
->f_tfile_llink
,
2119 mutex_lock_nested(&ep
->mtx
, 0);
2120 if (is_file_epoll(tf
.file
)) {
2121 tep
= tf
.file
->private_data
;
2122 mutex_lock_nested(&tep
->mtx
, 1);
2128 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2129 * above, we can be sure to be able to use the item looked up by
2130 * ep_find() till we release the mutex.
2132 epi
= ep_find(ep
, tf
.file
, fd
);
2138 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2139 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
2143 clear_tfile_check_list();
2147 error
= ep_remove(ep
, epi
);
2153 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2154 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2155 error
= ep_modify(ep
, epi
, &epds
);
2162 mutex_unlock(&tep
->mtx
);
2163 mutex_unlock(&ep
->mtx
);
2167 mutex_unlock(&epmutex
);
2178 * Implement the event wait interface for the eventpoll file. It is the kernel
2179 * part of the user space epoll_wait(2).
2181 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2182 int maxevents
, int timeout
)
2186 struct eventpoll
*ep
;
2188 /* The maximum number of event must be greater than zero */
2189 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2192 /* Verify that the area passed by the user is writeable */
2193 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2196 /* Get the "struct file *" for the eventpoll file */
2202 * We have to check that the file structure underneath the fd
2203 * the user passed to us _is_ an eventpoll file.
2206 if (!is_file_epoll(f
.file
))
2210 * At this point it is safe to assume that the "private_data" contains
2211 * our own data structure.
2213 ep
= f
.file
->private_data
;
2215 /* Time to fish for events ... */
2216 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2223 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2224 int, maxevents
, int, timeout
)
2226 return do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2230 * Implement the event wait interface for the eventpoll file. It is the kernel
2231 * part of the user space epoll_pwait(2).
2233 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2234 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2238 sigset_t ksigmask
, sigsaved
;
2241 * If the caller wants a certain signal mask to be set during the wait,
2244 error
= set_user_sigmask(sigmask
, &ksigmask
, &sigsaved
, sigsetsize
);
2248 error
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2250 restore_user_sigmask(sigmask
, &sigsaved
);
2255 #ifdef CONFIG_COMPAT
2256 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2257 struct epoll_event __user
*, events
,
2258 int, maxevents
, int, timeout
,
2259 const compat_sigset_t __user
*, sigmask
,
2260 compat_size_t
, sigsetsize
)
2263 sigset_t ksigmask
, sigsaved
;
2266 * If the caller wants a certain signal mask to be set during the wait,
2269 err
= set_compat_user_sigmask(sigmask
, &ksigmask
, &sigsaved
, sigsetsize
);
2273 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2275 restore_user_sigmask(sigmask
, &sigsaved
);
2281 static int __init
eventpoll_init(void)
2287 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2289 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2291 BUG_ON(max_user_watches
< 0);
2294 * Initialize the structure used to perform epoll file descriptor
2295 * inclusion loops checks.
2297 ep_nested_calls_init(&poll_loop_ncalls
);
2299 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2300 /* Initialize the structure used to perform safe poll wait head wake ups */
2301 ep_nested_calls_init(&poll_safewake_ncalls
);
2305 * We can have many thousands of epitems, so prevent this from
2306 * using an extra cache line on 64-bit (and smaller) CPUs
2308 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2310 /* Allocates slab cache used to allocate "struct epitem" items */
2311 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2312 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2314 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2315 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2316 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2320 fs_initcall(eventpoll_init
);